| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
| Anton Altaparmakov | f25dfb5 | 2005-09-08 20:35:33 +0100 | [diff] [blame] | 2 | * file.c - NTFS kernel file operations.  Part of the Linux-NTFS project. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 3 | * | 
| Anton Altaparmakov | f25dfb5 | 2005-09-08 20:35:33 +0100 | [diff] [blame] | 4 | * Copyright (c) 2001-2005 Anton Altaparmakov | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 5 | * | 
|  | 6 | * This program/include file is free software; you can redistribute it and/or | 
|  | 7 | * modify it under the terms of the GNU General Public License as published | 
|  | 8 | * by the Free Software Foundation; either version 2 of the License, or | 
|  | 9 | * (at your option) any later version. | 
|  | 10 | * | 
|  | 11 | * This program/include file is distributed in the hope that it will be | 
|  | 12 | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | 13 | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | 14 | * GNU General Public License for more details. | 
|  | 15 | * | 
|  | 16 | * You should have received a copy of the GNU General Public License | 
|  | 17 | * along with this program (in the main directory of the Linux-NTFS | 
|  | 18 | * distribution in the file COPYING); if not, write to the Free Software | 
|  | 19 | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | 20 | */ | 
|  | 21 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 22 | #include <linux/buffer_head.h> | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 23 | #include <linux/pagemap.h> | 
|  | 24 | #include <linux/pagevec.h> | 
|  | 25 | #include <linux/sched.h> | 
|  | 26 | #include <linux/swap.h> | 
|  | 27 | #include <linux/uio.h> | 
|  | 28 | #include <linux/writeback.h> | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 29 |  | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 30 | #include <asm/page.h> | 
|  | 31 | #include <asm/uaccess.h> | 
|  | 32 |  | 
|  | 33 | #include "attrib.h" | 
|  | 34 | #include "bitmap.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 35 | #include "inode.h" | 
|  | 36 | #include "debug.h" | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 37 | #include "lcnalloc.h" | 
|  | 38 | #include "malloc.h" | 
|  | 39 | #include "mft.h" | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 40 | #include "ntfs.h" | 
|  | 41 |  | 
|  | 42 | /** | 
|  | 43 | * ntfs_file_open - called when an inode is about to be opened | 
|  | 44 | * @vi:		inode to be opened | 
|  | 45 | * @filp:	file structure describing the inode | 
|  | 46 | * | 
|  | 47 | * Limit file size to the page cache limit on architectures where unsigned long | 
|  | 48 | * is 32-bits. This is the most we can do for now without overflowing the page | 
|  | 49 | * cache page index. Doing it this way means we don't run into problems because | 
|  | 50 | * of existing too large files. It would be better to allow the user to read | 
|  | 51 | * the beginning of the file but I doubt very much anyone is going to hit this | 
|  | 52 | * check on a 32-bit architecture, so there is no point in adding the extra | 
|  | 53 | * complexity required to support this. | 
|  | 54 | * | 
|  | 55 | * On 64-bit architectures, the check is hopefully optimized away by the | 
|  | 56 | * compiler. | 
|  | 57 | * | 
|  | 58 | * After the check passes, just call generic_file_open() to do its work. | 
|  | 59 | */ | 
|  | 60 | static int ntfs_file_open(struct inode *vi, struct file *filp) | 
|  | 61 | { | 
|  | 62 | if (sizeof(unsigned long) < 8) { | 
| Anton Altaparmakov | d4b9ba7 | 2004-11-17 15:45:08 +0000 | [diff] [blame] | 63 | if (i_size_read(vi) > MAX_LFS_FILESIZE) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 64 | return -EFBIG; | 
|  | 65 | } | 
|  | 66 | return generic_file_open(vi, filp); | 
|  | 67 | } | 
|  | 68 |  | 
|  | 69 | #ifdef NTFS_RW | 
|  | 70 |  | 
|  | 71 | /** | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 72 | * ntfs_attr_extend_initialized - extend the initialized size of an attribute | 
|  | 73 | * @ni:			ntfs inode of the attribute to extend | 
|  | 74 | * @new_init_size:	requested new initialized size in bytes | 
|  | 75 | * @cached_page:	store any allocated but unused page here | 
|  | 76 | * @lru_pvec:		lru-buffering pagevec of the caller | 
|  | 77 | * | 
|  | 78 | * Extend the initialized size of an attribute described by the ntfs inode @ni | 
|  | 79 | * to @new_init_size bytes.  This involves zeroing any non-sparse space between | 
|  | 80 | * the old initialized size and @new_init_size both in the page cache and on | 
| Anton Altaparmakov | dda65b94 | 2005-10-24 08:57:59 +0100 | [diff] [blame] | 81 | * disk (if relevant complete pages are already uptodate in the page cache then | 
|  | 82 | * these are simply marked dirty). | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 83 | * | 
|  | 84 | * As a side-effect, the file size (vfs inode->i_size) may be incremented as, | 
|  | 85 | * in the resident attribute case, it is tied to the initialized size and, in | 
|  | 86 | * the non-resident attribute case, it may not fall below the initialized size. | 
|  | 87 | * | 
|  | 88 | * Note that if the attribute is resident, we do not need to touch the page | 
|  | 89 | * cache at all.  This is because if the page cache page is not uptodate we | 
|  | 90 | * bring it uptodate later, when doing the write to the mft record since we | 
|  | 91 | * then already have the page mapped.  And if the page is uptodate, the | 
|  | 92 | * non-initialized region will already have been zeroed when the page was | 
|  | 93 | * brought uptodate and the region may in fact already have been overwritten | 
|  | 94 | * with new data via mmap() based writes, so we cannot just zero it.  And since | 
|  | 95 | * POSIX specifies that the behaviour of resizing a file whilst it is mmap()ped | 
|  | 96 | * is unspecified, we choose not to do zeroing and thus we do not need to touch | 
| Anton Altaparmakov | dda65b94 | 2005-10-24 08:57:59 +0100 | [diff] [blame] | 97 | * the page at all.  For a more detailed explanation see ntfs_truncate() in | 
|  | 98 | * fs/ntfs/inode.c. | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 99 | * | 
| Anton Altaparmakov | dda65b94 | 2005-10-24 08:57:59 +0100 | [diff] [blame] | 100 | * @cached_page and @lru_pvec are just optimizations for dealing with multiple | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 101 | * pages. | 
|  | 102 | * | 
|  | 103 | * Return 0 on success and -errno on error.  In the case that an error is | 
|  | 104 | * encountered it is possible that the initialized size will already have been | 
|  | 105 | * incremented some way towards @new_init_size but it is guaranteed that if | 
|  | 106 | * this is the case, the necessary zeroing will also have happened and that all | 
|  | 107 | * metadata is self-consistent. | 
|  | 108 | * | 
| Anton Altaparmakov | dda65b94 | 2005-10-24 08:57:59 +0100 | [diff] [blame] | 109 | * Locking: i_sem on the vfs inode corrseponsind to the ntfs inode @ni must be | 
|  | 110 | *	    held by the caller. | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 111 | */ | 
|  | 112 | static int ntfs_attr_extend_initialized(ntfs_inode *ni, const s64 new_init_size, | 
|  | 113 | struct page **cached_page, struct pagevec *lru_pvec) | 
|  | 114 | { | 
|  | 115 | s64 old_init_size; | 
|  | 116 | loff_t old_i_size; | 
|  | 117 | pgoff_t index, end_index; | 
|  | 118 | unsigned long flags; | 
|  | 119 | struct inode *vi = VFS_I(ni); | 
|  | 120 | ntfs_inode *base_ni; | 
|  | 121 | MFT_RECORD *m = NULL; | 
|  | 122 | ATTR_RECORD *a; | 
|  | 123 | ntfs_attr_search_ctx *ctx = NULL; | 
|  | 124 | struct address_space *mapping; | 
|  | 125 | struct page *page = NULL; | 
|  | 126 | u8 *kattr; | 
|  | 127 | int err; | 
|  | 128 | u32 attr_len; | 
|  | 129 |  | 
|  | 130 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 131 | old_init_size = ni->initialized_size; | 
|  | 132 | old_i_size = i_size_read(vi); | 
|  | 133 | BUG_ON(new_init_size > ni->allocated_size); | 
|  | 134 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 135 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | 
|  | 136 | "old_initialized_size 0x%llx, " | 
|  | 137 | "new_initialized_size 0x%llx, i_size 0x%llx.", | 
|  | 138 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | 
|  | 139 | (unsigned long long)old_init_size, | 
|  | 140 | (unsigned long long)new_init_size, old_i_size); | 
|  | 141 | if (!NInoAttr(ni)) | 
|  | 142 | base_ni = ni; | 
|  | 143 | else | 
|  | 144 | base_ni = ni->ext.base_ntfs_ino; | 
|  | 145 | /* Use goto to reduce indentation and we need the label below anyway. */ | 
|  | 146 | if (NInoNonResident(ni)) | 
|  | 147 | goto do_non_resident_extend; | 
|  | 148 | BUG_ON(old_init_size != old_i_size); | 
|  | 149 | m = map_mft_record(base_ni); | 
|  | 150 | if (IS_ERR(m)) { | 
|  | 151 | err = PTR_ERR(m); | 
|  | 152 | m = NULL; | 
|  | 153 | goto err_out; | 
|  | 154 | } | 
|  | 155 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | 156 | if (unlikely(!ctx)) { | 
|  | 157 | err = -ENOMEM; | 
|  | 158 | goto err_out; | 
|  | 159 | } | 
|  | 160 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 161 | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | 162 | if (unlikely(err)) { | 
|  | 163 | if (err == -ENOENT) | 
|  | 164 | err = -EIO; | 
|  | 165 | goto err_out; | 
|  | 166 | } | 
|  | 167 | m = ctx->mrec; | 
|  | 168 | a = ctx->attr; | 
|  | 169 | BUG_ON(a->non_resident); | 
|  | 170 | /* The total length of the attribute value. */ | 
|  | 171 | attr_len = le32_to_cpu(a->data.resident.value_length); | 
|  | 172 | BUG_ON(old_i_size != (loff_t)attr_len); | 
|  | 173 | /* | 
|  | 174 | * Do the zeroing in the mft record and update the attribute size in | 
|  | 175 | * the mft record. | 
|  | 176 | */ | 
|  | 177 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | 
|  | 178 | memset(kattr + attr_len, 0, new_init_size - attr_len); | 
|  | 179 | a->data.resident.value_length = cpu_to_le32((u32)new_init_size); | 
|  | 180 | /* Finally, update the sizes in the vfs and ntfs inodes. */ | 
|  | 181 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 182 | i_size_write(vi, new_init_size); | 
|  | 183 | ni->initialized_size = new_init_size; | 
|  | 184 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 185 | goto done; | 
|  | 186 | do_non_resident_extend: | 
|  | 187 | /* | 
|  | 188 | * If the new initialized size @new_init_size exceeds the current file | 
|  | 189 | * size (vfs inode->i_size), we need to extend the file size to the | 
|  | 190 | * new initialized size. | 
|  | 191 | */ | 
|  | 192 | if (new_init_size > old_i_size) { | 
|  | 193 | m = map_mft_record(base_ni); | 
|  | 194 | if (IS_ERR(m)) { | 
|  | 195 | err = PTR_ERR(m); | 
|  | 196 | m = NULL; | 
|  | 197 | goto err_out; | 
|  | 198 | } | 
|  | 199 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | 200 | if (unlikely(!ctx)) { | 
|  | 201 | err = -ENOMEM; | 
|  | 202 | goto err_out; | 
|  | 203 | } | 
|  | 204 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 205 | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | 206 | if (unlikely(err)) { | 
|  | 207 | if (err == -ENOENT) | 
|  | 208 | err = -EIO; | 
|  | 209 | goto err_out; | 
|  | 210 | } | 
|  | 211 | m = ctx->mrec; | 
|  | 212 | a = ctx->attr; | 
|  | 213 | BUG_ON(!a->non_resident); | 
|  | 214 | BUG_ON(old_i_size != (loff_t) | 
|  | 215 | sle64_to_cpu(a->data.non_resident.data_size)); | 
|  | 216 | a->data.non_resident.data_size = cpu_to_sle64(new_init_size); | 
|  | 217 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 218 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 219 | /* Update the file size in the vfs inode. */ | 
|  | 220 | i_size_write(vi, new_init_size); | 
|  | 221 | ntfs_attr_put_search_ctx(ctx); | 
|  | 222 | ctx = NULL; | 
|  | 223 | unmap_mft_record(base_ni); | 
|  | 224 | m = NULL; | 
|  | 225 | } | 
|  | 226 | mapping = vi->i_mapping; | 
|  | 227 | index = old_init_size >> PAGE_CACHE_SHIFT; | 
|  | 228 | end_index = (new_init_size + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | 229 | do { | 
|  | 230 | /* | 
|  | 231 | * Read the page.  If the page is not present, this will zero | 
|  | 232 | * the uninitialized regions for us. | 
|  | 233 | */ | 
|  | 234 | page = read_cache_page(mapping, index, | 
|  | 235 | (filler_t*)mapping->a_ops->readpage, NULL); | 
|  | 236 | if (IS_ERR(page)) { | 
|  | 237 | err = PTR_ERR(page); | 
|  | 238 | goto init_err_out; | 
|  | 239 | } | 
|  | 240 | wait_on_page_locked(page); | 
|  | 241 | if (unlikely(!PageUptodate(page) || PageError(page))) { | 
|  | 242 | page_cache_release(page); | 
|  | 243 | err = -EIO; | 
|  | 244 | goto init_err_out; | 
|  | 245 | } | 
|  | 246 | /* | 
|  | 247 | * Update the initialized size in the ntfs inode.  This is | 
|  | 248 | * enough to make ntfs_writepage() work. | 
|  | 249 | */ | 
|  | 250 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 251 | ni->initialized_size = (index + 1) << PAGE_CACHE_SHIFT; | 
|  | 252 | if (ni->initialized_size > new_init_size) | 
|  | 253 | ni->initialized_size = new_init_size; | 
|  | 254 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 255 | /* Set the page dirty so it gets written out. */ | 
|  | 256 | set_page_dirty(page); | 
|  | 257 | page_cache_release(page); | 
|  | 258 | /* | 
|  | 259 | * Play nice with the vm and the rest of the system.  This is | 
|  | 260 | * very much needed as we can potentially be modifying the | 
|  | 261 | * initialised size from a very small value to a really huge | 
|  | 262 | * value, e.g. | 
|  | 263 | *	f = open(somefile, O_TRUNC); | 
|  | 264 | *	truncate(f, 10GiB); | 
|  | 265 | *	seek(f, 10GiB); | 
|  | 266 | *	write(f, 1); | 
|  | 267 | * And this would mean we would be marking dirty hundreds of | 
|  | 268 | * thousands of pages or as in the above example more than | 
|  | 269 | * two and a half million pages! | 
|  | 270 | * | 
|  | 271 | * TODO: For sparse pages could optimize this workload by using | 
|  | 272 | * the FsMisc / MiscFs page bit as a "PageIsSparse" bit.  This | 
|  | 273 | * would be set in readpage for sparse pages and here we would | 
|  | 274 | * not need to mark dirty any pages which have this bit set. | 
|  | 275 | * The only caveat is that we have to clear the bit everywhere | 
|  | 276 | * where we allocate any clusters that lie in the page or that | 
|  | 277 | * contain the page. | 
|  | 278 | * | 
|  | 279 | * TODO: An even greater optimization would be for us to only | 
|  | 280 | * call readpage() on pages which are not in sparse regions as | 
|  | 281 | * determined from the runlist.  This would greatly reduce the | 
|  | 282 | * number of pages we read and make dirty in the case of sparse | 
|  | 283 | * files. | 
|  | 284 | */ | 
|  | 285 | balance_dirty_pages_ratelimited(mapping); | 
|  | 286 | cond_resched(); | 
|  | 287 | } while (++index < end_index); | 
|  | 288 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 289 | BUG_ON(ni->initialized_size != new_init_size); | 
|  | 290 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 291 | /* Now bring in sync the initialized_size in the mft record. */ | 
|  | 292 | m = map_mft_record(base_ni); | 
|  | 293 | if (IS_ERR(m)) { | 
|  | 294 | err = PTR_ERR(m); | 
|  | 295 | m = NULL; | 
|  | 296 | goto init_err_out; | 
|  | 297 | } | 
|  | 298 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | 299 | if (unlikely(!ctx)) { | 
|  | 300 | err = -ENOMEM; | 
|  | 301 | goto init_err_out; | 
|  | 302 | } | 
|  | 303 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 304 | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | 305 | if (unlikely(err)) { | 
|  | 306 | if (err == -ENOENT) | 
|  | 307 | err = -EIO; | 
|  | 308 | goto init_err_out; | 
|  | 309 | } | 
|  | 310 | m = ctx->mrec; | 
|  | 311 | a = ctx->attr; | 
|  | 312 | BUG_ON(!a->non_resident); | 
|  | 313 | a->data.non_resident.initialized_size = cpu_to_sle64(new_init_size); | 
|  | 314 | done: | 
|  | 315 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 316 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 317 | if (ctx) | 
|  | 318 | ntfs_attr_put_search_ctx(ctx); | 
|  | 319 | if (m) | 
|  | 320 | unmap_mft_record(base_ni); | 
|  | 321 | ntfs_debug("Done, initialized_size 0x%llx, i_size 0x%llx.", | 
|  | 322 | (unsigned long long)new_init_size, i_size_read(vi)); | 
|  | 323 | return 0; | 
|  | 324 | init_err_out: | 
|  | 325 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 326 | ni->initialized_size = old_init_size; | 
|  | 327 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 328 | err_out: | 
|  | 329 | if (ctx) | 
|  | 330 | ntfs_attr_put_search_ctx(ctx); | 
|  | 331 | if (m) | 
|  | 332 | unmap_mft_record(base_ni); | 
|  | 333 | ntfs_debug("Failed.  Returning error code %i.", err); | 
|  | 334 | return err; | 
|  | 335 | } | 
|  | 336 |  | 
|  | 337 | /** | 
|  | 338 | * ntfs_fault_in_pages_readable - | 
|  | 339 | * | 
|  | 340 | * Fault a number of userspace pages into pagetables. | 
|  | 341 | * | 
|  | 342 | * Unlike include/linux/pagemap.h::fault_in_pages_readable(), this one copes | 
|  | 343 | * with more than two userspace pages as well as handling the single page case | 
|  | 344 | * elegantly. | 
|  | 345 | * | 
|  | 346 | * If you find this difficult to understand, then think of the while loop being | 
|  | 347 | * the following code, except that we do without the integer variable ret: | 
|  | 348 | * | 
|  | 349 | *	do { | 
|  | 350 | *		ret = __get_user(c, uaddr); | 
|  | 351 | *		uaddr += PAGE_SIZE; | 
|  | 352 | *	} while (!ret && uaddr < end); | 
|  | 353 | * | 
|  | 354 | * Note, the final __get_user() may well run out-of-bounds of the user buffer, | 
|  | 355 | * but _not_ out-of-bounds of the page the user buffer belongs to, and since | 
|  | 356 | * this is only a read and not a write, and since it is still in the same page, | 
|  | 357 | * it should not matter and this makes the code much simpler. | 
|  | 358 | */ | 
|  | 359 | static inline void ntfs_fault_in_pages_readable(const char __user *uaddr, | 
|  | 360 | int bytes) | 
|  | 361 | { | 
|  | 362 | const char __user *end; | 
|  | 363 | volatile char c; | 
|  | 364 |  | 
|  | 365 | /* Set @end to the first byte outside the last page we care about. */ | 
|  | 366 | end = (const char __user*)PAGE_ALIGN((ptrdiff_t __user)uaddr + bytes); | 
|  | 367 |  | 
|  | 368 | while (!__get_user(c, uaddr) && (uaddr += PAGE_SIZE, uaddr < end)) | 
|  | 369 | ; | 
|  | 370 | } | 
|  | 371 |  | 
|  | 372 | /** | 
|  | 373 | * ntfs_fault_in_pages_readable_iovec - | 
|  | 374 | * | 
|  | 375 | * Same as ntfs_fault_in_pages_readable() but operates on an array of iovecs. | 
|  | 376 | */ | 
|  | 377 | static inline void ntfs_fault_in_pages_readable_iovec(const struct iovec *iov, | 
|  | 378 | size_t iov_ofs, int bytes) | 
|  | 379 | { | 
|  | 380 | do { | 
|  | 381 | const char __user *buf; | 
|  | 382 | unsigned len; | 
|  | 383 |  | 
|  | 384 | buf = iov->iov_base + iov_ofs; | 
|  | 385 | len = iov->iov_len - iov_ofs; | 
|  | 386 | if (len > bytes) | 
|  | 387 | len = bytes; | 
|  | 388 | ntfs_fault_in_pages_readable(buf, len); | 
|  | 389 | bytes -= len; | 
|  | 390 | iov++; | 
|  | 391 | iov_ofs = 0; | 
|  | 392 | } while (bytes); | 
|  | 393 | } | 
|  | 394 |  | 
|  | 395 | /** | 
|  | 396 | * __ntfs_grab_cache_pages - obtain a number of locked pages | 
|  | 397 | * @mapping:	address space mapping from which to obtain page cache pages | 
|  | 398 | * @index:	starting index in @mapping at which to begin obtaining pages | 
|  | 399 | * @nr_pages:	number of page cache pages to obtain | 
|  | 400 | * @pages:	array of pages in which to return the obtained page cache pages | 
|  | 401 | * @cached_page: allocated but as yet unused page | 
|  | 402 | * @lru_pvec:	lru-buffering pagevec of caller | 
|  | 403 | * | 
|  | 404 | * Obtain @nr_pages locked page cache pages from the mapping @maping and | 
|  | 405 | * starting at index @index. | 
|  | 406 | * | 
|  | 407 | * If a page is newly created, increment its refcount and add it to the | 
|  | 408 | * caller's lru-buffering pagevec @lru_pvec. | 
|  | 409 | * | 
|  | 410 | * This is the same as mm/filemap.c::__grab_cache_page(), except that @nr_pages | 
|  | 411 | * are obtained at once instead of just one page and that 0 is returned on | 
|  | 412 | * success and -errno on error. | 
|  | 413 | * | 
|  | 414 | * Note, the page locks are obtained in ascending page index order. | 
|  | 415 | */ | 
|  | 416 | static inline int __ntfs_grab_cache_pages(struct address_space *mapping, | 
|  | 417 | pgoff_t index, const unsigned nr_pages, struct page **pages, | 
|  | 418 | struct page **cached_page, struct pagevec *lru_pvec) | 
|  | 419 | { | 
|  | 420 | int err, nr; | 
|  | 421 |  | 
|  | 422 | BUG_ON(!nr_pages); | 
|  | 423 | err = nr = 0; | 
|  | 424 | do { | 
|  | 425 | pages[nr] = find_lock_page(mapping, index); | 
|  | 426 | if (!pages[nr]) { | 
|  | 427 | if (!*cached_page) { | 
|  | 428 | *cached_page = page_cache_alloc(mapping); | 
|  | 429 | if (unlikely(!*cached_page)) { | 
|  | 430 | err = -ENOMEM; | 
|  | 431 | goto err_out; | 
|  | 432 | } | 
|  | 433 | } | 
|  | 434 | err = add_to_page_cache(*cached_page, mapping, index, | 
|  | 435 | GFP_KERNEL); | 
|  | 436 | if (unlikely(err)) { | 
|  | 437 | if (err == -EEXIST) | 
|  | 438 | continue; | 
|  | 439 | goto err_out; | 
|  | 440 | } | 
|  | 441 | pages[nr] = *cached_page; | 
|  | 442 | page_cache_get(*cached_page); | 
|  | 443 | if (unlikely(!pagevec_add(lru_pvec, *cached_page))) | 
|  | 444 | __pagevec_lru_add(lru_pvec); | 
|  | 445 | *cached_page = NULL; | 
|  | 446 | } | 
|  | 447 | index++; | 
|  | 448 | nr++; | 
|  | 449 | } while (nr < nr_pages); | 
|  | 450 | out: | 
|  | 451 | return err; | 
|  | 452 | err_out: | 
|  | 453 | while (nr > 0) { | 
|  | 454 | unlock_page(pages[--nr]); | 
|  | 455 | page_cache_release(pages[nr]); | 
|  | 456 | } | 
|  | 457 | goto out; | 
|  | 458 | } | 
|  | 459 |  | 
|  | 460 | static inline int ntfs_submit_bh_for_read(struct buffer_head *bh) | 
|  | 461 | { | 
|  | 462 | lock_buffer(bh); | 
|  | 463 | get_bh(bh); | 
|  | 464 | bh->b_end_io = end_buffer_read_sync; | 
|  | 465 | return submit_bh(READ, bh); | 
|  | 466 | } | 
|  | 467 |  | 
|  | 468 | /** | 
|  | 469 | * ntfs_prepare_pages_for_non_resident_write - prepare pages for receiving data | 
|  | 470 | * @pages:	array of destination pages | 
|  | 471 | * @nr_pages:	number of pages in @pages | 
|  | 472 | * @pos:	byte position in file at which the write begins | 
|  | 473 | * @bytes:	number of bytes to be written | 
|  | 474 | * | 
|  | 475 | * This is called for non-resident attributes from ntfs_file_buffered_write() | 
|  | 476 | * with i_sem held on the inode (@pages[0]->mapping->host).  There are | 
|  | 477 | * @nr_pages pages in @pages which are locked but not kmap()ped.  The source | 
|  | 478 | * data has not yet been copied into the @pages. | 
|  | 479 | * | 
|  | 480 | * Need to fill any holes with actual clusters, allocate buffers if necessary, | 
|  | 481 | * ensure all the buffers are mapped, and bring uptodate any buffers that are | 
|  | 482 | * only partially being written to. | 
|  | 483 | * | 
|  | 484 | * If @nr_pages is greater than one, we are guaranteed that the cluster size is | 
|  | 485 | * greater than PAGE_CACHE_SIZE, that all pages in @pages are entirely inside | 
|  | 486 | * the same cluster and that they are the entirety of that cluster, and that | 
|  | 487 | * the cluster is sparse, i.e. we need to allocate a cluster to fill the hole. | 
|  | 488 | * | 
|  | 489 | * i_size is not to be modified yet. | 
|  | 490 | * | 
|  | 491 | * Return 0 on success or -errno on error. | 
|  | 492 | */ | 
|  | 493 | static int ntfs_prepare_pages_for_non_resident_write(struct page **pages, | 
|  | 494 | unsigned nr_pages, s64 pos, size_t bytes) | 
|  | 495 | { | 
|  | 496 | VCN vcn, highest_vcn = 0, cpos, cend, bh_cpos, bh_cend; | 
|  | 497 | LCN lcn; | 
|  | 498 | s64 bh_pos, vcn_len, end, initialized_size; | 
|  | 499 | sector_t lcn_block; | 
|  | 500 | struct page *page; | 
|  | 501 | struct inode *vi; | 
|  | 502 | ntfs_inode *ni, *base_ni = NULL; | 
|  | 503 | ntfs_volume *vol; | 
|  | 504 | runlist_element *rl, *rl2; | 
|  | 505 | struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; | 
|  | 506 | ntfs_attr_search_ctx *ctx = NULL; | 
|  | 507 | MFT_RECORD *m = NULL; | 
|  | 508 | ATTR_RECORD *a = NULL; | 
|  | 509 | unsigned long flags; | 
|  | 510 | u32 attr_rec_len = 0; | 
|  | 511 | unsigned blocksize, u; | 
|  | 512 | int err, mp_size; | 
|  | 513 | BOOL rl_write_locked, was_hole, is_retry; | 
|  | 514 | unsigned char blocksize_bits; | 
|  | 515 | struct { | 
|  | 516 | u8 runlist_merged:1; | 
|  | 517 | u8 mft_attr_mapped:1; | 
|  | 518 | u8 mp_rebuilt:1; | 
|  | 519 | u8 attr_switched:1; | 
|  | 520 | } status = { 0, 0, 0, 0 }; | 
|  | 521 |  | 
|  | 522 | BUG_ON(!nr_pages); | 
|  | 523 | BUG_ON(!pages); | 
|  | 524 | BUG_ON(!*pages); | 
|  | 525 | vi = pages[0]->mapping->host; | 
|  | 526 | ni = NTFS_I(vi); | 
|  | 527 | vol = ni->vol; | 
|  | 528 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | 
| Anton Altaparmakov | d04bd1f | 2005-10-24 08:41:24 +0100 | [diff] [blame] | 529 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 530 | vi->i_ino, ni->type, pages[0]->index, nr_pages, | 
|  | 531 | (long long)pos, bytes); | 
|  | 532 | blocksize_bits = vi->i_blkbits; | 
|  | 533 | blocksize = 1 << blocksize_bits; | 
|  | 534 | u = 0; | 
|  | 535 | do { | 
|  | 536 | struct page *page = pages[u]; | 
|  | 537 | /* | 
|  | 538 | * create_empty_buffers() will create uptodate/dirty buffers if | 
|  | 539 | * the page is uptodate/dirty. | 
|  | 540 | */ | 
|  | 541 | if (!page_has_buffers(page)) { | 
|  | 542 | create_empty_buffers(page, blocksize, 0); | 
|  | 543 | if (unlikely(!page_has_buffers(page))) | 
|  | 544 | return -ENOMEM; | 
|  | 545 | } | 
|  | 546 | } while (++u < nr_pages); | 
|  | 547 | rl_write_locked = FALSE; | 
|  | 548 | rl = NULL; | 
|  | 549 | err = 0; | 
|  | 550 | vcn = lcn = -1; | 
|  | 551 | vcn_len = 0; | 
|  | 552 | lcn_block = -1; | 
|  | 553 | was_hole = FALSE; | 
|  | 554 | cpos = pos >> vol->cluster_size_bits; | 
|  | 555 | end = pos + bytes; | 
|  | 556 | cend = (end + vol->cluster_size - 1) >> vol->cluster_size_bits; | 
|  | 557 | /* | 
|  | 558 | * Loop over each page and for each page over each buffer.  Use goto to | 
|  | 559 | * reduce indentation. | 
|  | 560 | */ | 
|  | 561 | u = 0; | 
|  | 562 | do_next_page: | 
|  | 563 | page = pages[u]; | 
|  | 564 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | 
|  | 565 | bh = head = page_buffers(page); | 
|  | 566 | do { | 
|  | 567 | VCN cdelta; | 
|  | 568 | s64 bh_end; | 
|  | 569 | unsigned bh_cofs; | 
|  | 570 |  | 
|  | 571 | /* Clear buffer_new on all buffers to reinitialise state. */ | 
|  | 572 | if (buffer_new(bh)) | 
|  | 573 | clear_buffer_new(bh); | 
|  | 574 | bh_end = bh_pos + blocksize; | 
|  | 575 | bh_cpos = bh_pos >> vol->cluster_size_bits; | 
|  | 576 | bh_cofs = bh_pos & vol->cluster_size_mask; | 
|  | 577 | if (buffer_mapped(bh)) { | 
|  | 578 | /* | 
|  | 579 | * The buffer is already mapped.  If it is uptodate, | 
|  | 580 | * ignore it. | 
|  | 581 | */ | 
|  | 582 | if (buffer_uptodate(bh)) | 
|  | 583 | continue; | 
|  | 584 | /* | 
|  | 585 | * The buffer is not uptodate.  If the page is uptodate | 
|  | 586 | * set the buffer uptodate and otherwise ignore it. | 
|  | 587 | */ | 
|  | 588 | if (PageUptodate(page)) { | 
|  | 589 | set_buffer_uptodate(bh); | 
|  | 590 | continue; | 
|  | 591 | } | 
|  | 592 | /* | 
|  | 593 | * Neither the page nor the buffer are uptodate.  If | 
|  | 594 | * the buffer is only partially being written to, we | 
|  | 595 | * need to read it in before the write, i.e. now. | 
|  | 596 | */ | 
|  | 597 | if ((bh_pos < pos && bh_end > pos) || | 
|  | 598 | (bh_pos < end && bh_end > end)) { | 
|  | 599 | /* | 
|  | 600 | * If the buffer is fully or partially within | 
|  | 601 | * the initialized size, do an actual read. | 
|  | 602 | * Otherwise, simply zero the buffer. | 
|  | 603 | */ | 
|  | 604 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 605 | initialized_size = ni->initialized_size; | 
|  | 606 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 607 | if (bh_pos < initialized_size) { | 
|  | 608 | ntfs_submit_bh_for_read(bh); | 
|  | 609 | *wait_bh++ = bh; | 
|  | 610 | } else { | 
|  | 611 | u8 *kaddr = kmap_atomic(page, KM_USER0); | 
|  | 612 | memset(kaddr + bh_offset(bh), 0, | 
|  | 613 | blocksize); | 
|  | 614 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 615 | flush_dcache_page(page); | 
|  | 616 | set_buffer_uptodate(bh); | 
|  | 617 | } | 
|  | 618 | } | 
|  | 619 | continue; | 
|  | 620 | } | 
|  | 621 | /* Unmapped buffer.  Need to map it. */ | 
|  | 622 | bh->b_bdev = vol->sb->s_bdev; | 
|  | 623 | /* | 
|  | 624 | * If the current buffer is in the same clusters as the map | 
|  | 625 | * cache, there is no need to check the runlist again.  The | 
|  | 626 | * map cache is made up of @vcn, which is the first cached file | 
|  | 627 | * cluster, @vcn_len which is the number of cached file | 
|  | 628 | * clusters, @lcn is the device cluster corresponding to @vcn, | 
|  | 629 | * and @lcn_block is the block number corresponding to @lcn. | 
|  | 630 | */ | 
|  | 631 | cdelta = bh_cpos - vcn; | 
|  | 632 | if (likely(!cdelta || (cdelta > 0 && cdelta < vcn_len))) { | 
|  | 633 | map_buffer_cached: | 
|  | 634 | BUG_ON(lcn < 0); | 
|  | 635 | bh->b_blocknr = lcn_block + | 
|  | 636 | (cdelta << (vol->cluster_size_bits - | 
|  | 637 | blocksize_bits)) + | 
|  | 638 | (bh_cofs >> blocksize_bits); | 
|  | 639 | set_buffer_mapped(bh); | 
|  | 640 | /* | 
|  | 641 | * If the page is uptodate so is the buffer.  If the | 
|  | 642 | * buffer is fully outside the write, we ignore it if | 
|  | 643 | * it was already allocated and we mark it dirty so it | 
|  | 644 | * gets written out if we allocated it.  On the other | 
|  | 645 | * hand, if we allocated the buffer but we are not | 
|  | 646 | * marking it dirty we set buffer_new so we can do | 
|  | 647 | * error recovery. | 
|  | 648 | */ | 
|  | 649 | if (PageUptodate(page)) { | 
|  | 650 | if (!buffer_uptodate(bh)) | 
|  | 651 | set_buffer_uptodate(bh); | 
|  | 652 | if (unlikely(was_hole)) { | 
|  | 653 | /* We allocated the buffer. */ | 
|  | 654 | unmap_underlying_metadata(bh->b_bdev, | 
|  | 655 | bh->b_blocknr); | 
|  | 656 | if (bh_end <= pos || bh_pos >= end) | 
|  | 657 | mark_buffer_dirty(bh); | 
|  | 658 | else | 
|  | 659 | set_buffer_new(bh); | 
|  | 660 | } | 
|  | 661 | continue; | 
|  | 662 | } | 
|  | 663 | /* Page is _not_ uptodate. */ | 
|  | 664 | if (likely(!was_hole)) { | 
|  | 665 | /* | 
|  | 666 | * Buffer was already allocated.  If it is not | 
|  | 667 | * uptodate and is only partially being written | 
|  | 668 | * to, we need to read it in before the write, | 
|  | 669 | * i.e. now. | 
|  | 670 | */ | 
| Anton Altaparmakov | 3aebf25 | 2005-11-01 15:49:31 +0000 | [diff] [blame] | 671 | if (!buffer_uptodate(bh) && bh_pos < end && | 
|  | 672 | bh_end > pos && | 
|  | 673 | (bh_pos < pos || | 
|  | 674 | bh_end > end)) { | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 675 | /* | 
|  | 676 | * If the buffer is fully or partially | 
|  | 677 | * within the initialized size, do an | 
|  | 678 | * actual read.  Otherwise, simply zero | 
|  | 679 | * the buffer. | 
|  | 680 | */ | 
|  | 681 | read_lock_irqsave(&ni->size_lock, | 
|  | 682 | flags); | 
|  | 683 | initialized_size = ni->initialized_size; | 
|  | 684 | read_unlock_irqrestore(&ni->size_lock, | 
|  | 685 | flags); | 
|  | 686 | if (bh_pos < initialized_size) { | 
|  | 687 | ntfs_submit_bh_for_read(bh); | 
|  | 688 | *wait_bh++ = bh; | 
|  | 689 | } else { | 
|  | 690 | u8 *kaddr = kmap_atomic(page, | 
|  | 691 | KM_USER0); | 
|  | 692 | memset(kaddr + bh_offset(bh), | 
|  | 693 | 0, blocksize); | 
|  | 694 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 695 | flush_dcache_page(page); | 
|  | 696 | set_buffer_uptodate(bh); | 
|  | 697 | } | 
|  | 698 | } | 
|  | 699 | continue; | 
|  | 700 | } | 
|  | 701 | /* We allocated the buffer. */ | 
|  | 702 | unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); | 
|  | 703 | /* | 
|  | 704 | * If the buffer is fully outside the write, zero it, | 
|  | 705 | * set it uptodate, and mark it dirty so it gets | 
|  | 706 | * written out.  If it is partially being written to, | 
|  | 707 | * zero region surrounding the write but leave it to | 
|  | 708 | * commit write to do anything else.  Finally, if the | 
|  | 709 | * buffer is fully being overwritten, do nothing. | 
|  | 710 | */ | 
|  | 711 | if (bh_end <= pos || bh_pos >= end) { | 
|  | 712 | if (!buffer_uptodate(bh)) { | 
|  | 713 | u8 *kaddr = kmap_atomic(page, KM_USER0); | 
|  | 714 | memset(kaddr + bh_offset(bh), 0, | 
|  | 715 | blocksize); | 
|  | 716 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 717 | flush_dcache_page(page); | 
|  | 718 | set_buffer_uptodate(bh); | 
|  | 719 | } | 
|  | 720 | mark_buffer_dirty(bh); | 
|  | 721 | continue; | 
|  | 722 | } | 
|  | 723 | set_buffer_new(bh); | 
|  | 724 | if (!buffer_uptodate(bh) && | 
|  | 725 | (bh_pos < pos || bh_end > end)) { | 
|  | 726 | u8 *kaddr; | 
|  | 727 | unsigned pofs; | 
|  | 728 |  | 
|  | 729 | kaddr = kmap_atomic(page, KM_USER0); | 
|  | 730 | if (bh_pos < pos) { | 
|  | 731 | pofs = bh_pos & ~PAGE_CACHE_MASK; | 
|  | 732 | memset(kaddr + pofs, 0, pos - bh_pos); | 
|  | 733 | } | 
|  | 734 | if (bh_end > end) { | 
|  | 735 | pofs = end & ~PAGE_CACHE_MASK; | 
|  | 736 | memset(kaddr + pofs, 0, bh_end - end); | 
|  | 737 | } | 
|  | 738 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 739 | flush_dcache_page(page); | 
|  | 740 | } | 
|  | 741 | continue; | 
|  | 742 | } | 
|  | 743 | /* | 
|  | 744 | * Slow path: this is the first buffer in the cluster.  If it | 
|  | 745 | * is outside allocated size and is not uptodate, zero it and | 
|  | 746 | * set it uptodate. | 
|  | 747 | */ | 
|  | 748 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 749 | initialized_size = ni->allocated_size; | 
|  | 750 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 751 | if (bh_pos > initialized_size) { | 
|  | 752 | if (PageUptodate(page)) { | 
|  | 753 | if (!buffer_uptodate(bh)) | 
|  | 754 | set_buffer_uptodate(bh); | 
|  | 755 | } else if (!buffer_uptodate(bh)) { | 
|  | 756 | u8 *kaddr = kmap_atomic(page, KM_USER0); | 
|  | 757 | memset(kaddr + bh_offset(bh), 0, blocksize); | 
|  | 758 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 759 | flush_dcache_page(page); | 
|  | 760 | set_buffer_uptodate(bh); | 
|  | 761 | } | 
|  | 762 | continue; | 
|  | 763 | } | 
|  | 764 | is_retry = FALSE; | 
|  | 765 | if (!rl) { | 
|  | 766 | down_read(&ni->runlist.lock); | 
|  | 767 | retry_remap: | 
|  | 768 | rl = ni->runlist.rl; | 
|  | 769 | } | 
|  | 770 | if (likely(rl != NULL)) { | 
|  | 771 | /* Seek to element containing target cluster. */ | 
|  | 772 | while (rl->length && rl[1].vcn <= bh_cpos) | 
|  | 773 | rl++; | 
|  | 774 | lcn = ntfs_rl_vcn_to_lcn(rl, bh_cpos); | 
|  | 775 | if (likely(lcn >= 0)) { | 
|  | 776 | /* | 
|  | 777 | * Successful remap, setup the map cache and | 
|  | 778 | * use that to deal with the buffer. | 
|  | 779 | */ | 
|  | 780 | was_hole = FALSE; | 
|  | 781 | vcn = bh_cpos; | 
|  | 782 | vcn_len = rl[1].vcn - vcn; | 
|  | 783 | lcn_block = lcn << (vol->cluster_size_bits - | 
|  | 784 | blocksize_bits); | 
| Anton Altaparmakov | d5aeaef | 2005-10-19 12:23:10 +0100 | [diff] [blame] | 785 | cdelta = 0; | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 786 | /* | 
| Anton Altaparmakov | 3aebf25 | 2005-11-01 15:49:31 +0000 | [diff] [blame] | 787 | * If the number of remaining clusters touched | 
|  | 788 | * by the write is smaller or equal to the | 
|  | 789 | * number of cached clusters, unlock the | 
|  | 790 | * runlist as the map cache will be used from | 
|  | 791 | * now on. | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 792 | */ | 
|  | 793 | if (likely(vcn + vcn_len >= cend)) { | 
|  | 794 | if (rl_write_locked) { | 
|  | 795 | up_write(&ni->runlist.lock); | 
|  | 796 | rl_write_locked = FALSE; | 
|  | 797 | } else | 
|  | 798 | up_read(&ni->runlist.lock); | 
|  | 799 | rl = NULL; | 
|  | 800 | } | 
|  | 801 | goto map_buffer_cached; | 
|  | 802 | } | 
|  | 803 | } else | 
|  | 804 | lcn = LCN_RL_NOT_MAPPED; | 
|  | 805 | /* | 
|  | 806 | * If it is not a hole and not out of bounds, the runlist is | 
|  | 807 | * probably unmapped so try to map it now. | 
|  | 808 | */ | 
|  | 809 | if (unlikely(lcn != LCN_HOLE && lcn != LCN_ENOENT)) { | 
|  | 810 | if (likely(!is_retry && lcn == LCN_RL_NOT_MAPPED)) { | 
|  | 811 | /* Attempt to map runlist. */ | 
|  | 812 | if (!rl_write_locked) { | 
|  | 813 | /* | 
|  | 814 | * We need the runlist locked for | 
|  | 815 | * writing, so if it is locked for | 
|  | 816 | * reading relock it now and retry in | 
|  | 817 | * case it changed whilst we dropped | 
|  | 818 | * the lock. | 
|  | 819 | */ | 
|  | 820 | up_read(&ni->runlist.lock); | 
|  | 821 | down_write(&ni->runlist.lock); | 
|  | 822 | rl_write_locked = TRUE; | 
|  | 823 | goto retry_remap; | 
|  | 824 | } | 
|  | 825 | err = ntfs_map_runlist_nolock(ni, bh_cpos, | 
|  | 826 | NULL); | 
|  | 827 | if (likely(!err)) { | 
|  | 828 | is_retry = TRUE; | 
|  | 829 | goto retry_remap; | 
|  | 830 | } | 
|  | 831 | /* | 
|  | 832 | * If @vcn is out of bounds, pretend @lcn is | 
|  | 833 | * LCN_ENOENT.  As long as the buffer is out | 
|  | 834 | * of bounds this will work fine. | 
|  | 835 | */ | 
|  | 836 | if (err == -ENOENT) { | 
|  | 837 | lcn = LCN_ENOENT; | 
|  | 838 | err = 0; | 
|  | 839 | goto rl_not_mapped_enoent; | 
|  | 840 | } | 
|  | 841 | } else | 
|  | 842 | err = -EIO; | 
|  | 843 | /* Failed to map the buffer, even after retrying. */ | 
|  | 844 | bh->b_blocknr = -1; | 
|  | 845 | ntfs_error(vol->sb, "Failed to write to inode 0x%lx, " | 
|  | 846 | "attribute type 0x%x, vcn 0x%llx, " | 
|  | 847 | "vcn offset 0x%x, because its " | 
|  | 848 | "location on disk could not be " | 
|  | 849 | "determined%s (error code %i).", | 
|  | 850 | ni->mft_no, ni->type, | 
|  | 851 | (unsigned long long)bh_cpos, | 
|  | 852 | (unsigned)bh_pos & | 
|  | 853 | vol->cluster_size_mask, | 
|  | 854 | is_retry ? " even after retrying" : "", | 
|  | 855 | err); | 
|  | 856 | break; | 
|  | 857 | } | 
|  | 858 | rl_not_mapped_enoent: | 
|  | 859 | /* | 
|  | 860 | * The buffer is in a hole or out of bounds.  We need to fill | 
|  | 861 | * the hole, unless the buffer is in a cluster which is not | 
|  | 862 | * touched by the write, in which case we just leave the buffer | 
|  | 863 | * unmapped.  This can only happen when the cluster size is | 
|  | 864 | * less than the page cache size. | 
|  | 865 | */ | 
|  | 866 | if (unlikely(vol->cluster_size < PAGE_CACHE_SIZE)) { | 
|  | 867 | bh_cend = (bh_end + vol->cluster_size - 1) >> | 
|  | 868 | vol->cluster_size_bits; | 
|  | 869 | if ((bh_cend <= cpos || bh_cpos >= cend)) { | 
|  | 870 | bh->b_blocknr = -1; | 
|  | 871 | /* | 
|  | 872 | * If the buffer is uptodate we skip it.  If it | 
|  | 873 | * is not but the page is uptodate, we can set | 
|  | 874 | * the buffer uptodate.  If the page is not | 
|  | 875 | * uptodate, we can clear the buffer and set it | 
|  | 876 | * uptodate.  Whether this is worthwhile is | 
|  | 877 | * debatable and this could be removed. | 
|  | 878 | */ | 
|  | 879 | if (PageUptodate(page)) { | 
|  | 880 | if (!buffer_uptodate(bh)) | 
|  | 881 | set_buffer_uptodate(bh); | 
|  | 882 | } else if (!buffer_uptodate(bh)) { | 
|  | 883 | u8 *kaddr = kmap_atomic(page, KM_USER0); | 
|  | 884 | memset(kaddr + bh_offset(bh), 0, | 
|  | 885 | blocksize); | 
|  | 886 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 887 | flush_dcache_page(page); | 
|  | 888 | set_buffer_uptodate(bh); | 
|  | 889 | } | 
|  | 890 | continue; | 
|  | 891 | } | 
|  | 892 | } | 
|  | 893 | /* | 
|  | 894 | * Out of bounds buffer is invalid if it was not really out of | 
|  | 895 | * bounds. | 
|  | 896 | */ | 
|  | 897 | BUG_ON(lcn != LCN_HOLE); | 
|  | 898 | /* | 
|  | 899 | * We need the runlist locked for writing, so if it is locked | 
|  | 900 | * for reading relock it now and retry in case it changed | 
|  | 901 | * whilst we dropped the lock. | 
|  | 902 | */ | 
|  | 903 | BUG_ON(!rl); | 
|  | 904 | if (!rl_write_locked) { | 
|  | 905 | up_read(&ni->runlist.lock); | 
|  | 906 | down_write(&ni->runlist.lock); | 
|  | 907 | rl_write_locked = TRUE; | 
|  | 908 | goto retry_remap; | 
|  | 909 | } | 
|  | 910 | /* Find the previous last allocated cluster. */ | 
|  | 911 | BUG_ON(rl->lcn != LCN_HOLE); | 
|  | 912 | lcn = -1; | 
|  | 913 | rl2 = rl; | 
|  | 914 | while (--rl2 >= ni->runlist.rl) { | 
|  | 915 | if (rl2->lcn >= 0) { | 
|  | 916 | lcn = rl2->lcn + rl2->length; | 
|  | 917 | break; | 
|  | 918 | } | 
|  | 919 | } | 
|  | 920 | rl2 = ntfs_cluster_alloc(vol, bh_cpos, 1, lcn, DATA_ZONE, | 
|  | 921 | FALSE); | 
|  | 922 | if (IS_ERR(rl2)) { | 
|  | 923 | err = PTR_ERR(rl2); | 
|  | 924 | ntfs_debug("Failed to allocate cluster, error code %i.", | 
|  | 925 | err); | 
|  | 926 | break; | 
|  | 927 | } | 
|  | 928 | lcn = rl2->lcn; | 
|  | 929 | rl = ntfs_runlists_merge(ni->runlist.rl, rl2); | 
|  | 930 | if (IS_ERR(rl)) { | 
|  | 931 | err = PTR_ERR(rl); | 
|  | 932 | if (err != -ENOMEM) | 
|  | 933 | err = -EIO; | 
|  | 934 | if (ntfs_cluster_free_from_rl(vol, rl2)) { | 
|  | 935 | ntfs_error(vol->sb, "Failed to release " | 
|  | 936 | "allocated cluster in error " | 
|  | 937 | "code path.  Run chkdsk to " | 
|  | 938 | "recover the lost cluster."); | 
|  | 939 | NVolSetErrors(vol); | 
|  | 940 | } | 
|  | 941 | ntfs_free(rl2); | 
|  | 942 | break; | 
|  | 943 | } | 
|  | 944 | ni->runlist.rl = rl; | 
|  | 945 | status.runlist_merged = 1; | 
|  | 946 | ntfs_debug("Allocated cluster, lcn 0x%llx.", lcn); | 
|  | 947 | /* Map and lock the mft record and get the attribute record. */ | 
|  | 948 | if (!NInoAttr(ni)) | 
|  | 949 | base_ni = ni; | 
|  | 950 | else | 
|  | 951 | base_ni = ni->ext.base_ntfs_ino; | 
|  | 952 | m = map_mft_record(base_ni); | 
|  | 953 | if (IS_ERR(m)) { | 
|  | 954 | err = PTR_ERR(m); | 
|  | 955 | break; | 
|  | 956 | } | 
|  | 957 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | 958 | if (unlikely(!ctx)) { | 
|  | 959 | err = -ENOMEM; | 
|  | 960 | unmap_mft_record(base_ni); | 
|  | 961 | break; | 
|  | 962 | } | 
|  | 963 | status.mft_attr_mapped = 1; | 
|  | 964 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 965 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx); | 
|  | 966 | if (unlikely(err)) { | 
|  | 967 | if (err == -ENOENT) | 
|  | 968 | err = -EIO; | 
|  | 969 | break; | 
|  | 970 | } | 
|  | 971 | m = ctx->mrec; | 
|  | 972 | a = ctx->attr; | 
|  | 973 | /* | 
|  | 974 | * Find the runlist element with which the attribute extent | 
|  | 975 | * starts.  Note, we cannot use the _attr_ version because we | 
|  | 976 | * have mapped the mft record.  That is ok because we know the | 
|  | 977 | * runlist fragment must be mapped already to have ever gotten | 
|  | 978 | * here, so we can just use the _rl_ version. | 
|  | 979 | */ | 
|  | 980 | vcn = sle64_to_cpu(a->data.non_resident.lowest_vcn); | 
|  | 981 | rl2 = ntfs_rl_find_vcn_nolock(rl, vcn); | 
|  | 982 | BUG_ON(!rl2); | 
|  | 983 | BUG_ON(!rl2->length); | 
|  | 984 | BUG_ON(rl2->lcn < LCN_HOLE); | 
|  | 985 | highest_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn); | 
|  | 986 | /* | 
|  | 987 | * If @highest_vcn is zero, calculate the real highest_vcn | 
|  | 988 | * (which can really be zero). | 
|  | 989 | */ | 
|  | 990 | if (!highest_vcn) | 
|  | 991 | highest_vcn = (sle64_to_cpu( | 
|  | 992 | a->data.non_resident.allocated_size) >> | 
|  | 993 | vol->cluster_size_bits) - 1; | 
|  | 994 | /* | 
|  | 995 | * Determine the size of the mapping pairs array for the new | 
|  | 996 | * extent, i.e. the old extent with the hole filled. | 
|  | 997 | */ | 
|  | 998 | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, vcn, | 
|  | 999 | highest_vcn); | 
|  | 1000 | if (unlikely(mp_size <= 0)) { | 
|  | 1001 | if (!(err = mp_size)) | 
|  | 1002 | err = -EIO; | 
|  | 1003 | ntfs_debug("Failed to get size for mapping pairs " | 
|  | 1004 | "array, error code %i.", err); | 
|  | 1005 | break; | 
|  | 1006 | } | 
|  | 1007 | /* | 
|  | 1008 | * Resize the attribute record to fit the new mapping pairs | 
|  | 1009 | * array. | 
|  | 1010 | */ | 
|  | 1011 | attr_rec_len = le32_to_cpu(a->length); | 
|  | 1012 | err = ntfs_attr_record_resize(m, a, mp_size + le16_to_cpu( | 
|  | 1013 | a->data.non_resident.mapping_pairs_offset)); | 
|  | 1014 | if (unlikely(err)) { | 
|  | 1015 | BUG_ON(err != -ENOSPC); | 
|  | 1016 | // TODO: Deal with this by using the current attribute | 
|  | 1017 | // and fill it with as much of the mapping pairs | 
|  | 1018 | // array as possible.  Then loop over each attribute | 
|  | 1019 | // extent rewriting the mapping pairs arrays as we go | 
|  | 1020 | // along and if when we reach the end we have not | 
|  | 1021 | // enough space, try to resize the last attribute | 
|  | 1022 | // extent and if even that fails, add a new attribute | 
|  | 1023 | // extent. | 
|  | 1024 | // We could also try to resize at each step in the hope | 
|  | 1025 | // that we will not need to rewrite every single extent. | 
|  | 1026 | // Note, we may need to decompress some extents to fill | 
|  | 1027 | // the runlist as we are walking the extents... | 
|  | 1028 | ntfs_error(vol->sb, "Not enough space in the mft " | 
|  | 1029 | "record for the extended attribute " | 
|  | 1030 | "record.  This case is not " | 
|  | 1031 | "implemented yet."); | 
|  | 1032 | err = -EOPNOTSUPP; | 
|  | 1033 | break ; | 
|  | 1034 | } | 
|  | 1035 | status.mp_rebuilt = 1; | 
|  | 1036 | /* | 
|  | 1037 | * Generate the mapping pairs array directly into the attribute | 
|  | 1038 | * record. | 
|  | 1039 | */ | 
|  | 1040 | err = ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | 
|  | 1041 | a->data.non_resident.mapping_pairs_offset), | 
|  | 1042 | mp_size, rl2, vcn, highest_vcn, NULL); | 
|  | 1043 | if (unlikely(err)) { | 
|  | 1044 | ntfs_error(vol->sb, "Cannot fill hole in inode 0x%lx, " | 
|  | 1045 | "attribute type 0x%x, because building " | 
|  | 1046 | "the mapping pairs failed with error " | 
|  | 1047 | "code %i.", vi->i_ino, | 
|  | 1048 | (unsigned)le32_to_cpu(ni->type), err); | 
|  | 1049 | err = -EIO; | 
|  | 1050 | break; | 
|  | 1051 | } | 
|  | 1052 | /* Update the highest_vcn but only if it was not set. */ | 
|  | 1053 | if (unlikely(!a->data.non_resident.highest_vcn)) | 
|  | 1054 | a->data.non_resident.highest_vcn = | 
|  | 1055 | cpu_to_sle64(highest_vcn); | 
|  | 1056 | /* | 
|  | 1057 | * If the attribute is sparse/compressed, update the compressed | 
|  | 1058 | * size in the ntfs_inode structure and the attribute record. | 
|  | 1059 | */ | 
|  | 1060 | if (likely(NInoSparse(ni) || NInoCompressed(ni))) { | 
|  | 1061 | /* | 
|  | 1062 | * If we are not in the first attribute extent, switch | 
|  | 1063 | * to it, but first ensure the changes will make it to | 
|  | 1064 | * disk later. | 
|  | 1065 | */ | 
|  | 1066 | if (a->data.non_resident.lowest_vcn) { | 
|  | 1067 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 1068 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 1069 | ntfs_attr_reinit_search_ctx(ctx); | 
|  | 1070 | err = ntfs_attr_lookup(ni->type, ni->name, | 
|  | 1071 | ni->name_len, CASE_SENSITIVE, | 
|  | 1072 | 0, NULL, 0, ctx); | 
|  | 1073 | if (unlikely(err)) { | 
|  | 1074 | status.attr_switched = 1; | 
|  | 1075 | break; | 
|  | 1076 | } | 
|  | 1077 | /* @m is not used any more so do not set it. */ | 
|  | 1078 | a = ctx->attr; | 
|  | 1079 | } | 
|  | 1080 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 1081 | ni->itype.compressed.size += vol->cluster_size; | 
|  | 1082 | a->data.non_resident.compressed_size = | 
|  | 1083 | cpu_to_sle64(ni->itype.compressed.size); | 
|  | 1084 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1085 | } | 
|  | 1086 | /* Ensure the changes make it to disk. */ | 
|  | 1087 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 1088 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 1089 | ntfs_attr_put_search_ctx(ctx); | 
|  | 1090 | unmap_mft_record(base_ni); | 
|  | 1091 | /* Successfully filled the hole. */ | 
|  | 1092 | status.runlist_merged = 0; | 
|  | 1093 | status.mft_attr_mapped = 0; | 
|  | 1094 | status.mp_rebuilt = 0; | 
|  | 1095 | /* Setup the map cache and use that to deal with the buffer. */ | 
|  | 1096 | was_hole = TRUE; | 
|  | 1097 | vcn = bh_cpos; | 
|  | 1098 | vcn_len = 1; | 
|  | 1099 | lcn_block = lcn << (vol->cluster_size_bits - blocksize_bits); | 
|  | 1100 | cdelta = 0; | 
|  | 1101 | /* | 
|  | 1102 | * If the number of remaining clusters in the @pages is smaller | 
|  | 1103 | * or equal to the number of cached clusters, unlock the | 
|  | 1104 | * runlist as the map cache will be used from now on. | 
|  | 1105 | */ | 
|  | 1106 | if (likely(vcn + vcn_len >= cend)) { | 
|  | 1107 | up_write(&ni->runlist.lock); | 
|  | 1108 | rl_write_locked = FALSE; | 
|  | 1109 | rl = NULL; | 
|  | 1110 | } | 
|  | 1111 | goto map_buffer_cached; | 
|  | 1112 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | 
|  | 1113 | /* If there are no errors, do the next page. */ | 
|  | 1114 | if (likely(!err && ++u < nr_pages)) | 
|  | 1115 | goto do_next_page; | 
|  | 1116 | /* If there are no errors, release the runlist lock if we took it. */ | 
|  | 1117 | if (likely(!err)) { | 
|  | 1118 | if (unlikely(rl_write_locked)) { | 
|  | 1119 | up_write(&ni->runlist.lock); | 
|  | 1120 | rl_write_locked = FALSE; | 
|  | 1121 | } else if (unlikely(rl)) | 
|  | 1122 | up_read(&ni->runlist.lock); | 
|  | 1123 | rl = NULL; | 
|  | 1124 | } | 
|  | 1125 | /* If we issued read requests, let them complete. */ | 
|  | 1126 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 1127 | initialized_size = ni->initialized_size; | 
|  | 1128 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1129 | while (wait_bh > wait) { | 
|  | 1130 | bh = *--wait_bh; | 
|  | 1131 | wait_on_buffer(bh); | 
|  | 1132 | if (likely(buffer_uptodate(bh))) { | 
|  | 1133 | page = bh->b_page; | 
|  | 1134 | bh_pos = ((s64)page->index << PAGE_CACHE_SHIFT) + | 
|  | 1135 | bh_offset(bh); | 
|  | 1136 | /* | 
|  | 1137 | * If the buffer overflows the initialized size, need | 
|  | 1138 | * to zero the overflowing region. | 
|  | 1139 | */ | 
|  | 1140 | if (unlikely(bh_pos + blocksize > initialized_size)) { | 
|  | 1141 | u8 *kaddr; | 
|  | 1142 | int ofs = 0; | 
|  | 1143 |  | 
|  | 1144 | if (likely(bh_pos < initialized_size)) | 
|  | 1145 | ofs = initialized_size - bh_pos; | 
|  | 1146 | kaddr = kmap_atomic(page, KM_USER0); | 
|  | 1147 | memset(kaddr + bh_offset(bh) + ofs, 0, | 
|  | 1148 | blocksize - ofs); | 
|  | 1149 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1150 | flush_dcache_page(page); | 
|  | 1151 | } | 
|  | 1152 | } else /* if (unlikely(!buffer_uptodate(bh))) */ | 
|  | 1153 | err = -EIO; | 
|  | 1154 | } | 
|  | 1155 | if (likely(!err)) { | 
|  | 1156 | /* Clear buffer_new on all buffers. */ | 
|  | 1157 | u = 0; | 
|  | 1158 | do { | 
|  | 1159 | bh = head = page_buffers(pages[u]); | 
|  | 1160 | do { | 
|  | 1161 | if (buffer_new(bh)) | 
|  | 1162 | clear_buffer_new(bh); | 
|  | 1163 | } while ((bh = bh->b_this_page) != head); | 
|  | 1164 | } while (++u < nr_pages); | 
|  | 1165 | ntfs_debug("Done."); | 
|  | 1166 | return err; | 
|  | 1167 | } | 
|  | 1168 | if (status.attr_switched) { | 
|  | 1169 | /* Get back to the attribute extent we modified. */ | 
|  | 1170 | ntfs_attr_reinit_search_ctx(ctx); | 
|  | 1171 | if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 1172 | CASE_SENSITIVE, bh_cpos, NULL, 0, ctx)) { | 
|  | 1173 | ntfs_error(vol->sb, "Failed to find required " | 
|  | 1174 | "attribute extent of attribute in " | 
|  | 1175 | "error code path.  Run chkdsk to " | 
|  | 1176 | "recover."); | 
|  | 1177 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 1178 | ni->itype.compressed.size += vol->cluster_size; | 
|  | 1179 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1180 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 1181 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 1182 | /* | 
|  | 1183 | * The only thing that is now wrong is the compressed | 
|  | 1184 | * size of the base attribute extent which chkdsk | 
|  | 1185 | * should be able to fix. | 
|  | 1186 | */ | 
|  | 1187 | NVolSetErrors(vol); | 
|  | 1188 | } else { | 
|  | 1189 | m = ctx->mrec; | 
|  | 1190 | a = ctx->attr; | 
|  | 1191 | status.attr_switched = 0; | 
|  | 1192 | } | 
|  | 1193 | } | 
|  | 1194 | /* | 
|  | 1195 | * If the runlist has been modified, need to restore it by punching a | 
|  | 1196 | * hole into it and we then need to deallocate the on-disk cluster as | 
|  | 1197 | * well.  Note, we only modify the runlist if we are able to generate a | 
|  | 1198 | * new mapping pairs array, i.e. only when the mapped attribute extent | 
|  | 1199 | * is not switched. | 
|  | 1200 | */ | 
|  | 1201 | if (status.runlist_merged && !status.attr_switched) { | 
|  | 1202 | BUG_ON(!rl_write_locked); | 
|  | 1203 | /* Make the file cluster we allocated sparse in the runlist. */ | 
|  | 1204 | if (ntfs_rl_punch_nolock(vol, &ni->runlist, bh_cpos, 1)) { | 
|  | 1205 | ntfs_error(vol->sb, "Failed to punch hole into " | 
|  | 1206 | "attribute runlist in error code " | 
|  | 1207 | "path.  Run chkdsk to recover the " | 
|  | 1208 | "lost cluster."); | 
|  | 1209 | make_bad_inode(vi); | 
|  | 1210 | make_bad_inode(VFS_I(base_ni)); | 
|  | 1211 | NVolSetErrors(vol); | 
|  | 1212 | } else /* if (success) */ { | 
|  | 1213 | status.runlist_merged = 0; | 
|  | 1214 | /* | 
|  | 1215 | * Deallocate the on-disk cluster we allocated but only | 
|  | 1216 | * if we succeeded in punching its vcn out of the | 
|  | 1217 | * runlist. | 
|  | 1218 | */ | 
|  | 1219 | down_write(&vol->lcnbmp_lock); | 
|  | 1220 | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | 
|  | 1221 | ntfs_error(vol->sb, "Failed to release " | 
|  | 1222 | "allocated cluster in error " | 
|  | 1223 | "code path.  Run chkdsk to " | 
|  | 1224 | "recover the lost cluster."); | 
|  | 1225 | NVolSetErrors(vol); | 
|  | 1226 | } | 
|  | 1227 | up_write(&vol->lcnbmp_lock); | 
|  | 1228 | } | 
|  | 1229 | } | 
|  | 1230 | /* | 
|  | 1231 | * Resize the attribute record to its old size and rebuild the mapping | 
|  | 1232 | * pairs array.  Note, we only can do this if the runlist has been | 
|  | 1233 | * restored to its old state which also implies that the mapped | 
|  | 1234 | * attribute extent is not switched. | 
|  | 1235 | */ | 
|  | 1236 | if (status.mp_rebuilt && !status.runlist_merged) { | 
|  | 1237 | if (ntfs_attr_record_resize(m, a, attr_rec_len)) { | 
|  | 1238 | ntfs_error(vol->sb, "Failed to restore attribute " | 
|  | 1239 | "record in error code path.  Run " | 
|  | 1240 | "chkdsk to recover."); | 
|  | 1241 | make_bad_inode(vi); | 
|  | 1242 | make_bad_inode(VFS_I(base_ni)); | 
|  | 1243 | NVolSetErrors(vol); | 
|  | 1244 | } else /* if (success) */ { | 
|  | 1245 | if (ntfs_mapping_pairs_build(vol, (u8*)a + | 
|  | 1246 | le16_to_cpu(a->data.non_resident. | 
|  | 1247 | mapping_pairs_offset), attr_rec_len - | 
|  | 1248 | le16_to_cpu(a->data.non_resident. | 
|  | 1249 | mapping_pairs_offset), ni->runlist.rl, | 
|  | 1250 | vcn, highest_vcn, NULL)) { | 
|  | 1251 | ntfs_error(vol->sb, "Failed to restore " | 
|  | 1252 | "mapping pairs array in error " | 
|  | 1253 | "code path.  Run chkdsk to " | 
|  | 1254 | "recover."); | 
|  | 1255 | make_bad_inode(vi); | 
|  | 1256 | make_bad_inode(VFS_I(base_ni)); | 
|  | 1257 | NVolSetErrors(vol); | 
|  | 1258 | } | 
|  | 1259 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 1260 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 1261 | } | 
|  | 1262 | } | 
|  | 1263 | /* Release the mft record and the attribute. */ | 
|  | 1264 | if (status.mft_attr_mapped) { | 
|  | 1265 | ntfs_attr_put_search_ctx(ctx); | 
|  | 1266 | unmap_mft_record(base_ni); | 
|  | 1267 | } | 
|  | 1268 | /* Release the runlist lock. */ | 
|  | 1269 | if (rl_write_locked) | 
|  | 1270 | up_write(&ni->runlist.lock); | 
|  | 1271 | else if (rl) | 
|  | 1272 | up_read(&ni->runlist.lock); | 
|  | 1273 | /* | 
|  | 1274 | * Zero out any newly allocated blocks to avoid exposing stale data. | 
|  | 1275 | * If BH_New is set, we know that the block was newly allocated above | 
|  | 1276 | * and that it has not been fully zeroed and marked dirty yet. | 
|  | 1277 | */ | 
|  | 1278 | nr_pages = u; | 
|  | 1279 | u = 0; | 
|  | 1280 | end = bh_cpos << vol->cluster_size_bits; | 
|  | 1281 | do { | 
|  | 1282 | page = pages[u]; | 
|  | 1283 | bh = head = page_buffers(page); | 
|  | 1284 | do { | 
|  | 1285 | if (u == nr_pages && | 
|  | 1286 | ((s64)page->index << PAGE_CACHE_SHIFT) + | 
|  | 1287 | bh_offset(bh) >= end) | 
|  | 1288 | break; | 
|  | 1289 | if (!buffer_new(bh)) | 
|  | 1290 | continue; | 
|  | 1291 | clear_buffer_new(bh); | 
|  | 1292 | if (!buffer_uptodate(bh)) { | 
|  | 1293 | if (PageUptodate(page)) | 
|  | 1294 | set_buffer_uptodate(bh); | 
|  | 1295 | else { | 
|  | 1296 | u8 *kaddr = kmap_atomic(page, KM_USER0); | 
|  | 1297 | memset(kaddr + bh_offset(bh), 0, | 
|  | 1298 | blocksize); | 
|  | 1299 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1300 | flush_dcache_page(page); | 
|  | 1301 | set_buffer_uptodate(bh); | 
|  | 1302 | } | 
|  | 1303 | } | 
|  | 1304 | mark_buffer_dirty(bh); | 
|  | 1305 | } while ((bh = bh->b_this_page) != head); | 
|  | 1306 | } while (++u <= nr_pages); | 
|  | 1307 | ntfs_error(vol->sb, "Failed.  Returning error code %i.", err); | 
|  | 1308 | return err; | 
|  | 1309 | } | 
|  | 1310 |  | 
|  | 1311 | /* | 
|  | 1312 | * Copy as much as we can into the pages and return the number of bytes which | 
|  | 1313 | * were sucessfully copied.  If a fault is encountered then clear the pages | 
|  | 1314 | * out to (ofs + bytes) and return the number of bytes which were copied. | 
|  | 1315 | */ | 
|  | 1316 | static inline size_t ntfs_copy_from_user(struct page **pages, | 
|  | 1317 | unsigned nr_pages, unsigned ofs, const char __user *buf, | 
|  | 1318 | size_t bytes) | 
|  | 1319 | { | 
|  | 1320 | struct page **last_page = pages + nr_pages; | 
|  | 1321 | char *kaddr; | 
|  | 1322 | size_t total = 0; | 
|  | 1323 | unsigned len; | 
|  | 1324 | int left; | 
|  | 1325 |  | 
|  | 1326 | do { | 
|  | 1327 | len = PAGE_CACHE_SIZE - ofs; | 
|  | 1328 | if (len > bytes) | 
|  | 1329 | len = bytes; | 
|  | 1330 | kaddr = kmap_atomic(*pages, KM_USER0); | 
|  | 1331 | left = __copy_from_user_inatomic(kaddr + ofs, buf, len); | 
|  | 1332 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1333 | if (unlikely(left)) { | 
|  | 1334 | /* Do it the slow way. */ | 
|  | 1335 | kaddr = kmap(*pages); | 
|  | 1336 | left = __copy_from_user(kaddr + ofs, buf, len); | 
|  | 1337 | kunmap(*pages); | 
|  | 1338 | if (unlikely(left)) | 
|  | 1339 | goto err_out; | 
|  | 1340 | } | 
|  | 1341 | total += len; | 
|  | 1342 | bytes -= len; | 
|  | 1343 | if (!bytes) | 
|  | 1344 | break; | 
|  | 1345 | buf += len; | 
|  | 1346 | ofs = 0; | 
|  | 1347 | } while (++pages < last_page); | 
|  | 1348 | out: | 
|  | 1349 | return total; | 
|  | 1350 | err_out: | 
|  | 1351 | total += len - left; | 
|  | 1352 | /* Zero the rest of the target like __copy_from_user(). */ | 
|  | 1353 | while (++pages < last_page) { | 
|  | 1354 | bytes -= len; | 
|  | 1355 | if (!bytes) | 
|  | 1356 | break; | 
|  | 1357 | len = PAGE_CACHE_SIZE; | 
|  | 1358 | if (len > bytes) | 
|  | 1359 | len = bytes; | 
|  | 1360 | kaddr = kmap_atomic(*pages, KM_USER0); | 
|  | 1361 | memset(kaddr, 0, len); | 
|  | 1362 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1363 | } | 
|  | 1364 | goto out; | 
|  | 1365 | } | 
|  | 1366 |  | 
|  | 1367 | static size_t __ntfs_copy_from_user_iovec(char *vaddr, | 
|  | 1368 | const struct iovec *iov, size_t iov_ofs, size_t bytes) | 
|  | 1369 | { | 
|  | 1370 | size_t total = 0; | 
|  | 1371 |  | 
|  | 1372 | while (1) { | 
|  | 1373 | const char __user *buf = iov->iov_base + iov_ofs; | 
|  | 1374 | unsigned len; | 
|  | 1375 | size_t left; | 
|  | 1376 |  | 
|  | 1377 | len = iov->iov_len - iov_ofs; | 
|  | 1378 | if (len > bytes) | 
|  | 1379 | len = bytes; | 
|  | 1380 | left = __copy_from_user_inatomic(vaddr, buf, len); | 
|  | 1381 | total += len; | 
|  | 1382 | bytes -= len; | 
|  | 1383 | vaddr += len; | 
|  | 1384 | if (unlikely(left)) { | 
|  | 1385 | /* | 
|  | 1386 | * Zero the rest of the target like __copy_from_user(). | 
|  | 1387 | */ | 
|  | 1388 | memset(vaddr, 0, bytes); | 
|  | 1389 | total -= left; | 
|  | 1390 | break; | 
|  | 1391 | } | 
|  | 1392 | if (!bytes) | 
|  | 1393 | break; | 
|  | 1394 | iov++; | 
|  | 1395 | iov_ofs = 0; | 
|  | 1396 | } | 
|  | 1397 | return total; | 
|  | 1398 | } | 
|  | 1399 |  | 
|  | 1400 | static inline void ntfs_set_next_iovec(const struct iovec **iovp, | 
|  | 1401 | size_t *iov_ofsp, size_t bytes) | 
|  | 1402 | { | 
|  | 1403 | const struct iovec *iov = *iovp; | 
|  | 1404 | size_t iov_ofs = *iov_ofsp; | 
|  | 1405 |  | 
|  | 1406 | while (bytes) { | 
|  | 1407 | unsigned len; | 
|  | 1408 |  | 
|  | 1409 | len = iov->iov_len - iov_ofs; | 
|  | 1410 | if (len > bytes) | 
|  | 1411 | len = bytes; | 
|  | 1412 | bytes -= len; | 
|  | 1413 | iov_ofs += len; | 
|  | 1414 | if (iov->iov_len == iov_ofs) { | 
|  | 1415 | iov++; | 
|  | 1416 | iov_ofs = 0; | 
|  | 1417 | } | 
|  | 1418 | } | 
|  | 1419 | *iovp = iov; | 
|  | 1420 | *iov_ofsp = iov_ofs; | 
|  | 1421 | } | 
|  | 1422 |  | 
|  | 1423 | /* | 
|  | 1424 | * This has the same side-effects and return value as ntfs_copy_from_user(). | 
|  | 1425 | * The difference is that on a fault we need to memset the remainder of the | 
|  | 1426 | * pages (out to offset + bytes), to emulate ntfs_copy_from_user()'s | 
|  | 1427 | * single-segment behaviour. | 
|  | 1428 | * | 
|  | 1429 | * We call the same helper (__ntfs_copy_from_user_iovec()) both when atomic and | 
|  | 1430 | * when not atomic.  This is ok because __ntfs_copy_from_user_iovec() calls | 
|  | 1431 | * __copy_from_user_inatomic() and it is ok to call this when non-atomic.  In | 
|  | 1432 | * fact, the only difference between __copy_from_user_inatomic() and | 
|  | 1433 | * __copy_from_user() is that the latter calls might_sleep().  And on many | 
|  | 1434 | * architectures __copy_from_user_inatomic() is just defined to | 
|  | 1435 | * __copy_from_user() so it makes no difference at all on those architectures. | 
|  | 1436 | */ | 
|  | 1437 | static inline size_t ntfs_copy_from_user_iovec(struct page **pages, | 
|  | 1438 | unsigned nr_pages, unsigned ofs, const struct iovec **iov, | 
|  | 1439 | size_t *iov_ofs, size_t bytes) | 
|  | 1440 | { | 
|  | 1441 | struct page **last_page = pages + nr_pages; | 
|  | 1442 | char *kaddr; | 
|  | 1443 | size_t copied, len, total = 0; | 
|  | 1444 |  | 
|  | 1445 | do { | 
|  | 1446 | len = PAGE_CACHE_SIZE - ofs; | 
|  | 1447 | if (len > bytes) | 
|  | 1448 | len = bytes; | 
|  | 1449 | kaddr = kmap_atomic(*pages, KM_USER0); | 
|  | 1450 | copied = __ntfs_copy_from_user_iovec(kaddr + ofs, | 
|  | 1451 | *iov, *iov_ofs, len); | 
|  | 1452 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1453 | if (unlikely(copied != len)) { | 
|  | 1454 | /* Do it the slow way. */ | 
|  | 1455 | kaddr = kmap(*pages); | 
|  | 1456 | copied = __ntfs_copy_from_user_iovec(kaddr + ofs, | 
|  | 1457 | *iov, *iov_ofs, len); | 
|  | 1458 | kunmap(*pages); | 
|  | 1459 | if (unlikely(copied != len)) | 
|  | 1460 | goto err_out; | 
|  | 1461 | } | 
|  | 1462 | total += len; | 
|  | 1463 | bytes -= len; | 
|  | 1464 | if (!bytes) | 
|  | 1465 | break; | 
|  | 1466 | ntfs_set_next_iovec(iov, iov_ofs, len); | 
|  | 1467 | ofs = 0; | 
|  | 1468 | } while (++pages < last_page); | 
|  | 1469 | out: | 
|  | 1470 | return total; | 
|  | 1471 | err_out: | 
|  | 1472 | total += copied; | 
|  | 1473 | /* Zero the rest of the target like __copy_from_user(). */ | 
|  | 1474 | while (++pages < last_page) { | 
|  | 1475 | bytes -= len; | 
|  | 1476 | if (!bytes) | 
|  | 1477 | break; | 
|  | 1478 | len = PAGE_CACHE_SIZE; | 
|  | 1479 | if (len > bytes) | 
|  | 1480 | len = bytes; | 
|  | 1481 | kaddr = kmap_atomic(*pages, KM_USER0); | 
|  | 1482 | memset(kaddr, 0, len); | 
|  | 1483 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1484 | } | 
|  | 1485 | goto out; | 
|  | 1486 | } | 
|  | 1487 |  | 
|  | 1488 | static inline void ntfs_flush_dcache_pages(struct page **pages, | 
|  | 1489 | unsigned nr_pages) | 
|  | 1490 | { | 
|  | 1491 | BUG_ON(!nr_pages); | 
|  | 1492 | do { | 
|  | 1493 | /* | 
|  | 1494 | * Warning: Do not do the decrement at the same time as the | 
|  | 1495 | * call because flush_dcache_page() is a NULL macro on i386 | 
|  | 1496 | * and hence the decrement never happens. | 
|  | 1497 | */ | 
|  | 1498 | flush_dcache_page(pages[nr_pages]); | 
|  | 1499 | } while (--nr_pages > 0); | 
|  | 1500 | } | 
|  | 1501 |  | 
|  | 1502 | /** | 
|  | 1503 | * ntfs_commit_pages_after_non_resident_write - commit the received data | 
|  | 1504 | * @pages:	array of destination pages | 
|  | 1505 | * @nr_pages:	number of pages in @pages | 
|  | 1506 | * @pos:	byte position in file at which the write begins | 
|  | 1507 | * @bytes:	number of bytes to be written | 
|  | 1508 | * | 
|  | 1509 | * See description of ntfs_commit_pages_after_write(), below. | 
|  | 1510 | */ | 
|  | 1511 | static inline int ntfs_commit_pages_after_non_resident_write( | 
|  | 1512 | struct page **pages, const unsigned nr_pages, | 
|  | 1513 | s64 pos, size_t bytes) | 
|  | 1514 | { | 
|  | 1515 | s64 end, initialized_size; | 
|  | 1516 | struct inode *vi; | 
|  | 1517 | ntfs_inode *ni, *base_ni; | 
|  | 1518 | struct buffer_head *bh, *head; | 
|  | 1519 | ntfs_attr_search_ctx *ctx; | 
|  | 1520 | MFT_RECORD *m; | 
|  | 1521 | ATTR_RECORD *a; | 
|  | 1522 | unsigned long flags; | 
|  | 1523 | unsigned blocksize, u; | 
|  | 1524 | int err; | 
|  | 1525 |  | 
|  | 1526 | vi = pages[0]->mapping->host; | 
|  | 1527 | ni = NTFS_I(vi); | 
|  | 1528 | blocksize = 1 << vi->i_blkbits; | 
|  | 1529 | end = pos + bytes; | 
|  | 1530 | u = 0; | 
|  | 1531 | do { | 
|  | 1532 | s64 bh_pos; | 
|  | 1533 | struct page *page; | 
|  | 1534 | BOOL partial; | 
|  | 1535 |  | 
|  | 1536 | page = pages[u]; | 
|  | 1537 | bh_pos = (s64)page->index << PAGE_CACHE_SHIFT; | 
|  | 1538 | bh = head = page_buffers(page); | 
|  | 1539 | partial = FALSE; | 
|  | 1540 | do { | 
|  | 1541 | s64 bh_end; | 
|  | 1542 |  | 
|  | 1543 | bh_end = bh_pos + blocksize; | 
|  | 1544 | if (bh_end <= pos || bh_pos >= end) { | 
|  | 1545 | if (!buffer_uptodate(bh)) | 
|  | 1546 | partial = TRUE; | 
|  | 1547 | } else { | 
|  | 1548 | set_buffer_uptodate(bh); | 
|  | 1549 | mark_buffer_dirty(bh); | 
|  | 1550 | } | 
|  | 1551 | } while (bh_pos += blocksize, (bh = bh->b_this_page) != head); | 
|  | 1552 | /* | 
|  | 1553 | * If all buffers are now uptodate but the page is not, set the | 
|  | 1554 | * page uptodate. | 
|  | 1555 | */ | 
|  | 1556 | if (!partial && !PageUptodate(page)) | 
|  | 1557 | SetPageUptodate(page); | 
|  | 1558 | } while (++u < nr_pages); | 
|  | 1559 | /* | 
|  | 1560 | * Finally, if we do not need to update initialized_size or i_size we | 
|  | 1561 | * are finished. | 
|  | 1562 | */ | 
|  | 1563 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 1564 | initialized_size = ni->initialized_size; | 
|  | 1565 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1566 | if (end <= initialized_size) { | 
|  | 1567 | ntfs_debug("Done."); | 
|  | 1568 | return 0; | 
|  | 1569 | } | 
|  | 1570 | /* | 
|  | 1571 | * Update initialized_size/i_size as appropriate, both in the inode and | 
|  | 1572 | * the mft record. | 
|  | 1573 | */ | 
|  | 1574 | if (!NInoAttr(ni)) | 
|  | 1575 | base_ni = ni; | 
|  | 1576 | else | 
|  | 1577 | base_ni = ni->ext.base_ntfs_ino; | 
|  | 1578 | /* Map, pin, and lock the mft record. */ | 
|  | 1579 | m = map_mft_record(base_ni); | 
|  | 1580 | if (IS_ERR(m)) { | 
|  | 1581 | err = PTR_ERR(m); | 
|  | 1582 | m = NULL; | 
|  | 1583 | ctx = NULL; | 
|  | 1584 | goto err_out; | 
|  | 1585 | } | 
|  | 1586 | BUG_ON(!NInoNonResident(ni)); | 
|  | 1587 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | 1588 | if (unlikely(!ctx)) { | 
|  | 1589 | err = -ENOMEM; | 
|  | 1590 | goto err_out; | 
|  | 1591 | } | 
|  | 1592 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 1593 | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | 1594 | if (unlikely(err)) { | 
|  | 1595 | if (err == -ENOENT) | 
|  | 1596 | err = -EIO; | 
|  | 1597 | goto err_out; | 
|  | 1598 | } | 
|  | 1599 | a = ctx->attr; | 
|  | 1600 | BUG_ON(!a->non_resident); | 
|  | 1601 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 1602 | BUG_ON(end > ni->allocated_size); | 
|  | 1603 | ni->initialized_size = end; | 
|  | 1604 | a->data.non_resident.initialized_size = cpu_to_sle64(end); | 
|  | 1605 | if (end > i_size_read(vi)) { | 
|  | 1606 | i_size_write(vi, end); | 
|  | 1607 | a->data.non_resident.data_size = | 
|  | 1608 | a->data.non_resident.initialized_size; | 
|  | 1609 | } | 
|  | 1610 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1611 | /* Mark the mft record dirty, so it gets written back. */ | 
|  | 1612 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 1613 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 1614 | ntfs_attr_put_search_ctx(ctx); | 
|  | 1615 | unmap_mft_record(base_ni); | 
|  | 1616 | ntfs_debug("Done."); | 
|  | 1617 | return 0; | 
|  | 1618 | err_out: | 
|  | 1619 | if (ctx) | 
|  | 1620 | ntfs_attr_put_search_ctx(ctx); | 
|  | 1621 | if (m) | 
|  | 1622 | unmap_mft_record(base_ni); | 
|  | 1623 | ntfs_error(vi->i_sb, "Failed to update initialized_size/i_size (error " | 
|  | 1624 | "code %i).", err); | 
|  | 1625 | if (err != -ENOMEM) { | 
|  | 1626 | NVolSetErrors(ni->vol); | 
|  | 1627 | make_bad_inode(VFS_I(base_ni)); | 
|  | 1628 | make_bad_inode(vi); | 
|  | 1629 | } | 
|  | 1630 | return err; | 
|  | 1631 | } | 
|  | 1632 |  | 
|  | 1633 | /** | 
|  | 1634 | * ntfs_commit_pages_after_write - commit the received data | 
|  | 1635 | * @pages:	array of destination pages | 
|  | 1636 | * @nr_pages:	number of pages in @pages | 
|  | 1637 | * @pos:	byte position in file at which the write begins | 
|  | 1638 | * @bytes:	number of bytes to be written | 
|  | 1639 | * | 
|  | 1640 | * This is called from ntfs_file_buffered_write() with i_sem held on the inode | 
|  | 1641 | * (@pages[0]->mapping->host).  There are @nr_pages pages in @pages which are | 
|  | 1642 | * locked but not kmap()ped.  The source data has already been copied into the | 
|  | 1643 | * @page.  ntfs_prepare_pages_for_non_resident_write() has been called before | 
|  | 1644 | * the data was copied (for non-resident attributes only) and it returned | 
|  | 1645 | * success. | 
|  | 1646 | * | 
|  | 1647 | * Need to set uptodate and mark dirty all buffers within the boundary of the | 
|  | 1648 | * write.  If all buffers in a page are uptodate we set the page uptodate, too. | 
|  | 1649 | * | 
|  | 1650 | * Setting the buffers dirty ensures that they get written out later when | 
|  | 1651 | * ntfs_writepage() is invoked by the VM. | 
|  | 1652 | * | 
|  | 1653 | * Finally, we need to update i_size and initialized_size as appropriate both | 
|  | 1654 | * in the inode and the mft record. | 
|  | 1655 | * | 
|  | 1656 | * This is modelled after fs/buffer.c::generic_commit_write(), which marks | 
|  | 1657 | * buffers uptodate and dirty, sets the page uptodate if all buffers in the | 
|  | 1658 | * page are uptodate, and updates i_size if the end of io is beyond i_size.  In | 
|  | 1659 | * that case, it also marks the inode dirty. | 
|  | 1660 | * | 
|  | 1661 | * If things have gone as outlined in | 
|  | 1662 | * ntfs_prepare_pages_for_non_resident_write(), we do not need to do any page | 
|  | 1663 | * content modifications here for non-resident attributes.  For resident | 
|  | 1664 | * attributes we need to do the uptodate bringing here which we combine with | 
|  | 1665 | * the copying into the mft record which means we save one atomic kmap. | 
|  | 1666 | * | 
|  | 1667 | * Return 0 on success or -errno on error. | 
|  | 1668 | */ | 
|  | 1669 | static int ntfs_commit_pages_after_write(struct page **pages, | 
|  | 1670 | const unsigned nr_pages, s64 pos, size_t bytes) | 
|  | 1671 | { | 
|  | 1672 | s64 end, initialized_size; | 
|  | 1673 | loff_t i_size; | 
|  | 1674 | struct inode *vi; | 
|  | 1675 | ntfs_inode *ni, *base_ni; | 
|  | 1676 | struct page *page; | 
|  | 1677 | ntfs_attr_search_ctx *ctx; | 
|  | 1678 | MFT_RECORD *m; | 
|  | 1679 | ATTR_RECORD *a; | 
|  | 1680 | char *kattr, *kaddr; | 
|  | 1681 | unsigned long flags; | 
|  | 1682 | u32 attr_len; | 
|  | 1683 | int err; | 
|  | 1684 |  | 
|  | 1685 | BUG_ON(!nr_pages); | 
|  | 1686 | BUG_ON(!pages); | 
|  | 1687 | page = pages[0]; | 
|  | 1688 | BUG_ON(!page); | 
|  | 1689 | vi = page->mapping->host; | 
|  | 1690 | ni = NTFS_I(vi); | 
|  | 1691 | ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, start page " | 
| Anton Altaparmakov | d04bd1f | 2005-10-24 08:41:24 +0100 | [diff] [blame] | 1692 | "index 0x%lx, nr_pages 0x%x, pos 0x%llx, bytes 0x%zx.", | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 1693 | vi->i_ino, ni->type, page->index, nr_pages, | 
|  | 1694 | (long long)pos, bytes); | 
|  | 1695 | if (NInoNonResident(ni)) | 
|  | 1696 | return ntfs_commit_pages_after_non_resident_write(pages, | 
|  | 1697 | nr_pages, pos, bytes); | 
|  | 1698 | BUG_ON(nr_pages > 1); | 
|  | 1699 | /* | 
|  | 1700 | * Attribute is resident, implying it is not compressed, encrypted, or | 
|  | 1701 | * sparse. | 
|  | 1702 | */ | 
|  | 1703 | if (!NInoAttr(ni)) | 
|  | 1704 | base_ni = ni; | 
|  | 1705 | else | 
|  | 1706 | base_ni = ni->ext.base_ntfs_ino; | 
|  | 1707 | BUG_ON(NInoNonResident(ni)); | 
|  | 1708 | /* Map, pin, and lock the mft record. */ | 
|  | 1709 | m = map_mft_record(base_ni); | 
|  | 1710 | if (IS_ERR(m)) { | 
|  | 1711 | err = PTR_ERR(m); | 
|  | 1712 | m = NULL; | 
|  | 1713 | ctx = NULL; | 
|  | 1714 | goto err_out; | 
|  | 1715 | } | 
|  | 1716 | ctx = ntfs_attr_get_search_ctx(base_ni, m); | 
|  | 1717 | if (unlikely(!ctx)) { | 
|  | 1718 | err = -ENOMEM; | 
|  | 1719 | goto err_out; | 
|  | 1720 | } | 
|  | 1721 | err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len, | 
|  | 1722 | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | 1723 | if (unlikely(err)) { | 
|  | 1724 | if (err == -ENOENT) | 
|  | 1725 | err = -EIO; | 
|  | 1726 | goto err_out; | 
|  | 1727 | } | 
|  | 1728 | a = ctx->attr; | 
|  | 1729 | BUG_ON(a->non_resident); | 
|  | 1730 | /* The total length of the attribute value. */ | 
|  | 1731 | attr_len = le32_to_cpu(a->data.resident.value_length); | 
|  | 1732 | i_size = i_size_read(vi); | 
|  | 1733 | BUG_ON(attr_len != i_size); | 
|  | 1734 | BUG_ON(pos > attr_len); | 
|  | 1735 | end = pos + bytes; | 
|  | 1736 | BUG_ON(end > le32_to_cpu(a->length) - | 
|  | 1737 | le16_to_cpu(a->data.resident.value_offset)); | 
|  | 1738 | kattr = (u8*)a + le16_to_cpu(a->data.resident.value_offset); | 
|  | 1739 | kaddr = kmap_atomic(page, KM_USER0); | 
|  | 1740 | /* Copy the received data from the page to the mft record. */ | 
|  | 1741 | memcpy(kattr + pos, kaddr + pos, bytes); | 
|  | 1742 | /* Update the attribute length if necessary. */ | 
|  | 1743 | if (end > attr_len) { | 
|  | 1744 | attr_len = end; | 
|  | 1745 | a->data.resident.value_length = cpu_to_le32(attr_len); | 
|  | 1746 | } | 
|  | 1747 | /* | 
|  | 1748 | * If the page is not uptodate, bring the out of bounds area(s) | 
|  | 1749 | * uptodate by copying data from the mft record to the page. | 
|  | 1750 | */ | 
|  | 1751 | if (!PageUptodate(page)) { | 
|  | 1752 | if (pos > 0) | 
|  | 1753 | memcpy(kaddr, kattr, pos); | 
|  | 1754 | if (end < attr_len) | 
|  | 1755 | memcpy(kaddr + end, kattr + end, attr_len - end); | 
|  | 1756 | /* Zero the region outside the end of the attribute value. */ | 
|  | 1757 | memset(kaddr + attr_len, 0, PAGE_CACHE_SIZE - attr_len); | 
|  | 1758 | flush_dcache_page(page); | 
|  | 1759 | SetPageUptodate(page); | 
|  | 1760 | } | 
|  | 1761 | kunmap_atomic(kaddr, KM_USER0); | 
|  | 1762 | /* Update initialized_size/i_size if necessary. */ | 
|  | 1763 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 1764 | initialized_size = ni->initialized_size; | 
|  | 1765 | BUG_ON(end > ni->allocated_size); | 
|  | 1766 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1767 | BUG_ON(initialized_size != i_size); | 
|  | 1768 | if (end > initialized_size) { | 
|  | 1769 | unsigned long flags; | 
|  | 1770 |  | 
|  | 1771 | write_lock_irqsave(&ni->size_lock, flags); | 
|  | 1772 | ni->initialized_size = end; | 
|  | 1773 | i_size_write(vi, end); | 
|  | 1774 | write_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1775 | } | 
|  | 1776 | /* Mark the mft record dirty, so it gets written back. */ | 
|  | 1777 | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | 1778 | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | 1779 | ntfs_attr_put_search_ctx(ctx); | 
|  | 1780 | unmap_mft_record(base_ni); | 
|  | 1781 | ntfs_debug("Done."); | 
|  | 1782 | return 0; | 
|  | 1783 | err_out: | 
|  | 1784 | if (err == -ENOMEM) { | 
|  | 1785 | ntfs_warning(vi->i_sb, "Error allocating memory required to " | 
|  | 1786 | "commit the write."); | 
|  | 1787 | if (PageUptodate(page)) { | 
|  | 1788 | ntfs_warning(vi->i_sb, "Page is uptodate, setting " | 
|  | 1789 | "dirty so the write will be retried " | 
|  | 1790 | "later on by the VM."); | 
|  | 1791 | /* | 
|  | 1792 | * Put the page on mapping->dirty_pages, but leave its | 
|  | 1793 | * buffers' dirty state as-is. | 
|  | 1794 | */ | 
|  | 1795 | __set_page_dirty_nobuffers(page); | 
|  | 1796 | err = 0; | 
|  | 1797 | } else | 
|  | 1798 | ntfs_error(vi->i_sb, "Page is not uptodate.  Written " | 
|  | 1799 | "data has been lost."); | 
|  | 1800 | } else { | 
|  | 1801 | ntfs_error(vi->i_sb, "Resident attribute commit write failed " | 
|  | 1802 | "with error %i.", err); | 
|  | 1803 | NVolSetErrors(ni->vol); | 
|  | 1804 | make_bad_inode(VFS_I(base_ni)); | 
|  | 1805 | make_bad_inode(vi); | 
|  | 1806 | } | 
|  | 1807 | if (ctx) | 
|  | 1808 | ntfs_attr_put_search_ctx(ctx); | 
|  | 1809 | if (m) | 
|  | 1810 | unmap_mft_record(base_ni); | 
|  | 1811 | return err; | 
|  | 1812 | } | 
|  | 1813 |  | 
|  | 1814 | /** | 
|  | 1815 | * ntfs_file_buffered_write - | 
|  | 1816 | * | 
|  | 1817 | * Locking: The vfs is holding ->i_sem on the inode. | 
|  | 1818 | */ | 
|  | 1819 | static ssize_t ntfs_file_buffered_write(struct kiocb *iocb, | 
|  | 1820 | const struct iovec *iov, unsigned long nr_segs, | 
|  | 1821 | loff_t pos, loff_t *ppos, size_t count) | 
|  | 1822 | { | 
|  | 1823 | struct file *file = iocb->ki_filp; | 
|  | 1824 | struct address_space *mapping = file->f_mapping; | 
|  | 1825 | struct inode *vi = mapping->host; | 
|  | 1826 | ntfs_inode *ni = NTFS_I(vi); | 
|  | 1827 | ntfs_volume *vol = ni->vol; | 
|  | 1828 | struct page *pages[NTFS_MAX_PAGES_PER_CLUSTER]; | 
|  | 1829 | struct page *cached_page = NULL; | 
|  | 1830 | char __user *buf = NULL; | 
|  | 1831 | s64 end, ll; | 
|  | 1832 | VCN last_vcn; | 
|  | 1833 | LCN lcn; | 
|  | 1834 | unsigned long flags; | 
| Anton Altaparmakov | dda65b94 | 2005-10-24 08:57:59 +0100 | [diff] [blame] | 1835 | size_t bytes, iov_ofs = 0;	/* Offset in the current iovec. */ | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 1836 | ssize_t status, written; | 
|  | 1837 | unsigned nr_pages; | 
|  | 1838 | int err; | 
|  | 1839 | struct pagevec lru_pvec; | 
|  | 1840 |  | 
|  | 1841 | ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, " | 
|  | 1842 | "pos 0x%llx, count 0x%lx.", | 
|  | 1843 | vi->i_ino, (unsigned)le32_to_cpu(ni->type), | 
|  | 1844 | (unsigned long long)pos, (unsigned long)count); | 
|  | 1845 | if (unlikely(!count)) | 
|  | 1846 | return 0; | 
|  | 1847 | BUG_ON(NInoMstProtected(ni)); | 
|  | 1848 | /* | 
|  | 1849 | * If the attribute is not an index root and it is encrypted or | 
|  | 1850 | * compressed, we cannot write to it yet.  Note we need to check for | 
|  | 1851 | * AT_INDEX_ALLOCATION since this is the type of both directory and | 
|  | 1852 | * index inodes. | 
|  | 1853 | */ | 
|  | 1854 | if (ni->type != AT_INDEX_ALLOCATION) { | 
|  | 1855 | /* If file is encrypted, deny access, just like NT4. */ | 
|  | 1856 | if (NInoEncrypted(ni)) { | 
| Anton Altaparmakov | 7d0ffdb | 2005-10-19 12:21:19 +0100 | [diff] [blame] | 1857 | /* | 
|  | 1858 | * Reminder for later: Encrypted files are _always_ | 
|  | 1859 | * non-resident so that the content can always be | 
|  | 1860 | * encrypted. | 
|  | 1861 | */ | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 1862 | ntfs_debug("Denying write access to encrypted file."); | 
|  | 1863 | return -EACCES; | 
|  | 1864 | } | 
|  | 1865 | if (NInoCompressed(ni)) { | 
| Anton Altaparmakov | 7d0ffdb | 2005-10-19 12:21:19 +0100 | [diff] [blame] | 1866 | /* Only unnamed $DATA attribute can be compressed. */ | 
|  | 1867 | BUG_ON(ni->type != AT_DATA); | 
|  | 1868 | BUG_ON(ni->name_len); | 
|  | 1869 | /* | 
|  | 1870 | * Reminder for later: If resident, the data is not | 
|  | 1871 | * actually compressed.  Only on the switch to non- | 
|  | 1872 | * resident does compression kick in.  This is in | 
|  | 1873 | * contrast to encrypted files (see above). | 
|  | 1874 | */ | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 1875 | ntfs_error(vi->i_sb, "Writing to compressed files is " | 
|  | 1876 | "not implemented yet.  Sorry."); | 
|  | 1877 | return -EOPNOTSUPP; | 
|  | 1878 | } | 
|  | 1879 | } | 
|  | 1880 | /* | 
|  | 1881 | * If a previous ntfs_truncate() failed, repeat it and abort if it | 
|  | 1882 | * fails again. | 
|  | 1883 | */ | 
|  | 1884 | if (unlikely(NInoTruncateFailed(ni))) { | 
|  | 1885 | down_write(&vi->i_alloc_sem); | 
|  | 1886 | err = ntfs_truncate(vi); | 
|  | 1887 | up_write(&vi->i_alloc_sem); | 
|  | 1888 | if (err || NInoTruncateFailed(ni)) { | 
|  | 1889 | if (!err) | 
|  | 1890 | err = -EIO; | 
|  | 1891 | ntfs_error(vol->sb, "Cannot perform write to inode " | 
|  | 1892 | "0x%lx, attribute type 0x%x, because " | 
|  | 1893 | "ntfs_truncate() failed (error code " | 
|  | 1894 | "%i).", vi->i_ino, | 
|  | 1895 | (unsigned)le32_to_cpu(ni->type), err); | 
|  | 1896 | return err; | 
|  | 1897 | } | 
|  | 1898 | } | 
|  | 1899 | /* The first byte after the write. */ | 
|  | 1900 | end = pos + count; | 
|  | 1901 | /* | 
|  | 1902 | * If the write goes beyond the allocated size, extend the allocation | 
|  | 1903 | * to cover the whole of the write, rounded up to the nearest cluster. | 
|  | 1904 | */ | 
|  | 1905 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 1906 | ll = ni->allocated_size; | 
|  | 1907 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1908 | if (end > ll) { | 
|  | 1909 | /* Extend the allocation without changing the data size. */ | 
|  | 1910 | ll = ntfs_attr_extend_allocation(ni, end, -1, pos); | 
|  | 1911 | if (likely(ll >= 0)) { | 
|  | 1912 | BUG_ON(pos >= ll); | 
|  | 1913 | /* If the extension was partial truncate the write. */ | 
|  | 1914 | if (end > ll) { | 
|  | 1915 | ntfs_debug("Truncating write to inode 0x%lx, " | 
|  | 1916 | "attribute type 0x%x, because " | 
|  | 1917 | "the allocation was only " | 
|  | 1918 | "partially extended.", | 
|  | 1919 | vi->i_ino, (unsigned) | 
|  | 1920 | le32_to_cpu(ni->type)); | 
|  | 1921 | end = ll; | 
|  | 1922 | count = ll - pos; | 
|  | 1923 | } | 
|  | 1924 | } else { | 
|  | 1925 | err = ll; | 
|  | 1926 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 1927 | ll = ni->allocated_size; | 
|  | 1928 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1929 | /* Perform a partial write if possible or fail. */ | 
|  | 1930 | if (pos < ll) { | 
|  | 1931 | ntfs_debug("Truncating write to inode 0x%lx, " | 
|  | 1932 | "attribute type 0x%x, because " | 
|  | 1933 | "extending the allocation " | 
|  | 1934 | "failed (error code %i).", | 
|  | 1935 | vi->i_ino, (unsigned) | 
|  | 1936 | le32_to_cpu(ni->type), err); | 
|  | 1937 | end = ll; | 
|  | 1938 | count = ll - pos; | 
|  | 1939 | } else { | 
|  | 1940 | ntfs_error(vol->sb, "Cannot perform write to " | 
|  | 1941 | "inode 0x%lx, attribute type " | 
|  | 1942 | "0x%x, because extending the " | 
|  | 1943 | "allocation failed (error " | 
|  | 1944 | "code %i).", vi->i_ino, | 
|  | 1945 | (unsigned) | 
|  | 1946 | le32_to_cpu(ni->type), err); | 
|  | 1947 | return err; | 
|  | 1948 | } | 
|  | 1949 | } | 
|  | 1950 | } | 
|  | 1951 | pagevec_init(&lru_pvec, 0); | 
|  | 1952 | written = 0; | 
|  | 1953 | /* | 
|  | 1954 | * If the write starts beyond the initialized size, extend it up to the | 
|  | 1955 | * beginning of the write and initialize all non-sparse space between | 
|  | 1956 | * the old initialized size and the new one.  This automatically also | 
|  | 1957 | * increments the vfs inode->i_size to keep it above or equal to the | 
|  | 1958 | * initialized_size. | 
|  | 1959 | */ | 
|  | 1960 | read_lock_irqsave(&ni->size_lock, flags); | 
|  | 1961 | ll = ni->initialized_size; | 
|  | 1962 | read_unlock_irqrestore(&ni->size_lock, flags); | 
|  | 1963 | if (pos > ll) { | 
|  | 1964 | err = ntfs_attr_extend_initialized(ni, pos, &cached_page, | 
|  | 1965 | &lru_pvec); | 
|  | 1966 | if (err < 0) { | 
|  | 1967 | ntfs_error(vol->sb, "Cannot perform write to inode " | 
|  | 1968 | "0x%lx, attribute type 0x%x, because " | 
|  | 1969 | "extending the initialized size " | 
|  | 1970 | "failed (error code %i).", vi->i_ino, | 
|  | 1971 | (unsigned)le32_to_cpu(ni->type), err); | 
|  | 1972 | status = err; | 
|  | 1973 | goto err_out; | 
|  | 1974 | } | 
|  | 1975 | } | 
|  | 1976 | /* | 
|  | 1977 | * Determine the number of pages per cluster for non-resident | 
|  | 1978 | * attributes. | 
|  | 1979 | */ | 
|  | 1980 | nr_pages = 1; | 
|  | 1981 | if (vol->cluster_size > PAGE_CACHE_SIZE && NInoNonResident(ni)) | 
|  | 1982 | nr_pages = vol->cluster_size >> PAGE_CACHE_SHIFT; | 
|  | 1983 | /* Finally, perform the actual write. */ | 
|  | 1984 | last_vcn = -1; | 
|  | 1985 | if (likely(nr_segs == 1)) | 
|  | 1986 | buf = iov->iov_base; | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 1987 | do { | 
|  | 1988 | VCN vcn; | 
|  | 1989 | pgoff_t idx, start_idx; | 
|  | 1990 | unsigned ofs, do_pages, u; | 
|  | 1991 | size_t copied; | 
|  | 1992 |  | 
|  | 1993 | start_idx = idx = pos >> PAGE_CACHE_SHIFT; | 
|  | 1994 | ofs = pos & ~PAGE_CACHE_MASK; | 
|  | 1995 | bytes = PAGE_CACHE_SIZE - ofs; | 
|  | 1996 | do_pages = 1; | 
|  | 1997 | if (nr_pages > 1) { | 
|  | 1998 | vcn = pos >> vol->cluster_size_bits; | 
|  | 1999 | if (vcn != last_vcn) { | 
|  | 2000 | last_vcn = vcn; | 
|  | 2001 | /* | 
|  | 2002 | * Get the lcn of the vcn the write is in.  If | 
|  | 2003 | * it is a hole, need to lock down all pages in | 
|  | 2004 | * the cluster. | 
|  | 2005 | */ | 
|  | 2006 | down_read(&ni->runlist.lock); | 
|  | 2007 | lcn = ntfs_attr_vcn_to_lcn_nolock(ni, pos >> | 
|  | 2008 | vol->cluster_size_bits, FALSE); | 
|  | 2009 | up_read(&ni->runlist.lock); | 
|  | 2010 | if (unlikely(lcn < LCN_HOLE)) { | 
|  | 2011 | status = -EIO; | 
|  | 2012 | if (lcn == LCN_ENOMEM) | 
|  | 2013 | status = -ENOMEM; | 
|  | 2014 | else | 
|  | 2015 | ntfs_error(vol->sb, "Cannot " | 
|  | 2016 | "perform write to " | 
|  | 2017 | "inode 0x%lx, " | 
|  | 2018 | "attribute type 0x%x, " | 
|  | 2019 | "because the attribute " | 
|  | 2020 | "is corrupt.", | 
|  | 2021 | vi->i_ino, (unsigned) | 
|  | 2022 | le32_to_cpu(ni->type)); | 
|  | 2023 | break; | 
|  | 2024 | } | 
|  | 2025 | if (lcn == LCN_HOLE) { | 
|  | 2026 | start_idx = (pos & ~(s64) | 
|  | 2027 | vol->cluster_size_mask) | 
|  | 2028 | >> PAGE_CACHE_SHIFT; | 
|  | 2029 | bytes = vol->cluster_size - (pos & | 
|  | 2030 | vol->cluster_size_mask); | 
|  | 2031 | do_pages = nr_pages; | 
|  | 2032 | } | 
|  | 2033 | } | 
|  | 2034 | } | 
|  | 2035 | if (bytes > count) | 
|  | 2036 | bytes = count; | 
|  | 2037 | /* | 
|  | 2038 | * Bring in the user page(s) that we will copy from _first_. | 
|  | 2039 | * Otherwise there is a nasty deadlock on copying from the same | 
|  | 2040 | * page(s) as we are writing to, without it/them being marked | 
|  | 2041 | * up-to-date.  Note, at present there is nothing to stop the | 
|  | 2042 | * pages being swapped out between us bringing them into memory | 
|  | 2043 | * and doing the actual copying. | 
|  | 2044 | */ | 
|  | 2045 | if (likely(nr_segs == 1)) | 
|  | 2046 | ntfs_fault_in_pages_readable(buf, bytes); | 
|  | 2047 | else | 
|  | 2048 | ntfs_fault_in_pages_readable_iovec(iov, iov_ofs, bytes); | 
|  | 2049 | /* Get and lock @do_pages starting at index @start_idx. */ | 
|  | 2050 | status = __ntfs_grab_cache_pages(mapping, start_idx, do_pages, | 
|  | 2051 | pages, &cached_page, &lru_pvec); | 
|  | 2052 | if (unlikely(status)) | 
|  | 2053 | break; | 
|  | 2054 | /* | 
|  | 2055 | * For non-resident attributes, we need to fill any holes with | 
|  | 2056 | * actual clusters and ensure all bufferes are mapped.  We also | 
|  | 2057 | * need to bring uptodate any buffers that are only partially | 
|  | 2058 | * being written to. | 
|  | 2059 | */ | 
|  | 2060 | if (NInoNonResident(ni)) { | 
|  | 2061 | status = ntfs_prepare_pages_for_non_resident_write( | 
|  | 2062 | pages, do_pages, pos, bytes); | 
|  | 2063 | if (unlikely(status)) { | 
|  | 2064 | loff_t i_size; | 
|  | 2065 |  | 
|  | 2066 | do { | 
|  | 2067 | unlock_page(pages[--do_pages]); | 
|  | 2068 | page_cache_release(pages[do_pages]); | 
|  | 2069 | } while (do_pages); | 
|  | 2070 | /* | 
|  | 2071 | * The write preparation may have instantiated | 
|  | 2072 | * allocated space outside i_size.  Trim this | 
|  | 2073 | * off again.  We can ignore any errors in this | 
|  | 2074 | * case as we will just be waisting a bit of | 
|  | 2075 | * allocated space, which is not a disaster. | 
|  | 2076 | */ | 
|  | 2077 | i_size = i_size_read(vi); | 
|  | 2078 | if (pos + bytes > i_size) | 
|  | 2079 | vmtruncate(vi, i_size); | 
|  | 2080 | break; | 
|  | 2081 | } | 
|  | 2082 | } | 
|  | 2083 | u = (pos >> PAGE_CACHE_SHIFT) - pages[0]->index; | 
|  | 2084 | if (likely(nr_segs == 1)) { | 
|  | 2085 | copied = ntfs_copy_from_user(pages + u, do_pages - u, | 
|  | 2086 | ofs, buf, bytes); | 
|  | 2087 | buf += copied; | 
|  | 2088 | } else | 
|  | 2089 | copied = ntfs_copy_from_user_iovec(pages + u, | 
|  | 2090 | do_pages - u, ofs, &iov, &iov_ofs, | 
|  | 2091 | bytes); | 
|  | 2092 | ntfs_flush_dcache_pages(pages + u, do_pages - u); | 
|  | 2093 | status = ntfs_commit_pages_after_write(pages, do_pages, pos, | 
|  | 2094 | bytes); | 
|  | 2095 | if (likely(!status)) { | 
|  | 2096 | written += copied; | 
|  | 2097 | count -= copied; | 
|  | 2098 | pos += copied; | 
|  | 2099 | if (unlikely(copied != bytes)) | 
|  | 2100 | status = -EFAULT; | 
|  | 2101 | } | 
|  | 2102 | do { | 
|  | 2103 | unlock_page(pages[--do_pages]); | 
|  | 2104 | mark_page_accessed(pages[do_pages]); | 
|  | 2105 | page_cache_release(pages[do_pages]); | 
|  | 2106 | } while (do_pages); | 
|  | 2107 | if (unlikely(status)) | 
|  | 2108 | break; | 
|  | 2109 | balance_dirty_pages_ratelimited(mapping); | 
|  | 2110 | cond_resched(); | 
|  | 2111 | } while (count); | 
|  | 2112 | err_out: | 
|  | 2113 | *ppos = pos; | 
|  | 2114 | if (cached_page) | 
|  | 2115 | page_cache_release(cached_page); | 
|  | 2116 | /* For now, when the user asks for O_SYNC, we actually give O_DSYNC. */ | 
|  | 2117 | if (likely(!status)) { | 
|  | 2118 | if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(vi))) { | 
|  | 2119 | if (!mapping->a_ops->writepage || !is_sync_kiocb(iocb)) | 
|  | 2120 | status = generic_osync_inode(vi, mapping, | 
|  | 2121 | OSYNC_METADATA|OSYNC_DATA); | 
|  | 2122 | } | 
|  | 2123 | } | 
|  | 2124 | pagevec_lru_add(&lru_pvec); | 
|  | 2125 | ntfs_debug("Done.  Returning %s (written 0x%lx, status %li).", | 
|  | 2126 | written ? "written" : "status", (unsigned long)written, | 
|  | 2127 | (long)status); | 
|  | 2128 | return written ? written : status; | 
|  | 2129 | } | 
|  | 2130 |  | 
|  | 2131 | /** | 
|  | 2132 | * ntfs_file_aio_write_nolock - | 
|  | 2133 | */ | 
|  | 2134 | static ssize_t ntfs_file_aio_write_nolock(struct kiocb *iocb, | 
|  | 2135 | const struct iovec *iov, unsigned long nr_segs, loff_t *ppos) | 
|  | 2136 | { | 
|  | 2137 | struct file *file = iocb->ki_filp; | 
|  | 2138 | struct address_space *mapping = file->f_mapping; | 
|  | 2139 | struct inode *inode = mapping->host; | 
|  | 2140 | loff_t pos; | 
|  | 2141 | unsigned long seg; | 
|  | 2142 | size_t count;		/* after file limit checks */ | 
|  | 2143 | ssize_t written, err; | 
|  | 2144 |  | 
|  | 2145 | count = 0; | 
|  | 2146 | for (seg = 0; seg < nr_segs; seg++) { | 
|  | 2147 | const struct iovec *iv = &iov[seg]; | 
|  | 2148 | /* | 
|  | 2149 | * If any segment has a negative length, or the cumulative | 
|  | 2150 | * length ever wraps negative then return -EINVAL. | 
|  | 2151 | */ | 
|  | 2152 | count += iv->iov_len; | 
|  | 2153 | if (unlikely((ssize_t)(count|iv->iov_len) < 0)) | 
|  | 2154 | return -EINVAL; | 
|  | 2155 | if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) | 
|  | 2156 | continue; | 
|  | 2157 | if (!seg) | 
|  | 2158 | return -EFAULT; | 
|  | 2159 | nr_segs = seg; | 
|  | 2160 | count -= iv->iov_len;	/* This segment is no good */ | 
|  | 2161 | break; | 
|  | 2162 | } | 
|  | 2163 | pos = *ppos; | 
|  | 2164 | vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); | 
|  | 2165 | /* We can write back this queue in page reclaim. */ | 
|  | 2166 | current->backing_dev_info = mapping->backing_dev_info; | 
|  | 2167 | written = 0; | 
|  | 2168 | err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); | 
|  | 2169 | if (err) | 
|  | 2170 | goto out; | 
|  | 2171 | if (!count) | 
|  | 2172 | goto out; | 
|  | 2173 | err = remove_suid(file->f_dentry); | 
|  | 2174 | if (err) | 
|  | 2175 | goto out; | 
|  | 2176 | inode_update_time(inode, 1); | 
|  | 2177 | written = ntfs_file_buffered_write(iocb, iov, nr_segs, pos, ppos, | 
|  | 2178 | count); | 
|  | 2179 | out: | 
|  | 2180 | current->backing_dev_info = NULL; | 
|  | 2181 | return written ? written : err; | 
|  | 2182 | } | 
|  | 2183 |  | 
|  | 2184 | /** | 
|  | 2185 | * ntfs_file_aio_write - | 
|  | 2186 | */ | 
|  | 2187 | static ssize_t ntfs_file_aio_write(struct kiocb *iocb, const char __user *buf, | 
|  | 2188 | size_t count, loff_t pos) | 
|  | 2189 | { | 
|  | 2190 | struct file *file = iocb->ki_filp; | 
|  | 2191 | struct address_space *mapping = file->f_mapping; | 
|  | 2192 | struct inode *inode = mapping->host; | 
|  | 2193 | ssize_t ret; | 
|  | 2194 | struct iovec local_iov = { .iov_base = (void __user *)buf, | 
|  | 2195 | .iov_len = count }; | 
|  | 2196 |  | 
|  | 2197 | BUG_ON(iocb->ki_pos != pos); | 
|  | 2198 |  | 
|  | 2199 | down(&inode->i_sem); | 
|  | 2200 | ret = ntfs_file_aio_write_nolock(iocb, &local_iov, 1, &iocb->ki_pos); | 
|  | 2201 | up(&inode->i_sem); | 
|  | 2202 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 
|  | 2203 | int err = sync_page_range(inode, mapping, pos, ret); | 
|  | 2204 | if (err < 0) | 
|  | 2205 | ret = err; | 
|  | 2206 | } | 
|  | 2207 | return ret; | 
|  | 2208 | } | 
|  | 2209 |  | 
|  | 2210 | /** | 
|  | 2211 | * ntfs_file_writev - | 
|  | 2212 | * | 
|  | 2213 | * Basically the same as generic_file_writev() except that it ends up calling | 
|  | 2214 | * ntfs_file_aio_write_nolock() instead of __generic_file_aio_write_nolock(). | 
|  | 2215 | */ | 
|  | 2216 | static ssize_t ntfs_file_writev(struct file *file, const struct iovec *iov, | 
|  | 2217 | unsigned long nr_segs, loff_t *ppos) | 
|  | 2218 | { | 
|  | 2219 | struct address_space *mapping = file->f_mapping; | 
|  | 2220 | struct inode *inode = mapping->host; | 
|  | 2221 | struct kiocb kiocb; | 
|  | 2222 | ssize_t ret; | 
|  | 2223 |  | 
|  | 2224 | down(&inode->i_sem); | 
|  | 2225 | init_sync_kiocb(&kiocb, file); | 
|  | 2226 | ret = ntfs_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); | 
|  | 2227 | if (ret == -EIOCBQUEUED) | 
|  | 2228 | ret = wait_on_sync_kiocb(&kiocb); | 
|  | 2229 | up(&inode->i_sem); | 
|  | 2230 | if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { | 
|  | 2231 | int err = sync_page_range(inode, mapping, *ppos - ret, ret); | 
|  | 2232 | if (err < 0) | 
|  | 2233 | ret = err; | 
|  | 2234 | } | 
|  | 2235 | return ret; | 
|  | 2236 | } | 
|  | 2237 |  | 
|  | 2238 | /** | 
|  | 2239 | * ntfs_file_write - simple wrapper for ntfs_file_writev() | 
|  | 2240 | */ | 
|  | 2241 | static ssize_t ntfs_file_write(struct file *file, const char __user *buf, | 
|  | 2242 | size_t count, loff_t *ppos) | 
|  | 2243 | { | 
|  | 2244 | struct iovec local_iov = { .iov_base = (void __user *)buf, | 
|  | 2245 | .iov_len = count }; | 
|  | 2246 |  | 
|  | 2247 | return ntfs_file_writev(file, &local_iov, 1, ppos); | 
|  | 2248 | } | 
|  | 2249 |  | 
|  | 2250 | /** | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2251 | * ntfs_file_fsync - sync a file to disk | 
|  | 2252 | * @filp:	file to be synced | 
|  | 2253 | * @dentry:	dentry describing the file to sync | 
|  | 2254 | * @datasync:	if non-zero only flush user data and not metadata | 
|  | 2255 | * | 
|  | 2256 | * Data integrity sync of a file to disk.  Used for fsync, fdatasync, and msync | 
|  | 2257 | * system calls.  This function is inspired by fs/buffer.c::file_fsync(). | 
|  | 2258 | * | 
|  | 2259 | * If @datasync is false, write the mft record and all associated extent mft | 
|  | 2260 | * records as well as the $DATA attribute and then sync the block device. | 
|  | 2261 | * | 
|  | 2262 | * If @datasync is true and the attribute is non-resident, we skip the writing | 
|  | 2263 | * of the mft record and all associated extent mft records (this might still | 
|  | 2264 | * happen due to the write_inode_now() call). | 
|  | 2265 | * | 
|  | 2266 | * Also, if @datasync is true, we do not wait on the inode to be written out | 
|  | 2267 | * but we always wait on the page cache pages to be written out. | 
|  | 2268 | * | 
|  | 2269 | * Note: In the past @filp could be NULL so we ignore it as we don't need it | 
|  | 2270 | * anyway. | 
|  | 2271 | * | 
|  | 2272 | * Locking: Caller must hold i_sem on the inode. | 
|  | 2273 | * | 
|  | 2274 | * TODO: We should probably also write all attribute/index inodes associated | 
|  | 2275 | * with this inode but since we have no simple way of getting to them we ignore | 
|  | 2276 | * this problem for now. | 
|  | 2277 | */ | 
|  | 2278 | static int ntfs_file_fsync(struct file *filp, struct dentry *dentry, | 
|  | 2279 | int datasync) | 
|  | 2280 | { | 
|  | 2281 | struct inode *vi = dentry->d_inode; | 
|  | 2282 | int err, ret = 0; | 
|  | 2283 |  | 
|  | 2284 | ntfs_debug("Entering for inode 0x%lx.", vi->i_ino); | 
|  | 2285 | BUG_ON(S_ISDIR(vi->i_mode)); | 
|  | 2286 | if (!datasync || !NInoNonResident(NTFS_I(vi))) | 
|  | 2287 | ret = ntfs_write_inode(vi, 1); | 
|  | 2288 | write_inode_now(vi, !datasync); | 
| Anton Altaparmakov | f25dfb5 | 2005-09-08 20:35:33 +0100 | [diff] [blame] | 2289 | /* | 
|  | 2290 | * NOTE: If we were to use mapping->private_list (see ext2 and | 
|  | 2291 | * fs/buffer.c) for dirty blocks then we could optimize the below to be | 
|  | 2292 | * sync_mapping_buffers(vi->i_mapping). | 
|  | 2293 | */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2294 | err = sync_blockdev(vi->i_sb->s_bdev); | 
|  | 2295 | if (unlikely(err && !ret)) | 
|  | 2296 | ret = err; | 
|  | 2297 | if (likely(!ret)) | 
|  | 2298 | ntfs_debug("Done."); | 
|  | 2299 | else | 
|  | 2300 | ntfs_warning(vi->i_sb, "Failed to f%ssync inode 0x%lx.  Error " | 
|  | 2301 | "%u.", datasync ? "data" : "", vi->i_ino, -ret); | 
|  | 2302 | return ret; | 
|  | 2303 | } | 
|  | 2304 |  | 
|  | 2305 | #endif /* NTFS_RW */ | 
|  | 2306 |  | 
|  | 2307 | struct file_operations ntfs_file_ops = { | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 2308 | .llseek		= generic_file_llseek,	 /* Seek inside file. */ | 
|  | 2309 | .read		= generic_file_read,	 /* Read from file. */ | 
|  | 2310 | .aio_read	= generic_file_aio_read, /* Async read from file. */ | 
|  | 2311 | .readv		= generic_file_readv,	 /* Read from file. */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2312 | #ifdef NTFS_RW | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 2313 | .write		= ntfs_file_write,	 /* Write to file. */ | 
|  | 2314 | .aio_write	= ntfs_file_aio_write,	 /* Async write to file. */ | 
|  | 2315 | .writev		= ntfs_file_writev,	 /* Write to file. */ | 
|  | 2316 | /*.release	= ,*/			 /* Last file is closed.  See | 
|  | 2317 | fs/ext2/file.c:: | 
|  | 2318 | ext2_release_file() for | 
|  | 2319 | how to use this to discard | 
|  | 2320 | preallocated space for | 
|  | 2321 | write opened files. */ | 
|  | 2322 | .fsync		= ntfs_file_fsync,	 /* Sync a file to disk. */ | 
|  | 2323 | /*.aio_fsync	= ,*/			 /* Sync all outstanding async | 
|  | 2324 | i/o operations on a | 
|  | 2325 | kiocb. */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2326 | #endif /* NTFS_RW */ | 
| Anton Altaparmakov | 98b2703 | 2005-10-11 15:40:40 +0100 | [diff] [blame] | 2327 | /*.ioctl	= ,*/			 /* Perform function on the | 
|  | 2328 | mounted filesystem. */ | 
|  | 2329 | .mmap		= generic_file_mmap,	 /* Mmap file. */ | 
|  | 2330 | .open		= ntfs_file_open,	 /* Open file. */ | 
|  | 2331 | .sendfile	= generic_file_sendfile, /* Zero-copy data send with | 
|  | 2332 | the data source being on | 
|  | 2333 | the ntfs partition.  We do | 
|  | 2334 | not need to care about the | 
|  | 2335 | data destination. */ | 
|  | 2336 | /*.sendpage	= ,*/			 /* Zero-copy data send with | 
|  | 2337 | the data destination being | 
|  | 2338 | on the ntfs partition.  We | 
|  | 2339 | do not need to care about | 
|  | 2340 | the data source. */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2341 | }; | 
|  | 2342 |  | 
|  | 2343 | struct inode_operations ntfs_file_inode_ops = { | 
|  | 2344 | #ifdef NTFS_RW | 
|  | 2345 | .truncate	= ntfs_truncate_vfs, | 
|  | 2346 | .setattr	= ntfs_setattr, | 
|  | 2347 | #endif /* NTFS_RW */ | 
|  | 2348 | }; | 
|  | 2349 |  | 
|  | 2350 | struct file_operations ntfs_empty_file_ops = {}; | 
|  | 2351 |  | 
|  | 2352 | struct inode_operations ntfs_empty_inode_ops = {}; |