| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * linux/fs/befs/btree.c | 
 | 3 |  * | 
 | 4 |  * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com> | 
 | 5 |  * | 
 | 6 |  * Licensed under the GNU GPL. See the file COPYING for details. | 
 | 7 |  * | 
 | 8 |  * 2002-02-05: Sergey S. Kostyliov added binary search withing | 
 | 9 |  * 		btree nodes. | 
 | 10 |  * | 
 | 11 |  * Many thanks to: | 
 | 12 |  * | 
 | 13 |  * Dominic Giampaolo, author of "Practical File System | 
 | 14 |  * Design with the Be File System", for such a helpful book. | 
 | 15 |  *  | 
 | 16 |  * Marcus J. Ranum, author of the b+tree package in  | 
 | 17 |  * comp.sources.misc volume 10. This code is not copied from that | 
 | 18 |  * work, but it is partially based on it. | 
 | 19 |  * | 
 | 20 |  * Makoto Kato, author of the original BeFS for linux filesystem | 
 | 21 |  * driver. | 
 | 22 |  */ | 
 | 23 |  | 
 | 24 | #include <linux/kernel.h> | 
 | 25 | #include <linux/string.h> | 
 | 26 | #include <linux/slab.h> | 
 | 27 | #include <linux/mm.h> | 
 | 28 | #include <linux/buffer_head.h> | 
 | 29 |  | 
 | 30 | #include "befs.h" | 
 | 31 | #include "btree.h" | 
 | 32 | #include "datastream.h" | 
 | 33 | #include "endian.h" | 
 | 34 |  | 
 | 35 | /* | 
 | 36 |  * The btree functions in this file are built on top of the | 
 | 37 |  * datastream.c interface, which is in turn built on top of the | 
 | 38 |  * io.c interface. | 
 | 39 |  */ | 
 | 40 |  | 
 | 41 | /* Befs B+tree structure: | 
 | 42 |  *  | 
 | 43 |  * The first thing in the tree is the tree superblock. It tells you | 
 | 44 |  * all kinds of useful things about the tree, like where the rootnode | 
 | 45 |  * is located, and the size of the nodes (always 1024 with current version | 
 | 46 |  * of BeOS). | 
 | 47 |  * | 
 | 48 |  * The rest of the tree consists of a series of nodes. Nodes contain a header | 
 | 49 |  * (struct befs_btree_nodehead), the packed key data, an array of shorts  | 
 | 50 |  * containing the ending offsets for each of the keys, and an array of | 
 | 51 |  * befs_off_t values. In interior nodes, the keys are the ending keys for  | 
 | 52 |  * the childnode they point to, and the values are offsets into the  | 
 | 53 |  * datastream containing the tree.  | 
 | 54 |  */ | 
 | 55 |  | 
 | 56 | /* Note: | 
 | 57 |  *  | 
 | 58 |  * The book states 2 confusing things about befs b+trees. First,  | 
 | 59 |  * it states that the overflow field of node headers is used by internal nodes | 
 | 60 |  * to point to another node that "effectively continues this one". Here is what | 
 | 61 |  * I believe that means. Each key in internal nodes points to another node that | 
 | 62 |  * contains key values less than itself. Inspection reveals that the last key  | 
 | 63 |  * in the internal node is not the last key in the index. Keys that are  | 
 | 64 |  * greater than the last key in the internal node go into the overflow node.  | 
 | 65 |  * I imagine there is a performance reason for this. | 
 | 66 |  * | 
 | 67 |  * Second, it states that the header of a btree node is sufficient to  | 
 | 68 |  * distinguish internal nodes from leaf nodes. Without saying exactly how.  | 
 | 69 |  * After figuring out the first, it becomes obvious that internal nodes have | 
 | 70 |  * overflow nodes and leafnodes do not. | 
 | 71 |  */ | 
 | 72 |  | 
 | 73 | /*  | 
 | 74 |  * Currently, this code is only good for directory B+trees. | 
 | 75 |  * In order to be used for other BFS indexes, it needs to be extended to handle | 
 | 76 |  * duplicate keys and non-string keytypes (int32, int64, float, double). | 
 | 77 |  */ | 
 | 78 |  | 
 | 79 | /* | 
 | 80 |  * In memory structure of each btree node | 
 | 81 |  */ | 
 | 82 | typedef struct { | 
 | 83 | 	befs_btree_nodehead head;	/* head of node converted to cpu byteorder */ | 
 | 84 | 	struct buffer_head *bh; | 
 | 85 | 	befs_btree_nodehead *od_node;	/* on disk node */ | 
 | 86 | } befs_btree_node; | 
 | 87 |  | 
 | 88 | /* local constants */ | 
 | 89 | static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL; | 
 | 90 |  | 
 | 91 | /* local functions */ | 
 | 92 | static int befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, | 
 | 93 | 			       befs_btree_super * bt_super, | 
 | 94 | 			       befs_btree_node * this_node, | 
 | 95 | 			       befs_off_t * node_off); | 
 | 96 |  | 
 | 97 | static int befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, | 
 | 98 | 			      befs_btree_super * sup); | 
 | 99 |  | 
 | 100 | static int befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, | 
 | 101 | 			     befs_btree_node * node, befs_off_t node_off); | 
 | 102 |  | 
 | 103 | static int befs_leafnode(befs_btree_node * node); | 
 | 104 |  | 
 | 105 | static u16 *befs_bt_keylen_index(befs_btree_node * node); | 
 | 106 |  | 
 | 107 | static befs_off_t *befs_bt_valarray(befs_btree_node * node); | 
 | 108 |  | 
 | 109 | static char *befs_bt_keydata(befs_btree_node * node); | 
 | 110 |  | 
 | 111 | static int befs_find_key(struct super_block *sb, befs_btree_node * node, | 
 | 112 | 			 const char *findkey, befs_off_t * value); | 
 | 113 |  | 
 | 114 | static char *befs_bt_get_key(struct super_block *sb, befs_btree_node * node, | 
 | 115 | 			     int index, u16 * keylen); | 
 | 116 |  | 
 | 117 | static int befs_compare_strings(const void *key1, int keylen1, | 
 | 118 | 				const void *key2, int keylen2); | 
 | 119 |  | 
 | 120 | /** | 
 | 121 |  * befs_bt_read_super - read in btree superblock convert to cpu byteorder | 
 | 122 |  * @sb: Filesystem superblock | 
 | 123 |  * @ds: Datastream to read from | 
 | 124 |  * @sup: Buffer in which to place the btree superblock | 
 | 125 |  * | 
 | 126 |  * Calls befs_read_datastream to read in the btree superblock and | 
 | 127 |  * makes sure it is in cpu byteorder, byteswapping if necessary. | 
 | 128 |  * | 
 | 129 |  * On success, returns BEFS_OK and *@sup contains the btree superblock, | 
 | 130 |  * in cpu byte order. | 
 | 131 |  * | 
 | 132 |  * On failure, BEFS_ERR is returned. | 
 | 133 |  */ | 
 | 134 | static int | 
 | 135 | befs_bt_read_super(struct super_block *sb, befs_data_stream * ds, | 
 | 136 | 		   befs_btree_super * sup) | 
 | 137 | { | 
 | 138 | 	struct buffer_head *bh = NULL; | 
 | 139 | 	befs_btree_super *od_sup = NULL; | 
 | 140 |  | 
 | 141 | 	befs_debug(sb, "---> befs_btree_read_super()"); | 
 | 142 |  | 
 | 143 | 	bh = befs_read_datastream(sb, ds, 0, NULL); | 
 | 144 |  | 
 | 145 | 	if (!bh) { | 
 | 146 | 		befs_error(sb, "Couldn't read index header."); | 
 | 147 | 		goto error; | 
 | 148 | 	} | 
 | 149 | 	od_sup = (befs_btree_super *) bh->b_data; | 
 | 150 | 	befs_dump_index_entry(sb, od_sup); | 
 | 151 |  | 
 | 152 | 	sup->magic = fs32_to_cpu(sb, od_sup->magic); | 
 | 153 | 	sup->node_size = fs32_to_cpu(sb, od_sup->node_size); | 
 | 154 | 	sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth); | 
 | 155 | 	sup->data_type = fs32_to_cpu(sb, od_sup->data_type); | 
 | 156 | 	sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr); | 
 | 157 | 	sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr); | 
 | 158 | 	sup->max_size = fs64_to_cpu(sb, od_sup->max_size); | 
 | 159 |  | 
 | 160 | 	brelse(bh); | 
 | 161 | 	if (sup->magic != BEFS_BTREE_MAGIC) { | 
 | 162 | 		befs_error(sb, "Index header has bad magic."); | 
 | 163 | 		goto error; | 
 | 164 | 	} | 
 | 165 |  | 
 | 166 | 	befs_debug(sb, "<--- befs_btree_read_super()"); | 
 | 167 | 	return BEFS_OK; | 
 | 168 |  | 
 | 169 |       error: | 
 | 170 | 	befs_debug(sb, "<--- befs_btree_read_super() ERROR"); | 
 | 171 | 	return BEFS_ERR; | 
 | 172 | } | 
 | 173 |  | 
 | 174 | /** | 
 | 175 |  * befs_bt_read_node - read in btree node and convert to cpu byteorder | 
 | 176 |  * @sb: Filesystem superblock | 
 | 177 |  * @ds: Datastream to read from | 
 | 178 |  * @node: Buffer in which to place the btree node | 
 | 179 |  * @node_off: Starting offset (in bytes) of the node in @ds | 
 | 180 |  * | 
 | 181 |  * Calls befs_read_datastream to read in the indicated btree node and | 
 | 182 |  * makes sure its header fields are in cpu byteorder, byteswapping if | 
 | 183 |  * necessary. | 
 | 184 |  * Note: node->bh must be NULL when this function called first | 
 | 185 |  * time. Don't forget brelse(node->bh) after last call. | 
 | 186 |  * | 
 | 187 |  * On success, returns BEFS_OK and *@node contains the btree node that | 
 | 188 |  * starts at @node_off, with the node->head fields in cpu byte order. | 
 | 189 |  * | 
 | 190 |  * On failure, BEFS_ERR is returned. | 
 | 191 |  */ | 
 | 192 |  | 
 | 193 | static int | 
 | 194 | befs_bt_read_node(struct super_block *sb, befs_data_stream * ds, | 
 | 195 | 		  befs_btree_node * node, befs_off_t node_off) | 
 | 196 | { | 
 | 197 | 	uint off = 0; | 
 | 198 |  | 
 | 199 | 	befs_debug(sb, "---> befs_bt_read_node()"); | 
 | 200 |  | 
 | 201 | 	if (node->bh) | 
 | 202 | 		brelse(node->bh); | 
 | 203 |  | 
 | 204 | 	node->bh = befs_read_datastream(sb, ds, node_off, &off); | 
 | 205 | 	if (!node->bh) { | 
 | 206 | 		befs_error(sb, "befs_bt_read_node() failed to read " | 
 | 207 | 			   "node at %Lu", node_off); | 
 | 208 | 		befs_debug(sb, "<--- befs_bt_read_node() ERROR"); | 
 | 209 |  | 
 | 210 | 		return BEFS_ERR; | 
 | 211 | 	} | 
 | 212 | 	node->od_node = | 
 | 213 | 	    (befs_btree_nodehead *) ((void *) node->bh->b_data + off); | 
 | 214 |  | 
 | 215 | 	befs_dump_index_node(sb, node->od_node); | 
 | 216 |  | 
 | 217 | 	node->head.left = fs64_to_cpu(sb, node->od_node->left); | 
 | 218 | 	node->head.right = fs64_to_cpu(sb, node->od_node->right); | 
 | 219 | 	node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow); | 
 | 220 | 	node->head.all_key_count = | 
 | 221 | 	    fs16_to_cpu(sb, node->od_node->all_key_count); | 
 | 222 | 	node->head.all_key_length = | 
 | 223 | 	    fs16_to_cpu(sb, node->od_node->all_key_length); | 
 | 224 |  | 
 | 225 | 	befs_debug(sb, "<--- befs_btree_read_node()"); | 
 | 226 | 	return BEFS_OK; | 
 | 227 | } | 
 | 228 |  | 
 | 229 | /** | 
 | 230 |  * befs_btree_find - Find a key in a befs B+tree | 
 | 231 |  * @sb: Filesystem superblock | 
 | 232 |  * @ds: Datastream containing btree | 
 | 233 |  * @key: Key string to lookup in btree | 
 | 234 |  * @value: Value stored with @key | 
 | 235 |  * | 
 | 236 |  * On sucess, returns BEFS_OK and sets *@value to the value stored | 
 | 237 |  * with @key (usually the disk block number of an inode). | 
 | 238 |  * | 
 | 239 |  * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND. | 
 | 240 |  *  | 
 | 241 |  * Algorithm:  | 
 | 242 |  *   Read the superblock and rootnode of the b+tree. | 
 | 243 |  *   Drill down through the interior nodes using befs_find_key(). | 
 | 244 |  *   Once at the correct leaf node, use befs_find_key() again to get the | 
 | 245 |  *   actuall value stored with the key. | 
 | 246 |  */ | 
 | 247 | int | 
 | 248 | befs_btree_find(struct super_block *sb, befs_data_stream * ds, | 
 | 249 | 		const char *key, befs_off_t * value) | 
 | 250 | { | 
 | 251 | 	befs_btree_node *this_node = NULL; | 
 | 252 | 	befs_btree_super bt_super; | 
 | 253 | 	befs_off_t node_off; | 
 | 254 | 	int res; | 
 | 255 |  | 
 | 256 | 	befs_debug(sb, "---> befs_btree_find() Key: %s", key); | 
 | 257 |  | 
 | 258 | 	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { | 
 | 259 | 		befs_error(sb, | 
 | 260 | 			   "befs_btree_find() failed to read index superblock"); | 
 | 261 | 		goto error; | 
 | 262 | 	} | 
 | 263 |  | 
 | 264 | 	this_node = (befs_btree_node *) kmalloc(sizeof (befs_btree_node), | 
 | 265 | 						GFP_NOFS); | 
 | 266 | 	if (!this_node) { | 
 | 267 | 		befs_error(sb, "befs_btree_find() failed to allocate %u " | 
 | 268 | 			   "bytes of memory", sizeof (befs_btree_node)); | 
 | 269 | 		goto error; | 
 | 270 | 	} | 
 | 271 |  | 
 | 272 | 	this_node->bh = NULL; | 
 | 273 |  | 
 | 274 | 	/* read in root node */ | 
 | 275 | 	node_off = bt_super.root_node_ptr; | 
 | 276 | 	if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { | 
 | 277 | 		befs_error(sb, "befs_btree_find() failed to read " | 
 | 278 | 			   "node at %Lu", node_off); | 
 | 279 | 		goto error_alloc; | 
 | 280 | 	} | 
 | 281 |  | 
 | 282 | 	while (!befs_leafnode(this_node)) { | 
 | 283 | 		res = befs_find_key(sb, this_node, key, &node_off); | 
 | 284 | 		if (res == BEFS_BT_NOT_FOUND) | 
 | 285 | 			node_off = this_node->head.overflow; | 
 | 286 | 		/* if no match, go to overflow node */ | 
 | 287 | 		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { | 
 | 288 | 			befs_error(sb, "befs_btree_find() failed to read " | 
 | 289 | 				   "node at %Lu", node_off); | 
 | 290 | 			goto error_alloc; | 
 | 291 | 		} | 
 | 292 | 	} | 
 | 293 |  | 
 | 294 | 	/* at the correct leaf node now */ | 
 | 295 |  | 
 | 296 | 	res = befs_find_key(sb, this_node, key, value); | 
 | 297 |  | 
 | 298 | 	brelse(this_node->bh); | 
 | 299 | 	kfree(this_node); | 
 | 300 |  | 
 | 301 | 	if (res != BEFS_BT_MATCH) { | 
 | 302 | 		befs_debug(sb, "<--- befs_btree_find() Key %s not found", key); | 
 | 303 | 		*value = 0; | 
 | 304 | 		return BEFS_BT_NOT_FOUND; | 
 | 305 | 	} | 
 | 306 | 	befs_debug(sb, "<--- befs_btree_find() Found key %s, value %Lu", | 
 | 307 | 		   key, *value); | 
 | 308 | 	return BEFS_OK; | 
 | 309 |  | 
 | 310 |       error_alloc: | 
 | 311 | 	kfree(this_node); | 
 | 312 |       error: | 
 | 313 | 	*value = 0; | 
 | 314 | 	befs_debug(sb, "<--- befs_btree_find() ERROR"); | 
 | 315 | 	return BEFS_ERR; | 
 | 316 | } | 
 | 317 |  | 
 | 318 | /** | 
 | 319 |  * befs_find_key - Search for a key within a node | 
 | 320 |  * @sb: Filesystem superblock | 
 | 321 |  * @node: Node to find the key within | 
 | 322 |  * @key: Keystring to search for | 
 | 323 |  * @value: If key is found, the value stored with the key is put here | 
 | 324 |  * | 
 | 325 |  * finds exact match if one exists, and returns BEFS_BT_MATCH | 
 | 326 |  * If no exact match, finds first key in node that is greater | 
 | 327 |  * (alphabetically) than the search key and returns BEFS_BT_PARMATCH | 
 | 328 |  * (for partial match, I guess). Can you think of something better to | 
 | 329 |  * call it? | 
 | 330 |  * | 
 | 331 |  * If no key was a match or greater than the search key, return | 
 | 332 |  * BEFS_BT_NOT_FOUND. | 
 | 333 |  * | 
 | 334 |  * Use binary search instead of a linear. | 
 | 335 |  */ | 
 | 336 | static int | 
 | 337 | befs_find_key(struct super_block *sb, befs_btree_node * node, | 
 | 338 | 	      const char *findkey, befs_off_t * value) | 
 | 339 | { | 
 | 340 | 	int first, last, mid; | 
 | 341 | 	int eq; | 
 | 342 | 	u16 keylen; | 
 | 343 | 	int findkey_len; | 
 | 344 | 	char *thiskey; | 
 | 345 | 	befs_off_t *valarray; | 
 | 346 |  | 
 | 347 | 	befs_debug(sb, "---> befs_find_key() %s", findkey); | 
 | 348 |  | 
 | 349 | 	*value = 0; | 
 | 350 |  | 
 | 351 | 	findkey_len = strlen(findkey); | 
 | 352 |  | 
 | 353 | 	/* if node can not contain key, just skeep this node */ | 
 | 354 | 	last = node->head.all_key_count - 1; | 
 | 355 | 	thiskey = befs_bt_get_key(sb, node, last, &keylen); | 
 | 356 |  | 
 | 357 | 	eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len); | 
 | 358 | 	if (eq < 0) { | 
 | 359 | 		befs_debug(sb, "<--- befs_find_key() %s not found", findkey); | 
 | 360 | 		return BEFS_BT_NOT_FOUND; | 
 | 361 | 	} | 
 | 362 |  | 
 | 363 | 	valarray = befs_bt_valarray(node); | 
 | 364 |  | 
 | 365 | 	/* simple binary search */ | 
 | 366 | 	first = 0; | 
 | 367 | 	mid = 0; | 
 | 368 | 	while (last >= first) { | 
 | 369 | 		mid = (last + first) / 2; | 
 | 370 | 		befs_debug(sb, "first: %d, last: %d, mid: %d", first, last, | 
 | 371 | 			   mid); | 
 | 372 | 		thiskey = befs_bt_get_key(sb, node, mid, &keylen); | 
 | 373 | 		eq = befs_compare_strings(thiskey, keylen, findkey, | 
 | 374 | 					  findkey_len); | 
 | 375 |  | 
 | 376 | 		if (eq == 0) { | 
 | 377 | 			befs_debug(sb, "<--- befs_find_key() found %s at %d", | 
 | 378 | 				   thiskey, mid); | 
 | 379 |  | 
 | 380 | 			*value = fs64_to_cpu(sb, valarray[mid]); | 
 | 381 | 			return BEFS_BT_MATCH; | 
 | 382 | 		} | 
 | 383 | 		if (eq > 0) | 
 | 384 | 			last = mid - 1; | 
 | 385 | 		else | 
 | 386 | 			first = mid + 1; | 
 | 387 | 	} | 
 | 388 | 	if (eq < 0) | 
 | 389 | 		*value = fs64_to_cpu(sb, valarray[mid + 1]); | 
 | 390 | 	else | 
 | 391 | 		*value = fs64_to_cpu(sb, valarray[mid]); | 
 | 392 | 	befs_debug(sb, "<--- befs_find_key() found %s at %d", thiskey, mid); | 
 | 393 | 	return BEFS_BT_PARMATCH; | 
 | 394 | } | 
 | 395 |  | 
 | 396 | /** | 
 | 397 |  * befs_btree_read - Traverse leafnodes of a btree | 
 | 398 |  * @sb: Filesystem superblock | 
 | 399 |  * @ds: Datastream containing btree | 
 | 400 |  * @key_no: Key number (alphabetical order) of key to read | 
 | 401 |  * @bufsize: Size of the buffer to return key in | 
 | 402 |  * @keybuf: Pointer to a buffer to put the key in | 
 | 403 |  * @keysize: Length of the returned key | 
 | 404 |  * @value: Value stored with the returned key | 
 | 405 |  * | 
 | 406 |  * Heres how it works: Key_no is the index of the key/value pair to  | 
 | 407 |  * return in keybuf/value. | 
 | 408 |  * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is  | 
 | 409 |  * the number of charecters in the key (just a convenience). | 
 | 410 |  * | 
 | 411 |  * Algorithm: | 
 | 412 |  *   Get the first leafnode of the tree. See if the requested key is in that | 
 | 413 |  *   node. If not, follow the node->right link to the next leafnode. Repeat  | 
 | 414 |  *   until the (key_no)th key is found or the tree is out of keys. | 
 | 415 |  */ | 
 | 416 | int | 
 | 417 | befs_btree_read(struct super_block *sb, befs_data_stream * ds, | 
 | 418 | 		loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize, | 
 | 419 | 		befs_off_t * value) | 
 | 420 | { | 
 | 421 | 	befs_btree_node *this_node; | 
 | 422 | 	befs_btree_super bt_super; | 
 | 423 | 	befs_off_t node_off = 0; | 
 | 424 | 	int cur_key; | 
 | 425 | 	befs_off_t *valarray; | 
 | 426 | 	char *keystart; | 
 | 427 | 	u16 keylen; | 
 | 428 | 	int res; | 
 | 429 |  | 
 | 430 | 	uint key_sum = 0; | 
 | 431 |  | 
 | 432 | 	befs_debug(sb, "---> befs_btree_read()"); | 
 | 433 |  | 
 | 434 | 	if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) { | 
 | 435 | 		befs_error(sb, | 
 | 436 | 			   "befs_btree_read() failed to read index superblock"); | 
 | 437 | 		goto error; | 
 | 438 | 	} | 
 | 439 |  | 
 | 440 | 	if ((this_node = (befs_btree_node *) | 
 | 441 | 	     kmalloc(sizeof (befs_btree_node), GFP_NOFS)) == NULL) { | 
 | 442 | 		befs_error(sb, "befs_btree_read() failed to allocate %u " | 
 | 443 | 			   "bytes of memory", sizeof (befs_btree_node)); | 
 | 444 | 		goto error; | 
 | 445 | 	} | 
 | 446 |  | 
 | 447 | 	node_off = bt_super.root_node_ptr; | 
 | 448 | 	this_node->bh = NULL; | 
 | 449 |  | 
 | 450 | 	/* seeks down to first leafnode, reads it into this_node */ | 
 | 451 | 	res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off); | 
 | 452 | 	if (res == BEFS_BT_EMPTY) { | 
 | 453 | 		brelse(this_node->bh); | 
 | 454 | 		kfree(this_node); | 
 | 455 | 		*value = 0; | 
 | 456 | 		*keysize = 0; | 
 | 457 | 		befs_debug(sb, "<--- befs_btree_read() Tree is EMPTY"); | 
 | 458 | 		return BEFS_BT_EMPTY; | 
 | 459 | 	} else if (res == BEFS_ERR) { | 
 | 460 | 		goto error_alloc; | 
 | 461 | 	} | 
 | 462 |  | 
 | 463 | 	/* find the leaf node containing the key_no key */ | 
 | 464 |  | 
 | 465 | 	while (key_sum + this_node->head.all_key_count <= key_no) { | 
 | 466 |  | 
 | 467 | 		/* no more nodes to look in: key_no is too large */ | 
 | 468 | 		if (this_node->head.right == befs_bt_inval) { | 
 | 469 | 			*keysize = 0; | 
 | 470 | 			*value = 0; | 
 | 471 | 			befs_debug(sb, | 
 | 472 | 				   "<--- befs_btree_read() END of keys at %Lu", | 
 | 473 | 				   key_sum + this_node->head.all_key_count); | 
 | 474 | 			brelse(this_node->bh); | 
 | 475 | 			kfree(this_node); | 
 | 476 | 			return BEFS_BT_END; | 
 | 477 | 		} | 
 | 478 |  | 
 | 479 | 		key_sum += this_node->head.all_key_count; | 
 | 480 | 		node_off = this_node->head.right; | 
 | 481 |  | 
 | 482 | 		if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) { | 
 | 483 | 			befs_error(sb, "befs_btree_read() failed to read " | 
 | 484 | 				   "node at %Lu", node_off); | 
 | 485 | 			goto error_alloc; | 
 | 486 | 		} | 
 | 487 | 	} | 
 | 488 |  | 
 | 489 | 	/* how many keys into this_node is key_no */ | 
 | 490 | 	cur_key = key_no - key_sum; | 
 | 491 |  | 
 | 492 | 	/* get pointers to datastructures within the node body */ | 
 | 493 | 	valarray = befs_bt_valarray(this_node); | 
 | 494 |  | 
 | 495 | 	keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen); | 
 | 496 |  | 
 | 497 | 	befs_debug(sb, "Read [%Lu,%d]: keysize %d", node_off, cur_key, keylen); | 
 | 498 |  | 
 | 499 | 	if (bufsize < keylen + 1) { | 
 | 500 | 		befs_error(sb, "befs_btree_read() keybuf too small (%u) " | 
 | 501 | 			   "for key of size %d", bufsize, keylen); | 
 | 502 | 		brelse(this_node->bh); | 
 | 503 | 		goto error_alloc; | 
 | 504 | 	}; | 
 | 505 |  | 
 | 506 | 	strncpy(keybuf, keystart, keylen); | 
 | 507 | 	*value = fs64_to_cpu(sb, valarray[cur_key]); | 
 | 508 | 	*keysize = keylen; | 
 | 509 | 	keybuf[keylen] = '\0'; | 
 | 510 |  | 
 | 511 | 	befs_debug(sb, "Read [%Lu,%d]: Key \"%.*s\", Value %Lu", node_off, | 
 | 512 | 		   cur_key, keylen, keybuf, *value); | 
 | 513 |  | 
 | 514 | 	brelse(this_node->bh); | 
 | 515 | 	kfree(this_node); | 
 | 516 |  | 
 | 517 | 	befs_debug(sb, "<--- befs_btree_read()"); | 
 | 518 |  | 
 | 519 | 	return BEFS_OK; | 
 | 520 |  | 
 | 521 |       error_alloc: | 
 | 522 | 	kfree(this_node); | 
 | 523 |  | 
 | 524 |       error: | 
 | 525 | 	*keysize = 0; | 
 | 526 | 	*value = 0; | 
 | 527 | 	befs_debug(sb, "<--- befs_btree_read() ERROR"); | 
 | 528 | 	return BEFS_ERR; | 
 | 529 | } | 
 | 530 |  | 
 | 531 | /** | 
 | 532 |  * befs_btree_seekleaf - Find the first leafnode in the btree | 
 | 533 |  * @sb: Filesystem superblock | 
 | 534 |  * @ds: Datastream containing btree | 
 | 535 |  * @bt_super: Pointer to the superblock of the btree | 
 | 536 |  * @this_node: Buffer to return the leafnode in | 
 | 537 |  * @node_off: Pointer to offset of current node within datastream. Modified | 
 | 538 |  * 		by the function. | 
 | 539 |  * | 
 | 540 |  * | 
 | 541 |  * Helper function for btree traverse. Moves the current position to the  | 
 | 542 |  * start of the first leaf node. | 
 | 543 |  * | 
 | 544 |  * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY. | 
 | 545 |  */ | 
 | 546 | static int | 
 | 547 | befs_btree_seekleaf(struct super_block *sb, befs_data_stream * ds, | 
 | 548 | 		    befs_btree_super * bt_super, befs_btree_node * this_node, | 
 | 549 | 		    befs_off_t * node_off) | 
 | 550 | { | 
 | 551 |  | 
 | 552 | 	befs_debug(sb, "---> befs_btree_seekleaf()"); | 
 | 553 |  | 
 | 554 | 	if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { | 
 | 555 | 		befs_error(sb, "befs_btree_seekleaf() failed to read " | 
 | 556 | 			   "node at %Lu", *node_off); | 
 | 557 | 		goto error; | 
 | 558 | 	} | 
 | 559 | 	befs_debug(sb, "Seekleaf to root node %Lu", *node_off); | 
 | 560 |  | 
 | 561 | 	if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) { | 
 | 562 | 		befs_debug(sb, "<--- befs_btree_seekleaf() Tree is EMPTY"); | 
 | 563 | 		return BEFS_BT_EMPTY; | 
 | 564 | 	} | 
 | 565 |  | 
 | 566 | 	while (!befs_leafnode(this_node)) { | 
 | 567 |  | 
 | 568 | 		if (this_node->head.all_key_count == 0) { | 
 | 569 | 			befs_debug(sb, "befs_btree_seekleaf() encountered " | 
 | 570 | 				   "an empty interior node: %Lu. Using Overflow " | 
 | 571 | 				   "node: %Lu", *node_off, | 
 | 572 | 				   this_node->head.overflow); | 
 | 573 | 			*node_off = this_node->head.overflow; | 
 | 574 | 		} else { | 
 | 575 | 			befs_off_t *valarray = befs_bt_valarray(this_node); | 
 | 576 | 			*node_off = fs64_to_cpu(sb, valarray[0]); | 
 | 577 | 		} | 
 | 578 | 		if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) { | 
 | 579 | 			befs_error(sb, "befs_btree_seekleaf() failed to read " | 
 | 580 | 				   "node at %Lu", *node_off); | 
 | 581 | 			goto error; | 
 | 582 | 		} | 
 | 583 |  | 
 | 584 | 		befs_debug(sb, "Seekleaf to child node %Lu", *node_off); | 
 | 585 | 	} | 
 | 586 | 	befs_debug(sb, "Node %Lu is a leaf node", *node_off); | 
 | 587 |  | 
 | 588 | 	return BEFS_OK; | 
 | 589 |  | 
 | 590 |       error: | 
 | 591 | 	befs_debug(sb, "<--- befs_btree_seekleaf() ERROR"); | 
 | 592 | 	return BEFS_ERR; | 
 | 593 | } | 
 | 594 |  | 
 | 595 | /** | 
 | 596 |  * befs_leafnode - Determine if the btree node is a leaf node or an  | 
 | 597 |  * interior node | 
 | 598 |  * @node: Pointer to node structure to test | 
 | 599 |  *  | 
 | 600 |  * Return 1 if leaf, 0 if interior | 
 | 601 |  */ | 
 | 602 | static int | 
 | 603 | befs_leafnode(befs_btree_node * node) | 
 | 604 | { | 
 | 605 | 	/* all interior nodes (and only interior nodes) have an overflow node */ | 
 | 606 | 	if (node->head.overflow == befs_bt_inval) | 
 | 607 | 		return 1; | 
 | 608 | 	else | 
 | 609 | 		return 0; | 
 | 610 | } | 
 | 611 |  | 
 | 612 | /** | 
 | 613 |  * befs_bt_keylen_index - Finds start of keylen index in a node | 
 | 614 |  * @node: Pointer to the node structure to find the keylen index within | 
 | 615 |  * | 
 | 616 |  * Returns a pointer to the start of the key length index array | 
 | 617 |  * of the B+tree node *@node | 
 | 618 |  * | 
 | 619 |  * "The length of all the keys in the node is added to the size of the | 
 | 620 |  * header and then rounded up to a multiple of four to get the beginning | 
 | 621 |  * of the key length index" (p.88, practical filesystem design). | 
 | 622 |  * | 
 | 623 |  * Except that rounding up to 8 works, and rounding up to 4 doesn't. | 
 | 624 |  */ | 
 | 625 | static u16 * | 
 | 626 | befs_bt_keylen_index(befs_btree_node * node) | 
 | 627 | { | 
 | 628 | 	const int keylen_align = 8; | 
 | 629 | 	unsigned long int off = | 
 | 630 | 	    (sizeof (befs_btree_nodehead) + node->head.all_key_length); | 
 | 631 | 	ulong tmp = off % keylen_align; | 
 | 632 |  | 
 | 633 | 	if (tmp) | 
 | 634 | 		off += keylen_align - tmp; | 
 | 635 |  | 
 | 636 | 	return (u16 *) ((void *) node->od_node + off); | 
 | 637 | } | 
 | 638 |  | 
 | 639 | /** | 
 | 640 |  * befs_bt_valarray - Finds the start of value array in a node | 
 | 641 |  * @node: Pointer to the node structure to find the value array within | 
 | 642 |  * | 
 | 643 |  * Returns a pointer to the start of the value array | 
 | 644 |  * of the node pointed to by the node header | 
 | 645 |  */ | 
 | 646 | static befs_off_t * | 
 | 647 | befs_bt_valarray(befs_btree_node * node) | 
 | 648 | { | 
 | 649 | 	void *keylen_index_start = (void *) befs_bt_keylen_index(node); | 
 | 650 | 	size_t keylen_index_size = node->head.all_key_count * sizeof (u16); | 
 | 651 |  | 
 | 652 | 	return (befs_off_t *) (keylen_index_start + keylen_index_size); | 
 | 653 | } | 
 | 654 |  | 
 | 655 | /** | 
 | 656 |  * befs_bt_keydata - Finds start of keydata array in a node | 
 | 657 |  * @node: Pointer to the node structure to find the keydata array within | 
 | 658 |  * | 
 | 659 |  * Returns a pointer to the start of the keydata array | 
 | 660 |  * of the node pointed to by the node header  | 
 | 661 |  */ | 
 | 662 | static char * | 
 | 663 | befs_bt_keydata(befs_btree_node * node) | 
 | 664 | { | 
 | 665 | 	return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead)); | 
 | 666 | } | 
 | 667 |  | 
 | 668 | /** | 
 | 669 |  * befs_bt_get_key - returns a pointer to the start of a key | 
 | 670 |  * @sb: filesystem superblock | 
 | 671 |  * @node: node in which to look for the key | 
 | 672 |  * @index: the index of the key to get | 
 | 673 |  * @keylen: modified to be the length of the key at @index | 
 | 674 |  * | 
 | 675 |  * Returns a valid pointer into @node on success. | 
 | 676 |  * Returns NULL on failure (bad input) and sets *@keylen = 0 | 
 | 677 |  */ | 
 | 678 | static char * | 
 | 679 | befs_bt_get_key(struct super_block *sb, befs_btree_node * node, | 
 | 680 | 		int index, u16 * keylen) | 
 | 681 | { | 
 | 682 | 	int prev_key_end; | 
 | 683 | 	char *keystart; | 
 | 684 | 	u16 *keylen_index; | 
 | 685 |  | 
 | 686 | 	if (index < 0 || index > node->head.all_key_count) { | 
 | 687 | 		*keylen = 0; | 
 | 688 | 		return NULL; | 
 | 689 | 	} | 
 | 690 |  | 
 | 691 | 	keystart = befs_bt_keydata(node); | 
 | 692 | 	keylen_index = befs_bt_keylen_index(node); | 
 | 693 |  | 
 | 694 | 	if (index == 0) | 
 | 695 | 		prev_key_end = 0; | 
 | 696 | 	else | 
 | 697 | 		prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]); | 
 | 698 |  | 
 | 699 | 	*keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end; | 
 | 700 |  | 
 | 701 | 	return keystart + prev_key_end; | 
 | 702 | } | 
 | 703 |  | 
 | 704 | /** | 
 | 705 |  * befs_compare_strings - compare two strings | 
 | 706 |  * @key1: pointer to the first key to be compared  | 
 | 707 |  * @keylen1: length in bytes of key1 | 
 | 708 |  * @key2: pointer to the second key to be compared | 
 | 709 |  * @kelen2: length in bytes of key2 | 
 | 710 |  * | 
 | 711 |  * Returns 0 if @key1 and @key2 are equal. | 
 | 712 |  * Returns >0 if @key1 is greater. | 
 | 713 |  * Returns <0 if @key2 is greater.. | 
 | 714 |  */ | 
 | 715 | static int | 
 | 716 | befs_compare_strings(const void *key1, int keylen1, | 
 | 717 | 		     const void *key2, int keylen2) | 
 | 718 | { | 
 | 719 | 	int len = min_t(int, keylen1, keylen2); | 
 | 720 | 	int result = strncmp(key1, key2, len); | 
 | 721 | 	if (result == 0) | 
 | 722 | 		result = keylen1 - keylen2; | 
 | 723 | 	return result; | 
 | 724 | } | 
 | 725 |  | 
 | 726 | /* These will be used for non-string keyed btrees */ | 
 | 727 | #if 0 | 
 | 728 | static int | 
 | 729 | btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2) | 
 | 730 | { | 
 | 731 | 	return *(int32_t *) key1 - *(int32_t *) key2; | 
 | 732 | } | 
 | 733 |  | 
 | 734 | static int | 
 | 735 | btree_compare_uint32(cont void *key1, int keylen1, | 
 | 736 | 		     const void *key2, int keylen2) | 
 | 737 | { | 
 | 738 | 	if (*(u_int32_t *) key1 == *(u_int32_t *) key2) | 
 | 739 | 		return 0; | 
 | 740 | 	else if (*(u_int32_t *) key1 > *(u_int32_t *) key2) | 
 | 741 | 		return 1; | 
 | 742 |  | 
 | 743 | 	return -1; | 
 | 744 | } | 
 | 745 | static int | 
 | 746 | btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2) | 
 | 747 | { | 
 | 748 | 	if (*(int64_t *) key1 == *(int64_t *) key2) | 
 | 749 | 		return 0; | 
 | 750 | 	else if (*(int64_t *) key1 > *(int64_t *) key2) | 
 | 751 | 		return 1; | 
 | 752 |  | 
 | 753 | 	return -1; | 
 | 754 | } | 
 | 755 |  | 
 | 756 | static int | 
 | 757 | btree_compare_uint64(cont void *key1, int keylen1, | 
 | 758 | 		     const void *key2, int keylen2) | 
 | 759 | { | 
 | 760 | 	if (*(u_int64_t *) key1 == *(u_int64_t *) key2) | 
 | 761 | 		return 0; | 
 | 762 | 	else if (*(u_int64_t *) key1 > *(u_int64_t *) key2) | 
 | 763 | 		return 1; | 
 | 764 |  | 
 | 765 | 	return -1; | 
 | 766 | } | 
 | 767 |  | 
 | 768 | static int | 
 | 769 | btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2) | 
 | 770 | { | 
 | 771 | 	float result = *(float *) key1 - *(float *) key2; | 
 | 772 | 	if (result == 0.0f) | 
 | 773 | 		return 0; | 
 | 774 |  | 
 | 775 | 	return (result < 0.0f) ? -1 : 1; | 
 | 776 | } | 
 | 777 |  | 
 | 778 | static int | 
 | 779 | btree_compare_double(cont void *key1, int keylen1, | 
 | 780 | 		     const void *key2, int keylen2) | 
 | 781 | { | 
 | 782 | 	double result = *(double *) key1 - *(double *) key2; | 
 | 783 | 	if (result == 0.0) | 
 | 784 | 		return 0; | 
 | 785 |  | 
 | 786 | 	return (result < 0.0) ? -1 : 1; | 
 | 787 | } | 
 | 788 | #endif				//0 |