| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/fs/ext4/indirect.c | 
 | 3 |  * | 
 | 4 |  *  from | 
 | 5 |  * | 
 | 6 |  *  linux/fs/ext4/inode.c | 
 | 7 |  * | 
 | 8 |  * Copyright (C) 1992, 1993, 1994, 1995 | 
 | 9 |  * Remy Card (card@masi.ibp.fr) | 
 | 10 |  * Laboratoire MASI - Institut Blaise Pascal | 
 | 11 |  * Universite Pierre et Marie Curie (Paris VI) | 
 | 12 |  * | 
 | 13 |  *  from | 
 | 14 |  * | 
 | 15 |  *  linux/fs/minix/inode.c | 
 | 16 |  * | 
 | 17 |  *  Copyright (C) 1991, 1992  Linus Torvalds | 
 | 18 |  * | 
 | 19 |  *  Goal-directed block allocation by Stephen Tweedie | 
 | 20 |  *	(sct@redhat.com), 1993, 1998 | 
 | 21 |  */ | 
 | 22 |  | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 23 | #include "ext4_jbd2.h" | 
 | 24 | #include "truncate.h" | 
| Theodore Ts'o | 4a092d7 | 2012-11-28 13:03:30 -0500 | [diff] [blame] | 25 | #include "ext4_extents.h"	/* Needed for EXT_MAX_BLOCKS */ | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 26 |  | 
 | 27 | #include <trace/events/ext4.h> | 
 | 28 |  | 
 | 29 | typedef struct { | 
 | 30 | 	__le32	*p; | 
 | 31 | 	__le32	key; | 
 | 32 | 	struct buffer_head *bh; | 
 | 33 | } Indirect; | 
 | 34 |  | 
 | 35 | static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v) | 
 | 36 | { | 
 | 37 | 	p->key = *(p->p = v); | 
 | 38 | 	p->bh = bh; | 
 | 39 | } | 
 | 40 |  | 
 | 41 | /** | 
 | 42 |  *	ext4_block_to_path - parse the block number into array of offsets | 
 | 43 |  *	@inode: inode in question (we are only interested in its superblock) | 
 | 44 |  *	@i_block: block number to be parsed | 
 | 45 |  *	@offsets: array to store the offsets in | 
 | 46 |  *	@boundary: set this non-zero if the referred-to block is likely to be | 
 | 47 |  *	       followed (on disk) by an indirect block. | 
 | 48 |  * | 
 | 49 |  *	To store the locations of file's data ext4 uses a data structure common | 
 | 50 |  *	for UNIX filesystems - tree of pointers anchored in the inode, with | 
 | 51 |  *	data blocks at leaves and indirect blocks in intermediate nodes. | 
 | 52 |  *	This function translates the block number into path in that tree - | 
 | 53 |  *	return value is the path length and @offsets[n] is the offset of | 
 | 54 |  *	pointer to (n+1)th node in the nth one. If @block is out of range | 
 | 55 |  *	(negative or too large) warning is printed and zero returned. | 
 | 56 |  * | 
 | 57 |  *	Note: function doesn't find node addresses, so no IO is needed. All | 
 | 58 |  *	we need to know is the capacity of indirect blocks (taken from the | 
 | 59 |  *	inode->i_sb). | 
 | 60 |  */ | 
 | 61 |  | 
 | 62 | /* | 
 | 63 |  * Portability note: the last comparison (check that we fit into triple | 
 | 64 |  * indirect block) is spelled differently, because otherwise on an | 
 | 65 |  * architecture with 32-bit longs and 8Kb pages we might get into trouble | 
 | 66 |  * if our filesystem had 8Kb blocks. We might use long long, but that would | 
 | 67 |  * kill us on x86. Oh, well, at least the sign propagation does not matter - | 
 | 68 |  * i_block would have to be negative in the very beginning, so we would not | 
 | 69 |  * get there at all. | 
 | 70 |  */ | 
 | 71 |  | 
 | 72 | static int ext4_block_to_path(struct inode *inode, | 
 | 73 | 			      ext4_lblk_t i_block, | 
 | 74 | 			      ext4_lblk_t offsets[4], int *boundary) | 
 | 75 | { | 
 | 76 | 	int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb); | 
 | 77 | 	int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb); | 
 | 78 | 	const long direct_blocks = EXT4_NDIR_BLOCKS, | 
 | 79 | 		indirect_blocks = ptrs, | 
 | 80 | 		double_blocks = (1 << (ptrs_bits * 2)); | 
 | 81 | 	int n = 0; | 
 | 82 | 	int final = 0; | 
 | 83 |  | 
 | 84 | 	if (i_block < direct_blocks) { | 
 | 85 | 		offsets[n++] = i_block; | 
 | 86 | 		final = direct_blocks; | 
 | 87 | 	} else if ((i_block -= direct_blocks) < indirect_blocks) { | 
 | 88 | 		offsets[n++] = EXT4_IND_BLOCK; | 
 | 89 | 		offsets[n++] = i_block; | 
 | 90 | 		final = ptrs; | 
 | 91 | 	} else if ((i_block -= indirect_blocks) < double_blocks) { | 
 | 92 | 		offsets[n++] = EXT4_DIND_BLOCK; | 
 | 93 | 		offsets[n++] = i_block >> ptrs_bits; | 
 | 94 | 		offsets[n++] = i_block & (ptrs - 1); | 
 | 95 | 		final = ptrs; | 
 | 96 | 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { | 
 | 97 | 		offsets[n++] = EXT4_TIND_BLOCK; | 
 | 98 | 		offsets[n++] = i_block >> (ptrs_bits * 2); | 
 | 99 | 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); | 
 | 100 | 		offsets[n++] = i_block & (ptrs - 1); | 
 | 101 | 		final = ptrs; | 
 | 102 | 	} else { | 
 | 103 | 		ext4_warning(inode->i_sb, "block %lu > max in inode %lu", | 
 | 104 | 			     i_block + direct_blocks + | 
 | 105 | 			     indirect_blocks + double_blocks, inode->i_ino); | 
 | 106 | 	} | 
 | 107 | 	if (boundary) | 
 | 108 | 		*boundary = final - 1 - (i_block & (ptrs - 1)); | 
 | 109 | 	return n; | 
 | 110 | } | 
 | 111 |  | 
 | 112 | /** | 
 | 113 |  *	ext4_get_branch - read the chain of indirect blocks leading to data | 
 | 114 |  *	@inode: inode in question | 
 | 115 |  *	@depth: depth of the chain (1 - direct pointer, etc.) | 
 | 116 |  *	@offsets: offsets of pointers in inode/indirect blocks | 
 | 117 |  *	@chain: place to store the result | 
 | 118 |  *	@err: here we store the error value | 
 | 119 |  * | 
 | 120 |  *	Function fills the array of triples <key, p, bh> and returns %NULL | 
 | 121 |  *	if everything went OK or the pointer to the last filled triple | 
 | 122 |  *	(incomplete one) otherwise. Upon the return chain[i].key contains | 
 | 123 |  *	the number of (i+1)-th block in the chain (as it is stored in memory, | 
 | 124 |  *	i.e. little-endian 32-bit), chain[i].p contains the address of that | 
 | 125 |  *	number (it points into struct inode for i==0 and into the bh->b_data | 
 | 126 |  *	for i>0) and chain[i].bh points to the buffer_head of i-th indirect | 
 | 127 |  *	block for i>0 and NULL for i==0. In other words, it holds the block | 
 | 128 |  *	numbers of the chain, addresses they were taken from (and where we can | 
 | 129 |  *	verify that chain did not change) and buffer_heads hosting these | 
 | 130 |  *	numbers. | 
 | 131 |  * | 
 | 132 |  *	Function stops when it stumbles upon zero pointer (absent block) | 
 | 133 |  *		(pointer to last triple returned, *@err == 0) | 
 | 134 |  *	or when it gets an IO error reading an indirect block | 
 | 135 |  *		(ditto, *@err == -EIO) | 
 | 136 |  *	or when it reads all @depth-1 indirect blocks successfully and finds | 
 | 137 |  *	the whole chain, all way to the data (returns %NULL, *err == 0). | 
 | 138 |  * | 
 | 139 |  *      Need to be called with | 
 | 140 |  *      down_read(&EXT4_I(inode)->i_data_sem) | 
 | 141 |  */ | 
 | 142 | static Indirect *ext4_get_branch(struct inode *inode, int depth, | 
 | 143 | 				 ext4_lblk_t  *offsets, | 
 | 144 | 				 Indirect chain[4], int *err) | 
 | 145 | { | 
 | 146 | 	struct super_block *sb = inode->i_sb; | 
 | 147 | 	Indirect *p = chain; | 
 | 148 | 	struct buffer_head *bh; | 
 | 149 |  | 
 | 150 | 	*err = 0; | 
 | 151 | 	/* i_data is not going away, no lock needed */ | 
 | 152 | 	add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets); | 
 | 153 | 	if (!p->key) | 
 | 154 | 		goto no_block; | 
 | 155 | 	while (--depth) { | 
 | 156 | 		bh = sb_getblk(sb, le32_to_cpu(p->key)); | 
 | 157 | 		if (unlikely(!bh)) | 
 | 158 | 			goto failure; | 
 | 159 |  | 
 | 160 | 		if (!bh_uptodate_or_lock(bh)) { | 
 | 161 | 			if (bh_submit_read(bh) < 0) { | 
 | 162 | 				put_bh(bh); | 
 | 163 | 				goto failure; | 
 | 164 | 			} | 
 | 165 | 			/* validate block references */ | 
 | 166 | 			if (ext4_check_indirect_blockref(inode, bh)) { | 
 | 167 | 				put_bh(bh); | 
 | 168 | 				goto failure; | 
 | 169 | 			} | 
 | 170 | 		} | 
 | 171 |  | 
 | 172 | 		add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets); | 
 | 173 | 		/* Reader: end */ | 
 | 174 | 		if (!p->key) | 
 | 175 | 			goto no_block; | 
 | 176 | 	} | 
 | 177 | 	return NULL; | 
 | 178 |  | 
 | 179 | failure: | 
 | 180 | 	*err = -EIO; | 
 | 181 | no_block: | 
 | 182 | 	return p; | 
 | 183 | } | 
 | 184 |  | 
 | 185 | /** | 
 | 186 |  *	ext4_find_near - find a place for allocation with sufficient locality | 
 | 187 |  *	@inode: owner | 
 | 188 |  *	@ind: descriptor of indirect block. | 
 | 189 |  * | 
 | 190 |  *	This function returns the preferred place for block allocation. | 
 | 191 |  *	It is used when heuristic for sequential allocation fails. | 
 | 192 |  *	Rules are: | 
 | 193 |  *	  + if there is a block to the left of our position - allocate near it. | 
 | 194 |  *	  + if pointer will live in indirect block - allocate near that block. | 
 | 195 |  *	  + if pointer will live in inode - allocate in the same | 
 | 196 |  *	    cylinder group. | 
 | 197 |  * | 
 | 198 |  * In the latter case we colour the starting block by the callers PID to | 
 | 199 |  * prevent it from clashing with concurrent allocations for a different inode | 
 | 200 |  * in the same block group.   The PID is used here so that functionally related | 
 | 201 |  * files will be close-by on-disk. | 
 | 202 |  * | 
 | 203 |  *	Caller must make sure that @ind is valid and will stay that way. | 
 | 204 |  */ | 
 | 205 | static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind) | 
 | 206 | { | 
 | 207 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 208 | 	__le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data; | 
 | 209 | 	__le32 *p; | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 210 |  | 
 | 211 | 	/* Try to find previous block */ | 
 | 212 | 	for (p = ind->p - 1; p >= start; p--) { | 
 | 213 | 		if (*p) | 
 | 214 | 			return le32_to_cpu(*p); | 
 | 215 | 	} | 
 | 216 |  | 
 | 217 | 	/* No such thing, so let's try location of indirect block */ | 
 | 218 | 	if (ind->bh) | 
 | 219 | 		return ind->bh->b_blocknr; | 
 | 220 |  | 
 | 221 | 	/* | 
 | 222 | 	 * It is going to be referred to from the inode itself? OK, just put it | 
 | 223 | 	 * into the same cylinder group then. | 
 | 224 | 	 */ | 
| Eric Sandeen | f86186b | 2011-06-28 10:01:31 -0400 | [diff] [blame] | 225 | 	return ext4_inode_to_goal_block(inode); | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 226 | } | 
 | 227 |  | 
 | 228 | /** | 
 | 229 |  *	ext4_find_goal - find a preferred place for allocation. | 
 | 230 |  *	@inode: owner | 
 | 231 |  *	@block:  block we want | 
 | 232 |  *	@partial: pointer to the last triple within a chain | 
 | 233 |  * | 
 | 234 |  *	Normally this function find the preferred place for block allocation, | 
 | 235 |  *	returns it. | 
 | 236 |  *	Because this is only used for non-extent files, we limit the block nr | 
 | 237 |  *	to 32 bits. | 
 | 238 |  */ | 
 | 239 | static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block, | 
 | 240 | 				   Indirect *partial) | 
 | 241 | { | 
 | 242 | 	ext4_fsblk_t goal; | 
 | 243 |  | 
 | 244 | 	/* | 
 | 245 | 	 * XXX need to get goal block from mballoc's data structures | 
 | 246 | 	 */ | 
 | 247 |  | 
 | 248 | 	goal = ext4_find_near(inode, partial); | 
 | 249 | 	goal = goal & EXT4_MAX_BLOCK_FILE_PHYS; | 
 | 250 | 	return goal; | 
 | 251 | } | 
 | 252 |  | 
 | 253 | /** | 
 | 254 |  *	ext4_blks_to_allocate - Look up the block map and count the number | 
 | 255 |  *	of direct blocks need to be allocated for the given branch. | 
 | 256 |  * | 
 | 257 |  *	@branch: chain of indirect blocks | 
 | 258 |  *	@k: number of blocks need for indirect blocks | 
 | 259 |  *	@blks: number of data blocks to be mapped. | 
 | 260 |  *	@blocks_to_boundary:  the offset in the indirect block | 
 | 261 |  * | 
 | 262 |  *	return the total number of blocks to be allocate, including the | 
 | 263 |  *	direct and indirect blocks. | 
 | 264 |  */ | 
 | 265 | static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks, | 
 | 266 | 				 int blocks_to_boundary) | 
 | 267 | { | 
 | 268 | 	unsigned int count = 0; | 
 | 269 |  | 
 | 270 | 	/* | 
 | 271 | 	 * Simple case, [t,d]Indirect block(s) has not allocated yet | 
 | 272 | 	 * then it's clear blocks on that path have not allocated | 
 | 273 | 	 */ | 
 | 274 | 	if (k > 0) { | 
 | 275 | 		/* right now we don't handle cross boundary allocation */ | 
 | 276 | 		if (blks < blocks_to_boundary + 1) | 
 | 277 | 			count += blks; | 
 | 278 | 		else | 
 | 279 | 			count += blocks_to_boundary + 1; | 
 | 280 | 		return count; | 
 | 281 | 	} | 
 | 282 |  | 
 | 283 | 	count++; | 
 | 284 | 	while (count < blks && count <= blocks_to_boundary && | 
 | 285 | 		le32_to_cpu(*(branch[0].p + count)) == 0) { | 
 | 286 | 		count++; | 
 | 287 | 	} | 
 | 288 | 	return count; | 
 | 289 | } | 
 | 290 |  | 
 | 291 | /** | 
 | 292 |  *	ext4_alloc_blocks: multiple allocate blocks needed for a branch | 
 | 293 |  *	@handle: handle for this transaction | 
 | 294 |  *	@inode: inode which needs allocated blocks | 
 | 295 |  *	@iblock: the logical block to start allocated at | 
 | 296 |  *	@goal: preferred physical block of allocation | 
 | 297 |  *	@indirect_blks: the number of blocks need to allocate for indirect | 
 | 298 |  *			blocks | 
 | 299 |  *	@blks: number of desired blocks | 
 | 300 |  *	@new_blocks: on return it will store the new block numbers for | 
 | 301 |  *	the indirect blocks(if needed) and the first direct block, | 
 | 302 |  *	@err: on return it will store the error code | 
 | 303 |  * | 
 | 304 |  *	This function will return the number of blocks allocated as | 
 | 305 |  *	requested by the passed-in parameters. | 
 | 306 |  */ | 
 | 307 | static int ext4_alloc_blocks(handle_t *handle, struct inode *inode, | 
 | 308 | 			     ext4_lblk_t iblock, ext4_fsblk_t goal, | 
 | 309 | 			     int indirect_blks, int blks, | 
 | 310 | 			     ext4_fsblk_t new_blocks[4], int *err) | 
 | 311 | { | 
 | 312 | 	struct ext4_allocation_request ar; | 
 | 313 | 	int target, i; | 
 | 314 | 	unsigned long count = 0, blk_allocated = 0; | 
 | 315 | 	int index = 0; | 
 | 316 | 	ext4_fsblk_t current_block = 0; | 
 | 317 | 	int ret = 0; | 
 | 318 |  | 
 | 319 | 	/* | 
 | 320 | 	 * Here we try to allocate the requested multiple blocks at once, | 
 | 321 | 	 * on a best-effort basis. | 
 | 322 | 	 * To build a branch, we should allocate blocks for | 
 | 323 | 	 * the indirect blocks(if not allocated yet), and at least | 
 | 324 | 	 * the first direct block of this branch.  That's the | 
 | 325 | 	 * minimum number of blocks need to allocate(required) | 
 | 326 | 	 */ | 
 | 327 | 	/* first we try to allocate the indirect blocks */ | 
 | 328 | 	target = indirect_blks; | 
 | 329 | 	while (target > 0) { | 
 | 330 | 		count = target; | 
 | 331 | 		/* allocating blocks for indirect blocks and direct blocks */ | 
 | 332 | 		current_block = ext4_new_meta_blocks(handle, inode, goal, | 
 | 333 | 						     0, &count, err); | 
 | 334 | 		if (*err) | 
 | 335 | 			goto failed_out; | 
 | 336 |  | 
 | 337 | 		if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) { | 
 | 338 | 			EXT4_ERROR_INODE(inode, | 
 | 339 | 					 "current_block %llu + count %lu > %d!", | 
 | 340 | 					 current_block, count, | 
 | 341 | 					 EXT4_MAX_BLOCK_FILE_PHYS); | 
 | 342 | 			*err = -EIO; | 
 | 343 | 			goto failed_out; | 
 | 344 | 		} | 
 | 345 |  | 
 | 346 | 		target -= count; | 
 | 347 | 		/* allocate blocks for indirect blocks */ | 
 | 348 | 		while (index < indirect_blks && count) { | 
 | 349 | 			new_blocks[index++] = current_block++; | 
 | 350 | 			count--; | 
 | 351 | 		} | 
 | 352 | 		if (count > 0) { | 
 | 353 | 			/* | 
 | 354 | 			 * save the new block number | 
 | 355 | 			 * for the first direct block | 
 | 356 | 			 */ | 
 | 357 | 			new_blocks[index] = current_block; | 
 | 358 | 			printk(KERN_INFO "%s returned more blocks than " | 
 | 359 | 						"requested\n", __func__); | 
 | 360 | 			WARN_ON(1); | 
 | 361 | 			break; | 
 | 362 | 		} | 
 | 363 | 	} | 
 | 364 |  | 
 | 365 | 	target = blks - count ; | 
 | 366 | 	blk_allocated = count; | 
 | 367 | 	if (!target) | 
 | 368 | 		goto allocated; | 
 | 369 | 	/* Now allocate data blocks */ | 
 | 370 | 	memset(&ar, 0, sizeof(ar)); | 
 | 371 | 	ar.inode = inode; | 
 | 372 | 	ar.goal = goal; | 
 | 373 | 	ar.len = target; | 
 | 374 | 	ar.logical = iblock; | 
 | 375 | 	if (S_ISREG(inode->i_mode)) | 
 | 376 | 		/* enable in-core preallocation only for regular files */ | 
 | 377 | 		ar.flags = EXT4_MB_HINT_DATA; | 
 | 378 |  | 
 | 379 | 	current_block = ext4_mb_new_blocks(handle, &ar, err); | 
 | 380 | 	if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) { | 
 | 381 | 		EXT4_ERROR_INODE(inode, | 
 | 382 | 				 "current_block %llu + ar.len %d > %d!", | 
 | 383 | 				 current_block, ar.len, | 
 | 384 | 				 EXT4_MAX_BLOCK_FILE_PHYS); | 
 | 385 | 		*err = -EIO; | 
 | 386 | 		goto failed_out; | 
 | 387 | 	} | 
 | 388 |  | 
 | 389 | 	if (*err && (target == blks)) { | 
 | 390 | 		/* | 
 | 391 | 		 * if the allocation failed and we didn't allocate | 
 | 392 | 		 * any blocks before | 
 | 393 | 		 */ | 
 | 394 | 		goto failed_out; | 
 | 395 | 	} | 
 | 396 | 	if (!*err) { | 
 | 397 | 		if (target == blks) { | 
 | 398 | 			/* | 
 | 399 | 			 * save the new block number | 
 | 400 | 			 * for the first direct block | 
 | 401 | 			 */ | 
 | 402 | 			new_blocks[index] = current_block; | 
 | 403 | 		} | 
 | 404 | 		blk_allocated += ar.len; | 
 | 405 | 	} | 
 | 406 | allocated: | 
 | 407 | 	/* total number of blocks allocated for direct blocks */ | 
 | 408 | 	ret = blk_allocated; | 
 | 409 | 	*err = 0; | 
 | 410 | 	return ret; | 
 | 411 | failed_out: | 
 | 412 | 	for (i = 0; i < index; i++) | 
 | 413 | 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); | 
 | 414 | 	return ret; | 
 | 415 | } | 
 | 416 |  | 
 | 417 | /** | 
 | 418 |  *	ext4_alloc_branch - allocate and set up a chain of blocks. | 
 | 419 |  *	@handle: handle for this transaction | 
 | 420 |  *	@inode: owner | 
 | 421 |  *	@indirect_blks: number of allocated indirect blocks | 
 | 422 |  *	@blks: number of allocated direct blocks | 
 | 423 |  *	@goal: preferred place for allocation | 
 | 424 |  *	@offsets: offsets (in the blocks) to store the pointers to next. | 
 | 425 |  *	@branch: place to store the chain in. | 
 | 426 |  * | 
 | 427 |  *	This function allocates blocks, zeroes out all but the last one, | 
 | 428 |  *	links them into chain and (if we are synchronous) writes them to disk. | 
 | 429 |  *	In other words, it prepares a branch that can be spliced onto the | 
 | 430 |  *	inode. It stores the information about that chain in the branch[], in | 
 | 431 |  *	the same format as ext4_get_branch() would do. We are calling it after | 
 | 432 |  *	we had read the existing part of chain and partial points to the last | 
 | 433 |  *	triple of that (one with zero ->key). Upon the exit we have the same | 
 | 434 |  *	picture as after the successful ext4_get_block(), except that in one | 
 | 435 |  *	place chain is disconnected - *branch->p is still zero (we did not | 
 | 436 |  *	set the last link), but branch->key contains the number that should | 
 | 437 |  *	be placed into *branch->p to fill that gap. | 
 | 438 |  * | 
 | 439 |  *	If allocation fails we free all blocks we've allocated (and forget | 
 | 440 |  *	their buffer_heads) and return the error value the from failed | 
 | 441 |  *	ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain | 
 | 442 |  *	as described above and return 0. | 
 | 443 |  */ | 
 | 444 | static int ext4_alloc_branch(handle_t *handle, struct inode *inode, | 
 | 445 | 			     ext4_lblk_t iblock, int indirect_blks, | 
 | 446 | 			     int *blks, ext4_fsblk_t goal, | 
 | 447 | 			     ext4_lblk_t *offsets, Indirect *branch) | 
 | 448 | { | 
 | 449 | 	int blocksize = inode->i_sb->s_blocksize; | 
 | 450 | 	int i, n = 0; | 
 | 451 | 	int err = 0; | 
 | 452 | 	struct buffer_head *bh; | 
 | 453 | 	int num; | 
 | 454 | 	ext4_fsblk_t new_blocks[4]; | 
 | 455 | 	ext4_fsblk_t current_block; | 
 | 456 |  | 
 | 457 | 	num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks, | 
 | 458 | 				*blks, new_blocks, &err); | 
 | 459 | 	if (err) | 
 | 460 | 		return err; | 
 | 461 |  | 
 | 462 | 	branch[0].key = cpu_to_le32(new_blocks[0]); | 
 | 463 | 	/* | 
 | 464 | 	 * metadata blocks and data blocks are allocated. | 
 | 465 | 	 */ | 
 | 466 | 	for (n = 1; n <= indirect_blks;  n++) { | 
 | 467 | 		/* | 
 | 468 | 		 * Get buffer_head for parent block, zero it out | 
 | 469 | 		 * and set the pointer to new one, then send | 
 | 470 | 		 * parent to disk. | 
 | 471 | 		 */ | 
 | 472 | 		bh = sb_getblk(inode->i_sb, new_blocks[n-1]); | 
 | 473 | 		if (unlikely(!bh)) { | 
 | 474 | 			err = -EIO; | 
 | 475 | 			goto failed; | 
 | 476 | 		} | 
 | 477 |  | 
 | 478 | 		branch[n].bh = bh; | 
 | 479 | 		lock_buffer(bh); | 
 | 480 | 		BUFFER_TRACE(bh, "call get_create_access"); | 
 | 481 | 		err = ext4_journal_get_create_access(handle, bh); | 
 | 482 | 		if (err) { | 
 | 483 | 			/* Don't brelse(bh) here; it's done in | 
 | 484 | 			 * ext4_journal_forget() below */ | 
 | 485 | 			unlock_buffer(bh); | 
 | 486 | 			goto failed; | 
 | 487 | 		} | 
 | 488 |  | 
 | 489 | 		memset(bh->b_data, 0, blocksize); | 
 | 490 | 		branch[n].p = (__le32 *) bh->b_data + offsets[n]; | 
 | 491 | 		branch[n].key = cpu_to_le32(new_blocks[n]); | 
 | 492 | 		*branch[n].p = branch[n].key; | 
 | 493 | 		if (n == indirect_blks) { | 
 | 494 | 			current_block = new_blocks[n]; | 
 | 495 | 			/* | 
 | 496 | 			 * End of chain, update the last new metablock of | 
 | 497 | 			 * the chain to point to the new allocated | 
 | 498 | 			 * data blocks numbers | 
 | 499 | 			 */ | 
 | 500 | 			for (i = 1; i < num; i++) | 
 | 501 | 				*(branch[n].p + i) = cpu_to_le32(++current_block); | 
 | 502 | 		} | 
 | 503 | 		BUFFER_TRACE(bh, "marking uptodate"); | 
 | 504 | 		set_buffer_uptodate(bh); | 
 | 505 | 		unlock_buffer(bh); | 
 | 506 |  | 
 | 507 | 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
 | 508 | 		err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 509 | 		if (err) | 
 | 510 | 			goto failed; | 
 | 511 | 	} | 
 | 512 | 	*blks = num; | 
 | 513 | 	return err; | 
 | 514 | failed: | 
 | 515 | 	/* Allocation failed, free what we already allocated */ | 
 | 516 | 	ext4_free_blocks(handle, inode, NULL, new_blocks[0], 1, 0); | 
 | 517 | 	for (i = 1; i <= n ; i++) { | 
 | 518 | 		/* | 
 | 519 | 		 * branch[i].bh is newly allocated, so there is no | 
 | 520 | 		 * need to revoke the block, which is why we don't | 
 | 521 | 		 * need to set EXT4_FREE_BLOCKS_METADATA. | 
 | 522 | 		 */ | 
 | 523 | 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, | 
 | 524 | 				 EXT4_FREE_BLOCKS_FORGET); | 
 | 525 | 	} | 
 | 526 | 	for (i = n+1; i < indirect_blks; i++) | 
 | 527 | 		ext4_free_blocks(handle, inode, NULL, new_blocks[i], 1, 0); | 
 | 528 |  | 
 | 529 | 	ext4_free_blocks(handle, inode, NULL, new_blocks[i], num, 0); | 
 | 530 |  | 
 | 531 | 	return err; | 
 | 532 | } | 
 | 533 |  | 
 | 534 | /** | 
 | 535 |  * ext4_splice_branch - splice the allocated branch onto inode. | 
 | 536 |  * @handle: handle for this transaction | 
 | 537 |  * @inode: owner | 
 | 538 |  * @block: (logical) number of block we are adding | 
 | 539 |  * @chain: chain of indirect blocks (with a missing link - see | 
 | 540 |  *	ext4_alloc_branch) | 
 | 541 |  * @where: location of missing link | 
 | 542 |  * @num:   number of indirect blocks we are adding | 
 | 543 |  * @blks:  number of direct blocks we are adding | 
 | 544 |  * | 
 | 545 |  * This function fills the missing link and does all housekeeping needed in | 
 | 546 |  * inode (->i_blocks, etc.). In case of success we end up with the full | 
 | 547 |  * chain to new block and return 0. | 
 | 548 |  */ | 
 | 549 | static int ext4_splice_branch(handle_t *handle, struct inode *inode, | 
 | 550 | 			      ext4_lblk_t block, Indirect *where, int num, | 
 | 551 | 			      int blks) | 
 | 552 | { | 
 | 553 | 	int i; | 
 | 554 | 	int err = 0; | 
 | 555 | 	ext4_fsblk_t current_block; | 
 | 556 |  | 
 | 557 | 	/* | 
 | 558 | 	 * If we're splicing into a [td]indirect block (as opposed to the | 
 | 559 | 	 * inode) then we need to get write access to the [td]indirect block | 
 | 560 | 	 * before the splice. | 
 | 561 | 	 */ | 
 | 562 | 	if (where->bh) { | 
 | 563 | 		BUFFER_TRACE(where->bh, "get_write_access"); | 
 | 564 | 		err = ext4_journal_get_write_access(handle, where->bh); | 
 | 565 | 		if (err) | 
 | 566 | 			goto err_out; | 
 | 567 | 	} | 
 | 568 | 	/* That's it */ | 
 | 569 |  | 
 | 570 | 	*where->p = where->key; | 
 | 571 |  | 
 | 572 | 	/* | 
 | 573 | 	 * Update the host buffer_head or inode to point to more just allocated | 
 | 574 | 	 * direct blocks blocks | 
 | 575 | 	 */ | 
 | 576 | 	if (num == 0 && blks > 1) { | 
 | 577 | 		current_block = le32_to_cpu(where->key) + 1; | 
 | 578 | 		for (i = 1; i < blks; i++) | 
 | 579 | 			*(where->p + i) = cpu_to_le32(current_block++); | 
 | 580 | 	} | 
 | 581 |  | 
 | 582 | 	/* We are done with atomic stuff, now do the rest of housekeeping */ | 
 | 583 | 	/* had we spliced it onto indirect block? */ | 
 | 584 | 	if (where->bh) { | 
 | 585 | 		/* | 
 | 586 | 		 * If we spliced it onto an indirect block, we haven't | 
 | 587 | 		 * altered the inode.  Note however that if it is being spliced | 
 | 588 | 		 * onto an indirect block at the very end of the file (the | 
 | 589 | 		 * file is growing) then we *will* alter the inode to reflect | 
 | 590 | 		 * the new i_size.  But that is not done here - it is done in | 
 | 591 | 		 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode. | 
 | 592 | 		 */ | 
 | 593 | 		jbd_debug(5, "splicing indirect only\n"); | 
 | 594 | 		BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata"); | 
 | 595 | 		err = ext4_handle_dirty_metadata(handle, inode, where->bh); | 
 | 596 | 		if (err) | 
 | 597 | 			goto err_out; | 
 | 598 | 	} else { | 
 | 599 | 		/* | 
 | 600 | 		 * OK, we spliced it into the inode itself on a direct block. | 
 | 601 | 		 */ | 
 | 602 | 		ext4_mark_inode_dirty(handle, inode); | 
 | 603 | 		jbd_debug(5, "splicing direct\n"); | 
 | 604 | 	} | 
 | 605 | 	return err; | 
 | 606 |  | 
 | 607 | err_out: | 
 | 608 | 	for (i = 1; i <= num; i++) { | 
 | 609 | 		/* | 
 | 610 | 		 * branch[i].bh is newly allocated, so there is no | 
 | 611 | 		 * need to revoke the block, which is why we don't | 
 | 612 | 		 * need to set EXT4_FREE_BLOCKS_METADATA. | 
 | 613 | 		 */ | 
 | 614 | 		ext4_free_blocks(handle, inode, where[i].bh, 0, 1, | 
 | 615 | 				 EXT4_FREE_BLOCKS_FORGET); | 
 | 616 | 	} | 
 | 617 | 	ext4_free_blocks(handle, inode, NULL, le32_to_cpu(where[num].key), | 
 | 618 | 			 blks, 0); | 
 | 619 |  | 
 | 620 | 	return err; | 
 | 621 | } | 
 | 622 |  | 
 | 623 | /* | 
 | 624 |  * The ext4_ind_map_blocks() function handles non-extents inodes | 
 | 625 |  * (i.e., using the traditional indirect/double-indirect i_blocks | 
 | 626 |  * scheme) for ext4_map_blocks(). | 
 | 627 |  * | 
 | 628 |  * Allocation strategy is simple: if we have to allocate something, we will | 
 | 629 |  * have to go the whole way to leaf. So let's do it before attaching anything | 
 | 630 |  * to tree, set linkage between the newborn blocks, write them if sync is | 
 | 631 |  * required, recheck the path, free and repeat if check fails, otherwise | 
 | 632 |  * set the last missing link (that will protect us from any truncate-generated | 
 | 633 |  * removals - all blocks on the path are immune now) and possibly force the | 
 | 634 |  * write on the parent block. | 
 | 635 |  * That has a nice additional property: no special recovery from the failed | 
 | 636 |  * allocations is needed - we simply release blocks and do not touch anything | 
 | 637 |  * reachable from inode. | 
 | 638 |  * | 
 | 639 |  * `handle' can be NULL if create == 0. | 
 | 640 |  * | 
 | 641 |  * return > 0, # of blocks mapped or allocated. | 
 | 642 |  * return = 0, if plain lookup failed. | 
 | 643 |  * return < 0, error case. | 
 | 644 |  * | 
 | 645 |  * The ext4_ind_get_blocks() function should be called with | 
 | 646 |  * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem | 
 | 647 |  * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or | 
 | 648 |  * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system | 
 | 649 |  * blocks. | 
 | 650 |  */ | 
 | 651 | int ext4_ind_map_blocks(handle_t *handle, struct inode *inode, | 
 | 652 | 			struct ext4_map_blocks *map, | 
 | 653 | 			int flags) | 
 | 654 | { | 
 | 655 | 	int err = -EIO; | 
 | 656 | 	ext4_lblk_t offsets[4]; | 
 | 657 | 	Indirect chain[4]; | 
 | 658 | 	Indirect *partial; | 
 | 659 | 	ext4_fsblk_t goal; | 
 | 660 | 	int indirect_blks; | 
 | 661 | 	int blocks_to_boundary = 0; | 
 | 662 | 	int depth; | 
 | 663 | 	int count = 0; | 
 | 664 | 	ext4_fsblk_t first_block = 0; | 
 | 665 |  | 
 | 666 | 	trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags); | 
 | 667 | 	J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))); | 
 | 668 | 	J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0); | 
 | 669 | 	depth = ext4_block_to_path(inode, map->m_lblk, offsets, | 
 | 670 | 				   &blocks_to_boundary); | 
 | 671 |  | 
 | 672 | 	if (depth == 0) | 
 | 673 | 		goto out; | 
 | 674 |  | 
 | 675 | 	partial = ext4_get_branch(inode, depth, offsets, chain, &err); | 
 | 676 |  | 
 | 677 | 	/* Simplest case - block found, no allocation needed */ | 
 | 678 | 	if (!partial) { | 
 | 679 | 		first_block = le32_to_cpu(chain[depth - 1].key); | 
 | 680 | 		count++; | 
 | 681 | 		/*map more blocks*/ | 
 | 682 | 		while (count < map->m_len && count <= blocks_to_boundary) { | 
 | 683 | 			ext4_fsblk_t blk; | 
 | 684 |  | 
 | 685 | 			blk = le32_to_cpu(*(chain[depth-1].p + count)); | 
 | 686 |  | 
 | 687 | 			if (blk == first_block + count) | 
 | 688 | 				count++; | 
 | 689 | 			else | 
 | 690 | 				break; | 
 | 691 | 		} | 
 | 692 | 		goto got_it; | 
 | 693 | 	} | 
 | 694 |  | 
 | 695 | 	/* Next simple case - plain lookup or failed read of indirect block */ | 
 | 696 | 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO) | 
 | 697 | 		goto cleanup; | 
 | 698 |  | 
 | 699 | 	/* | 
 | 700 | 	 * Okay, we need to do block allocation. | 
 | 701 | 	*/ | 
| Theodore Ts'o | bab08ab | 2011-09-09 18:36:51 -0400 | [diff] [blame] | 702 | 	if (EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, | 
 | 703 | 				       EXT4_FEATURE_RO_COMPAT_BIGALLOC)) { | 
 | 704 | 		EXT4_ERROR_INODE(inode, "Can't allocate blocks for " | 
 | 705 | 				 "non-extent mapped inodes with bigalloc"); | 
 | 706 | 		return -ENOSPC; | 
 | 707 | 	} | 
 | 708 |  | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 709 | 	goal = ext4_find_goal(inode, map->m_lblk, partial); | 
 | 710 |  | 
 | 711 | 	/* the number of blocks need to allocate for [d,t]indirect blocks */ | 
 | 712 | 	indirect_blks = (chain + depth) - partial - 1; | 
 | 713 |  | 
 | 714 | 	/* | 
 | 715 | 	 * Next look up the indirect map to count the totoal number of | 
 | 716 | 	 * direct blocks to allocate for this branch. | 
 | 717 | 	 */ | 
 | 718 | 	count = ext4_blks_to_allocate(partial, indirect_blks, | 
 | 719 | 				      map->m_len, blocks_to_boundary); | 
 | 720 | 	/* | 
 | 721 | 	 * Block out ext4_truncate while we alter the tree | 
 | 722 | 	 */ | 
 | 723 | 	err = ext4_alloc_branch(handle, inode, map->m_lblk, indirect_blks, | 
 | 724 | 				&count, goal, | 
 | 725 | 				offsets + (partial - chain), partial); | 
 | 726 |  | 
 | 727 | 	/* | 
 | 728 | 	 * The ext4_splice_branch call will free and forget any buffers | 
 | 729 | 	 * on the new chain if there is a failure, but that risks using | 
 | 730 | 	 * up transaction credits, especially for bitmaps where the | 
 | 731 | 	 * credits cannot be returned.  Can we handle this somehow?  We | 
 | 732 | 	 * may need to return -EAGAIN upwards in the worst case.  --sct | 
 | 733 | 	 */ | 
 | 734 | 	if (!err) | 
 | 735 | 		err = ext4_splice_branch(handle, inode, map->m_lblk, | 
 | 736 | 					 partial, indirect_blks, count); | 
 | 737 | 	if (err) | 
 | 738 | 		goto cleanup; | 
 | 739 |  | 
 | 740 | 	map->m_flags |= EXT4_MAP_NEW; | 
 | 741 |  | 
 | 742 | 	ext4_update_inode_fsync_trans(handle, inode, 1); | 
 | 743 | got_it: | 
 | 744 | 	map->m_flags |= EXT4_MAP_MAPPED; | 
 | 745 | 	map->m_pblk = le32_to_cpu(chain[depth-1].key); | 
 | 746 | 	map->m_len = count; | 
 | 747 | 	if (count > blocks_to_boundary) | 
 | 748 | 		map->m_flags |= EXT4_MAP_BOUNDARY; | 
 | 749 | 	err = count; | 
 | 750 | 	/* Clean up and exit */ | 
 | 751 | 	partial = chain + depth - 1;	/* the whole chain */ | 
 | 752 | cleanup: | 
 | 753 | 	while (partial > chain) { | 
 | 754 | 		BUFFER_TRACE(partial->bh, "call brelse"); | 
 | 755 | 		brelse(partial->bh); | 
 | 756 | 		partial--; | 
 | 757 | 	} | 
 | 758 | out: | 
| Zheng Liu | 19b303d | 2012-11-08 14:34:04 -0500 | [diff] [blame] | 759 | 	trace_ext4_ind_map_blocks_exit(inode, map, err); | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 760 | 	return err; | 
 | 761 | } | 
 | 762 |  | 
 | 763 | /* | 
 | 764 |  * O_DIRECT for ext3 (or indirect map) based files | 
 | 765 |  * | 
 | 766 |  * If the O_DIRECT write will extend the file then add this inode to the | 
 | 767 |  * orphan list.  So recovery will truncate it back to the original size | 
 | 768 |  * if the machine crashes during the write. | 
 | 769 |  * | 
 | 770 |  * If the O_DIRECT write is intantiating holes inside i_size and the machine | 
 | 771 |  * crashes then stale disk data _may_ be exposed inside the file. But current | 
 | 772 |  * VFS code falls back into buffered path in that case so we are safe. | 
 | 773 |  */ | 
 | 774 | ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb, | 
 | 775 | 			   const struct iovec *iov, loff_t offset, | 
 | 776 | 			   unsigned long nr_segs) | 
 | 777 | { | 
 | 778 | 	struct file *file = iocb->ki_filp; | 
 | 779 | 	struct inode *inode = file->f_mapping->host; | 
 | 780 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 781 | 	handle_t *handle; | 
 | 782 | 	ssize_t ret; | 
 | 783 | 	int orphan = 0; | 
 | 784 | 	size_t count = iov_length(iov, nr_segs); | 
 | 785 | 	int retries = 0; | 
 | 786 |  | 
 | 787 | 	if (rw == WRITE) { | 
 | 788 | 		loff_t final_size = offset + count; | 
 | 789 |  | 
 | 790 | 		if (final_size > inode->i_size) { | 
 | 791 | 			/* Credits for sb + inode write */ | 
 | 792 | 			handle = ext4_journal_start(inode, 2); | 
 | 793 | 			if (IS_ERR(handle)) { | 
 | 794 | 				ret = PTR_ERR(handle); | 
 | 795 | 				goto out; | 
 | 796 | 			} | 
 | 797 | 			ret = ext4_orphan_add(handle, inode); | 
 | 798 | 			if (ret) { | 
 | 799 | 				ext4_journal_stop(handle); | 
 | 800 | 				goto out; | 
 | 801 | 			} | 
 | 802 | 			orphan = 1; | 
 | 803 | 			ei->i_disksize = inode->i_size; | 
 | 804 | 			ext4_journal_stop(handle); | 
 | 805 | 		} | 
 | 806 | 	} | 
 | 807 |  | 
 | 808 | retry: | 
| Jiaying Zhang | dccaf33 | 2011-08-19 19:13:32 -0400 | [diff] [blame] | 809 | 	if (rw == READ && ext4_should_dioread_nolock(inode)) { | 
| Dmitry Monakhov | c278531 | 2012-10-05 11:31:55 -0400 | [diff] [blame] | 810 | 		if (unlikely(atomic_read(&EXT4_I(inode)->i_unwritten))) { | 
 | 811 | 			mutex_lock(&inode->i_mutex); | 
 | 812 | 			ext4_flush_unwritten_io(inode); | 
 | 813 | 			mutex_unlock(&inode->i_mutex); | 
 | 814 | 		} | 
| Dmitry Monakhov | 17335dc | 2012-09-29 00:41:21 -0400 | [diff] [blame] | 815 | 		/* | 
 | 816 | 		 * Nolock dioread optimization may be dynamically disabled | 
 | 817 | 		 * via ext4_inode_block_unlocked_dio(). Check inode's state | 
 | 818 | 		 * while holding extra i_dio_count ref. | 
 | 819 | 		 */ | 
 | 820 | 		atomic_inc(&inode->i_dio_count); | 
 | 821 | 		smp_mb(); | 
 | 822 | 		if (unlikely(ext4_test_inode_state(inode, | 
 | 823 | 						    EXT4_STATE_DIOREAD_LOCK))) { | 
 | 824 | 			inode_dio_done(inode); | 
 | 825 | 			goto locked; | 
 | 826 | 		} | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 827 | 		ret = __blockdev_direct_IO(rw, iocb, inode, | 
 | 828 | 				 inode->i_sb->s_bdev, iov, | 
 | 829 | 				 offset, nr_segs, | 
 | 830 | 				 ext4_get_block, NULL, NULL, 0); | 
| Dmitry Monakhov | 17335dc | 2012-09-29 00:41:21 -0400 | [diff] [blame] | 831 | 		inode_dio_done(inode); | 
| Jiaying Zhang | dccaf33 | 2011-08-19 19:13:32 -0400 | [diff] [blame] | 832 | 	} else { | 
| Dmitry Monakhov | 17335dc | 2012-09-29 00:41:21 -0400 | [diff] [blame] | 833 | locked: | 
| Linus Torvalds | 60ad446 | 2011-08-01 13:56:03 -1000 | [diff] [blame] | 834 | 		ret = blockdev_direct_IO(rw, iocb, inode, iov, | 
 | 835 | 				 offset, nr_segs, ext4_get_block); | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 836 |  | 
 | 837 | 		if (unlikely((rw & WRITE) && ret < 0)) { | 
 | 838 | 			loff_t isize = i_size_read(inode); | 
 | 839 | 			loff_t end = offset + iov_length(iov, nr_segs); | 
 | 840 |  | 
 | 841 | 			if (end > isize) | 
 | 842 | 				ext4_truncate_failed_write(inode); | 
 | 843 | 		} | 
 | 844 | 	} | 
 | 845 | 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) | 
 | 846 | 		goto retry; | 
 | 847 |  | 
 | 848 | 	if (orphan) { | 
 | 849 | 		int err; | 
 | 850 |  | 
 | 851 | 		/* Credits for sb + inode write */ | 
 | 852 | 		handle = ext4_journal_start(inode, 2); | 
 | 853 | 		if (IS_ERR(handle)) { | 
 | 854 | 			/* This is really bad luck. We've written the data | 
 | 855 | 			 * but cannot extend i_size. Bail out and pretend | 
 | 856 | 			 * the write failed... */ | 
 | 857 | 			ret = PTR_ERR(handle); | 
 | 858 | 			if (inode->i_nlink) | 
 | 859 | 				ext4_orphan_del(NULL, inode); | 
 | 860 |  | 
 | 861 | 			goto out; | 
 | 862 | 		} | 
 | 863 | 		if (inode->i_nlink) | 
 | 864 | 			ext4_orphan_del(handle, inode); | 
 | 865 | 		if (ret > 0) { | 
 | 866 | 			loff_t end = offset + ret; | 
 | 867 | 			if (end > inode->i_size) { | 
 | 868 | 				ei->i_disksize = end; | 
 | 869 | 				i_size_write(inode, end); | 
 | 870 | 				/* | 
 | 871 | 				 * We're going to return a positive `ret' | 
 | 872 | 				 * here due to non-zero-length I/O, so there's | 
 | 873 | 				 * no way of reporting error returns from | 
 | 874 | 				 * ext4_mark_inode_dirty() to userspace.  So | 
 | 875 | 				 * ignore it. | 
 | 876 | 				 */ | 
 | 877 | 				ext4_mark_inode_dirty(handle, inode); | 
 | 878 | 			} | 
 | 879 | 		} | 
 | 880 | 		err = ext4_journal_stop(handle); | 
 | 881 | 		if (ret == 0) | 
 | 882 | 			ret = err; | 
 | 883 | 	} | 
 | 884 | out: | 
 | 885 | 	return ret; | 
 | 886 | } | 
 | 887 |  | 
 | 888 | /* | 
 | 889 |  * Calculate the number of metadata blocks need to reserve | 
 | 890 |  * to allocate a new block at @lblocks for non extent file based file | 
 | 891 |  */ | 
 | 892 | int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock) | 
 | 893 | { | 
 | 894 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 895 | 	sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1); | 
 | 896 | 	int blk_bits; | 
 | 897 |  | 
 | 898 | 	if (lblock < EXT4_NDIR_BLOCKS) | 
 | 899 | 		return 0; | 
 | 900 |  | 
 | 901 | 	lblock -= EXT4_NDIR_BLOCKS; | 
 | 902 |  | 
 | 903 | 	if (ei->i_da_metadata_calc_len && | 
 | 904 | 	    (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) { | 
 | 905 | 		ei->i_da_metadata_calc_len++; | 
 | 906 | 		return 0; | 
 | 907 | 	} | 
 | 908 | 	ei->i_da_metadata_calc_last_lblock = lblock & dind_mask; | 
 | 909 | 	ei->i_da_metadata_calc_len = 1; | 
 | 910 | 	blk_bits = order_base_2(lblock); | 
 | 911 | 	return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1; | 
 | 912 | } | 
 | 913 |  | 
 | 914 | int ext4_ind_trans_blocks(struct inode *inode, int nrblocks, int chunk) | 
 | 915 | { | 
 | 916 | 	int indirects; | 
 | 917 |  | 
 | 918 | 	/* if nrblocks are contiguous */ | 
 | 919 | 	if (chunk) { | 
 | 920 | 		/* | 
 | 921 | 		 * With N contiguous data blocks, we need at most | 
 | 922 | 		 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks, | 
 | 923 | 		 * 2 dindirect blocks, and 1 tindirect block | 
 | 924 | 		 */ | 
 | 925 | 		return DIV_ROUND_UP(nrblocks, | 
 | 926 | 				    EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4; | 
 | 927 | 	} | 
 | 928 | 	/* | 
 | 929 | 	 * if nrblocks are not contiguous, worse case, each block touch | 
 | 930 | 	 * a indirect block, and each indirect block touch a double indirect | 
 | 931 | 	 * block, plus a triple indirect block | 
 | 932 | 	 */ | 
 | 933 | 	indirects = nrblocks * 2 + 1; | 
 | 934 | 	return indirects; | 
 | 935 | } | 
 | 936 |  | 
 | 937 | /* | 
 | 938 |  * Truncate transactions can be complex and absolutely huge.  So we need to | 
 | 939 |  * be able to restart the transaction at a conventient checkpoint to make | 
 | 940 |  * sure we don't overflow the journal. | 
 | 941 |  * | 
 | 942 |  * start_transaction gets us a new handle for a truncate transaction, | 
 | 943 |  * and extend_transaction tries to extend the existing one a bit.  If | 
 | 944 |  * extend fails, we need to propagate the failure up and restart the | 
 | 945 |  * transaction in the top-level truncate loop. --sct | 
 | 946 |  */ | 
 | 947 | static handle_t *start_transaction(struct inode *inode) | 
 | 948 | { | 
 | 949 | 	handle_t *result; | 
 | 950 |  | 
 | 951 | 	result = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)); | 
 | 952 | 	if (!IS_ERR(result)) | 
 | 953 | 		return result; | 
 | 954 |  | 
 | 955 | 	ext4_std_error(inode->i_sb, PTR_ERR(result)); | 
 | 956 | 	return result; | 
 | 957 | } | 
 | 958 |  | 
 | 959 | /* | 
 | 960 |  * Try to extend this transaction for the purposes of truncation. | 
 | 961 |  * | 
 | 962 |  * Returns 0 if we managed to create more room.  If we can't create more | 
 | 963 |  * room, and the transaction must be restarted we return 1. | 
 | 964 |  */ | 
 | 965 | static int try_to_extend_transaction(handle_t *handle, struct inode *inode) | 
 | 966 | { | 
 | 967 | 	if (!ext4_handle_valid(handle)) | 
 | 968 | 		return 0; | 
 | 969 | 	if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1)) | 
 | 970 | 		return 0; | 
 | 971 | 	if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode))) | 
 | 972 | 		return 0; | 
 | 973 | 	return 1; | 
 | 974 | } | 
 | 975 |  | 
 | 976 | /* | 
 | 977 |  * Probably it should be a library function... search for first non-zero word | 
 | 978 |  * or memcmp with zero_page, whatever is better for particular architecture. | 
 | 979 |  * Linus? | 
 | 980 |  */ | 
 | 981 | static inline int all_zeroes(__le32 *p, __le32 *q) | 
 | 982 | { | 
 | 983 | 	while (p < q) | 
 | 984 | 		if (*p++) | 
 | 985 | 			return 0; | 
 | 986 | 	return 1; | 
 | 987 | } | 
 | 988 |  | 
 | 989 | /** | 
 | 990 |  *	ext4_find_shared - find the indirect blocks for partial truncation. | 
 | 991 |  *	@inode:	  inode in question | 
 | 992 |  *	@depth:	  depth of the affected branch | 
 | 993 |  *	@offsets: offsets of pointers in that branch (see ext4_block_to_path) | 
 | 994 |  *	@chain:	  place to store the pointers to partial indirect blocks | 
 | 995 |  *	@top:	  place to the (detached) top of branch | 
 | 996 |  * | 
 | 997 |  *	This is a helper function used by ext4_truncate(). | 
 | 998 |  * | 
 | 999 |  *	When we do truncate() we may have to clean the ends of several | 
 | 1000 |  *	indirect blocks but leave the blocks themselves alive. Block is | 
 | 1001 |  *	partially truncated if some data below the new i_size is referred | 
 | 1002 |  *	from it (and it is on the path to the first completely truncated | 
 | 1003 |  *	data block, indeed).  We have to free the top of that path along | 
 | 1004 |  *	with everything to the right of the path. Since no allocation | 
 | 1005 |  *	past the truncation point is possible until ext4_truncate() | 
 | 1006 |  *	finishes, we may safely do the latter, but top of branch may | 
 | 1007 |  *	require special attention - pageout below the truncation point | 
 | 1008 |  *	might try to populate it. | 
 | 1009 |  * | 
 | 1010 |  *	We atomically detach the top of branch from the tree, store the | 
 | 1011 |  *	block number of its root in *@top, pointers to buffer_heads of | 
 | 1012 |  *	partially truncated blocks - in @chain[].bh and pointers to | 
 | 1013 |  *	their last elements that should not be removed - in | 
 | 1014 |  *	@chain[].p. Return value is the pointer to last filled element | 
 | 1015 |  *	of @chain. | 
 | 1016 |  * | 
 | 1017 |  *	The work left to caller to do the actual freeing of subtrees: | 
 | 1018 |  *		a) free the subtree starting from *@top | 
 | 1019 |  *		b) free the subtrees whose roots are stored in | 
 | 1020 |  *			(@chain[i].p+1 .. end of @chain[i].bh->b_data) | 
 | 1021 |  *		c) free the subtrees growing from the inode past the @chain[0]. | 
 | 1022 |  *			(no partially truncated stuff there).  */ | 
 | 1023 |  | 
 | 1024 | static Indirect *ext4_find_shared(struct inode *inode, int depth, | 
 | 1025 | 				  ext4_lblk_t offsets[4], Indirect chain[4], | 
 | 1026 | 				  __le32 *top) | 
 | 1027 | { | 
 | 1028 | 	Indirect *partial, *p; | 
 | 1029 | 	int k, err; | 
 | 1030 |  | 
 | 1031 | 	*top = 0; | 
 | 1032 | 	/* Make k index the deepest non-null offset + 1 */ | 
 | 1033 | 	for (k = depth; k > 1 && !offsets[k-1]; k--) | 
 | 1034 | 		; | 
 | 1035 | 	partial = ext4_get_branch(inode, k, offsets, chain, &err); | 
 | 1036 | 	/* Writer: pointers */ | 
 | 1037 | 	if (!partial) | 
 | 1038 | 		partial = chain + k-1; | 
 | 1039 | 	/* | 
 | 1040 | 	 * If the branch acquired continuation since we've looked at it - | 
 | 1041 | 	 * fine, it should all survive and (new) top doesn't belong to us. | 
 | 1042 | 	 */ | 
 | 1043 | 	if (!partial->key && *partial->p) | 
 | 1044 | 		/* Writer: end */ | 
 | 1045 | 		goto no_top; | 
 | 1046 | 	for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--) | 
 | 1047 | 		; | 
 | 1048 | 	/* | 
 | 1049 | 	 * OK, we've found the last block that must survive. The rest of our | 
 | 1050 | 	 * branch should be detached before unlocking. However, if that rest | 
 | 1051 | 	 * of branch is all ours and does not grow immediately from the inode | 
 | 1052 | 	 * it's easier to cheat and just decrement partial->p. | 
 | 1053 | 	 */ | 
 | 1054 | 	if (p == chain + k - 1 && p > chain) { | 
 | 1055 | 		p->p--; | 
 | 1056 | 	} else { | 
 | 1057 | 		*top = *p->p; | 
 | 1058 | 		/* Nope, don't do this in ext4.  Must leave the tree intact */ | 
 | 1059 | #if 0 | 
 | 1060 | 		*p->p = 0; | 
 | 1061 | #endif | 
 | 1062 | 	} | 
 | 1063 | 	/* Writer: end */ | 
 | 1064 |  | 
 | 1065 | 	while (partial > p) { | 
 | 1066 | 		brelse(partial->bh); | 
 | 1067 | 		partial--; | 
 | 1068 | 	} | 
 | 1069 | no_top: | 
 | 1070 | 	return partial; | 
 | 1071 | } | 
 | 1072 |  | 
 | 1073 | /* | 
 | 1074 |  * Zero a number of block pointers in either an inode or an indirect block. | 
 | 1075 |  * If we restart the transaction we must again get write access to the | 
 | 1076 |  * indirect block for further modification. | 
 | 1077 |  * | 
 | 1078 |  * We release `count' blocks on disk, but (last - first) may be greater | 
 | 1079 |  * than `count' because there can be holes in there. | 
 | 1080 |  * | 
 | 1081 |  * Return 0 on success, 1 on invalid block range | 
 | 1082 |  * and < 0 on fatal error. | 
 | 1083 |  */ | 
 | 1084 | static int ext4_clear_blocks(handle_t *handle, struct inode *inode, | 
 | 1085 | 			     struct buffer_head *bh, | 
 | 1086 | 			     ext4_fsblk_t block_to_free, | 
 | 1087 | 			     unsigned long count, __le32 *first, | 
 | 1088 | 			     __le32 *last) | 
 | 1089 | { | 
 | 1090 | 	__le32 *p; | 
 | 1091 | 	int	flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED; | 
 | 1092 | 	int	err; | 
 | 1093 |  | 
 | 1094 | 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) | 
 | 1095 | 		flags |= EXT4_FREE_BLOCKS_METADATA; | 
 | 1096 |  | 
 | 1097 | 	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free, | 
 | 1098 | 				   count)) { | 
 | 1099 | 		EXT4_ERROR_INODE(inode, "attempt to clear invalid " | 
 | 1100 | 				 "blocks %llu len %lu", | 
 | 1101 | 				 (unsigned long long) block_to_free, count); | 
 | 1102 | 		return 1; | 
 | 1103 | 	} | 
 | 1104 |  | 
 | 1105 | 	if (try_to_extend_transaction(handle, inode)) { | 
 | 1106 | 		if (bh) { | 
 | 1107 | 			BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); | 
 | 1108 | 			err = ext4_handle_dirty_metadata(handle, inode, bh); | 
 | 1109 | 			if (unlikely(err)) | 
 | 1110 | 				goto out_err; | 
 | 1111 | 		} | 
 | 1112 | 		err = ext4_mark_inode_dirty(handle, inode); | 
 | 1113 | 		if (unlikely(err)) | 
 | 1114 | 			goto out_err; | 
 | 1115 | 		err = ext4_truncate_restart_trans(handle, inode, | 
 | 1116 | 					ext4_blocks_for_truncate(inode)); | 
 | 1117 | 		if (unlikely(err)) | 
 | 1118 | 			goto out_err; | 
 | 1119 | 		if (bh) { | 
 | 1120 | 			BUFFER_TRACE(bh, "retaking write access"); | 
 | 1121 | 			err = ext4_journal_get_write_access(handle, bh); | 
 | 1122 | 			if (unlikely(err)) | 
 | 1123 | 				goto out_err; | 
 | 1124 | 		} | 
 | 1125 | 	} | 
 | 1126 |  | 
 | 1127 | 	for (p = first; p < last; p++) | 
 | 1128 | 		*p = 0; | 
 | 1129 |  | 
 | 1130 | 	ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags); | 
 | 1131 | 	return 0; | 
 | 1132 | out_err: | 
 | 1133 | 	ext4_std_error(inode->i_sb, err); | 
 | 1134 | 	return err; | 
 | 1135 | } | 
 | 1136 |  | 
 | 1137 | /** | 
 | 1138 |  * ext4_free_data - free a list of data blocks | 
 | 1139 |  * @handle:	handle for this transaction | 
 | 1140 |  * @inode:	inode we are dealing with | 
 | 1141 |  * @this_bh:	indirect buffer_head which contains *@first and *@last | 
 | 1142 |  * @first:	array of block numbers | 
 | 1143 |  * @last:	points immediately past the end of array | 
 | 1144 |  * | 
 | 1145 |  * We are freeing all blocks referred from that array (numbers are stored as | 
 | 1146 |  * little-endian 32-bit) and updating @inode->i_blocks appropriately. | 
 | 1147 |  * | 
 | 1148 |  * We accumulate contiguous runs of blocks to free.  Conveniently, if these | 
 | 1149 |  * blocks are contiguous then releasing them at one time will only affect one | 
 | 1150 |  * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't | 
 | 1151 |  * actually use a lot of journal space. | 
 | 1152 |  * | 
 | 1153 |  * @this_bh will be %NULL if @first and @last point into the inode's direct | 
 | 1154 |  * block pointers. | 
 | 1155 |  */ | 
 | 1156 | static void ext4_free_data(handle_t *handle, struct inode *inode, | 
 | 1157 | 			   struct buffer_head *this_bh, | 
 | 1158 | 			   __le32 *first, __le32 *last) | 
 | 1159 | { | 
 | 1160 | 	ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */ | 
 | 1161 | 	unsigned long count = 0;	    /* Number of blocks in the run */ | 
 | 1162 | 	__le32 *block_to_free_p = NULL;	    /* Pointer into inode/ind | 
 | 1163 | 					       corresponding to | 
 | 1164 | 					       block_to_free */ | 
 | 1165 | 	ext4_fsblk_t nr;		    /* Current block # */ | 
 | 1166 | 	__le32 *p;			    /* Pointer into inode/ind | 
 | 1167 | 					       for current block */ | 
 | 1168 | 	int err = 0; | 
 | 1169 |  | 
 | 1170 | 	if (this_bh) {				/* For indirect block */ | 
 | 1171 | 		BUFFER_TRACE(this_bh, "get_write_access"); | 
 | 1172 | 		err = ext4_journal_get_write_access(handle, this_bh); | 
 | 1173 | 		/* Important: if we can't update the indirect pointers | 
 | 1174 | 		 * to the blocks, we can't free them. */ | 
 | 1175 | 		if (err) | 
 | 1176 | 			return; | 
 | 1177 | 	} | 
 | 1178 |  | 
 | 1179 | 	for (p = first; p < last; p++) { | 
 | 1180 | 		nr = le32_to_cpu(*p); | 
 | 1181 | 		if (nr) { | 
 | 1182 | 			/* accumulate blocks to free if they're contiguous */ | 
 | 1183 | 			if (count == 0) { | 
 | 1184 | 				block_to_free = nr; | 
 | 1185 | 				block_to_free_p = p; | 
 | 1186 | 				count = 1; | 
 | 1187 | 			} else if (nr == block_to_free + count) { | 
 | 1188 | 				count++; | 
 | 1189 | 			} else { | 
 | 1190 | 				err = ext4_clear_blocks(handle, inode, this_bh, | 
 | 1191 | 						        block_to_free, count, | 
 | 1192 | 						        block_to_free_p, p); | 
 | 1193 | 				if (err) | 
 | 1194 | 					break; | 
 | 1195 | 				block_to_free = nr; | 
 | 1196 | 				block_to_free_p = p; | 
 | 1197 | 				count = 1; | 
 | 1198 | 			} | 
 | 1199 | 		} | 
 | 1200 | 	} | 
 | 1201 |  | 
 | 1202 | 	if (!err && count > 0) | 
 | 1203 | 		err = ext4_clear_blocks(handle, inode, this_bh, block_to_free, | 
 | 1204 | 					count, block_to_free_p, p); | 
 | 1205 | 	if (err < 0) | 
 | 1206 | 		/* fatal error */ | 
 | 1207 | 		return; | 
 | 1208 |  | 
 | 1209 | 	if (this_bh) { | 
 | 1210 | 		BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata"); | 
 | 1211 |  | 
 | 1212 | 		/* | 
 | 1213 | 		 * The buffer head should have an attached journal head at this | 
 | 1214 | 		 * point. However, if the data is corrupted and an indirect | 
 | 1215 | 		 * block pointed to itself, it would have been detached when | 
 | 1216 | 		 * the block was cleared. Check for this instead of OOPSing. | 
 | 1217 | 		 */ | 
 | 1218 | 		if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh)) | 
 | 1219 | 			ext4_handle_dirty_metadata(handle, inode, this_bh); | 
 | 1220 | 		else | 
 | 1221 | 			EXT4_ERROR_INODE(inode, | 
 | 1222 | 					 "circular indirect block detected at " | 
 | 1223 | 					 "block %llu", | 
 | 1224 | 				(unsigned long long) this_bh->b_blocknr); | 
 | 1225 | 	} | 
 | 1226 | } | 
 | 1227 |  | 
 | 1228 | /** | 
 | 1229 |  *	ext4_free_branches - free an array of branches | 
 | 1230 |  *	@handle: JBD handle for this transaction | 
 | 1231 |  *	@inode:	inode we are dealing with | 
 | 1232 |  *	@parent_bh: the buffer_head which contains *@first and *@last | 
 | 1233 |  *	@first:	array of block numbers | 
 | 1234 |  *	@last:	pointer immediately past the end of array | 
 | 1235 |  *	@depth:	depth of the branches to free | 
 | 1236 |  * | 
 | 1237 |  *	We are freeing all blocks referred from these branches (numbers are | 
 | 1238 |  *	stored as little-endian 32-bit) and updating @inode->i_blocks | 
 | 1239 |  *	appropriately. | 
 | 1240 |  */ | 
 | 1241 | static void ext4_free_branches(handle_t *handle, struct inode *inode, | 
 | 1242 | 			       struct buffer_head *parent_bh, | 
 | 1243 | 			       __le32 *first, __le32 *last, int depth) | 
 | 1244 | { | 
 | 1245 | 	ext4_fsblk_t nr; | 
 | 1246 | 	__le32 *p; | 
 | 1247 |  | 
 | 1248 | 	if (ext4_handle_is_aborted(handle)) | 
 | 1249 | 		return; | 
 | 1250 |  | 
 | 1251 | 	if (depth--) { | 
 | 1252 | 		struct buffer_head *bh; | 
 | 1253 | 		int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); | 
 | 1254 | 		p = last; | 
 | 1255 | 		while (--p >= first) { | 
 | 1256 | 			nr = le32_to_cpu(*p); | 
 | 1257 | 			if (!nr) | 
 | 1258 | 				continue;		/* A hole */ | 
 | 1259 |  | 
 | 1260 | 			if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), | 
 | 1261 | 						   nr, 1)) { | 
 | 1262 | 				EXT4_ERROR_INODE(inode, | 
 | 1263 | 						 "invalid indirect mapped " | 
 | 1264 | 						 "block %lu (level %d)", | 
 | 1265 | 						 (unsigned long) nr, depth); | 
 | 1266 | 				break; | 
 | 1267 | 			} | 
 | 1268 |  | 
 | 1269 | 			/* Go read the buffer for the next level down */ | 
 | 1270 | 			bh = sb_bread(inode->i_sb, nr); | 
 | 1271 |  | 
 | 1272 | 			/* | 
 | 1273 | 			 * A read failure? Report error and clear slot | 
 | 1274 | 			 * (should be rare). | 
 | 1275 | 			 */ | 
 | 1276 | 			if (!bh) { | 
 | 1277 | 				EXT4_ERROR_INODE_BLOCK(inode, nr, | 
 | 1278 | 						       "Read failure"); | 
 | 1279 | 				continue; | 
 | 1280 | 			} | 
 | 1281 |  | 
 | 1282 | 			/* This zaps the entire block.  Bottom up. */ | 
 | 1283 | 			BUFFER_TRACE(bh, "free child branches"); | 
 | 1284 | 			ext4_free_branches(handle, inode, bh, | 
 | 1285 | 					(__le32 *) bh->b_data, | 
 | 1286 | 					(__le32 *) bh->b_data + addr_per_block, | 
 | 1287 | 					depth); | 
 | 1288 | 			brelse(bh); | 
 | 1289 |  | 
 | 1290 | 			/* | 
 | 1291 | 			 * Everything below this this pointer has been | 
 | 1292 | 			 * released.  Now let this top-of-subtree go. | 
 | 1293 | 			 * | 
 | 1294 | 			 * We want the freeing of this indirect block to be | 
 | 1295 | 			 * atomic in the journal with the updating of the | 
 | 1296 | 			 * bitmap block which owns it.  So make some room in | 
 | 1297 | 			 * the journal. | 
 | 1298 | 			 * | 
 | 1299 | 			 * We zero the parent pointer *after* freeing its | 
 | 1300 | 			 * pointee in the bitmaps, so if extend_transaction() | 
 | 1301 | 			 * for some reason fails to put the bitmap changes and | 
 | 1302 | 			 * the release into the same transaction, recovery | 
 | 1303 | 			 * will merely complain about releasing a free block, | 
 | 1304 | 			 * rather than leaking blocks. | 
 | 1305 | 			 */ | 
 | 1306 | 			if (ext4_handle_is_aborted(handle)) | 
 | 1307 | 				return; | 
 | 1308 | 			if (try_to_extend_transaction(handle, inode)) { | 
 | 1309 | 				ext4_mark_inode_dirty(handle, inode); | 
 | 1310 | 				ext4_truncate_restart_trans(handle, inode, | 
 | 1311 | 					    ext4_blocks_for_truncate(inode)); | 
 | 1312 | 			} | 
 | 1313 |  | 
 | 1314 | 			/* | 
 | 1315 | 			 * The forget flag here is critical because if | 
 | 1316 | 			 * we are journaling (and not doing data | 
 | 1317 | 			 * journaling), we have to make sure a revoke | 
 | 1318 | 			 * record is written to prevent the journal | 
 | 1319 | 			 * replay from overwriting the (former) | 
 | 1320 | 			 * indirect block if it gets reallocated as a | 
 | 1321 | 			 * data block.  This must happen in the same | 
 | 1322 | 			 * transaction where the data blocks are | 
 | 1323 | 			 * actually freed. | 
 | 1324 | 			 */ | 
 | 1325 | 			ext4_free_blocks(handle, inode, NULL, nr, 1, | 
 | 1326 | 					 EXT4_FREE_BLOCKS_METADATA| | 
 | 1327 | 					 EXT4_FREE_BLOCKS_FORGET); | 
 | 1328 |  | 
 | 1329 | 			if (parent_bh) { | 
 | 1330 | 				/* | 
 | 1331 | 				 * The block which we have just freed is | 
 | 1332 | 				 * pointed to by an indirect block: journal it | 
 | 1333 | 				 */ | 
 | 1334 | 				BUFFER_TRACE(parent_bh, "get_write_access"); | 
 | 1335 | 				if (!ext4_journal_get_write_access(handle, | 
 | 1336 | 								   parent_bh)){ | 
 | 1337 | 					*p = 0; | 
 | 1338 | 					BUFFER_TRACE(parent_bh, | 
 | 1339 | 					"call ext4_handle_dirty_metadata"); | 
 | 1340 | 					ext4_handle_dirty_metadata(handle, | 
 | 1341 | 								   inode, | 
 | 1342 | 								   parent_bh); | 
 | 1343 | 				} | 
 | 1344 | 			} | 
 | 1345 | 		} | 
 | 1346 | 	} else { | 
 | 1347 | 		/* We have reached the bottom of the tree. */ | 
 | 1348 | 		BUFFER_TRACE(parent_bh, "free data blocks"); | 
 | 1349 | 		ext4_free_data(handle, inode, parent_bh, first, last); | 
 | 1350 | 	} | 
 | 1351 | } | 
 | 1352 |  | 
 | 1353 | void ext4_ind_truncate(struct inode *inode) | 
 | 1354 | { | 
 | 1355 | 	handle_t *handle; | 
 | 1356 | 	struct ext4_inode_info *ei = EXT4_I(inode); | 
 | 1357 | 	__le32 *i_data = ei->i_data; | 
 | 1358 | 	int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb); | 
 | 1359 | 	struct address_space *mapping = inode->i_mapping; | 
 | 1360 | 	ext4_lblk_t offsets[4]; | 
 | 1361 | 	Indirect chain[4]; | 
 | 1362 | 	Indirect *partial; | 
 | 1363 | 	__le32 nr = 0; | 
 | 1364 | 	int n = 0; | 
 | 1365 | 	ext4_lblk_t last_block, max_block; | 
| Allison Henderson | 189e868 | 2011-09-06 21:49:44 -0400 | [diff] [blame] | 1366 | 	loff_t page_len; | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 1367 | 	unsigned blocksize = inode->i_sb->s_blocksize; | 
| Allison Henderson | 189e868 | 2011-09-06 21:49:44 -0400 | [diff] [blame] | 1368 | 	int err; | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 1369 |  | 
 | 1370 | 	handle = start_transaction(inode); | 
 | 1371 | 	if (IS_ERR(handle)) | 
 | 1372 | 		return;		/* AKPM: return what? */ | 
 | 1373 |  | 
 | 1374 | 	last_block = (inode->i_size + blocksize-1) | 
 | 1375 | 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb); | 
 | 1376 | 	max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1) | 
 | 1377 | 					>> EXT4_BLOCK_SIZE_BITS(inode->i_sb); | 
 | 1378 |  | 
| Allison Henderson | 189e868 | 2011-09-06 21:49:44 -0400 | [diff] [blame] | 1379 | 	if (inode->i_size % PAGE_CACHE_SIZE != 0) { | 
 | 1380 | 		page_len = PAGE_CACHE_SIZE - | 
 | 1381 | 			(inode->i_size & (PAGE_CACHE_SIZE - 1)); | 
 | 1382 |  | 
 | 1383 | 		err = ext4_discard_partial_page_buffers(handle, | 
 | 1384 | 			mapping, inode->i_size, page_len, 0); | 
 | 1385 |  | 
 | 1386 | 		if (err) | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 1387 | 			goto out_stop; | 
| Allison Henderson | 189e868 | 2011-09-06 21:49:44 -0400 | [diff] [blame] | 1388 | 	} | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 1389 |  | 
 | 1390 | 	if (last_block != max_block) { | 
 | 1391 | 		n = ext4_block_to_path(inode, last_block, offsets, NULL); | 
 | 1392 | 		if (n == 0) | 
 | 1393 | 			goto out_stop;	/* error */ | 
 | 1394 | 	} | 
 | 1395 |  | 
 | 1396 | 	/* | 
 | 1397 | 	 * OK.  This truncate is going to happen.  We add the inode to the | 
 | 1398 | 	 * orphan list, so that if this truncate spans multiple transactions, | 
 | 1399 | 	 * and we crash, we will resume the truncate when the filesystem | 
 | 1400 | 	 * recovers.  It also marks the inode dirty, to catch the new size. | 
 | 1401 | 	 * | 
 | 1402 | 	 * Implication: the file must always be in a sane, consistent | 
 | 1403 | 	 * truncatable state while each transaction commits. | 
 | 1404 | 	 */ | 
 | 1405 | 	if (ext4_orphan_add(handle, inode)) | 
 | 1406 | 		goto out_stop; | 
 | 1407 |  | 
 | 1408 | 	/* | 
 | 1409 | 	 * From here we block out all ext4_get_block() callers who want to | 
 | 1410 | 	 * modify the block allocation tree. | 
 | 1411 | 	 */ | 
 | 1412 | 	down_write(&ei->i_data_sem); | 
 | 1413 |  | 
 | 1414 | 	ext4_discard_preallocations(inode); | 
| Zheng Liu | 51865fd | 2012-11-08 21:57:32 -0500 | [diff] [blame] | 1415 | 	ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block); | 
| Amir Goldstein | dae1e52 | 2011-06-27 19:40:50 -0400 | [diff] [blame] | 1416 |  | 
 | 1417 | 	/* | 
 | 1418 | 	 * The orphan list entry will now protect us from any crash which | 
 | 1419 | 	 * occurs before the truncate completes, so it is now safe to propagate | 
 | 1420 | 	 * the new, shorter inode size (held for now in i_size) into the | 
 | 1421 | 	 * on-disk inode. We do this via i_disksize, which is the value which | 
 | 1422 | 	 * ext4 *really* writes onto the disk inode. | 
 | 1423 | 	 */ | 
 | 1424 | 	ei->i_disksize = inode->i_size; | 
 | 1425 |  | 
 | 1426 | 	if (last_block == max_block) { | 
 | 1427 | 		/* | 
 | 1428 | 		 * It is unnecessary to free any data blocks if last_block is | 
 | 1429 | 		 * equal to the indirect block limit. | 
 | 1430 | 		 */ | 
 | 1431 | 		goto out_unlock; | 
 | 1432 | 	} else if (n == 1) {		/* direct blocks */ | 
 | 1433 | 		ext4_free_data(handle, inode, NULL, i_data+offsets[0], | 
 | 1434 | 			       i_data + EXT4_NDIR_BLOCKS); | 
 | 1435 | 		goto do_indirects; | 
 | 1436 | 	} | 
 | 1437 |  | 
 | 1438 | 	partial = ext4_find_shared(inode, n, offsets, chain, &nr); | 
 | 1439 | 	/* Kill the top of shared branch (not detached) */ | 
 | 1440 | 	if (nr) { | 
 | 1441 | 		if (partial == chain) { | 
 | 1442 | 			/* Shared branch grows from the inode */ | 
 | 1443 | 			ext4_free_branches(handle, inode, NULL, | 
 | 1444 | 					   &nr, &nr+1, (chain+n-1) - partial); | 
 | 1445 | 			*partial->p = 0; | 
 | 1446 | 			/* | 
 | 1447 | 			 * We mark the inode dirty prior to restart, | 
 | 1448 | 			 * and prior to stop.  No need for it here. | 
 | 1449 | 			 */ | 
 | 1450 | 		} else { | 
 | 1451 | 			/* Shared branch grows from an indirect block */ | 
 | 1452 | 			BUFFER_TRACE(partial->bh, "get_write_access"); | 
 | 1453 | 			ext4_free_branches(handle, inode, partial->bh, | 
 | 1454 | 					partial->p, | 
 | 1455 | 					partial->p+1, (chain+n-1) - partial); | 
 | 1456 | 		} | 
 | 1457 | 	} | 
 | 1458 | 	/* Clear the ends of indirect blocks on the shared branch */ | 
 | 1459 | 	while (partial > chain) { | 
 | 1460 | 		ext4_free_branches(handle, inode, partial->bh, partial->p + 1, | 
 | 1461 | 				   (__le32*)partial->bh->b_data+addr_per_block, | 
 | 1462 | 				   (chain+n-1) - partial); | 
 | 1463 | 		BUFFER_TRACE(partial->bh, "call brelse"); | 
 | 1464 | 		brelse(partial->bh); | 
 | 1465 | 		partial--; | 
 | 1466 | 	} | 
 | 1467 | do_indirects: | 
 | 1468 | 	/* Kill the remaining (whole) subtrees */ | 
 | 1469 | 	switch (offsets[0]) { | 
 | 1470 | 	default: | 
 | 1471 | 		nr = i_data[EXT4_IND_BLOCK]; | 
 | 1472 | 		if (nr) { | 
 | 1473 | 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1); | 
 | 1474 | 			i_data[EXT4_IND_BLOCK] = 0; | 
 | 1475 | 		} | 
 | 1476 | 	case EXT4_IND_BLOCK: | 
 | 1477 | 		nr = i_data[EXT4_DIND_BLOCK]; | 
 | 1478 | 		if (nr) { | 
 | 1479 | 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2); | 
 | 1480 | 			i_data[EXT4_DIND_BLOCK] = 0; | 
 | 1481 | 		} | 
 | 1482 | 	case EXT4_DIND_BLOCK: | 
 | 1483 | 		nr = i_data[EXT4_TIND_BLOCK]; | 
 | 1484 | 		if (nr) { | 
 | 1485 | 			ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3); | 
 | 1486 | 			i_data[EXT4_TIND_BLOCK] = 0; | 
 | 1487 | 		} | 
 | 1488 | 	case EXT4_TIND_BLOCK: | 
 | 1489 | 		; | 
 | 1490 | 	} | 
 | 1491 |  | 
 | 1492 | out_unlock: | 
 | 1493 | 	up_write(&ei->i_data_sem); | 
 | 1494 | 	inode->i_mtime = inode->i_ctime = ext4_current_time(inode); | 
 | 1495 | 	ext4_mark_inode_dirty(handle, inode); | 
 | 1496 |  | 
 | 1497 | 	/* | 
 | 1498 | 	 * In a multi-transaction truncate, we only make the final transaction | 
 | 1499 | 	 * synchronous | 
 | 1500 | 	 */ | 
 | 1501 | 	if (IS_SYNC(inode)) | 
 | 1502 | 		ext4_handle_sync(handle); | 
 | 1503 | out_stop: | 
 | 1504 | 	/* | 
 | 1505 | 	 * If this was a simple ftruncate(), and the file will remain alive | 
 | 1506 | 	 * then we need to clear up the orphan record which we created above. | 
 | 1507 | 	 * However, if this was a real unlink then we were called by | 
 | 1508 | 	 * ext4_delete_inode(), and we allow that function to clean up the | 
 | 1509 | 	 * orphan info for us. | 
 | 1510 | 	 */ | 
 | 1511 | 	if (inode->i_nlink) | 
 | 1512 | 		ext4_orphan_del(handle, inode); | 
 | 1513 |  | 
 | 1514 | 	ext4_journal_stop(handle); | 
 | 1515 | 	trace_ext4_truncate_exit(inode); | 
 | 1516 | } | 
 | 1517 |  |