| Ivan Djelic | 437aa56 | 2011-03-11 11:05:32 +0100 | [diff] [blame] | 1 | /* | 
 | 2 |  * Generic binary BCH encoding/decoding library | 
 | 3 |  * | 
 | 4 |  * This program is free software; you can redistribute it and/or modify it | 
 | 5 |  * under the terms of the GNU General Public License version 2 as published by | 
 | 6 |  * the Free Software Foundation. | 
 | 7 |  * | 
 | 8 |  * This program is distributed in the hope that it will be useful, but WITHOUT | 
 | 9 |  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
 | 10 |  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
 | 11 |  * more details. | 
 | 12 |  * | 
 | 13 |  * You should have received a copy of the GNU General Public License along with | 
 | 14 |  * this program; if not, write to the Free Software Foundation, Inc., 51 | 
 | 15 |  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. | 
 | 16 |  * | 
 | 17 |  * Copyright © 2011 Parrot S.A. | 
 | 18 |  * | 
 | 19 |  * Author: Ivan Djelic <ivan.djelic@parrot.com> | 
 | 20 |  * | 
 | 21 |  * Description: | 
 | 22 |  * | 
 | 23 |  * This library provides runtime configurable encoding/decoding of binary | 
 | 24 |  * Bose-Chaudhuri-Hocquenghem (BCH) codes. | 
 | 25 |  * | 
 | 26 |  * Call init_bch to get a pointer to a newly allocated bch_control structure for | 
 | 27 |  * the given m (Galois field order), t (error correction capability) and | 
 | 28 |  * (optional) primitive polynomial parameters. | 
 | 29 |  * | 
 | 30 |  * Call encode_bch to compute and store ecc parity bytes to a given buffer. | 
 | 31 |  * Call decode_bch to detect and locate errors in received data. | 
 | 32 |  * | 
 | 33 |  * On systems supporting hw BCH features, intermediate results may be provided | 
 | 34 |  * to decode_bch in order to skip certain steps. See decode_bch() documentation | 
 | 35 |  * for details. | 
 | 36 |  * | 
 | 37 |  * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of | 
 | 38 |  * parameters m and t; thus allowing extra compiler optimizations and providing | 
 | 39 |  * better (up to 2x) encoding performance. Using this option makes sense when | 
 | 40 |  * (m,t) are fixed and known in advance, e.g. when using BCH error correction | 
 | 41 |  * on a particular NAND flash device. | 
 | 42 |  * | 
 | 43 |  * Algorithmic details: | 
 | 44 |  * | 
 | 45 |  * Encoding is performed by processing 32 input bits in parallel, using 4 | 
 | 46 |  * remainder lookup tables. | 
 | 47 |  * | 
 | 48 |  * The final stage of decoding involves the following internal steps: | 
 | 49 |  * a. Syndrome computation | 
 | 50 |  * b. Error locator polynomial computation using Berlekamp-Massey algorithm | 
 | 51 |  * c. Error locator root finding (by far the most expensive step) | 
 | 52 |  * | 
 | 53 |  * In this implementation, step c is not performed using the usual Chien search. | 
 | 54 |  * Instead, an alternative approach described in [1] is used. It consists in | 
 | 55 |  * factoring the error locator polynomial using the Berlekamp Trace algorithm | 
 | 56 |  * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial | 
 | 57 |  * solving techniques [2] are used. The resulting algorithm, called BTZ, yields | 
 | 58 |  * much better performance than Chien search for usual (m,t) values (typically | 
 | 59 |  * m >= 13, t < 32, see [1]). | 
 | 60 |  * | 
 | 61 |  * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields | 
 | 62 |  * of characteristic 2, in: Western European Workshop on Research in Cryptology | 
 | 63 |  * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear. | 
 | 64 |  * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over | 
 | 65 |  * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996. | 
 | 66 |  */ | 
 | 67 |  | 
 | 68 | #include <linux/kernel.h> | 
 | 69 | #include <linux/errno.h> | 
 | 70 | #include <linux/init.h> | 
 | 71 | #include <linux/module.h> | 
 | 72 | #include <linux/slab.h> | 
 | 73 | #include <linux/bitops.h> | 
 | 74 | #include <asm/byteorder.h> | 
 | 75 | #include <linux/bch.h> | 
 | 76 |  | 
 | 77 | #if defined(CONFIG_BCH_CONST_PARAMS) | 
 | 78 | #define GF_M(_p)               (CONFIG_BCH_CONST_M) | 
 | 79 | #define GF_T(_p)               (CONFIG_BCH_CONST_T) | 
 | 80 | #define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1) | 
 | 81 | #else | 
 | 82 | #define GF_M(_p)               ((_p)->m) | 
 | 83 | #define GF_T(_p)               ((_p)->t) | 
 | 84 | #define GF_N(_p)               ((_p)->n) | 
 | 85 | #endif | 
 | 86 |  | 
 | 87 | #define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32) | 
 | 88 | #define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8) | 
 | 89 |  | 
 | 90 | #ifndef dbg | 
 | 91 | #define dbg(_fmt, args...)     do {} while (0) | 
 | 92 | #endif | 
 | 93 |  | 
 | 94 | /* | 
 | 95 |  * represent a polynomial over GF(2^m) | 
 | 96 |  */ | 
 | 97 | struct gf_poly { | 
 | 98 | 	unsigned int deg;    /* polynomial degree */ | 
 | 99 | 	unsigned int c[0];   /* polynomial terms */ | 
 | 100 | }; | 
 | 101 |  | 
 | 102 | /* given its degree, compute a polynomial size in bytes */ | 
 | 103 | #define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int)) | 
 | 104 |  | 
 | 105 | /* polynomial of degree 1 */ | 
 | 106 | struct gf_poly_deg1 { | 
 | 107 | 	struct gf_poly poly; | 
 | 108 | 	unsigned int   c[2]; | 
 | 109 | }; | 
 | 110 |  | 
 | 111 | /* | 
 | 112 |  * same as encode_bch(), but process input data one byte at a time | 
 | 113 |  */ | 
 | 114 | static void encode_bch_unaligned(struct bch_control *bch, | 
 | 115 | 				 const unsigned char *data, unsigned int len, | 
 | 116 | 				 uint32_t *ecc) | 
 | 117 | { | 
 | 118 | 	int i; | 
 | 119 | 	const uint32_t *p; | 
 | 120 | 	const int l = BCH_ECC_WORDS(bch)-1; | 
 | 121 |  | 
 | 122 | 	while (len--) { | 
 | 123 | 		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(*data++)) & 0xff); | 
 | 124 |  | 
 | 125 | 		for (i = 0; i < l; i++) | 
 | 126 | 			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++); | 
 | 127 |  | 
 | 128 | 		ecc[l] = (ecc[l] << 8)^(*p); | 
 | 129 | 	} | 
 | 130 | } | 
 | 131 |  | 
 | 132 | /* | 
 | 133 |  * convert ecc bytes to aligned, zero-padded 32-bit ecc words | 
 | 134 |  */ | 
 | 135 | static void load_ecc8(struct bch_control *bch, uint32_t *dst, | 
 | 136 | 		      const uint8_t *src) | 
 | 137 | { | 
 | 138 | 	uint8_t pad[4] = {0, 0, 0, 0}; | 
 | 139 | 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | 
 | 140 |  | 
 | 141 | 	for (i = 0; i < nwords; i++, src += 4) | 
 | 142 | 		dst[i] = (src[0] << 24)|(src[1] << 16)|(src[2] << 8)|src[3]; | 
 | 143 |  | 
 | 144 | 	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords); | 
 | 145 | 	dst[nwords] = (pad[0] << 24)|(pad[1] << 16)|(pad[2] << 8)|pad[3]; | 
 | 146 | } | 
 | 147 |  | 
 | 148 | /* | 
 | 149 |  * convert 32-bit ecc words to ecc bytes | 
 | 150 |  */ | 
 | 151 | static void store_ecc8(struct bch_control *bch, uint8_t *dst, | 
 | 152 | 		       const uint32_t *src) | 
 | 153 | { | 
 | 154 | 	uint8_t pad[4]; | 
 | 155 | 	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1; | 
 | 156 |  | 
 | 157 | 	for (i = 0; i < nwords; i++) { | 
 | 158 | 		*dst++ = (src[i] >> 24); | 
 | 159 | 		*dst++ = (src[i] >> 16) & 0xff; | 
 | 160 | 		*dst++ = (src[i] >>  8) & 0xff; | 
 | 161 | 		*dst++ = (src[i] >>  0) & 0xff; | 
 | 162 | 	} | 
 | 163 | 	pad[0] = (src[nwords] >> 24); | 
 | 164 | 	pad[1] = (src[nwords] >> 16) & 0xff; | 
 | 165 | 	pad[2] = (src[nwords] >>  8) & 0xff; | 
 | 166 | 	pad[3] = (src[nwords] >>  0) & 0xff; | 
 | 167 | 	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords); | 
 | 168 | } | 
 | 169 |  | 
 | 170 | /** | 
 | 171 |  * encode_bch - calculate BCH ecc parity of data | 
 | 172 |  * @bch:   BCH control structure | 
 | 173 |  * @data:  data to encode | 
 | 174 |  * @len:   data length in bytes | 
 | 175 |  * @ecc:   ecc parity data, must be initialized by caller | 
 | 176 |  * | 
 | 177 |  * The @ecc parity array is used both as input and output parameter, in order to | 
 | 178 |  * allow incremental computations. It should be of the size indicated by member | 
 | 179 |  * @ecc_bytes of @bch, and should be initialized to 0 before the first call. | 
 | 180 |  * | 
 | 181 |  * The exact number of computed ecc parity bits is given by member @ecc_bits of | 
 | 182 |  * @bch; it may be less than m*t for large values of t. | 
 | 183 |  */ | 
 | 184 | void encode_bch(struct bch_control *bch, const uint8_t *data, | 
 | 185 | 		unsigned int len, uint8_t *ecc) | 
 | 186 | { | 
 | 187 | 	const unsigned int l = BCH_ECC_WORDS(bch)-1; | 
 | 188 | 	unsigned int i, mlen; | 
 | 189 | 	unsigned long m; | 
 | 190 | 	uint32_t w, r[l+1]; | 
 | 191 | 	const uint32_t * const tab0 = bch->mod8_tab; | 
 | 192 | 	const uint32_t * const tab1 = tab0 + 256*(l+1); | 
 | 193 | 	const uint32_t * const tab2 = tab1 + 256*(l+1); | 
 | 194 | 	const uint32_t * const tab3 = tab2 + 256*(l+1); | 
 | 195 | 	const uint32_t *pdata, *p0, *p1, *p2, *p3; | 
 | 196 |  | 
 | 197 | 	if (ecc) { | 
 | 198 | 		/* load ecc parity bytes into internal 32-bit buffer */ | 
 | 199 | 		load_ecc8(bch, bch->ecc_buf, ecc); | 
 | 200 | 	} else { | 
 | 201 | 		memset(bch->ecc_buf, 0, sizeof(r)); | 
 | 202 | 	} | 
 | 203 |  | 
 | 204 | 	/* process first unaligned data bytes */ | 
 | 205 | 	m = ((unsigned long)data) & 3; | 
 | 206 | 	if (m) { | 
 | 207 | 		mlen = (len < (4-m)) ? len : 4-m; | 
 | 208 | 		encode_bch_unaligned(bch, data, mlen, bch->ecc_buf); | 
 | 209 | 		data += mlen; | 
 | 210 | 		len  -= mlen; | 
 | 211 | 	} | 
 | 212 |  | 
 | 213 | 	/* process 32-bit aligned data words */ | 
 | 214 | 	pdata = (uint32_t *)data; | 
 | 215 | 	mlen  = len/4; | 
 | 216 | 	data += 4*mlen; | 
 | 217 | 	len  -= 4*mlen; | 
 | 218 | 	memcpy(r, bch->ecc_buf, sizeof(r)); | 
 | 219 |  | 
 | 220 | 	/* | 
 | 221 | 	 * split each 32-bit word into 4 polynomials of weight 8 as follows: | 
 | 222 | 	 * | 
 | 223 | 	 * 31 ...24  23 ...16  15 ... 8  7 ... 0 | 
 | 224 | 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt | 
 | 225 | 	 *                               tttttttt  mod g = r0 (precomputed) | 
 | 226 | 	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed) | 
 | 227 | 	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed) | 
 | 228 | 	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed) | 
 | 229 | 	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3 | 
 | 230 | 	 */ | 
 | 231 | 	while (mlen--) { | 
 | 232 | 		/* input data is read in big-endian format */ | 
 | 233 | 		w = r[0]^cpu_to_be32(*pdata++); | 
 | 234 | 		p0 = tab0 + (l+1)*((w >>  0) & 0xff); | 
 | 235 | 		p1 = tab1 + (l+1)*((w >>  8) & 0xff); | 
 | 236 | 		p2 = tab2 + (l+1)*((w >> 16) & 0xff); | 
 | 237 | 		p3 = tab3 + (l+1)*((w >> 24) & 0xff); | 
 | 238 |  | 
 | 239 | 		for (i = 0; i < l; i++) | 
 | 240 | 			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i]; | 
 | 241 |  | 
 | 242 | 		r[l] = p0[l]^p1[l]^p2[l]^p3[l]; | 
 | 243 | 	} | 
 | 244 | 	memcpy(bch->ecc_buf, r, sizeof(r)); | 
 | 245 |  | 
 | 246 | 	/* process last unaligned bytes */ | 
 | 247 | 	if (len) | 
 | 248 | 		encode_bch_unaligned(bch, data, len, bch->ecc_buf); | 
 | 249 |  | 
 | 250 | 	/* store ecc parity bytes into original parity buffer */ | 
 | 251 | 	if (ecc) | 
 | 252 | 		store_ecc8(bch, ecc, bch->ecc_buf); | 
 | 253 | } | 
 | 254 | EXPORT_SYMBOL_GPL(encode_bch); | 
 | 255 |  | 
 | 256 | static inline int modulo(struct bch_control *bch, unsigned int v) | 
 | 257 | { | 
 | 258 | 	const unsigned int n = GF_N(bch); | 
 | 259 | 	while (v >= n) { | 
 | 260 | 		v -= n; | 
 | 261 | 		v = (v & n) + (v >> GF_M(bch)); | 
 | 262 | 	} | 
 | 263 | 	return v; | 
 | 264 | } | 
 | 265 |  | 
 | 266 | /* | 
 | 267 |  * shorter and faster modulo function, only works when v < 2N. | 
 | 268 |  */ | 
 | 269 | static inline int mod_s(struct bch_control *bch, unsigned int v) | 
 | 270 | { | 
 | 271 | 	const unsigned int n = GF_N(bch); | 
 | 272 | 	return (v < n) ? v : v-n; | 
 | 273 | } | 
 | 274 |  | 
 | 275 | static inline int deg(unsigned int poly) | 
 | 276 | { | 
 | 277 | 	/* polynomial degree is the most-significant bit index */ | 
 | 278 | 	return fls(poly)-1; | 
 | 279 | } | 
 | 280 |  | 
 | 281 | static inline int parity(unsigned int x) | 
 | 282 | { | 
 | 283 | 	/* | 
 | 284 | 	 * public domain code snippet, lifted from | 
 | 285 | 	 * http://www-graphics.stanford.edu/~seander/bithacks.html | 
 | 286 | 	 */ | 
 | 287 | 	x ^= x >> 1; | 
 | 288 | 	x ^= x >> 2; | 
 | 289 | 	x = (x & 0x11111111U) * 0x11111111U; | 
 | 290 | 	return (x >> 28) & 1; | 
 | 291 | } | 
 | 292 |  | 
 | 293 | /* Galois field basic operations: multiply, divide, inverse, etc. */ | 
 | 294 |  | 
 | 295 | static inline unsigned int gf_mul(struct bch_control *bch, unsigned int a, | 
 | 296 | 				  unsigned int b) | 
 | 297 | { | 
 | 298 | 	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | 
 | 299 | 					       bch->a_log_tab[b])] : 0; | 
 | 300 | } | 
 | 301 |  | 
 | 302 | static inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a) | 
 | 303 | { | 
 | 304 | 	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0; | 
 | 305 | } | 
 | 306 |  | 
 | 307 | static inline unsigned int gf_div(struct bch_control *bch, unsigned int a, | 
 | 308 | 				  unsigned int b) | 
 | 309 | { | 
 | 310 | 	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+ | 
 | 311 | 					GF_N(bch)-bch->a_log_tab[b])] : 0; | 
 | 312 | } | 
 | 313 |  | 
 | 314 | static inline unsigned int gf_inv(struct bch_control *bch, unsigned int a) | 
 | 315 | { | 
 | 316 | 	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]]; | 
 | 317 | } | 
 | 318 |  | 
 | 319 | static inline unsigned int a_pow(struct bch_control *bch, int i) | 
 | 320 | { | 
 | 321 | 	return bch->a_pow_tab[modulo(bch, i)]; | 
 | 322 | } | 
 | 323 |  | 
 | 324 | static inline int a_log(struct bch_control *bch, unsigned int x) | 
 | 325 | { | 
 | 326 | 	return bch->a_log_tab[x]; | 
 | 327 | } | 
 | 328 |  | 
 | 329 | static inline int a_ilog(struct bch_control *bch, unsigned int x) | 
 | 330 | { | 
 | 331 | 	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]); | 
 | 332 | } | 
 | 333 |  | 
 | 334 | /* | 
 | 335 |  * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t | 
 | 336 |  */ | 
 | 337 | static void compute_syndromes(struct bch_control *bch, uint32_t *ecc, | 
 | 338 | 			      unsigned int *syn) | 
 | 339 | { | 
 | 340 | 	int i, j, s; | 
 | 341 | 	unsigned int m; | 
 | 342 | 	uint32_t poly; | 
 | 343 | 	const int t = GF_T(bch); | 
 | 344 |  | 
 | 345 | 	s = bch->ecc_bits; | 
 | 346 |  | 
 | 347 | 	/* make sure extra bits in last ecc word are cleared */ | 
 | 348 | 	m = ((unsigned int)s) & 31; | 
 | 349 | 	if (m) | 
 | 350 | 		ecc[s/32] &= ~((1u << (32-m))-1); | 
 | 351 | 	memset(syn, 0, 2*t*sizeof(*syn)); | 
 | 352 |  | 
 | 353 | 	/* compute v(a^j) for j=1 .. 2t-1 */ | 
 | 354 | 	do { | 
 | 355 | 		poly = *ecc++; | 
 | 356 | 		s -= 32; | 
 | 357 | 		while (poly) { | 
 | 358 | 			i = deg(poly); | 
 | 359 | 			for (j = 0; j < 2*t; j += 2) | 
 | 360 | 				syn[j] ^= a_pow(bch, (j+1)*(i+s)); | 
 | 361 |  | 
 | 362 | 			poly ^= (1 << i); | 
 | 363 | 		} | 
 | 364 | 	} while (s > 0); | 
 | 365 |  | 
 | 366 | 	/* v(a^(2j)) = v(a^j)^2 */ | 
 | 367 | 	for (j = 0; j < t; j++) | 
 | 368 | 		syn[2*j+1] = gf_sqr(bch, syn[j]); | 
 | 369 | } | 
 | 370 |  | 
 | 371 | static void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src) | 
 | 372 | { | 
 | 373 | 	memcpy(dst, src, GF_POLY_SZ(src->deg)); | 
 | 374 | } | 
 | 375 |  | 
 | 376 | static int compute_error_locator_polynomial(struct bch_control *bch, | 
 | 377 | 					    const unsigned int *syn) | 
 | 378 | { | 
 | 379 | 	const unsigned int t = GF_T(bch); | 
 | 380 | 	const unsigned int n = GF_N(bch); | 
 | 381 | 	unsigned int i, j, tmp, l, pd = 1, d = syn[0]; | 
 | 382 | 	struct gf_poly *elp = bch->elp; | 
 | 383 | 	struct gf_poly *pelp = bch->poly_2t[0]; | 
 | 384 | 	struct gf_poly *elp_copy = bch->poly_2t[1]; | 
 | 385 | 	int k, pp = -1; | 
 | 386 |  | 
 | 387 | 	memset(pelp, 0, GF_POLY_SZ(2*t)); | 
 | 388 | 	memset(elp, 0, GF_POLY_SZ(2*t)); | 
 | 389 |  | 
 | 390 | 	pelp->deg = 0; | 
 | 391 | 	pelp->c[0] = 1; | 
 | 392 | 	elp->deg = 0; | 
 | 393 | 	elp->c[0] = 1; | 
 | 394 |  | 
 | 395 | 	/* use simplified binary Berlekamp-Massey algorithm */ | 
 | 396 | 	for (i = 0; (i < t) && (elp->deg <= t); i++) { | 
 | 397 | 		if (d) { | 
 | 398 | 			k = 2*i-pp; | 
 | 399 | 			gf_poly_copy(elp_copy, elp); | 
 | 400 | 			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */ | 
 | 401 | 			tmp = a_log(bch, d)+n-a_log(bch, pd); | 
 | 402 | 			for (j = 0; j <= pelp->deg; j++) { | 
 | 403 | 				if (pelp->c[j]) { | 
 | 404 | 					l = a_log(bch, pelp->c[j]); | 
 | 405 | 					elp->c[j+k] ^= a_pow(bch, tmp+l); | 
 | 406 | 				} | 
 | 407 | 			} | 
 | 408 | 			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */ | 
 | 409 | 			tmp = pelp->deg+k; | 
 | 410 | 			if (tmp > elp->deg) { | 
 | 411 | 				elp->deg = tmp; | 
 | 412 | 				gf_poly_copy(pelp, elp_copy); | 
 | 413 | 				pd = d; | 
 | 414 | 				pp = 2*i; | 
 | 415 | 			} | 
 | 416 | 		} | 
 | 417 | 		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */ | 
 | 418 | 		if (i < t-1) { | 
 | 419 | 			d = syn[2*i+2]; | 
 | 420 | 			for (j = 1; j <= elp->deg; j++) | 
 | 421 | 				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]); | 
 | 422 | 		} | 
 | 423 | 	} | 
 | 424 | 	dbg("elp=%s\n", gf_poly_str(elp)); | 
 | 425 | 	return (elp->deg > t) ? -1 : (int)elp->deg; | 
 | 426 | } | 
 | 427 |  | 
 | 428 | /* | 
 | 429 |  * solve a m x m linear system in GF(2) with an expected number of solutions, | 
 | 430 |  * and return the number of found solutions | 
 | 431 |  */ | 
 | 432 | static int solve_linear_system(struct bch_control *bch, unsigned int *rows, | 
 | 433 | 			       unsigned int *sol, int nsol) | 
 | 434 | { | 
 | 435 | 	const int m = GF_M(bch); | 
 | 436 | 	unsigned int tmp, mask; | 
 | 437 | 	int rem, c, r, p, k, param[m]; | 
 | 438 |  | 
 | 439 | 	k = 0; | 
 | 440 | 	mask = 1 << m; | 
 | 441 |  | 
 | 442 | 	/* Gaussian elimination */ | 
 | 443 | 	for (c = 0; c < m; c++) { | 
 | 444 | 		rem = 0; | 
 | 445 | 		p = c-k; | 
 | 446 | 		/* find suitable row for elimination */ | 
 | 447 | 		for (r = p; r < m; r++) { | 
 | 448 | 			if (rows[r] & mask) { | 
 | 449 | 				if (r != p) { | 
 | 450 | 					tmp = rows[r]; | 
 | 451 | 					rows[r] = rows[p]; | 
 | 452 | 					rows[p] = tmp; | 
 | 453 | 				} | 
 | 454 | 				rem = r+1; | 
 | 455 | 				break; | 
 | 456 | 			} | 
 | 457 | 		} | 
 | 458 | 		if (rem) { | 
 | 459 | 			/* perform elimination on remaining rows */ | 
 | 460 | 			tmp = rows[p]; | 
 | 461 | 			for (r = rem; r < m; r++) { | 
 | 462 | 				if (rows[r] & mask) | 
 | 463 | 					rows[r] ^= tmp; | 
 | 464 | 			} | 
 | 465 | 		} else { | 
 | 466 | 			/* elimination not needed, store defective row index */ | 
 | 467 | 			param[k++] = c; | 
 | 468 | 		} | 
 | 469 | 		mask >>= 1; | 
 | 470 | 	} | 
 | 471 | 	/* rewrite system, inserting fake parameter rows */ | 
 | 472 | 	if (k > 0) { | 
 | 473 | 		p = k; | 
 | 474 | 		for (r = m-1; r >= 0; r--) { | 
 | 475 | 			if ((r > m-1-k) && rows[r]) | 
 | 476 | 				/* system has no solution */ | 
 | 477 | 				return 0; | 
 | 478 |  | 
 | 479 | 			rows[r] = (p && (r == param[p-1])) ? | 
 | 480 | 				p--, 1u << (m-r) : rows[r-p]; | 
 | 481 | 		} | 
 | 482 | 	} | 
 | 483 |  | 
 | 484 | 	if (nsol != (1 << k)) | 
 | 485 | 		/* unexpected number of solutions */ | 
 | 486 | 		return 0; | 
 | 487 |  | 
 | 488 | 	for (p = 0; p < nsol; p++) { | 
 | 489 | 		/* set parameters for p-th solution */ | 
 | 490 | 		for (c = 0; c < k; c++) | 
 | 491 | 			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1); | 
 | 492 |  | 
 | 493 | 		/* compute unique solution */ | 
 | 494 | 		tmp = 0; | 
 | 495 | 		for (r = m-1; r >= 0; r--) { | 
 | 496 | 			mask = rows[r] & (tmp|1); | 
 | 497 | 			tmp |= parity(mask) << (m-r); | 
 | 498 | 		} | 
 | 499 | 		sol[p] = tmp >> 1; | 
 | 500 | 	} | 
 | 501 | 	return nsol; | 
 | 502 | } | 
 | 503 |  | 
 | 504 | /* | 
 | 505 |  * this function builds and solves a linear system for finding roots of a degree | 
 | 506 |  * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m). | 
 | 507 |  */ | 
 | 508 | static int find_affine4_roots(struct bch_control *bch, unsigned int a, | 
 | 509 | 			      unsigned int b, unsigned int c, | 
 | 510 | 			      unsigned int *roots) | 
 | 511 | { | 
 | 512 | 	int i, j, k; | 
 | 513 | 	const int m = GF_M(bch); | 
 | 514 | 	unsigned int mask = 0xff, t, rows[16] = {0,}; | 
 | 515 |  | 
 | 516 | 	j = a_log(bch, b); | 
 | 517 | 	k = a_log(bch, a); | 
 | 518 | 	rows[0] = c; | 
 | 519 |  | 
 | 520 | 	/* buid linear system to solve X^4+aX^2+bX+c = 0 */ | 
 | 521 | 	for (i = 0; i < m; i++) { | 
 | 522 | 		rows[i+1] = bch->a_pow_tab[4*i]^ | 
 | 523 | 			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^ | 
 | 524 | 			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0); | 
 | 525 | 		j++; | 
 | 526 | 		k += 2; | 
 | 527 | 	} | 
 | 528 | 	/* | 
 | 529 | 	 * transpose 16x16 matrix before passing it to linear solver | 
 | 530 | 	 * warning: this code assumes m < 16 | 
 | 531 | 	 */ | 
 | 532 | 	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) { | 
 | 533 | 		for (k = 0; k < 16; k = (k+j+1) & ~j) { | 
 | 534 | 			t = ((rows[k] >> j)^rows[k+j]) & mask; | 
 | 535 | 			rows[k] ^= (t << j); | 
 | 536 | 			rows[k+j] ^= t; | 
 | 537 | 		} | 
 | 538 | 	} | 
 | 539 | 	return solve_linear_system(bch, rows, roots, 4); | 
 | 540 | } | 
 | 541 |  | 
 | 542 | /* | 
 | 543 |  * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r)) | 
 | 544 |  */ | 
 | 545 | static int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly, | 
 | 546 | 				unsigned int *roots) | 
 | 547 | { | 
 | 548 | 	int n = 0; | 
 | 549 |  | 
 | 550 | 	if (poly->c[0]) | 
 | 551 | 		/* poly[X] = bX+c with c!=0, root=c/b */ | 
 | 552 | 		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+ | 
 | 553 | 				   bch->a_log_tab[poly->c[1]]); | 
 | 554 | 	return n; | 
 | 555 | } | 
 | 556 |  | 
 | 557 | /* | 
 | 558 |  * compute roots of a degree 2 polynomial over GF(2^m) | 
 | 559 |  */ | 
 | 560 | static int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly, | 
 | 561 | 				unsigned int *roots) | 
 | 562 | { | 
 | 563 | 	int n = 0, i, l0, l1, l2; | 
 | 564 | 	unsigned int u, v, r; | 
 | 565 |  | 
 | 566 | 	if (poly->c[0] && poly->c[1]) { | 
 | 567 |  | 
 | 568 | 		l0 = bch->a_log_tab[poly->c[0]]; | 
 | 569 | 		l1 = bch->a_log_tab[poly->c[1]]; | 
 | 570 | 		l2 = bch->a_log_tab[poly->c[2]]; | 
 | 571 |  | 
 | 572 | 		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */ | 
 | 573 | 		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1)); | 
 | 574 | 		/* | 
 | 575 | 		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi): | 
 | 576 | 		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) = | 
 | 577 | 		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u) | 
 | 578 | 		 * i.e. r and r+1 are roots iff Tr(u)=0 | 
 | 579 | 		 */ | 
 | 580 | 		r = 0; | 
 | 581 | 		v = u; | 
 | 582 | 		while (v) { | 
 | 583 | 			i = deg(v); | 
 | 584 | 			r ^= bch->xi_tab[i]; | 
 | 585 | 			v ^= (1 << i); | 
 | 586 | 		} | 
 | 587 | 		/* verify root */ | 
 | 588 | 		if ((gf_sqr(bch, r)^r) == u) { | 
 | 589 | 			/* reverse z=a/bX transformation and compute log(1/r) */ | 
 | 590 | 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | 
 | 591 | 					    bch->a_log_tab[r]+l2); | 
 | 592 | 			roots[n++] = modulo(bch, 2*GF_N(bch)-l1- | 
 | 593 | 					    bch->a_log_tab[r^1]+l2); | 
 | 594 | 		} | 
 | 595 | 	} | 
 | 596 | 	return n; | 
 | 597 | } | 
 | 598 |  | 
 | 599 | /* | 
 | 600 |  * compute roots of a degree 3 polynomial over GF(2^m) | 
 | 601 |  */ | 
 | 602 | static int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly, | 
 | 603 | 				unsigned int *roots) | 
 | 604 | { | 
 | 605 | 	int i, n = 0; | 
 | 606 | 	unsigned int a, b, c, a2, b2, c2, e3, tmp[4]; | 
 | 607 |  | 
 | 608 | 	if (poly->c[0]) { | 
 | 609 | 		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */ | 
 | 610 | 		e3 = poly->c[3]; | 
 | 611 | 		c2 = gf_div(bch, poly->c[0], e3); | 
 | 612 | 		b2 = gf_div(bch, poly->c[1], e3); | 
 | 613 | 		a2 = gf_div(bch, poly->c[2], e3); | 
 | 614 |  | 
 | 615 | 		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */ | 
 | 616 | 		c = gf_mul(bch, a2, c2);           /* c = a2c2      */ | 
 | 617 | 		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */ | 
 | 618 | 		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */ | 
 | 619 |  | 
 | 620 | 		/* find the 4 roots of this affine polynomial */ | 
 | 621 | 		if (find_affine4_roots(bch, a, b, c, tmp) == 4) { | 
 | 622 | 			/* remove a2 from final list of roots */ | 
 | 623 | 			for (i = 0; i < 4; i++) { | 
 | 624 | 				if (tmp[i] != a2) | 
 | 625 | 					roots[n++] = a_ilog(bch, tmp[i]); | 
 | 626 | 			} | 
 | 627 | 		} | 
 | 628 | 	} | 
 | 629 | 	return n; | 
 | 630 | } | 
 | 631 |  | 
 | 632 | /* | 
 | 633 |  * compute roots of a degree 4 polynomial over GF(2^m) | 
 | 634 |  */ | 
 | 635 | static int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly, | 
 | 636 | 				unsigned int *roots) | 
 | 637 | { | 
 | 638 | 	int i, l, n = 0; | 
 | 639 | 	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4; | 
 | 640 |  | 
 | 641 | 	if (poly->c[0] == 0) | 
 | 642 | 		return 0; | 
 | 643 |  | 
 | 644 | 	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */ | 
 | 645 | 	e4 = poly->c[4]; | 
 | 646 | 	d = gf_div(bch, poly->c[0], e4); | 
 | 647 | 	c = gf_div(bch, poly->c[1], e4); | 
 | 648 | 	b = gf_div(bch, poly->c[2], e4); | 
 | 649 | 	a = gf_div(bch, poly->c[3], e4); | 
 | 650 |  | 
 | 651 | 	/* use Y=1/X transformation to get an affine polynomial */ | 
 | 652 | 	if (a) { | 
 | 653 | 		/* first, eliminate cX by using z=X+e with ae^2+c=0 */ | 
 | 654 | 		if (c) { | 
 | 655 | 			/* compute e such that e^2 = c/a */ | 
 | 656 | 			f = gf_div(bch, c, a); | 
 | 657 | 			l = a_log(bch, f); | 
 | 658 | 			l += (l & 1) ? GF_N(bch) : 0; | 
 | 659 | 			e = a_pow(bch, l/2); | 
 | 660 | 			/* | 
 | 661 | 			 * use transformation z=X+e: | 
 | 662 | 			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d | 
 | 663 | 			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d | 
 | 664 | 			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d | 
 | 665 | 			 * z^4 + az^3 +     b'z^2 + d' | 
 | 666 | 			 */ | 
 | 667 | 			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d; | 
 | 668 | 			b = gf_mul(bch, a, e)^b; | 
 | 669 | 		} | 
 | 670 | 		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */ | 
 | 671 | 		if (d == 0) | 
 | 672 | 			/* assume all roots have multiplicity 1 */ | 
 | 673 | 			return 0; | 
 | 674 |  | 
 | 675 | 		c2 = gf_inv(bch, d); | 
 | 676 | 		b2 = gf_div(bch, a, d); | 
 | 677 | 		a2 = gf_div(bch, b, d); | 
 | 678 | 	} else { | 
 | 679 | 		/* polynomial is already affine */ | 
 | 680 | 		c2 = d; | 
 | 681 | 		b2 = c; | 
 | 682 | 		a2 = b; | 
 | 683 | 	} | 
 | 684 | 	/* find the 4 roots of this affine polynomial */ | 
 | 685 | 	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) { | 
 | 686 | 		for (i = 0; i < 4; i++) { | 
 | 687 | 			/* post-process roots (reverse transformations) */ | 
 | 688 | 			f = a ? gf_inv(bch, roots[i]) : roots[i]; | 
 | 689 | 			roots[i] = a_ilog(bch, f^e); | 
 | 690 | 		} | 
 | 691 | 		n = 4; | 
 | 692 | 	} | 
 | 693 | 	return n; | 
 | 694 | } | 
 | 695 |  | 
 | 696 | /* | 
 | 697 |  * build monic, log-based representation of a polynomial | 
 | 698 |  */ | 
 | 699 | static void gf_poly_logrep(struct bch_control *bch, | 
 | 700 | 			   const struct gf_poly *a, int *rep) | 
 | 701 | { | 
 | 702 | 	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]); | 
 | 703 |  | 
 | 704 | 	/* represent 0 values with -1; warning, rep[d] is not set to 1 */ | 
 | 705 | 	for (i = 0; i < d; i++) | 
 | 706 | 		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1; | 
 | 707 | } | 
 | 708 |  | 
 | 709 | /* | 
 | 710 |  * compute polynomial Euclidean division remainder in GF(2^m)[X] | 
 | 711 |  */ | 
 | 712 | static void gf_poly_mod(struct bch_control *bch, struct gf_poly *a, | 
 | 713 | 			const struct gf_poly *b, int *rep) | 
 | 714 | { | 
 | 715 | 	int la, p, m; | 
 | 716 | 	unsigned int i, j, *c = a->c; | 
 | 717 | 	const unsigned int d = b->deg; | 
 | 718 |  | 
 | 719 | 	if (a->deg < d) | 
 | 720 | 		return; | 
 | 721 |  | 
 | 722 | 	/* reuse or compute log representation of denominator */ | 
 | 723 | 	if (!rep) { | 
 | 724 | 		rep = bch->cache; | 
 | 725 | 		gf_poly_logrep(bch, b, rep); | 
 | 726 | 	} | 
 | 727 |  | 
 | 728 | 	for (j = a->deg; j >= d; j--) { | 
 | 729 | 		if (c[j]) { | 
 | 730 | 			la = a_log(bch, c[j]); | 
 | 731 | 			p = j-d; | 
 | 732 | 			for (i = 0; i < d; i++, p++) { | 
 | 733 | 				m = rep[i]; | 
 | 734 | 				if (m >= 0) | 
 | 735 | 					c[p] ^= bch->a_pow_tab[mod_s(bch, | 
 | 736 | 								     m+la)]; | 
 | 737 | 			} | 
 | 738 | 		} | 
 | 739 | 	} | 
 | 740 | 	a->deg = d-1; | 
 | 741 | 	while (!c[a->deg] && a->deg) | 
 | 742 | 		a->deg--; | 
 | 743 | } | 
 | 744 |  | 
 | 745 | /* | 
 | 746 |  * compute polynomial Euclidean division quotient in GF(2^m)[X] | 
 | 747 |  */ | 
 | 748 | static void gf_poly_div(struct bch_control *bch, struct gf_poly *a, | 
 | 749 | 			const struct gf_poly *b, struct gf_poly *q) | 
 | 750 | { | 
 | 751 | 	if (a->deg >= b->deg) { | 
 | 752 | 		q->deg = a->deg-b->deg; | 
 | 753 | 		/* compute a mod b (modifies a) */ | 
 | 754 | 		gf_poly_mod(bch, a, b, NULL); | 
 | 755 | 		/* quotient is stored in upper part of polynomial a */ | 
 | 756 | 		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int)); | 
 | 757 | 	} else { | 
 | 758 | 		q->deg = 0; | 
 | 759 | 		q->c[0] = 0; | 
 | 760 | 	} | 
 | 761 | } | 
 | 762 |  | 
 | 763 | /* | 
 | 764 |  * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X] | 
 | 765 |  */ | 
 | 766 | static struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a, | 
 | 767 | 				   struct gf_poly *b) | 
 | 768 | { | 
 | 769 | 	struct gf_poly *tmp; | 
 | 770 |  | 
 | 771 | 	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b)); | 
 | 772 |  | 
 | 773 | 	if (a->deg < b->deg) { | 
 | 774 | 		tmp = b; | 
 | 775 | 		b = a; | 
 | 776 | 		a = tmp; | 
 | 777 | 	} | 
 | 778 |  | 
 | 779 | 	while (b->deg > 0) { | 
 | 780 | 		gf_poly_mod(bch, a, b, NULL); | 
 | 781 | 		tmp = b; | 
 | 782 | 		b = a; | 
 | 783 | 		a = tmp; | 
 | 784 | 	} | 
 | 785 |  | 
 | 786 | 	dbg("%s\n", gf_poly_str(a)); | 
 | 787 |  | 
 | 788 | 	return a; | 
 | 789 | } | 
 | 790 |  | 
 | 791 | /* | 
 | 792 |  * Given a polynomial f and an integer k, compute Tr(a^kX) mod f | 
 | 793 |  * This is used in Berlekamp Trace algorithm for splitting polynomials | 
 | 794 |  */ | 
 | 795 | static void compute_trace_bk_mod(struct bch_control *bch, int k, | 
 | 796 | 				 const struct gf_poly *f, struct gf_poly *z, | 
 | 797 | 				 struct gf_poly *out) | 
 | 798 | { | 
 | 799 | 	const int m = GF_M(bch); | 
 | 800 | 	int i, j; | 
 | 801 |  | 
 | 802 | 	/* z contains z^2j mod f */ | 
 | 803 | 	z->deg = 1; | 
 | 804 | 	z->c[0] = 0; | 
 | 805 | 	z->c[1] = bch->a_pow_tab[k]; | 
 | 806 |  | 
 | 807 | 	out->deg = 0; | 
 | 808 | 	memset(out, 0, GF_POLY_SZ(f->deg)); | 
 | 809 |  | 
 | 810 | 	/* compute f log representation only once */ | 
 | 811 | 	gf_poly_logrep(bch, f, bch->cache); | 
 | 812 |  | 
 | 813 | 	for (i = 0; i < m; i++) { | 
 | 814 | 		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */ | 
 | 815 | 		for (j = z->deg; j >= 0; j--) { | 
 | 816 | 			out->c[j] ^= z->c[j]; | 
 | 817 | 			z->c[2*j] = gf_sqr(bch, z->c[j]); | 
 | 818 | 			z->c[2*j+1] = 0; | 
 | 819 | 		} | 
 | 820 | 		if (z->deg > out->deg) | 
 | 821 | 			out->deg = z->deg; | 
 | 822 |  | 
 | 823 | 		if (i < m-1) { | 
 | 824 | 			z->deg *= 2; | 
 | 825 | 			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */ | 
 | 826 | 			gf_poly_mod(bch, z, f, bch->cache); | 
 | 827 | 		} | 
 | 828 | 	} | 
 | 829 | 	while (!out->c[out->deg] && out->deg) | 
 | 830 | 		out->deg--; | 
 | 831 |  | 
 | 832 | 	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out)); | 
 | 833 | } | 
 | 834 |  | 
 | 835 | /* | 
 | 836 |  * factor a polynomial using Berlekamp Trace algorithm (BTA) | 
 | 837 |  */ | 
 | 838 | static void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f, | 
 | 839 | 			      struct gf_poly **g, struct gf_poly **h) | 
 | 840 | { | 
 | 841 | 	struct gf_poly *f2 = bch->poly_2t[0]; | 
 | 842 | 	struct gf_poly *q  = bch->poly_2t[1]; | 
 | 843 | 	struct gf_poly *tk = bch->poly_2t[2]; | 
 | 844 | 	struct gf_poly *z  = bch->poly_2t[3]; | 
 | 845 | 	struct gf_poly *gcd; | 
 | 846 |  | 
 | 847 | 	dbg("factoring %s...\n", gf_poly_str(f)); | 
 | 848 |  | 
 | 849 | 	*g = f; | 
 | 850 | 	*h = NULL; | 
 | 851 |  | 
 | 852 | 	/* tk = Tr(a^k.X) mod f */ | 
 | 853 | 	compute_trace_bk_mod(bch, k, f, z, tk); | 
 | 854 |  | 
 | 855 | 	if (tk->deg > 0) { | 
 | 856 | 		/* compute g = gcd(f, tk) (destructive operation) */ | 
 | 857 | 		gf_poly_copy(f2, f); | 
 | 858 | 		gcd = gf_poly_gcd(bch, f2, tk); | 
 | 859 | 		if (gcd->deg < f->deg) { | 
 | 860 | 			/* compute h=f/gcd(f,tk); this will modify f and q */ | 
 | 861 | 			gf_poly_div(bch, f, gcd, q); | 
 | 862 | 			/* store g and h in-place (clobbering f) */ | 
 | 863 | 			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly; | 
 | 864 | 			gf_poly_copy(*g, gcd); | 
 | 865 | 			gf_poly_copy(*h, q); | 
 | 866 | 		} | 
 | 867 | 	} | 
 | 868 | } | 
 | 869 |  | 
 | 870 | /* | 
 | 871 |  * find roots of a polynomial, using BTZ algorithm; see the beginning of this | 
 | 872 |  * file for details | 
 | 873 |  */ | 
 | 874 | static int find_poly_roots(struct bch_control *bch, unsigned int k, | 
 | 875 | 			   struct gf_poly *poly, unsigned int *roots) | 
 | 876 | { | 
 | 877 | 	int cnt; | 
 | 878 | 	struct gf_poly *f1, *f2; | 
 | 879 |  | 
 | 880 | 	switch (poly->deg) { | 
 | 881 | 		/* handle low degree polynomials with ad hoc techniques */ | 
 | 882 | 	case 1: | 
 | 883 | 		cnt = find_poly_deg1_roots(bch, poly, roots); | 
 | 884 | 		break; | 
 | 885 | 	case 2: | 
 | 886 | 		cnt = find_poly_deg2_roots(bch, poly, roots); | 
 | 887 | 		break; | 
 | 888 | 	case 3: | 
 | 889 | 		cnt = find_poly_deg3_roots(bch, poly, roots); | 
 | 890 | 		break; | 
 | 891 | 	case 4: | 
 | 892 | 		cnt = find_poly_deg4_roots(bch, poly, roots); | 
 | 893 | 		break; | 
 | 894 | 	default: | 
 | 895 | 		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */ | 
 | 896 | 		cnt = 0; | 
 | 897 | 		if (poly->deg && (k <= GF_M(bch))) { | 
 | 898 | 			factor_polynomial(bch, k, poly, &f1, &f2); | 
 | 899 | 			if (f1) | 
 | 900 | 				cnt += find_poly_roots(bch, k+1, f1, roots); | 
 | 901 | 			if (f2) | 
 | 902 | 				cnt += find_poly_roots(bch, k+1, f2, roots+cnt); | 
 | 903 | 		} | 
 | 904 | 		break; | 
 | 905 | 	} | 
 | 906 | 	return cnt; | 
 | 907 | } | 
 | 908 |  | 
 | 909 | #if defined(USE_CHIEN_SEARCH) | 
 | 910 | /* | 
 | 911 |  * exhaustive root search (Chien) implementation - not used, included only for | 
 | 912 |  * reference/comparison tests | 
 | 913 |  */ | 
 | 914 | static int chien_search(struct bch_control *bch, unsigned int len, | 
 | 915 | 			struct gf_poly *p, unsigned int *roots) | 
 | 916 | { | 
 | 917 | 	int m; | 
 | 918 | 	unsigned int i, j, syn, syn0, count = 0; | 
 | 919 | 	const unsigned int k = 8*len+bch->ecc_bits; | 
 | 920 |  | 
 | 921 | 	/* use a log-based representation of polynomial */ | 
 | 922 | 	gf_poly_logrep(bch, p, bch->cache); | 
 | 923 | 	bch->cache[p->deg] = 0; | 
 | 924 | 	syn0 = gf_div(bch, p->c[0], p->c[p->deg]); | 
 | 925 |  | 
 | 926 | 	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) { | 
 | 927 | 		/* compute elp(a^i) */ | 
 | 928 | 		for (j = 1, syn = syn0; j <= p->deg; j++) { | 
 | 929 | 			m = bch->cache[j]; | 
 | 930 | 			if (m >= 0) | 
 | 931 | 				syn ^= a_pow(bch, m+j*i); | 
 | 932 | 		} | 
 | 933 | 		if (syn == 0) { | 
 | 934 | 			roots[count++] = GF_N(bch)-i; | 
 | 935 | 			if (count == p->deg) | 
 | 936 | 				break; | 
 | 937 | 		} | 
 | 938 | 	} | 
 | 939 | 	return (count == p->deg) ? count : 0; | 
 | 940 | } | 
 | 941 | #define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc) | 
 | 942 | #endif /* USE_CHIEN_SEARCH */ | 
 | 943 |  | 
 | 944 | /** | 
 | 945 |  * decode_bch - decode received codeword and find bit error locations | 
 | 946 |  * @bch:      BCH control structure | 
 | 947 |  * @data:     received data, ignored if @calc_ecc is provided | 
 | 948 |  * @len:      data length in bytes, must always be provided | 
 | 949 |  * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc | 
 | 950 |  * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data | 
 | 951 |  * @syn:      hw computed syndrome data (if NULL, syndrome is calculated) | 
 | 952 |  * @errloc:   output array of error locations | 
 | 953 |  * | 
 | 954 |  * Returns: | 
 | 955 |  *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if | 
 | 956 |  *  invalid parameters were provided | 
 | 957 |  * | 
 | 958 |  * Depending on the available hw BCH support and the need to compute @calc_ecc | 
 | 959 |  * separately (using encode_bch()), this function should be called with one of | 
 | 960 |  * the following parameter configurations - | 
 | 961 |  * | 
 | 962 |  * by providing @data and @recv_ecc only: | 
 | 963 |  *   decode_bch(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc) | 
 | 964 |  * | 
 | 965 |  * by providing @recv_ecc and @calc_ecc: | 
 | 966 |  *   decode_bch(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc) | 
 | 967 |  * | 
 | 968 |  * by providing ecc = recv_ecc XOR calc_ecc: | 
 | 969 |  *   decode_bch(@bch, NULL, @len, NULL, ecc, NULL, @errloc) | 
 | 970 |  * | 
 | 971 |  * by providing syndrome results @syn: | 
 | 972 |  *   decode_bch(@bch, NULL, @len, NULL, NULL, @syn, @errloc) | 
 | 973 |  * | 
 | 974 |  * Once decode_bch() has successfully returned with a positive value, error | 
 | 975 |  * locations returned in array @errloc should be interpreted as follows - | 
 | 976 |  * | 
 | 977 |  * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for | 
 | 978 |  * data correction) | 
 | 979 |  * | 
 | 980 |  * if (errloc[n] < 8*len), then n-th error is located in data and can be | 
 | 981 |  * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8); | 
 | 982 |  * | 
 | 983 |  * Note that this function does not perform any data correction by itself, it | 
 | 984 |  * merely indicates error locations. | 
 | 985 |  */ | 
 | 986 | int decode_bch(struct bch_control *bch, const uint8_t *data, unsigned int len, | 
 | 987 | 	       const uint8_t *recv_ecc, const uint8_t *calc_ecc, | 
 | 988 | 	       const unsigned int *syn, unsigned int *errloc) | 
 | 989 | { | 
 | 990 | 	const unsigned int ecc_words = BCH_ECC_WORDS(bch); | 
 | 991 | 	unsigned int nbits; | 
 | 992 | 	int i, err, nroots; | 
 | 993 | 	uint32_t sum; | 
 | 994 |  | 
 | 995 | 	/* sanity check: make sure data length can be handled */ | 
 | 996 | 	if (8*len > (bch->n-bch->ecc_bits)) | 
 | 997 | 		return -EINVAL; | 
 | 998 |  | 
 | 999 | 	/* if caller does not provide syndromes, compute them */ | 
 | 1000 | 	if (!syn) { | 
 | 1001 | 		if (!calc_ecc) { | 
 | 1002 | 			/* compute received data ecc into an internal buffer */ | 
 | 1003 | 			if (!data || !recv_ecc) | 
 | 1004 | 				return -EINVAL; | 
 | 1005 | 			encode_bch(bch, data, len, NULL); | 
 | 1006 | 		} else { | 
 | 1007 | 			/* load provided calculated ecc */ | 
 | 1008 | 			load_ecc8(bch, bch->ecc_buf, calc_ecc); | 
 | 1009 | 		} | 
 | 1010 | 		/* load received ecc or assume it was XORed in calc_ecc */ | 
 | 1011 | 		if (recv_ecc) { | 
 | 1012 | 			load_ecc8(bch, bch->ecc_buf2, recv_ecc); | 
 | 1013 | 			/* XOR received and calculated ecc */ | 
 | 1014 | 			for (i = 0, sum = 0; i < (int)ecc_words; i++) { | 
 | 1015 | 				bch->ecc_buf[i] ^= bch->ecc_buf2[i]; | 
 | 1016 | 				sum |= bch->ecc_buf[i]; | 
 | 1017 | 			} | 
 | 1018 | 			if (!sum) | 
 | 1019 | 				/* no error found */ | 
 | 1020 | 				return 0; | 
 | 1021 | 		} | 
 | 1022 | 		compute_syndromes(bch, bch->ecc_buf, bch->syn); | 
 | 1023 | 		syn = bch->syn; | 
 | 1024 | 	} | 
 | 1025 |  | 
 | 1026 | 	err = compute_error_locator_polynomial(bch, syn); | 
 | 1027 | 	if (err > 0) { | 
 | 1028 | 		nroots = find_poly_roots(bch, 1, bch->elp, errloc); | 
 | 1029 | 		if (err != nroots) | 
 | 1030 | 			err = -1; | 
 | 1031 | 	} | 
 | 1032 | 	if (err > 0) { | 
 | 1033 | 		/* post-process raw error locations for easier correction */ | 
 | 1034 | 		nbits = (len*8)+bch->ecc_bits; | 
 | 1035 | 		for (i = 0; i < err; i++) { | 
 | 1036 | 			if (errloc[i] >= nbits) { | 
 | 1037 | 				err = -1; | 
 | 1038 | 				break; | 
 | 1039 | 			} | 
 | 1040 | 			errloc[i] = nbits-1-errloc[i]; | 
 | 1041 | 			errloc[i] = (errloc[i] & ~7)|(7-(errloc[i] & 7)); | 
 | 1042 | 		} | 
 | 1043 | 	} | 
 | 1044 | 	return (err >= 0) ? err : -EBADMSG; | 
 | 1045 | } | 
 | 1046 | EXPORT_SYMBOL_GPL(decode_bch); | 
 | 1047 |  | 
 | 1048 | /* | 
 | 1049 |  * generate Galois field lookup tables | 
 | 1050 |  */ | 
 | 1051 | static int build_gf_tables(struct bch_control *bch, unsigned int poly) | 
 | 1052 | { | 
 | 1053 | 	unsigned int i, x = 1; | 
 | 1054 | 	const unsigned int k = 1 << deg(poly); | 
 | 1055 |  | 
 | 1056 | 	/* primitive polynomial must be of degree m */ | 
 | 1057 | 	if (k != (1u << GF_M(bch))) | 
 | 1058 | 		return -1; | 
 | 1059 |  | 
 | 1060 | 	for (i = 0; i < GF_N(bch); i++) { | 
 | 1061 | 		bch->a_pow_tab[i] = x; | 
 | 1062 | 		bch->a_log_tab[x] = i; | 
 | 1063 | 		if (i && (x == 1)) | 
 | 1064 | 			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */ | 
 | 1065 | 			return -1; | 
 | 1066 | 		x <<= 1; | 
 | 1067 | 		if (x & k) | 
 | 1068 | 			x ^= poly; | 
 | 1069 | 	} | 
 | 1070 | 	bch->a_pow_tab[GF_N(bch)] = 1; | 
 | 1071 | 	bch->a_log_tab[0] = 0; | 
 | 1072 |  | 
 | 1073 | 	return 0; | 
 | 1074 | } | 
 | 1075 |  | 
 | 1076 | /* | 
 | 1077 |  * compute generator polynomial remainder tables for fast encoding | 
 | 1078 |  */ | 
 | 1079 | static void build_mod8_tables(struct bch_control *bch, const uint32_t *g) | 
 | 1080 | { | 
 | 1081 | 	int i, j, b, d; | 
 | 1082 | 	uint32_t data, hi, lo, *tab; | 
 | 1083 | 	const int l = BCH_ECC_WORDS(bch); | 
 | 1084 | 	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32); | 
 | 1085 | 	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32); | 
 | 1086 |  | 
 | 1087 | 	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab)); | 
 | 1088 |  | 
 | 1089 | 	for (i = 0; i < 256; i++) { | 
 | 1090 | 		/* p(X)=i is a small polynomial of weight <= 8 */ | 
 | 1091 | 		for (b = 0; b < 4; b++) { | 
 | 1092 | 			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */ | 
 | 1093 | 			tab = bch->mod8_tab + (b*256+i)*l; | 
 | 1094 | 			data = i << (8*b); | 
 | 1095 | 			while (data) { | 
 | 1096 | 				d = deg(data); | 
 | 1097 | 				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */ | 
 | 1098 | 				data ^= g[0] >> (31-d); | 
 | 1099 | 				for (j = 0; j < ecclen; j++) { | 
 | 1100 | 					hi = (d < 31) ? g[j] << (d+1) : 0; | 
 | 1101 | 					lo = (j+1 < plen) ? | 
 | 1102 | 						g[j+1] >> (31-d) : 0; | 
 | 1103 | 					tab[j] ^= hi|lo; | 
 | 1104 | 				} | 
 | 1105 | 			} | 
 | 1106 | 		} | 
 | 1107 | 	} | 
 | 1108 | } | 
 | 1109 |  | 
 | 1110 | /* | 
 | 1111 |  * build a base for factoring degree 2 polynomials | 
 | 1112 |  */ | 
 | 1113 | static int build_deg2_base(struct bch_control *bch) | 
 | 1114 | { | 
 | 1115 | 	const int m = GF_M(bch); | 
 | 1116 | 	int i, j, r; | 
 | 1117 | 	unsigned int sum, x, y, remaining, ak = 0, xi[m]; | 
 | 1118 |  | 
 | 1119 | 	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */ | 
 | 1120 | 	for (i = 0; i < m; i++) { | 
 | 1121 | 		for (j = 0, sum = 0; j < m; j++) | 
 | 1122 | 			sum ^= a_pow(bch, i*(1 << j)); | 
 | 1123 |  | 
 | 1124 | 		if (sum) { | 
 | 1125 | 			ak = bch->a_pow_tab[i]; | 
 | 1126 | 			break; | 
 | 1127 | 		} | 
 | 1128 | 	} | 
 | 1129 | 	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */ | 
 | 1130 | 	remaining = m; | 
 | 1131 | 	memset(xi, 0, sizeof(xi)); | 
 | 1132 |  | 
 | 1133 | 	for (x = 0; (x <= GF_N(bch)) && remaining; x++) { | 
 | 1134 | 		y = gf_sqr(bch, x)^x; | 
 | 1135 | 		for (i = 0; i < 2; i++) { | 
 | 1136 | 			r = a_log(bch, y); | 
 | 1137 | 			if (y && (r < m) && !xi[r]) { | 
 | 1138 | 				bch->xi_tab[r] = x; | 
 | 1139 | 				xi[r] = 1; | 
 | 1140 | 				remaining--; | 
 | 1141 | 				dbg("x%d = %x\n", r, x); | 
 | 1142 | 				break; | 
 | 1143 | 			} | 
 | 1144 | 			y ^= ak; | 
 | 1145 | 		} | 
 | 1146 | 	} | 
 | 1147 | 	/* should not happen but check anyway */ | 
 | 1148 | 	return remaining ? -1 : 0; | 
 | 1149 | } | 
 | 1150 |  | 
 | 1151 | static void *bch_alloc(size_t size, int *err) | 
 | 1152 | { | 
 | 1153 | 	void *ptr; | 
 | 1154 |  | 
 | 1155 | 	ptr = kmalloc(size, GFP_KERNEL); | 
 | 1156 | 	if (ptr == NULL) | 
 | 1157 | 		*err = 1; | 
 | 1158 | 	return ptr; | 
 | 1159 | } | 
 | 1160 |  | 
 | 1161 | /* | 
 | 1162 |  * compute generator polynomial for given (m,t) parameters. | 
 | 1163 |  */ | 
 | 1164 | static uint32_t *compute_generator_polynomial(struct bch_control *bch) | 
 | 1165 | { | 
 | 1166 | 	const unsigned int m = GF_M(bch); | 
 | 1167 | 	const unsigned int t = GF_T(bch); | 
 | 1168 | 	int n, err = 0; | 
 | 1169 | 	unsigned int i, j, nbits, r, word, *roots; | 
 | 1170 | 	struct gf_poly *g; | 
 | 1171 | 	uint32_t *genpoly; | 
 | 1172 |  | 
 | 1173 | 	g = bch_alloc(GF_POLY_SZ(m*t), &err); | 
 | 1174 | 	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err); | 
 | 1175 | 	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err); | 
 | 1176 |  | 
 | 1177 | 	if (err) { | 
 | 1178 | 		kfree(genpoly); | 
 | 1179 | 		genpoly = NULL; | 
 | 1180 | 		goto finish; | 
 | 1181 | 	} | 
 | 1182 |  | 
 | 1183 | 	/* enumerate all roots of g(X) */ | 
 | 1184 | 	memset(roots , 0, (bch->n+1)*sizeof(*roots)); | 
 | 1185 | 	for (i = 0; i < t; i++) { | 
 | 1186 | 		for (j = 0, r = 2*i+1; j < m; j++) { | 
 | 1187 | 			roots[r] = 1; | 
 | 1188 | 			r = mod_s(bch, 2*r); | 
 | 1189 | 		} | 
 | 1190 | 	} | 
 | 1191 | 	/* build generator polynomial g(X) */ | 
 | 1192 | 	g->deg = 0; | 
 | 1193 | 	g->c[0] = 1; | 
 | 1194 | 	for (i = 0; i < GF_N(bch); i++) { | 
 | 1195 | 		if (roots[i]) { | 
 | 1196 | 			/* multiply g(X) by (X+root) */ | 
 | 1197 | 			r = bch->a_pow_tab[i]; | 
 | 1198 | 			g->c[g->deg+1] = 1; | 
 | 1199 | 			for (j = g->deg; j > 0; j--) | 
 | 1200 | 				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1]; | 
 | 1201 |  | 
 | 1202 | 			g->c[0] = gf_mul(bch, g->c[0], r); | 
 | 1203 | 			g->deg++; | 
 | 1204 | 		} | 
 | 1205 | 	} | 
 | 1206 | 	/* store left-justified binary representation of g(X) */ | 
 | 1207 | 	n = g->deg+1; | 
 | 1208 | 	i = 0; | 
 | 1209 |  | 
 | 1210 | 	while (n > 0) { | 
 | 1211 | 		nbits = (n > 32) ? 32 : n; | 
 | 1212 | 		for (j = 0, word = 0; j < nbits; j++) { | 
 | 1213 | 			if (g->c[n-1-j]) | 
 | 1214 | 				word |= 1u << (31-j); | 
 | 1215 | 		} | 
 | 1216 | 		genpoly[i++] = word; | 
 | 1217 | 		n -= nbits; | 
 | 1218 | 	} | 
 | 1219 | 	bch->ecc_bits = g->deg; | 
 | 1220 |  | 
 | 1221 | finish: | 
 | 1222 | 	kfree(g); | 
 | 1223 | 	kfree(roots); | 
 | 1224 |  | 
 | 1225 | 	return genpoly; | 
 | 1226 | } | 
 | 1227 |  | 
 | 1228 | /** | 
 | 1229 |  * init_bch - initialize a BCH encoder/decoder | 
 | 1230 |  * @m:          Galois field order, should be in the range 5-15 | 
 | 1231 |  * @t:          maximum error correction capability, in bits | 
 | 1232 |  * @prim_poly:  user-provided primitive polynomial (or 0 to use default) | 
 | 1233 |  * | 
 | 1234 |  * Returns: | 
 | 1235 |  *  a newly allocated BCH control structure if successful, NULL otherwise | 
 | 1236 |  * | 
 | 1237 |  * This initialization can take some time, as lookup tables are built for fast | 
 | 1238 |  * encoding/decoding; make sure not to call this function from a time critical | 
 | 1239 |  * path. Usually, init_bch() should be called on module/driver init and | 
 | 1240 |  * free_bch() should be called to release memory on exit. | 
 | 1241 |  * | 
 | 1242 |  * You may provide your own primitive polynomial of degree @m in argument | 
 | 1243 |  * @prim_poly, or let init_bch() use its default polynomial. | 
 | 1244 |  * | 
 | 1245 |  * Once init_bch() has successfully returned a pointer to a newly allocated | 
 | 1246 |  * BCH control structure, ecc length in bytes is given by member @ecc_bytes of | 
 | 1247 |  * the structure. | 
 | 1248 |  */ | 
 | 1249 | struct bch_control *init_bch(int m, int t, unsigned int prim_poly) | 
 | 1250 | { | 
 | 1251 | 	int err = 0; | 
 | 1252 | 	unsigned int i, words; | 
 | 1253 | 	uint32_t *genpoly; | 
 | 1254 | 	struct bch_control *bch = NULL; | 
 | 1255 |  | 
 | 1256 | 	const int min_m = 5; | 
 | 1257 | 	const int max_m = 15; | 
 | 1258 |  | 
 | 1259 | 	/* default primitive polynomials */ | 
 | 1260 | 	static const unsigned int prim_poly_tab[] = { | 
 | 1261 | 		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b, | 
 | 1262 | 		0x402b, 0x8003, | 
 | 1263 | 	}; | 
 | 1264 |  | 
 | 1265 | #if defined(CONFIG_BCH_CONST_PARAMS) | 
 | 1266 | 	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) { | 
 | 1267 | 		printk(KERN_ERR "bch encoder/decoder was configured to support " | 
 | 1268 | 		       "parameters m=%d, t=%d only!\n", | 
 | 1269 | 		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T); | 
 | 1270 | 		goto fail; | 
 | 1271 | 	} | 
 | 1272 | #endif | 
 | 1273 | 	if ((m < min_m) || (m > max_m)) | 
 | 1274 | 		/* | 
 | 1275 | 		 * values of m greater than 15 are not currently supported; | 
 | 1276 | 		 * supporting m > 15 would require changing table base type | 
 | 1277 | 		 * (uint16_t) and a small patch in matrix transposition | 
 | 1278 | 		 */ | 
 | 1279 | 		goto fail; | 
 | 1280 |  | 
 | 1281 | 	/* sanity checks */ | 
 | 1282 | 	if ((t < 1) || (m*t >= ((1 << m)-1))) | 
 | 1283 | 		/* invalid t value */ | 
 | 1284 | 		goto fail; | 
 | 1285 |  | 
 | 1286 | 	/* select a primitive polynomial for generating GF(2^m) */ | 
 | 1287 | 	if (prim_poly == 0) | 
 | 1288 | 		prim_poly = prim_poly_tab[m-min_m]; | 
 | 1289 |  | 
 | 1290 | 	bch = kzalloc(sizeof(*bch), GFP_KERNEL); | 
 | 1291 | 	if (bch == NULL) | 
 | 1292 | 		goto fail; | 
 | 1293 |  | 
 | 1294 | 	bch->m = m; | 
 | 1295 | 	bch->t = t; | 
 | 1296 | 	bch->n = (1 << m)-1; | 
 | 1297 | 	words  = DIV_ROUND_UP(m*t, 32); | 
 | 1298 | 	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8); | 
 | 1299 | 	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err); | 
 | 1300 | 	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err); | 
 | 1301 | 	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err); | 
 | 1302 | 	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err); | 
 | 1303 | 	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err); | 
 | 1304 | 	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err); | 
 | 1305 | 	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err); | 
 | 1306 | 	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err); | 
 | 1307 | 	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err); | 
 | 1308 |  | 
 | 1309 | 	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | 
 | 1310 | 		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err); | 
 | 1311 |  | 
 | 1312 | 	if (err) | 
 | 1313 | 		goto fail; | 
 | 1314 |  | 
 | 1315 | 	err = build_gf_tables(bch, prim_poly); | 
 | 1316 | 	if (err) | 
 | 1317 | 		goto fail; | 
 | 1318 |  | 
 | 1319 | 	/* use generator polynomial for computing encoding tables */ | 
 | 1320 | 	genpoly = compute_generator_polynomial(bch); | 
 | 1321 | 	if (genpoly == NULL) | 
 | 1322 | 		goto fail; | 
 | 1323 |  | 
 | 1324 | 	build_mod8_tables(bch, genpoly); | 
 | 1325 | 	kfree(genpoly); | 
 | 1326 |  | 
 | 1327 | 	err = build_deg2_base(bch); | 
 | 1328 | 	if (err) | 
 | 1329 | 		goto fail; | 
 | 1330 |  | 
 | 1331 | 	return bch; | 
 | 1332 |  | 
 | 1333 | fail: | 
 | 1334 | 	free_bch(bch); | 
 | 1335 | 	return NULL; | 
 | 1336 | } | 
 | 1337 | EXPORT_SYMBOL_GPL(init_bch); | 
 | 1338 |  | 
 | 1339 | /** | 
 | 1340 |  *  free_bch - free the BCH control structure | 
 | 1341 |  *  @bch:    BCH control structure to release | 
 | 1342 |  */ | 
 | 1343 | void free_bch(struct bch_control *bch) | 
 | 1344 | { | 
 | 1345 | 	unsigned int i; | 
 | 1346 |  | 
 | 1347 | 	if (bch) { | 
 | 1348 | 		kfree(bch->a_pow_tab); | 
 | 1349 | 		kfree(bch->a_log_tab); | 
 | 1350 | 		kfree(bch->mod8_tab); | 
 | 1351 | 		kfree(bch->ecc_buf); | 
 | 1352 | 		kfree(bch->ecc_buf2); | 
 | 1353 | 		kfree(bch->xi_tab); | 
 | 1354 | 		kfree(bch->syn); | 
 | 1355 | 		kfree(bch->cache); | 
 | 1356 | 		kfree(bch->elp); | 
 | 1357 |  | 
 | 1358 | 		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++) | 
 | 1359 | 			kfree(bch->poly_2t[i]); | 
 | 1360 |  | 
 | 1361 | 		kfree(bch); | 
 | 1362 | 	} | 
 | 1363 | } | 
 | 1364 | EXPORT_SYMBOL_GPL(free_bch); | 
 | 1365 |  | 
 | 1366 | MODULE_LICENSE("GPL"); | 
 | 1367 | MODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>"); | 
 | 1368 | MODULE_DESCRIPTION("Binary BCH encoder/decoder"); |