blob: 221f12bd27fa4023affb86b1900091041e300fad [file] [log] [blame]
Chris Metcalf867e3592010-05-28 23:09:12 -04001/*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15#include <linux/sched.h>
16#include <linux/preempt.h>
17#include <linux/module.h>
18#include <linux/fs.h>
19#include <linux/kprobes.h>
20#include <linux/elfcore.h>
21#include <linux/tick.h>
22#include <linux/init.h>
23#include <linux/mm.h>
24#include <linux/compat.h>
25#include <linux/hardirq.h>
26#include <linux/syscalls.h>
Chris Metcalf0707ad32010-06-25 17:04:17 -040027#include <linux/kernel.h>
Chris Metcalf867e3592010-05-28 23:09:12 -040028#include <asm/system.h>
29#include <asm/stack.h>
30#include <asm/homecache.h>
Chris Metcalf0707ad32010-06-25 17:04:17 -040031#include <asm/syscalls.h>
32#ifdef CONFIG_HARDWALL
33#include <asm/hardwall.h>
34#endif
Chris Metcalf867e3592010-05-28 23:09:12 -040035#include <arch/chip.h>
36#include <arch/abi.h>
37
38
39/*
40 * Use the (x86) "idle=poll" option to prefer low latency when leaving the
41 * idle loop over low power while in the idle loop, e.g. if we have
42 * one thread per core and we want to get threads out of futex waits fast.
43 */
44static int no_idle_nap;
45static int __init idle_setup(char *str)
46{
47 if (!str)
48 return -EINVAL;
49
50 if (!strcmp(str, "poll")) {
Chris Metcalf0707ad32010-06-25 17:04:17 -040051 pr_info("using polling idle threads.\n");
Chris Metcalf867e3592010-05-28 23:09:12 -040052 no_idle_nap = 1;
53 } else if (!strcmp(str, "halt"))
54 no_idle_nap = 0;
55 else
56 return -1;
57
58 return 0;
59}
60early_param("idle", idle_setup);
61
62/*
63 * The idle thread. There's no useful work to be
64 * done, so just try to conserve power and have a
65 * low exit latency (ie sit in a loop waiting for
66 * somebody to say that they'd like to reschedule)
67 */
68void cpu_idle(void)
69{
Chris Metcalf867e3592010-05-28 23:09:12 -040070 int cpu = smp_processor_id();
71
72
73 current_thread_info()->status |= TS_POLLING;
74
75 if (no_idle_nap) {
76 while (1) {
77 while (!need_resched())
78 cpu_relax();
79 schedule();
80 }
81 }
82
83 /* endless idle loop with no priority at all */
84 while (1) {
85 tick_nohz_stop_sched_tick(1);
86 while (!need_resched()) {
87 if (cpu_is_offline(cpu))
88 BUG(); /* no HOTPLUG_CPU */
89
90 local_irq_disable();
91 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
92 current_thread_info()->status &= ~TS_POLLING;
93 /*
94 * TS_POLLING-cleared state must be visible before we
95 * test NEED_RESCHED:
96 */
97 smp_mb();
98
99 if (!need_resched())
100 _cpu_idle();
101 else
102 local_irq_enable();
103 current_thread_info()->status |= TS_POLLING;
104 }
105 tick_nohz_restart_sched_tick();
106 preempt_enable_no_resched();
107 schedule();
108 preempt_disable();
109 }
110}
111
112struct thread_info *alloc_thread_info(struct task_struct *task)
113{
114 struct page *page;
Chris Metcalf0707ad32010-06-25 17:04:17 -0400115 gfp_t flags = GFP_KERNEL;
Chris Metcalf867e3592010-05-28 23:09:12 -0400116
117#ifdef CONFIG_DEBUG_STACK_USAGE
118 flags |= __GFP_ZERO;
119#endif
120
121 page = alloc_pages(flags, THREAD_SIZE_ORDER);
122 if (!page)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400123 return NULL;
Chris Metcalf867e3592010-05-28 23:09:12 -0400124
125 return (struct thread_info *)page_address(page);
126}
127
128/*
129 * Free a thread_info node, and all of its derivative
130 * data structures.
131 */
132void free_thread_info(struct thread_info *info)
133{
134 struct single_step_state *step_state = info->step_state;
135
Chris Metcalf0707ad32010-06-25 17:04:17 -0400136#ifdef CONFIG_HARDWALL
137 /*
138 * We free a thread_info from the context of the task that has
139 * been scheduled next, so the original task is already dead.
140 * Calling deactivate here just frees up the data structures.
141 * If the task we're freeing held the last reference to a
142 * hardwall fd, it would have been released prior to this point
143 * anyway via exit_files(), and "hardwall" would be NULL by now.
144 */
145 if (info->task->thread.hardwall)
146 hardwall_deactivate(info->task);
147#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400148
149 if (step_state) {
150
151 /*
152 * FIXME: we don't munmap step_state->buffer
153 * because the mm_struct for this process (info->task->mm)
154 * has already been zeroed in exit_mm(). Keeping a
155 * reference to it here seems like a bad move, so this
156 * means we can't munmap() the buffer, and therefore if we
157 * ptrace multiple threads in a process, we will slowly
158 * leak user memory. (Note that as soon as the last
159 * thread in a process dies, we will reclaim all user
160 * memory including single-step buffers in the usual way.)
161 * We should either assign a kernel VA to this buffer
162 * somehow, or we should associate the buffer(s) with the
163 * mm itself so we can clean them up that way.
164 */
165 kfree(step_state);
166 }
167
168 free_page((unsigned long)info);
169}
170
171static void save_arch_state(struct thread_struct *t);
172
Chris Metcalf867e3592010-05-28 23:09:12 -0400173int copy_thread(unsigned long clone_flags, unsigned long sp,
174 unsigned long stack_size,
175 struct task_struct *p, struct pt_regs *regs)
176{
177 struct pt_regs *childregs;
178 unsigned long ksp;
179
180 /*
181 * When creating a new kernel thread we pass sp as zero.
182 * Assign it to a reasonable value now that we have the stack.
183 */
184 if (sp == 0 && regs->ex1 == PL_ICS_EX1(KERNEL_PL, 0))
185 sp = KSTK_TOP(p);
186
187 /*
188 * Do not clone step state from the parent; each thread
189 * must make its own lazily.
190 */
191 task_thread_info(p)->step_state = NULL;
192
193 /*
194 * Start new thread in ret_from_fork so it schedules properly
195 * and then return from interrupt like the parent.
196 */
197 p->thread.pc = (unsigned long) ret_from_fork;
198
199 /* Save user stack top pointer so we can ID the stack vm area later. */
200 p->thread.usp0 = sp;
201
202 /* Record the pid of the process that created this one. */
203 p->thread.creator_pid = current->pid;
204
205 /*
206 * Copy the registers onto the kernel stack so the
207 * return-from-interrupt code will reload it into registers.
208 */
209 childregs = task_pt_regs(p);
210 *childregs = *regs;
211 childregs->regs[0] = 0; /* return value is zero */
212 childregs->sp = sp; /* override with new user stack pointer */
213
214 /*
215 * Copy the callee-saved registers from the passed pt_regs struct
216 * into the context-switch callee-saved registers area.
Chris Metcalfd6f0f222010-10-14 14:42:58 -0400217 * This way when we start the interrupt-return sequence, the
218 * callee-save registers will be correctly in registers, which
219 * is how we assume the compiler leaves them as we start doing
220 * the normal return-from-interrupt path after calling C code.
Chris Metcalf867e3592010-05-28 23:09:12 -0400221 * Zero out the C ABI save area to mark the top of the stack.
222 */
223 ksp = (unsigned long) childregs;
224 ksp -= C_ABI_SAVE_AREA_SIZE; /* interrupt-entry save area */
225 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
226 ksp -= CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long);
227 memcpy((void *)ksp, &regs->regs[CALLEE_SAVED_FIRST_REG],
228 CALLEE_SAVED_REGS_COUNT * sizeof(unsigned long));
229 ksp -= C_ABI_SAVE_AREA_SIZE; /* __switch_to() save area */
230 ((long *)ksp)[0] = ((long *)ksp)[1] = 0;
231 p->thread.ksp = ksp;
232
233#if CHIP_HAS_TILE_DMA()
234 /*
235 * No DMA in the new thread. We model this on the fact that
236 * fork() clears the pending signals, alarms, and aio for the child.
237 */
238 memset(&p->thread.tile_dma_state, 0, sizeof(struct tile_dma_state));
239 memset(&p->thread.dma_async_tlb, 0, sizeof(struct async_tlb));
240#endif
241
242#if CHIP_HAS_SN_PROC()
243 /* Likewise, the new thread is not running static processor code. */
244 p->thread.sn_proc_running = 0;
245 memset(&p->thread.sn_async_tlb, 0, sizeof(struct async_tlb));
246#endif
247
248#if CHIP_HAS_PROC_STATUS_SPR()
249 /* New thread has its miscellaneous processor state bits clear. */
250 p->thread.proc_status = 0;
251#endif
252
Chris Metcalf0707ad32010-06-25 17:04:17 -0400253#ifdef CONFIG_HARDWALL
254 /* New thread does not own any networks. */
255 p->thread.hardwall = NULL;
256#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400257
258
259 /*
260 * Start the new thread with the current architecture state
261 * (user interrupt masks, etc.).
262 */
263 save_arch_state(&p->thread);
264
265 return 0;
266}
267
268/*
269 * Return "current" if it looks plausible, or else a pointer to a dummy.
270 * This can be helpful if we are just trying to emit a clean panic.
271 */
272struct task_struct *validate_current(void)
273{
274 static struct task_struct corrupt = { .comm = "<corrupt>" };
275 struct task_struct *tsk = current;
276 if (unlikely((unsigned long)tsk < PAGE_OFFSET ||
277 (void *)tsk > high_memory ||
278 ((unsigned long)tsk & (__alignof__(*tsk) - 1)) != 0)) {
Chris Metcalf0707ad32010-06-25 17:04:17 -0400279 pr_err("Corrupt 'current' %p (sp %#lx)\n", tsk, stack_pointer);
Chris Metcalf867e3592010-05-28 23:09:12 -0400280 tsk = &corrupt;
281 }
282 return tsk;
283}
284
285/* Take and return the pointer to the previous task, for schedule_tail(). */
286struct task_struct *sim_notify_fork(struct task_struct *prev)
287{
288 struct task_struct *tsk = current;
289 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK_PARENT |
290 (tsk->thread.creator_pid << _SIM_CONTROL_OPERATOR_BITS));
291 __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_FORK |
292 (tsk->pid << _SIM_CONTROL_OPERATOR_BITS));
293 return prev;
294}
295
296int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
297{
298 struct pt_regs *ptregs = task_pt_regs(tsk);
299 elf_core_copy_regs(regs, ptregs);
300 return 1;
301}
302
303#if CHIP_HAS_TILE_DMA()
304
305/* Allow user processes to access the DMA SPRs */
306void grant_dma_mpls(void)
307{
308 __insn_mtspr(SPR_MPL_DMA_CPL_SET_0, 1);
309 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_0, 1);
310}
311
312/* Forbid user processes from accessing the DMA SPRs */
313void restrict_dma_mpls(void)
314{
315 __insn_mtspr(SPR_MPL_DMA_CPL_SET_1, 1);
316 __insn_mtspr(SPR_MPL_DMA_NOTIFY_SET_1, 1);
317}
318
319/* Pause the DMA engine, then save off its state registers. */
320static void save_tile_dma_state(struct tile_dma_state *dma)
321{
322 unsigned long state = __insn_mfspr(SPR_DMA_USER_STATUS);
323 unsigned long post_suspend_state;
324
325 /* If we're running, suspend the engine. */
326 if ((state & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK)
327 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK);
328
329 /*
330 * Wait for the engine to idle, then save regs. Note that we
331 * want to record the "running" bit from before suspension,
332 * and the "done" bit from after, so that we can properly
333 * distinguish a case where the user suspended the engine from
334 * the case where the kernel suspended as part of the context
335 * swap.
336 */
337 do {
338 post_suspend_state = __insn_mfspr(SPR_DMA_USER_STATUS);
339 } while (post_suspend_state & SPR_DMA_STATUS__BUSY_MASK);
340
341 dma->src = __insn_mfspr(SPR_DMA_SRC_ADDR);
342 dma->src_chunk = __insn_mfspr(SPR_DMA_SRC_CHUNK_ADDR);
343 dma->dest = __insn_mfspr(SPR_DMA_DST_ADDR);
344 dma->dest_chunk = __insn_mfspr(SPR_DMA_DST_CHUNK_ADDR);
345 dma->strides = __insn_mfspr(SPR_DMA_STRIDE);
346 dma->chunk_size = __insn_mfspr(SPR_DMA_CHUNK_SIZE);
347 dma->byte = __insn_mfspr(SPR_DMA_BYTE);
348 dma->status = (state & SPR_DMA_STATUS__RUNNING_MASK) |
349 (post_suspend_state & SPR_DMA_STATUS__DONE_MASK);
350}
351
352/* Restart a DMA that was running before we were context-switched out. */
353static void restore_tile_dma_state(struct thread_struct *t)
354{
355 const struct tile_dma_state *dma = &t->tile_dma_state;
356
357 /*
358 * The only way to restore the done bit is to run a zero
359 * length transaction.
360 */
361 if ((dma->status & SPR_DMA_STATUS__DONE_MASK) &&
362 !(__insn_mfspr(SPR_DMA_USER_STATUS) & SPR_DMA_STATUS__DONE_MASK)) {
363 __insn_mtspr(SPR_DMA_BYTE, 0);
364 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
365 while (__insn_mfspr(SPR_DMA_USER_STATUS) &
366 SPR_DMA_STATUS__BUSY_MASK)
367 ;
368 }
369
370 __insn_mtspr(SPR_DMA_SRC_ADDR, dma->src);
371 __insn_mtspr(SPR_DMA_SRC_CHUNK_ADDR, dma->src_chunk);
372 __insn_mtspr(SPR_DMA_DST_ADDR, dma->dest);
373 __insn_mtspr(SPR_DMA_DST_CHUNK_ADDR, dma->dest_chunk);
374 __insn_mtspr(SPR_DMA_STRIDE, dma->strides);
375 __insn_mtspr(SPR_DMA_CHUNK_SIZE, dma->chunk_size);
376 __insn_mtspr(SPR_DMA_BYTE, dma->byte);
377
378 /*
379 * Restart the engine if we were running and not done.
380 * Clear a pending async DMA fault that we were waiting on return
381 * to user space to execute, since we expect the DMA engine
382 * to regenerate those faults for us now. Note that we don't
383 * try to clear the TIF_ASYNC_TLB flag, since it's relatively
384 * harmless if set, and it covers both DMA and the SN processor.
385 */
386 if ((dma->status & DMA_STATUS_MASK) == SPR_DMA_STATUS__RUNNING_MASK) {
387 t->dma_async_tlb.fault_num = 0;
388 __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK);
389 }
390}
391
392#endif
393
394static void save_arch_state(struct thread_struct *t)
395{
396#if CHIP_HAS_SPLIT_INTR_MASK()
397 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0_0) |
398 ((u64)__insn_mfspr(SPR_INTERRUPT_MASK_0_1) << 32);
399#else
400 t->interrupt_mask = __insn_mfspr(SPR_INTERRUPT_MASK_0);
401#endif
402 t->ex_context[0] = __insn_mfspr(SPR_EX_CONTEXT_0_0);
403 t->ex_context[1] = __insn_mfspr(SPR_EX_CONTEXT_0_1);
404 t->system_save[0] = __insn_mfspr(SPR_SYSTEM_SAVE_0_0);
405 t->system_save[1] = __insn_mfspr(SPR_SYSTEM_SAVE_0_1);
406 t->system_save[2] = __insn_mfspr(SPR_SYSTEM_SAVE_0_2);
407 t->system_save[3] = __insn_mfspr(SPR_SYSTEM_SAVE_0_3);
408 t->intctrl_0 = __insn_mfspr(SPR_INTCTRL_0_STATUS);
409#if CHIP_HAS_PROC_STATUS_SPR()
410 t->proc_status = __insn_mfspr(SPR_PROC_STATUS);
411#endif
Chris Metcalfa802fc62010-09-15 11:16:10 -0400412#if !CHIP_HAS_FIXED_INTVEC_BASE()
413 t->interrupt_vector_base = __insn_mfspr(SPR_INTERRUPT_VECTOR_BASE_0);
414#endif
415#if CHIP_HAS_TILE_RTF_HWM()
416 t->tile_rtf_hwm = __insn_mfspr(SPR_TILE_RTF_HWM);
417#endif
418#if CHIP_HAS_DSTREAM_PF()
419 t->dstream_pf = __insn_mfspr(SPR_DSTREAM_PF);
420#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400421}
422
423static void restore_arch_state(const struct thread_struct *t)
424{
425#if CHIP_HAS_SPLIT_INTR_MASK()
426 __insn_mtspr(SPR_INTERRUPT_MASK_0_0, (u32) t->interrupt_mask);
427 __insn_mtspr(SPR_INTERRUPT_MASK_0_1, t->interrupt_mask >> 32);
428#else
429 __insn_mtspr(SPR_INTERRUPT_MASK_0, t->interrupt_mask);
430#endif
431 __insn_mtspr(SPR_EX_CONTEXT_0_0, t->ex_context[0]);
432 __insn_mtspr(SPR_EX_CONTEXT_0_1, t->ex_context[1]);
433 __insn_mtspr(SPR_SYSTEM_SAVE_0_0, t->system_save[0]);
434 __insn_mtspr(SPR_SYSTEM_SAVE_0_1, t->system_save[1]);
435 __insn_mtspr(SPR_SYSTEM_SAVE_0_2, t->system_save[2]);
436 __insn_mtspr(SPR_SYSTEM_SAVE_0_3, t->system_save[3]);
437 __insn_mtspr(SPR_INTCTRL_0_STATUS, t->intctrl_0);
438#if CHIP_HAS_PROC_STATUS_SPR()
439 __insn_mtspr(SPR_PROC_STATUS, t->proc_status);
440#endif
Chris Metcalfa802fc62010-09-15 11:16:10 -0400441#if !CHIP_HAS_FIXED_INTVEC_BASE()
442 __insn_mtspr(SPR_INTERRUPT_VECTOR_BASE_0, t->interrupt_vector_base);
443#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400444#if CHIP_HAS_TILE_RTF_HWM()
Chris Metcalfa802fc62010-09-15 11:16:10 -0400445 __insn_mtspr(SPR_TILE_RTF_HWM, t->tile_rtf_hwm);
446#endif
447#if CHIP_HAS_DSTREAM_PF()
448 __insn_mtspr(SPR_DSTREAM_PF, t->dstream_pf);
Chris Metcalf867e3592010-05-28 23:09:12 -0400449#endif
450}
451
452
453void _prepare_arch_switch(struct task_struct *next)
454{
455#if CHIP_HAS_SN_PROC()
456 int snctl;
457#endif
458#if CHIP_HAS_TILE_DMA()
459 struct tile_dma_state *dma = &current->thread.tile_dma_state;
460 if (dma->enabled)
461 save_tile_dma_state(dma);
462#endif
463#if CHIP_HAS_SN_PROC()
464 /*
465 * Suspend the static network processor if it was running.
466 * We do not suspend the fabric itself, just like we don't
467 * try to suspend the UDN.
468 */
469 snctl = __insn_mfspr(SPR_SNCTL);
470 current->thread.sn_proc_running =
471 (snctl & SPR_SNCTL__FRZPROC_MASK) == 0;
472 if (current->thread.sn_proc_running)
473 __insn_mtspr(SPR_SNCTL, snctl | SPR_SNCTL__FRZPROC_MASK);
474#endif
475}
476
477
Chris Metcalf867e3592010-05-28 23:09:12 -0400478struct task_struct *__sched _switch_to(struct task_struct *prev,
479 struct task_struct *next)
480{
481 /* DMA state is already saved; save off other arch state. */
482 save_arch_state(&prev->thread);
483
484#if CHIP_HAS_TILE_DMA()
485 /*
486 * Restore DMA in new task if desired.
487 * Note that it is only safe to restart here since interrupts
488 * are disabled, so we can't take any DMATLB miss or access
489 * interrupts before we have finished switching stacks.
490 */
491 if (next->thread.tile_dma_state.enabled) {
492 restore_tile_dma_state(&next->thread);
493 grant_dma_mpls();
494 } else {
495 restrict_dma_mpls();
496 }
497#endif
498
499 /* Restore other arch state. */
500 restore_arch_state(&next->thread);
501
502#if CHIP_HAS_SN_PROC()
503 /*
504 * Restart static network processor in the new process
505 * if it was running before.
506 */
507 if (next->thread.sn_proc_running) {
508 int snctl = __insn_mfspr(SPR_SNCTL);
509 __insn_mtspr(SPR_SNCTL, snctl & ~SPR_SNCTL__FRZPROC_MASK);
510 }
511#endif
512
Chris Metcalf0707ad32010-06-25 17:04:17 -0400513#ifdef CONFIG_HARDWALL
514 /* Enable or disable access to the network registers appropriately. */
515 if (prev->thread.hardwall != NULL) {
516 if (next->thread.hardwall == NULL)
517 restrict_network_mpls();
518 } else if (next->thread.hardwall != NULL) {
519 grant_network_mpls();
520 }
521#endif
Chris Metcalf867e3592010-05-28 23:09:12 -0400522
523 /*
524 * Switch kernel SP, PC, and callee-saved registers.
525 * In the context of the new task, return the old task pointer
526 * (i.e. the task that actually called __switch_to).
527 * Pass the value to use for SYSTEM_SAVE_1_0 when we reset our sp.
528 */
529 return __switch_to(prev, next, next_current_ksp0(next));
530}
531
Chris Metcalfd929b6a2010-10-14 14:34:33 -0400532SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
533 void __user *, parent_tidptr, void __user *, child_tidptr,
534 struct pt_regs *, regs)
Chris Metcalf867e3592010-05-28 23:09:12 -0400535{
536 if (!newsp)
537 newsp = regs->sp;
538 return do_fork(clone_flags, newsp, regs, 0,
539 parent_tidptr, child_tidptr);
540}
541
Chris Metcalf867e3592010-05-28 23:09:12 -0400542/*
543 * sys_execve() executes a new program.
544 */
Chris Metcalfd929b6a2010-10-14 14:34:33 -0400545SYSCALL_DEFINE4(execve, const char __user *, path,
546 const char __user *const __user *, argv,
547 const char __user *const __user *, envp,
548 struct pt_regs *, regs)
Chris Metcalf867e3592010-05-28 23:09:12 -0400549{
Chris Metcalf0707ad32010-06-25 17:04:17 -0400550 long error;
Chris Metcalf867e3592010-05-28 23:09:12 -0400551 char *filename;
552
553 filename = getname(path);
554 error = PTR_ERR(filename);
555 if (IS_ERR(filename))
556 goto out;
557 error = do_execve(filename, argv, envp, regs);
558 putname(filename);
559out:
560 return error;
561}
562
563#ifdef CONFIG_COMPAT
Chris Metcalfd929b6a2010-10-14 14:34:33 -0400564long compat_sys_execve(const char __user *path,
565 const compat_uptr_t __user *argv,
566 const compat_uptr_t __user *envp,
567 struct pt_regs *regs)
Chris Metcalf867e3592010-05-28 23:09:12 -0400568{
Chris Metcalf0707ad32010-06-25 17:04:17 -0400569 long error;
Chris Metcalf867e3592010-05-28 23:09:12 -0400570 char *filename;
571
572 filename = getname(path);
573 error = PTR_ERR(filename);
574 if (IS_ERR(filename))
575 goto out;
576 error = compat_do_execve(filename, argv, envp, regs);
577 putname(filename);
578out:
579 return error;
580}
581#endif
582
583unsigned long get_wchan(struct task_struct *p)
584{
585 struct KBacktraceIterator kbt;
586
587 if (!p || p == current || p->state == TASK_RUNNING)
588 return 0;
589
590 for (KBacktraceIterator_init(&kbt, p, NULL);
591 !KBacktraceIterator_end(&kbt);
592 KBacktraceIterator_next(&kbt)) {
593 if (!in_sched_functions(kbt.it.pc))
594 return kbt.it.pc;
595 }
596
597 return 0;
598}
599
600/*
601 * We pass in lr as zero (cleared in kernel_thread) and the caller
602 * part of the backtrace ABI on the stack also zeroed (in copy_thread)
603 * so that backtraces will stop with this function.
604 * Note that we don't use r0, since copy_thread() clears it.
605 */
606static void start_kernel_thread(int dummy, int (*fn)(int), int arg)
607{
608 do_exit(fn(arg));
609}
610
611/*
612 * Create a kernel thread
613 */
614int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
615{
616 struct pt_regs regs;
617
618 memset(&regs, 0, sizeof(regs));
619 regs.ex1 = PL_ICS_EX1(KERNEL_PL, 0); /* run at kernel PL, no ICS */
620 regs.pc = (long) start_kernel_thread;
621 regs.flags = PT_FLAGS_CALLER_SAVES; /* need to restore r1 and r2 */
622 regs.regs[1] = (long) fn; /* function pointer */
623 regs.regs[2] = (long) arg; /* parameter register */
624
625 /* Ok, create the new process.. */
626 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs,
627 0, NULL, NULL);
628}
629EXPORT_SYMBOL(kernel_thread);
630
631/* Flush thread state. */
632void flush_thread(void)
633{
634 /* Nothing */
635}
636
637/*
638 * Free current thread data structures etc..
639 */
640void exit_thread(void)
641{
642 /* Nothing */
643}
644
Chris Metcalf867e3592010-05-28 23:09:12 -0400645void show_regs(struct pt_regs *regs)
646{
647 struct task_struct *tsk = validate_current();
Chris Metcalf0707ad32010-06-25 17:04:17 -0400648 int i;
649
650 pr_err("\n");
651 pr_err(" Pid: %d, comm: %20s, CPU: %d\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400652 tsk->pid, tsk->comm, smp_processor_id());
Chris Metcalf0707ad32010-06-25 17:04:17 -0400653#ifdef __tilegx__
654 for (i = 0; i < 51; i += 3)
655 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
656 i, regs->regs[i], i+1, regs->regs[i+1],
657 i+2, regs->regs[i+2]);
658 pr_err(" r51: "REGFMT" r52: "REGFMT" tp : "REGFMT"\n",
659 regs->regs[51], regs->regs[52], regs->tp);
660 pr_err(" sp : "REGFMT" lr : "REGFMT"\n", regs->sp, regs->lr);
661#else
Chris Metcalf7040dea2010-09-15 11:17:05 -0400662 for (i = 0; i < 52; i += 4)
Chris Metcalf0707ad32010-06-25 17:04:17 -0400663 pr_err(" r%-2d: "REGFMT" r%-2d: "REGFMT
664 " r%-2d: "REGFMT" r%-2d: "REGFMT"\n",
665 i, regs->regs[i], i+1, regs->regs[i+1],
666 i+2, regs->regs[i+2], i+3, regs->regs[i+3]);
667 pr_err(" r52: "REGFMT" tp : "REGFMT" sp : "REGFMT" lr : "REGFMT"\n",
668 regs->regs[52], regs->tp, regs->sp, regs->lr);
669#endif
670 pr_err(" pc : "REGFMT" ex1: %ld faultnum: %ld\n",
Chris Metcalf867e3592010-05-28 23:09:12 -0400671 regs->pc, regs->ex1, regs->faultnum);
672
673 dump_stack_regs(regs);
674}