| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
|  | 3 | * | 
|  | 4 | * Floating-point emulation code | 
|  | 5 | *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
|  | 6 | * | 
|  | 7 | *    This program is free software; you can redistribute it and/or modify | 
|  | 8 | *    it under the terms of the GNU General Public License as published by | 
|  | 9 | *    the Free Software Foundation; either version 2, or (at your option) | 
|  | 10 | *    any later version. | 
|  | 11 | * | 
|  | 12 | *    This program is distributed in the hope that it will be useful, | 
|  | 13 | *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 14 | *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 15 | *    GNU General Public License for more details. | 
|  | 16 | * | 
|  | 17 | *    You should have received a copy of the GNU General Public License | 
|  | 18 | *    along with this program; if not, write to the Free Software | 
|  | 19 | *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | 20 | */ | 
|  | 21 | #ifdef __NO_PA_HDRS | 
|  | 22 | PA header file -- do not include this header file for non-PA builds. | 
|  | 23 | #endif | 
|  | 24 |  | 
| Simon Arlott | 7022672 | 2007-05-11 20:42:34 +0100 | [diff] [blame] | 25 | /* 32-bit word grabbing functions */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 26 | #define Dbl_firstword(value) Dallp1(value) | 
|  | 27 | #define Dbl_secondword(value) Dallp2(value) | 
|  | 28 | #define Dbl_thirdword(value) dummy_location | 
|  | 29 | #define Dbl_fourthword(value) dummy_location | 
|  | 30 |  | 
|  | 31 | #define Dbl_sign(object) Dsign(object) | 
|  | 32 | #define Dbl_exponent(object) Dexponent(object) | 
|  | 33 | #define Dbl_signexponent(object) Dsignexponent(object) | 
|  | 34 | #define Dbl_mantissap1(object) Dmantissap1(object) | 
|  | 35 | #define Dbl_mantissap2(object) Dmantissap2(object) | 
|  | 36 | #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object) | 
|  | 37 | #define Dbl_allp1(object) Dallp1(object) | 
|  | 38 | #define Dbl_allp2(object) Dallp2(object) | 
|  | 39 |  | 
| Simon Arlott | 7022672 | 2007-05-11 20:42:34 +0100 | [diff] [blame] | 40 | /* dbl_and_signs ANDs the sign bits of each argument and puts the result | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 41 | * into the first argument. dbl_or_signs ors those same sign bits */ | 
|  | 42 | #define Dbl_and_signs( src1dst, src2)		\ | 
|  | 43 | Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst) | 
|  | 44 | #define Dbl_or_signs( src1dst, src2)		\ | 
|  | 45 | Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst) | 
|  | 46 |  | 
|  | 47 | /* The hidden bit is always the low bit of the exponent */ | 
|  | 48 | #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1) | 
|  | 49 | #define Dbl_clear_signexponent_set_hidden(srcdst) \ | 
|  | 50 | Deposit_dsignexponent(srcdst,1) | 
|  | 51 | #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31) | 
|  | 52 | #define Dbl_clear_signexponent(srcdst) \ | 
|  | 53 | Dallp1(srcdst) &= Dmantissap1((unsigned int)-1) | 
|  | 54 |  | 
|  | 55 | /* Exponent field for doubles has already been cleared and may be | 
|  | 56 | * included in the shift.  Here we need to generate two double width | 
|  | 57 | * variable shifts.  The insignificant bits can be ignored. | 
|  | 58 | *      MTSAR f(varamount) | 
|  | 59 | *      VSHD	srcdst.high,srcdst.low => srcdst.low | 
|  | 60 | *	VSHD	0,srcdst.high => srcdst.high | 
|  | 61 | * This is very difficult to model with C expressions since the shift amount | 
|  | 62 | * could exceed 32.  */ | 
|  | 63 | /* varamount must be less than 64 */ | 
|  | 64 | #define Dbl_rightshift(srcdstA, srcdstB, varamount)			\ | 
|  | 65 | {if((varamount) >= 32) {						\ | 
|  | 66 | Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\ | 
|  | 67 | Dallp1(srcdstA)=0;						\ | 
|  | 68 | }									\ | 
|  | 69 | else if(varamount > 0) {						\ | 
|  | 70 | Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\ | 
|  | 71 | (varamount), Dallp2(srcdstB));				\ | 
|  | 72 | Dallp1(srcdstA) >>= varamount;					\ | 
|  | 73 | } } | 
|  | 74 | /* varamount must be less than 64 */ | 
|  | 75 | #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\ | 
|  | 76 | {if((varamount) >= 32) {						\ | 
|  | 77 | Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \ | 
|  | 78 | Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \ | 
|  | 79 | }									\ | 
|  | 80 | else if(varamount > 0) {						\ | 
|  | 81 | Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \ | 
|  | 82 | (varamount), Dallp2(srcdstB));					\ | 
|  | 83 | Deposit_dexponentmantissap1(srcdstA,				\ | 
|  | 84 | (Dexponentmantissap1(srcdstA)>>varamount));			\ | 
|  | 85 | } } | 
|  | 86 | /* varamount must be less than 64 */ | 
|  | 87 | #define Dbl_leftshift(srcdstA, srcdstB, varamount)			\ | 
|  | 88 | {if((varamount) >= 32) {						\ | 
|  | 89 | Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\ | 
|  | 90 | Dallp2(srcdstB)=0;						\ | 
|  | 91 | }									\ | 
|  | 92 | else {								\ | 
|  | 93 | if ((varamount) > 0) {						\ | 
|  | 94 | Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\ | 
|  | 95 | (Dallp2(srcdstB) >> (32-(varamount)));			\ | 
|  | 96 | Dallp2(srcdstB) <<= varamount;				\ | 
|  | 97 | }								\ | 
|  | 98 | } } | 
|  | 99 | #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\ | 
|  | 100 | Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\ | 
|  | 101 | Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb)) | 
|  | 102 |  | 
|  | 103 | #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\ | 
|  | 104 | Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \ | 
|  | 105 | Extlow(right) | 
|  | 106 |  | 
|  | 107 | #define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\ | 
|  | 108 | Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\ | 
|  | 109 | Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1 | 
|  | 110 |  | 
|  | 111 | /* Sign extend the sign bit with an integer destination */ | 
|  | 112 | #define Dbl_signextendedsign(value)  Dsignedsign(value) | 
|  | 113 |  | 
|  | 114 | #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0) | 
|  | 115 | /* Singles and doubles may include the sign and exponent fields.  The | 
|  | 116 | * hidden bit and the hidden overflow must be included. */ | 
|  | 117 | #define Dbl_increment(dbl_valueA,dbl_valueB) \ | 
|  | 118 | if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1 | 
|  | 119 | #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \ | 
|  | 120 | if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \ | 
|  | 121 | Deposit_dmantissap1(dbl_valueA,dbl_valueA+1) | 
|  | 122 | #define Dbl_decrement(dbl_valueA,dbl_valueB) \ | 
|  | 123 | if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \ | 
|  | 124 | Dallp2(dbl_valueB) -= 1 | 
|  | 125 |  | 
|  | 126 | #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0) | 
|  | 127 | #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0) | 
|  | 128 | #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0) | 
|  | 129 | #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0) | 
|  | 130 | #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0) | 
|  | 131 | #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff) | 
|  | 132 | #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \ | 
|  | 133 | (Dallp1(dbl_valueA) || Dallp2(dbl_valueB)) | 
|  | 134 | #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \ | 
|  | 135 | (Dhiddenhigh7mantissa(dbl_value)!=0) | 
|  | 136 | #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0) | 
|  | 137 | #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \ | 
|  | 138 | (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) | 
|  | 139 | #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0) | 
|  | 140 | #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0) | 
|  | 141 | #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \ | 
|  | 142 | (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) | 
|  | 143 | #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0) | 
|  | 144 | #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \ | 
|  | 145 | Dallp2(dbl_valueB)==0) | 
|  | 146 | #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0) | 
|  | 147 | #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0) | 
|  | 148 | #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0) | 
|  | 149 | #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0) | 
|  | 150 | #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \ | 
|  | 151 | (Dhiddenhigh3mantissa(dbl_value)==0) | 
|  | 152 | #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \ | 
|  | 153 | (Dhiddenhigh7mantissa(dbl_value)==0) | 
|  | 154 | #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0) | 
|  | 155 | #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0) | 
|  | 156 | #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \ | 
|  | 157 | (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
|  | 158 | #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \ | 
|  | 159 | (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
|  | 160 | #define Dbl_isinfinity_exponent(dbl_value)		\ | 
|  | 161 | (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT) | 
|  | 162 | #define Dbl_isnotinfinity_exponent(dbl_value)		\ | 
|  | 163 | (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT) | 
|  | 164 | #define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\ | 
|  | 165 | (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\ | 
|  | 166 | Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
|  | 167 | #define Dbl_isnan(dbl_valueA,dbl_valueB)		\ | 
|  | 168 | (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\ | 
|  | 169 | (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0)) | 
|  | 170 | #define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\ | 
|  | 171 | (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\ | 
|  | 172 | (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)) | 
|  | 173 |  | 
|  | 174 | #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | 175 | (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\ | 
|  | 176 | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | 177 | Dallp2(dbl_op1b) < Dallp2(dbl_op2b))) | 
|  | 178 | #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | 179 | (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\ | 
|  | 180 | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | 181 | Dallp2(dbl_op1b) > Dallp2(dbl_op2b))) | 
|  | 182 | #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | 183 | (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\ | 
|  | 184 | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | 185 | Dallp2(dbl_op1b) >= Dallp2(dbl_op2b))) | 
|  | 186 | #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ | 
|  | 187 | (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\ | 
|  | 188 | (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
|  | 189 | Dallp2(dbl_op1b) <= Dallp2(dbl_op2b))) | 
|  | 190 | #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
|  | 191 | ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\ | 
|  | 192 | (Dallp2(dbl_op1b) == Dallp2(dbl_op2b))) | 
|  | 193 |  | 
|  | 194 | #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \ | 
|  | 195 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \ | 
|  | 196 | Dallp2(dbl_valueB) <<= 8 | 
|  | 197 | #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \ | 
|  | 198 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \ | 
|  | 199 | Dallp2(dbl_valueB) <<= 7 | 
|  | 200 | #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \ | 
|  | 201 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \ | 
|  | 202 | Dallp2(dbl_valueB) <<= 4 | 
|  | 203 | #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \ | 
|  | 204 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \ | 
|  | 205 | Dallp2(dbl_valueB) <<= 3 | 
|  | 206 | #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \ | 
|  | 207 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \ | 
|  | 208 | Dallp2(dbl_valueB) <<= 2 | 
|  | 209 | #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \ | 
|  | 210 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \ | 
|  | 211 | Dallp2(dbl_valueB) <<= 1 | 
|  | 212 |  | 
|  | 213 | #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \ | 
|  | 214 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \ | 
|  | 215 | Dallp1(dbl_valueA) >>= 8 | 
|  | 216 | #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \ | 
|  | 217 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \ | 
|  | 218 | Dallp1(dbl_valueA) >>= 4 | 
|  | 219 | #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \ | 
|  | 220 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \ | 
|  | 221 | Dallp1(dbl_valueA) >>= 2 | 
|  | 222 | #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \ | 
|  | 223 | Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \ | 
|  | 224 | Dallp1(dbl_valueA) >>= 1 | 
|  | 225 |  | 
|  | 226 | /* This magnitude comparison uses the signless first words and | 
|  | 227 | * the regular part2 words.  The comparison is graphically: | 
|  | 228 | * | 
|  | 229 | *       1st greater?  ------------- | 
|  | 230 | *                                 | | 
|  | 231 | *       1st less?-----------------+--------- | 
|  | 232 | *                                 |        | | 
|  | 233 | *       2nd greater or equal----->|        | | 
|  | 234 | *                               False     True | 
|  | 235 | */ | 
|  | 236 | #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\ | 
|  | 237 | ((signlessleft <= signlessright) &&				\ | 
|  | 238 | ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) )) | 
|  | 239 |  | 
|  | 240 | #define Dbl_copytoint_exponentmantissap1(src,dest) \ | 
|  | 241 | dest = Dexponentmantissap1(src) | 
|  | 242 |  | 
|  | 243 | /* A quiet NaN has the high mantissa bit clear and at least on other (in this | 
|  | 244 | * case the adjacent bit) bit set. */ | 
|  | 245 | #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1) | 
|  | 246 | #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp) | 
|  | 247 |  | 
|  | 248 | #define Dbl_set_mantissa(desta,destb,valuea,valueb)	\ | 
|  | 249 | Deposit_dmantissap1(desta,valuea);			\ | 
|  | 250 | Dmantissap2(destb) = Dmantissap2(valueb) | 
|  | 251 | #define Dbl_set_mantissap1(desta,valuea)		\ | 
|  | 252 | Deposit_dmantissap1(desta,valuea) | 
|  | 253 | #define Dbl_set_mantissap2(destb,valueb)		\ | 
|  | 254 | Dmantissap2(destb) = Dmantissap2(valueb) | 
|  | 255 |  | 
|  | 256 | #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\ | 
|  | 257 | Deposit_dexponentmantissap1(desta,valuea);			\ | 
|  | 258 | Dmantissap2(destb) = Dmantissap2(valueb) | 
|  | 259 | #define Dbl_set_exponentmantissap1(dest,value)			\ | 
|  | 260 | Deposit_dexponentmantissap1(dest,value) | 
|  | 261 |  | 
|  | 262 | #define Dbl_copyfromptr(src,desta,destb) \ | 
|  | 263 | Dallp1(desta) = src->wd0;		\ | 
|  | 264 | Dallp2(destb) = src->wd1 | 
|  | 265 | #define Dbl_copytoptr(srca,srcb,dest)	\ | 
|  | 266 | dest->wd0 = Dallp1(srca);		\ | 
|  | 267 | dest->wd1 = Dallp2(srcb) | 
|  | 268 |  | 
|  | 269 | /*  An infinity is represented with the max exponent and a zero mantissa */ | 
|  | 270 | #define Dbl_setinfinity_exponent(dbl_value) \ | 
|  | 271 | Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT) | 
|  | 272 | #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\ | 
|  | 273 | Deposit_dexponentmantissap1(dbl_valueA, 			\ | 
|  | 274 | (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\ | 
|  | 275 | Dmantissap2(dbl_valueB) = 0 | 
|  | 276 | #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\ | 
|  | 277 | Dallp1(dbl_valueA) 						\ | 
|  | 278 | = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
|  | 279 | Dmantissap2(dbl_valueB) = 0 | 
|  | 280 | #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\ | 
|  | 281 | Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\ | 
|  | 282 | (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
|  | 283 | Dmantissap2(dbl_valueB) = 0 | 
|  | 284 | #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\ | 
|  | 285 | Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\ | 
|  | 286 | (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
|  | 287 | Dmantissap2(dbl_valueB) = 0 | 
|  | 288 |  | 
|  | 289 | #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign) | 
|  | 290 | #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign) | 
|  | 291 | #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value)) | 
|  | 292 | #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1) | 
|  | 293 | #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1) | 
|  | 294 | #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff | 
|  | 295 | #define Dbl_setzero_exponent(dbl_value) 		\ | 
|  | 296 | Dallp1(dbl_value) &= 0x800fffff | 
|  | 297 | #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\ | 
|  | 298 | Dallp1(dbl_valueA) &= 0xfff00000; 			\ | 
|  | 299 | Dallp2(dbl_valueB) = 0 | 
|  | 300 | #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000 | 
|  | 301 | #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0 | 
|  | 302 | #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\ | 
|  | 303 | Dallp1(dbl_valueA) &= 0x80000000;		\ | 
|  | 304 | Dallp2(dbl_valueB) = 0 | 
|  | 305 | #define Dbl_setzero_exponentmantissap1(dbl_valueA)	\ | 
|  | 306 | Dallp1(dbl_valueA) &= 0x80000000 | 
|  | 307 | #define Dbl_setzero(dbl_valueA,dbl_valueB) \ | 
|  | 308 | Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0 | 
|  | 309 | #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0 | 
|  | 310 | #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0 | 
|  | 311 | #define Dbl_setnegativezero(dbl_value) \ | 
|  | 312 | Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0 | 
|  | 313 | #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31 | 
|  | 314 |  | 
|  | 315 | /* Use the following macro for both overflow & underflow conditions */ | 
|  | 316 | #define ovfl - | 
|  | 317 | #define unfl + | 
|  | 318 | #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \ | 
|  | 319 | Deposit_dexponent(dbl_value,(exponent op DBL_WRAP)) | 
|  | 320 |  | 
|  | 321 | #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\ | 
|  | 322 | Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | 
|  | 323 | | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\ | 
|  | 324 | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  | 325 | #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\ | 
|  | 326 | Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | 
|  | 327 | | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\ | 
|  | 328 | | ((unsigned int)1<<31);			\ | 
|  | 329 | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  | 330 | #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\ | 
|  | 331 | Deposit_dexponentmantissap1(dbl_valueA,				\ | 
|  | 332 | (((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\ | 
|  | 333 | | ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\ | 
|  | 334 | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  | 335 |  | 
|  | 336 | #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\ | 
|  | 337 | Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\ | 
|  | 338 | << (32-(1+DBL_EXP_LENGTH)) ; 			\ | 
|  | 339 | Dallp2(dbl_valueB) = 0 | 
|  | 340 | #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\ | 
|  | 341 | Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\ | 
|  | 342 | ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\ | 
|  | 343 | ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\ | 
|  | 344 | Dallp2(dbl_valueB) = 0xFFFFFFFF | 
|  | 345 |  | 
|  | 346 |  | 
|  | 347 | /* The high bit is always zero so arithmetic or logical shifts will work. */ | 
|  | 348 | #define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\ | 
|  | 349 | if( shift >= 32 ) 							\ | 
|  | 350 | {								\ | 
|  | 351 | /* Big shift requires examining the portion shift off 		\ | 
|  | 352 | the end to properly set inexact.  */				\ | 
|  | 353 | if(shift < 64)							\ | 
|  | 354 | {								\ | 
|  | 355 | if(shift > 32)						\ | 
|  | 356 | {							\ | 
|  | 357 | Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\ | 
|  | 358 | shift-32, Extall(extent));				\ | 
|  | 359 | if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \ | 
|  | 360 | }							\ | 
|  | 361 | else Extall(extent) = Dallp2(srcdstB);			\ | 
|  | 362 | Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\ | 
|  | 363 | }								\ | 
|  | 364 | else								\ | 
|  | 365 | {								\ | 
|  | 366 | Extall(extent) = Dallp1(srcdstA);				\ | 
|  | 367 | if(Dallp2(srcdstB)) Ext_setone_low(extent);			\ | 
|  | 368 | Dallp2(srcdstB) = 0;					\ | 
|  | 369 | }								\ | 
|  | 370 | Dallp1(srcdstA) = 0;						\ | 
|  | 371 | }								\ | 
|  | 372 | else								\ | 
|  | 373 | {								\ | 
|  | 374 | /* Small alignment is simpler.  Extension is easily set. */	\ | 
|  | 375 | if (shift > 0)							\ | 
|  | 376 | {								\ | 
|  | 377 | Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\ | 
|  | 378 | Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \ | 
|  | 379 | Dallp2(srcdstB));						\ | 
|  | 380 | Dallp1(srcdstA) >>= shift;					\ | 
|  | 381 | }								\ | 
|  | 382 | else Extall(extent) = 0;					\ | 
|  | 383 | } | 
|  | 384 |  | 
|  | 385 | /* | 
|  | 386 | * Here we need to shift the result right to correct for an overshift | 
|  | 387 | * (due to the exponent becoming negative) during normalization. | 
|  | 388 | */ | 
|  | 389 | #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\ | 
|  | 390 | Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\ | 
|  | 391 | Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\ | 
|  | 392 | (Dallp2(srcdstB) >> (shift));				\ | 
|  | 393 | Dallp1(srcdstA) = Dallp1(srcdstA) >> shift | 
|  | 394 |  | 
|  | 395 | #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value) | 
|  | 396 | #define Dbl_hidden(dbl_value) Dhidden(dbl_value) | 
|  | 397 | #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value) | 
|  | 398 |  | 
|  | 399 | /* The left argument is never smaller than the right argument */ | 
|  | 400 | #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\ | 
|  | 401 | if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\ | 
|  | 402 | Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\ | 
|  | 403 | Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta) | 
|  | 404 |  | 
|  | 405 | /* Subtract right augmented with extension from left augmented with zeros and | 
|  | 406 | * store into result and extension. */ | 
|  | 407 | #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\ | 
|  | 408 | Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\ | 
|  | 409 | if( (Extall(extent) = 0-Extall(extent)) )				\ | 
|  | 410 | {								\ | 
|  | 411 | if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\ | 
|  | 412 | } | 
|  | 413 |  | 
|  | 414 | #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\ | 
|  | 415 | /* If the sum of the low words is less than either source, then	\ | 
|  | 416 | * an overflow into the next word occurred. */			\ | 
|  | 417 | Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\ | 
|  | 418 | if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \ | 
|  | 419 | Dallp1(resulta)++ | 
|  | 420 |  | 
|  | 421 | #define Dbl_xortointp1(left,right,result)			\ | 
|  | 422 | result = Dallp1(left) XOR Dallp1(right) | 
|  | 423 |  | 
|  | 424 | #define Dbl_xorfromintp1(left,right,result)			\ | 
|  | 425 | Dallp1(result) = left XOR Dallp1(right) | 
|  | 426 |  | 
|  | 427 | #define Dbl_swap_lower(left,right)				\ | 
|  | 428 | Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\ | 
|  | 429 | Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\ | 
|  | 430 | Dallp2(left)  = Dallp2(left) XOR Dallp2(right) | 
|  | 431 |  | 
|  | 432 | /* Need to Initialize */ | 
|  | 433 | #define Dbl_makequietnan(desta,destb)					\ | 
|  | 434 | Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\ | 
|  | 435 | | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\ | 
|  | 436 | Dallp2(destb) = 0 | 
|  | 437 | #define Dbl_makesignalingnan(desta,destb)				\ | 
|  | 438 | Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\ | 
|  | 439 | | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\ | 
|  | 440 | Dallp2(destb) = 0 | 
|  | 441 |  | 
|  | 442 | #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\ | 
|  | 443 | while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\ | 
|  | 444 | Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\ | 
|  | 445 | exponent -= 8;						\ | 
|  | 446 | }								\ | 
|  | 447 | if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\ | 
|  | 448 | Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\ | 
|  | 449 | exponent -= 4;						\ | 
|  | 450 | }								\ | 
|  | 451 | while(Dbl_iszero_hidden(dbl_opndA)) {				\ | 
|  | 452 | Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\ | 
|  | 453 | exponent -= 1;						\ | 
|  | 454 | } | 
|  | 455 |  | 
|  | 456 | #define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\ | 
|  | 457 | /* 							\ | 
|  | 458 | * want this macro to generate:				\ | 
|  | 459 | *	ADD	src1dstB,src2B,src1dstB;		\ | 
|  | 460 | *	ADDC	src1dstA,src2A,src1dstA;		\ | 
|  | 461 | */							\ | 
|  | 462 | if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \ | 
|  | 463 | Dallp1(src1dstA) += (src2A);				\ | 
|  | 464 | Dallp2(src1dstB) += (src2B) | 
|  | 465 |  | 
|  | 466 | #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\ | 
|  | 467 | /* 							\ | 
|  | 468 | * want this macro to generate:				\ | 
|  | 469 | *	SUB	src1dstB,src2B,src1dstB;		\ | 
|  | 470 | *	SUBB	src1dstA,src2A,src1dstA;		\ | 
|  | 471 | */							\ | 
|  | 472 | if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\ | 
|  | 473 | Dallp1(src1dstA) -= (src2A);				\ | 
|  | 474 | Dallp2(src1dstB) -= (src2B) | 
|  | 475 |  | 
|  | 476 | #define Dbl_setoverflow(resultA,resultB)				\ | 
|  | 477 | /* set result to infinity or largest number */			\ | 
|  | 478 | switch (Rounding_mode()) {					\ | 
|  | 479 | case ROUNDPLUS:						\ | 
|  | 480 | if (Dbl_isone_sign(resultA)) {			\ | 
|  | 481 | Dbl_setlargestnegative(resultA,resultB); \ | 
|  | 482 | }						\ | 
|  | 483 | else {						\ | 
|  | 484 | Dbl_setinfinitypositive(resultA,resultB); \ | 
|  | 485 | }						\ | 
|  | 486 | break;						\ | 
|  | 487 | case ROUNDMINUS:					\ | 
|  | 488 | if (Dbl_iszero_sign(resultA)) {			\ | 
|  | 489 | Dbl_setlargestpositive(resultA,resultB); \ | 
|  | 490 | }						\ | 
|  | 491 | else {						\ | 
|  | 492 | Dbl_setinfinitynegative(resultA,resultB); \ | 
|  | 493 | }						\ | 
|  | 494 | break;						\ | 
|  | 495 | case ROUNDNEAREST:					\ | 
|  | 496 | Dbl_setinfinity_exponentmantissa(resultA,resultB); \ | 
|  | 497 | break;						\ | 
|  | 498 | case ROUNDZERO:						\ | 
|  | 499 | Dbl_setlargest_exponentmantissa(resultA,resultB); \ | 
|  | 500 | } | 
|  | 501 |  | 
|  | 502 | #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\ | 
|  | 503 | Dbl_clear_signexponent_set_hidden(opndp1);				\ | 
|  | 504 | if (exponent >= (1-DBL_P)) {					\ | 
|  | 505 | if (exponent >= -31) {						\ | 
|  | 506 | guard = (Dallp2(opndp2) >> -exponent) & 1;			\ | 
|  | 507 | if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \ | 
|  | 508 | if (exponent > -31) {					\ | 
|  | 509 | Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\ | 
|  | 510 | Dallp1(opndp1) >>= 1-exponent;				\ | 
|  | 511 | }								\ | 
|  | 512 | else {							\ | 
|  | 513 | Dallp2(opndp2) = Dallp1(opndp1);			\ | 
|  | 514 | Dbl_setzerop1(opndp1);					\ | 
|  | 515 | }								\ | 
|  | 516 | }								\ | 
|  | 517 | else {								\ | 
|  | 518 | guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\ | 
|  | 519 | if (exponent == -32) sticky |= Dallp2(opndp2);		\ | 
|  | 520 | else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \ | 
|  | 521 | Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\ | 
|  | 522 | Dbl_setzerop1(opndp1);					\ | 
|  | 523 | }								\ | 
|  | 524 | inexact = guard | sticky;					\ | 
|  | 525 | }									\ | 
|  | 526 | else {								\ | 
|  | 527 | guard = 0;							\ | 
|  | 528 | sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\ | 
|  | 529 | Dbl_setzero(opndp1,opndp2);					\ | 
|  | 530 | inexact = sticky;						\ | 
|  | 531 | } | 
|  | 532 |  | 
|  | 533 | /* | 
|  | 534 | * The fused multiply add instructions requires a double extended format, | 
|  | 535 | * with 106 bits of mantissa. | 
|  | 536 | */ | 
|  | 537 | #define DBLEXT_THRESHOLD 106 | 
|  | 538 |  | 
|  | 539 | #define Dblext_setzero(valA,valB,valC,valD)	\ | 
|  | 540 | Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\ | 
|  | 541 | Dextallp3(valC) = 0; Dextallp4(valD) = 0 | 
|  | 542 |  | 
|  | 543 |  | 
|  | 544 | #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0) | 
|  | 545 | #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0) | 
|  | 546 | #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0) | 
|  | 547 | #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0) | 
|  | 548 | #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0) | 
|  | 549 | #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \ | 
|  | 550 | Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0) | 
|  | 551 |  | 
|  | 552 | #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \ | 
|  | 553 | Dextallp1(desta) = Dextallp4(srca);	\ | 
|  | 554 | Dextallp2(destb) = Dextallp4(srcb);	\ | 
|  | 555 | Dextallp3(destc) = Dextallp4(srcc);	\ | 
|  | 556 | Dextallp4(destd) = Dextallp4(srcd) | 
|  | 557 |  | 
|  | 558 | #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \ | 
|  | 559 | Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
|  | 560 | Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
|  | 561 | Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
|  | 562 | Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
|  | 563 | Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
|  | 564 | Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
|  | 565 | Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \ | 
|  | 566 | Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \ | 
|  | 567 | Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4) | 
|  | 568 |  | 
|  | 569 | #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1) | 
|  | 570 |  | 
|  | 571 | /* The high bit is always zero so arithmetic or logical shifts will work. */ | 
|  | 572 | #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \ | 
|  | 573 | {int shiftamt, sticky;						\ | 
|  | 574 | shiftamt = shift % 32;						\ | 
|  | 575 | sticky = 0;								\ | 
|  | 576 | switch (shift/32) {							\ | 
|  | 577 | case 0: if (shiftamt > 0) {					\ | 
|  | 578 | sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\ | 
|  | 579 | Variable_shift_double(Dextallp3(srcdstC),		\ | 
|  | 580 | Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\ | 
|  | 581 | Variable_shift_double(Dextallp2(srcdstB),		\ | 
|  | 582 | Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\ | 
|  | 583 | Variable_shift_double(Dextallp1(srcdstA),		\ | 
|  | 584 | Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\ | 
|  | 585 | Dextallp1(srcdstA) >>= shiftamt;			\ | 
|  | 586 | }								\ | 
|  | 587 | break;							\ | 
|  | 588 | case 1: if (shiftamt > 0) {					\ | 
|  | 589 | sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\ | 
|  | 590 | Dextallp4(srcdstD);				\ | 
|  | 591 | Variable_shift_double(Dextallp2(srcdstB),		\ | 
|  | 592 | Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\ | 
|  | 593 | Variable_shift_double(Dextallp1(srcdstA),		\ | 
|  | 594 | Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\ | 
|  | 595 | }								\ | 
|  | 596 | else {							\ | 
|  | 597 | sticky = Dextallp4(srcdstD);				\ | 
|  | 598 | Dextallp4(srcdstD) = Dextallp3(srcdstC);		\ | 
|  | 599 | Dextallp3(srcdstC) = Dextallp2(srcdstB);		\ | 
|  | 600 | }								\ | 
|  | 601 | Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\ | 
|  | 602 | Dextallp1(srcdstA) = 0;					\ | 
|  | 603 | break;							\ | 
|  | 604 | case 2: if (shiftamt > 0) {					\ | 
|  | 605 | sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\ | 
|  | 606 | Dextallp3(srcdstC) | Dextallp4(srcdstD);	\ | 
|  | 607 | Variable_shift_double(Dextallp1(srcdstA),		\ | 
|  | 608 | Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\ | 
|  | 609 | }								\ | 
|  | 610 | else {							\ | 
|  | 611 | sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\ | 
|  | 612 | Dextallp4(srcdstD) = Dextallp2(srcdstB);		\ | 
|  | 613 | }								\ | 
|  | 614 | Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\ | 
|  | 615 | Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\ | 
|  | 616 | break;							\ | 
|  | 617 | case 3: if (shiftamt > 0) {					\ | 
|  | 618 | sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\ | 
|  | 619 | Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\ | 
|  | 620 | Dextallp4(srcdstD);				\ | 
|  | 621 | }								\ | 
|  | 622 | else {							\ | 
|  | 623 | sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\ | 
|  | 624 | Dextallp4(srcdstD);					\ | 
|  | 625 | }								\ | 
|  | 626 | Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\ | 
|  | 627 | Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\ | 
|  | 628 | Dextallp3(srcdstC) = 0;					\ | 
|  | 629 | break;							\ | 
|  | 630 | }									\ | 
|  | 631 | if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\ | 
|  | 632 | } | 
|  | 633 |  | 
|  | 634 | /* The left argument is never smaller than the right argument */ | 
|  | 635 | #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ | 
|  | 636 | if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\ | 
|  | 637 | if( (Dextallp3(leftc)--) == 0)				\ | 
|  | 638 | if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\ | 
|  | 639 | Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\ | 
|  | 640 | if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\ | 
|  | 641 | if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\ | 
|  | 642 | Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\ | 
|  | 643 | if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \ | 
|  | 644 | Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\ | 
|  | 645 | Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta) | 
|  | 646 |  | 
|  | 647 | #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ | 
|  | 648 | /* If the sum of the low words is less than either source, then \ | 
|  | 649 | * an overflow into the next word occurred. */ \ | 
|  | 650 | if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \ | 
|  | 651 | Dextallp4(rightd)) \ | 
|  | 652 | if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \ | 
|  | 653 | Dextallp3(rightc)) \ | 
|  | 654 | if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ | 
|  | 655 | <= Dextallp2(rightb))  \ | 
|  | 656 | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | 657 | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
|  | 658 | else \ | 
|  | 659 | if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ | 
|  | 660 | Dextallp2(rightb)) \ | 
|  | 661 | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | 662 | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
|  | 663 | else \ | 
|  | 664 | if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \ | 
|  | 665 | Dextallp3(rightc))  \ | 
|  | 666 | if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ | 
|  | 667 | <= Dextallp2(rightb)) \ | 
|  | 668 | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | 669 | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
|  | 670 | else \ | 
|  | 671 | if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ | 
|  | 672 | Dextallp2(rightb)) \ | 
|  | 673 | Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
|  | 674 | else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta) | 
|  | 675 |  | 
|  | 676 |  | 
|  | 677 | #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\ | 
|  | 678 | Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \ | 
|  | 679 | Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \ | 
|  | 680 | Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \ | 
|  | 681 | Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1 | 
|  | 682 |  | 
|  | 683 | #define Dblext_leftshiftby8(valA,valB,valC,valD) \ | 
|  | 684 | Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \ | 
|  | 685 | Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \ | 
|  | 686 | Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \ | 
|  | 687 | Dextallp4(valD) <<= 8 | 
|  | 688 | #define Dblext_leftshiftby4(valA,valB,valC,valD) \ | 
|  | 689 | Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \ | 
|  | 690 | Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \ | 
|  | 691 | Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \ | 
|  | 692 | Dextallp4(valD) <<= 4 | 
|  | 693 | #define Dblext_leftshiftby3(valA,valB,valC,valD) \ | 
|  | 694 | Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \ | 
|  | 695 | Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \ | 
|  | 696 | Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \ | 
|  | 697 | Dextallp4(valD) <<= 3 | 
|  | 698 | #define Dblext_leftshiftby2(valA,valB,valC,valD) \ | 
|  | 699 | Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \ | 
|  | 700 | Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \ | 
|  | 701 | Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \ | 
|  | 702 | Dextallp4(valD) <<= 2 | 
|  | 703 | #define Dblext_leftshiftby1(valA,valB,valC,valD) \ | 
|  | 704 | Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \ | 
|  | 705 | Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \ | 
|  | 706 | Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \ | 
|  | 707 | Dextallp4(valD) <<= 1 | 
|  | 708 |  | 
|  | 709 | #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \ | 
|  | 710 | Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \ | 
|  | 711 | Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \ | 
|  | 712 | Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \ | 
|  | 713 | Dextallp1(valueA) >>= 4 | 
|  | 714 | #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \ | 
|  | 715 | Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \ | 
|  | 716 | Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \ | 
|  | 717 | Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \ | 
|  | 718 | Dextallp1(valueA) >>= 1 | 
|  | 719 |  | 
|  | 720 | #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result) | 
|  | 721 |  | 
|  | 722 | #define Dblext_xorfromintp1(left,right,result) \ | 
|  | 723 | Dbl_xorfromintp1(left,right,result) | 
|  | 724 |  | 
|  | 725 | #define Dblext_copytoint_exponentmantissap1(src,dest) \ | 
|  | 726 | Dbl_copytoint_exponentmantissap1(src,dest) | 
|  | 727 |  | 
|  | 728 | #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \ | 
|  | 729 | Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) | 
|  | 730 |  | 
|  | 731 | #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \ | 
|  | 732 | Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \ | 
|  | 733 | Dextallp3(dest3) = 0; Dextallp4(dest4) = 0 | 
|  | 734 |  | 
|  | 735 | #define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign) | 
|  | 736 | #define Dblext_clear_signexponent_set_hidden(srcdst) \ | 
|  | 737 | Dbl_clear_signexponent_set_hidden(srcdst) | 
|  | 738 | #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst) | 
|  | 739 | #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst) | 
|  | 740 | #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value) | 
|  | 741 |  | 
|  | 742 | /* | 
|  | 743 | * The Fourword_add() macro assumes that integers are 4 bytes in size. | 
|  | 744 | * It will break if this is not the case. | 
|  | 745 | */ | 
|  | 746 |  | 
|  | 747 | #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \ | 
|  | 748 | /* 								\ | 
|  | 749 | * want this macro to generate:					\ | 
|  | 750 | *	ADD	src1dstD,src2D,src1dstD;			\ | 
|  | 751 | *	ADDC	src1dstC,src2C,src1dstC;			\ | 
|  | 752 | *	ADDC	src1dstB,src2B,src1dstB;			\ | 
|  | 753 | *	ADDC	src1dstA,src2A,src1dstA;			\ | 
|  | 754 | */								\ | 
|  | 755 | if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \ | 
|  | 756 | if ((unsigned int)(src1dstC += (src2C) + 1) <=		\ | 
|  | 757 | (unsigned int)(src2C)) {					\ | 
|  | 758 | if ((unsigned int)(src1dstB += (src2B) + 1) <=		\ | 
|  | 759 | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | 760 | }								\ | 
|  | 761 | else if ((unsigned int)(src1dstB += (src2B)) < 		\ | 
|  | 762 | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | 763 | }								\ | 
|  | 764 | else {								\ | 
|  | 765 | if ((unsigned int)(src1dstC += (src2C)) <			\ | 
|  | 766 | (unsigned int)(src2C)) {					\ | 
|  | 767 | if ((unsigned int)(src1dstB += (src2B) + 1) <=		\ | 
|  | 768 | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | 769 | }								\ | 
|  | 770 | else if ((unsigned int)(src1dstB += (src2B)) <		\ | 
|  | 771 | (unsigned int)(src2B)) src1dstA++;			\ | 
|  | 772 | }								\ | 
|  | 773 | src1dstA += (src2A) | 
|  | 774 |  | 
|  | 775 | #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \ | 
|  | 776 | {int shiftamt, sticky;						\ | 
|  | 777 | is_tiny = TRUE;							\ | 
|  | 778 | if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\ | 
|  | 779 | switch (Rounding_mode()) {					\ | 
|  | 780 | case ROUNDPLUS:							\ | 
|  | 781 | if (Dbl_iszero_sign(opndp1)) {				\ | 
|  | 782 | Dbl_increment(opndp1,opndp2);			\ | 
|  | 783 | if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
|  | 784 | is_tiny = FALSE;			\ | 
|  | 785 | Dbl_decrement(opndp1,opndp2);			\ | 
|  | 786 | }							\ | 
|  | 787 | break;							\ | 
|  | 788 | case ROUNDMINUS:						\ | 
|  | 789 | if (Dbl_isone_sign(opndp1)) {				\ | 
|  | 790 | Dbl_increment(opndp1,opndp2);			\ | 
|  | 791 | if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
|  | 792 | is_tiny = FALSE;			\ | 
|  | 793 | Dbl_decrement(opndp1,opndp2);			\ | 
|  | 794 | }							\ | 
|  | 795 | break;							\ | 
|  | 796 | case ROUNDNEAREST:						\ | 
|  | 797 | if (Dblext_isone_highp3(opndp3) &&			\ | 
|  | 798 | (Dblext_isone_lowp2(opndp2) || 			\ | 
|  | 799 | Dblext_isnotzero_low31p3(opndp3)))	{		\ | 
|  | 800 | Dbl_increment(opndp1,opndp2);			\ | 
|  | 801 | if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
|  | 802 | is_tiny = FALSE;			\ | 
|  | 803 | Dbl_decrement(opndp1,opndp2);			\ | 
|  | 804 | }							\ | 
|  | 805 | break;							\ | 
|  | 806 | }								\ | 
|  | 807 | }									\ | 
|  | 808 | Dblext_clear_signexponent_set_hidden(opndp1);			\ | 
|  | 809 | if (exponent >= (1-QUAD_P)) {					\ | 
|  | 810 | shiftamt = (1-exponent) % 32;					\ | 
|  | 811 | switch((1-exponent)/32) {					\ | 
|  | 812 | case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\ | 
|  | 813 | Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\ | 
|  | 814 | Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\ | 
|  | 815 | Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\ | 
|  | 816 | Dextallp1(opndp1) >>= shiftamt;			\ | 
|  | 817 | break;						\ | 
|  | 818 | case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\ | 
|  | 819 | Dextallp4(opndp4);				\ | 
|  | 820 | Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\ | 
|  | 821 | Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\ | 
|  | 822 | Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\ | 
|  | 823 | Dextallp1(opndp1) = 0;				\ | 
|  | 824 | break;						\ | 
|  | 825 | case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\ | 
|  | 826 | Dextallp3(opndp3) | Dextallp4(opndp4);	\ | 
|  | 827 | Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\ | 
|  | 828 | Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\ | 
|  | 829 | Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\ | 
|  | 830 | break;						\ | 
|  | 831 | case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\ | 
|  | 832 | Dextallp2(opndp2) | Dextallp3(opndp3) | 	\ | 
|  | 833 | Dextallp4(opndp4);				\ | 
|  | 834 | Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\ | 
|  | 835 | Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\ | 
|  | 836 | Dextallp3(opndp3) = 0;				\ | 
|  | 837 | break;						\ | 
|  | 838 | }								\ | 
|  | 839 | }									\ | 
|  | 840 | else {								\ | 
|  | 841 | sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\ | 
|  | 842 | Dextallp3(opndp3) | Dextallp4(opndp4);			\ | 
|  | 843 | Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\ | 
|  | 844 | }									\ | 
|  | 845 | if (sticky) Dblext_setone_lowmantissap4(opndp4);			\ | 
|  | 846 | exponent = 0;							\ | 
|  | 847 | } |