| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 1 | /****************************************************************************** | 
|  | 2 | * | 
|  | 3 | * This file is provided under a dual BSD/GPLv2 license.  When using or | 
|  | 4 | * redistributing this file, you may do so under either license. | 
|  | 5 | * | 
|  | 6 | * GPL LICENSE SUMMARY | 
|  | 7 | * | 
|  | 8 | * Copyright(c) 2008 Intel Corporation. All rights reserved. | 
|  | 9 | * | 
|  | 10 | * This program is free software; you can redistribute it and/or modify | 
|  | 11 | * it under the terms of version 2 of the GNU General Public License as | 
|  | 12 | * published by the Free Software Foundation. | 
|  | 13 | * | 
|  | 14 | * This program is distributed in the hope that it will be useful, but | 
|  | 15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | 16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | 17 | * General Public License for more details. | 
|  | 18 | * | 
|  | 19 | * You should have received a copy of the GNU General Public License | 
|  | 20 | * along with this program; if not, write to the Free Software | 
|  | 21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | 
|  | 22 | * USA | 
|  | 23 | * | 
|  | 24 | * The full GNU General Public License is included in this distribution | 
|  | 25 | * in the file called LICENSE.GPL. | 
|  | 26 | * | 
|  | 27 | * Contact Information: | 
|  | 28 | * Tomas Winkler <tomas.winkler@intel.com> | 
|  | 29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  | 30 | * | 
|  | 31 | * BSD LICENSE | 
|  | 32 | * | 
|  | 33 | * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved. | 
|  | 34 | * All rights reserved. | 
|  | 35 | * | 
|  | 36 | * Redistribution and use in source and binary forms, with or without | 
|  | 37 | * modification, are permitted provided that the following conditions | 
|  | 38 | * are met: | 
|  | 39 | * | 
|  | 40 | *  * Redistributions of source code must retain the above copyright | 
|  | 41 | *    notice, this list of conditions and the following disclaimer. | 
|  | 42 | *  * Redistributions in binary form must reproduce the above copyright | 
|  | 43 | *    notice, this list of conditions and the following disclaimer in | 
|  | 44 | *    the documentation and/or other materials provided with the | 
|  | 45 | *    distribution. | 
|  | 46 | *  * Neither the name Intel Corporation nor the names of its | 
|  | 47 | *    contributors may be used to endorse or promote products derived | 
|  | 48 | *    from this software without specific prior written permission. | 
|  | 49 | * | 
|  | 50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | 51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | 52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | 53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | 54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | 55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | 56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | 57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | 58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | 59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | 60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | 61 | *****************************************************************************/ | 
|  | 62 |  | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 63 | #include <net/mac80211.h> | 
|  | 64 |  | 
| Tomas Winkler | 3e0d4cb | 2008-04-24 11:55:38 -0700 | [diff] [blame] | 65 | #include "iwl-dev.h" | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 66 | #include "iwl-core.h" | 
|  | 67 | #include "iwl-calib.h" | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 68 |  | 
|  | 69 | /* "false alarms" are signals that our DSP tries to lock onto, | 
|  | 70 | *   but then determines that they are either noise, or transmissions | 
|  | 71 | *   from a distant wireless network (also "noise", really) that get | 
|  | 72 | *   "stepped on" by stronger transmissions within our own network. | 
|  | 73 | * This algorithm attempts to set a sensitivity level that is high | 
|  | 74 | *   enough to receive all of our own network traffic, but not so | 
|  | 75 | *   high that our DSP gets too busy trying to lock onto non-network | 
|  | 76 | *   activity/noise. */ | 
|  | 77 | static int iwl_sens_energy_cck(struct iwl_priv *priv, | 
|  | 78 | u32 norm_fa, | 
|  | 79 | u32 rx_enable_time, | 
|  | 80 | struct statistics_general_data *rx_info) | 
|  | 81 | { | 
|  | 82 | u32 max_nrg_cck = 0; | 
|  | 83 | int i = 0; | 
|  | 84 | u8 max_silence_rssi = 0; | 
|  | 85 | u32 silence_ref = 0; | 
|  | 86 | u8 silence_rssi_a = 0; | 
|  | 87 | u8 silence_rssi_b = 0; | 
|  | 88 | u8 silence_rssi_c = 0; | 
|  | 89 | u32 val; | 
|  | 90 |  | 
|  | 91 | /* "false_alarms" values below are cross-multiplications to assess the | 
|  | 92 | *   numbers of false alarms within the measured period of actual Rx | 
|  | 93 | *   (Rx is off when we're txing), vs the min/max expected false alarms | 
|  | 94 | *   (some should be expected if rx is sensitive enough) in a | 
|  | 95 | *   hypothetical listening period of 200 time units (TU), 204.8 msec: | 
|  | 96 | * | 
|  | 97 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | 
|  | 98 | * | 
|  | 99 | * */ | 
|  | 100 | u32 false_alarms = norm_fa * 200 * 1024; | 
|  | 101 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | 
|  | 102 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | 
|  | 103 | struct iwl_sensitivity_data *data = NULL; | 
|  | 104 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | 
|  | 105 |  | 
|  | 106 | data = &(priv->sensitivity_data); | 
|  | 107 |  | 
|  | 108 | data->nrg_auto_corr_silence_diff = 0; | 
|  | 109 |  | 
|  | 110 | /* Find max silence rssi among all 3 receivers. | 
|  | 111 | * This is background noise, which may include transmissions from other | 
|  | 112 | *    networks, measured during silence before our network's beacon */ | 
|  | 113 | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | 
|  | 114 | ALL_BAND_FILTER) >> 8); | 
|  | 115 | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | 
|  | 116 | ALL_BAND_FILTER) >> 8); | 
|  | 117 | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | 
|  | 118 | ALL_BAND_FILTER) >> 8); | 
|  | 119 |  | 
|  | 120 | val = max(silence_rssi_b, silence_rssi_c); | 
|  | 121 | max_silence_rssi = max(silence_rssi_a, (u8) val); | 
|  | 122 |  | 
|  | 123 | /* Store silence rssi in 20-beacon history table */ | 
|  | 124 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | 
|  | 125 | data->nrg_silence_idx++; | 
|  | 126 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | 
|  | 127 | data->nrg_silence_idx = 0; | 
|  | 128 |  | 
|  | 129 | /* Find max silence rssi across 20 beacon history */ | 
|  | 130 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | 
|  | 131 | val = data->nrg_silence_rssi[i]; | 
|  | 132 | silence_ref = max(silence_ref, val); | 
|  | 133 | } | 
|  | 134 | IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", | 
|  | 135 | silence_rssi_a, silence_rssi_b, silence_rssi_c, | 
|  | 136 | silence_ref); | 
|  | 137 |  | 
|  | 138 | /* Find max rx energy (min value!) among all 3 receivers, | 
|  | 139 | *   measured during beacon frame. | 
|  | 140 | * Save it in 10-beacon history table. */ | 
|  | 141 | i = data->nrg_energy_idx; | 
|  | 142 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | 
|  | 143 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | 
|  | 144 |  | 
|  | 145 | data->nrg_energy_idx++; | 
|  | 146 | if (data->nrg_energy_idx >= 10) | 
|  | 147 | data->nrg_energy_idx = 0; | 
|  | 148 |  | 
|  | 149 | /* Find min rx energy (max value) across 10 beacon history. | 
|  | 150 | * This is the minimum signal level that we want to receive well. | 
|  | 151 | * Add backoff (margin so we don't miss slightly lower energy frames). | 
|  | 152 | * This establishes an upper bound (min value) for energy threshold. */ | 
|  | 153 | max_nrg_cck = data->nrg_value[0]; | 
|  | 154 | for (i = 1; i < 10; i++) | 
|  | 155 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | 
|  | 156 | max_nrg_cck += 6; | 
|  | 157 |  | 
|  | 158 | IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | 
|  | 159 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | 
|  | 160 | rx_info->beacon_energy_c, max_nrg_cck - 6); | 
|  | 161 |  | 
|  | 162 | /* Count number of consecutive beacons with fewer-than-desired | 
|  | 163 | *   false alarms. */ | 
|  | 164 | if (false_alarms < min_false_alarms) | 
|  | 165 | data->num_in_cck_no_fa++; | 
|  | 166 | else | 
|  | 167 | data->num_in_cck_no_fa = 0; | 
|  | 168 | IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n", | 
|  | 169 | data->num_in_cck_no_fa); | 
|  | 170 |  | 
|  | 171 | /* If we got too many false alarms this time, reduce sensitivity */ | 
|  | 172 | if ((false_alarms > max_false_alarms) && | 
|  | 173 | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | 
|  | 174 | IWL_DEBUG_CALIB("norm FA %u > max FA %u\n", | 
|  | 175 | false_alarms, max_false_alarms); | 
|  | 176 | IWL_DEBUG_CALIB("... reducing sensitivity\n"); | 
|  | 177 | data->nrg_curr_state = IWL_FA_TOO_MANY; | 
|  | 178 | /* Store for "fewer than desired" on later beacon */ | 
|  | 179 | data->nrg_silence_ref = silence_ref; | 
|  | 180 |  | 
|  | 181 | /* increase energy threshold (reduce nrg value) | 
|  | 182 | *   to decrease sensitivity */ | 
|  | 183 | if (data->nrg_th_cck > | 
|  | 184 | (ranges->max_nrg_cck + NRG_STEP_CCK)) | 
|  | 185 | data->nrg_th_cck = data->nrg_th_cck | 
|  | 186 | - NRG_STEP_CCK; | 
|  | 187 | else | 
|  | 188 | data->nrg_th_cck = ranges->max_nrg_cck; | 
|  | 189 | /* Else if we got fewer than desired, increase sensitivity */ | 
|  | 190 | } else if (false_alarms < min_false_alarms) { | 
|  | 191 | data->nrg_curr_state = IWL_FA_TOO_FEW; | 
|  | 192 |  | 
|  | 193 | /* Compare silence level with silence level for most recent | 
|  | 194 | *   healthy number or too many false alarms */ | 
|  | 195 | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | 
|  | 196 | (s32)silence_ref; | 
|  | 197 |  | 
|  | 198 | IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n", | 
|  | 199 | false_alarms, min_false_alarms, | 
|  | 200 | data->nrg_auto_corr_silence_diff); | 
|  | 201 |  | 
|  | 202 | /* Increase value to increase sensitivity, but only if: | 
|  | 203 | * 1a) previous beacon did *not* have *too many* false alarms | 
|  | 204 | * 1b) AND there's a significant difference in Rx levels | 
|  | 205 | *      from a previous beacon with too many, or healthy # FAs | 
|  | 206 | * OR 2) We've seen a lot of beacons (100) with too few | 
|  | 207 | *       false alarms */ | 
|  | 208 | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | 
|  | 209 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | 
|  | 210 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | 
|  | 211 |  | 
|  | 212 | IWL_DEBUG_CALIB("... increasing sensitivity\n"); | 
|  | 213 | /* Increase nrg value to increase sensitivity */ | 
|  | 214 | val = data->nrg_th_cck + NRG_STEP_CCK; | 
|  | 215 | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | 
|  | 216 | } else { | 
|  | 217 | IWL_DEBUG_CALIB("... but not changing sensitivity\n"); | 
|  | 218 | } | 
|  | 219 |  | 
|  | 220 | /* Else we got a healthy number of false alarms, keep status quo */ | 
|  | 221 | } else { | 
|  | 222 | IWL_DEBUG_CALIB(" FA in safe zone\n"); | 
|  | 223 | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | 
|  | 224 |  | 
|  | 225 | /* Store for use in "fewer than desired" with later beacon */ | 
|  | 226 | data->nrg_silence_ref = silence_ref; | 
|  | 227 |  | 
|  | 228 | /* If previous beacon had too many false alarms, | 
|  | 229 | *   give it some extra margin by reducing sensitivity again | 
|  | 230 | *   (but don't go below measured energy of desired Rx) */ | 
|  | 231 | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | 
|  | 232 | IWL_DEBUG_CALIB("... increasing margin\n"); | 
|  | 233 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | 
|  | 234 | data->nrg_th_cck -= NRG_MARGIN; | 
|  | 235 | else | 
|  | 236 | data->nrg_th_cck = max_nrg_cck; | 
|  | 237 | } | 
|  | 238 | } | 
|  | 239 |  | 
|  | 240 | /* Make sure the energy threshold does not go above the measured | 
|  | 241 | * energy of the desired Rx signals (reduced by backoff margin), | 
|  | 242 | * or else we might start missing Rx frames. | 
|  | 243 | * Lower value is higher energy, so we use max()! | 
|  | 244 | */ | 
|  | 245 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | 
|  | 246 | IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck); | 
|  | 247 |  | 
|  | 248 | data->nrg_prev_state = data->nrg_curr_state; | 
|  | 249 |  | 
|  | 250 | /* Auto-correlation CCK algorithm */ | 
|  | 251 | if (false_alarms > min_false_alarms) { | 
|  | 252 |  | 
|  | 253 | /* increase auto_corr values to decrease sensitivity | 
|  | 254 | * so the DSP won't be disturbed by the noise | 
|  | 255 | */ | 
|  | 256 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | 
|  | 257 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | 
|  | 258 | else { | 
|  | 259 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | 
|  | 260 | data->auto_corr_cck = | 
|  | 261 | min((u32)ranges->auto_corr_max_cck, val); | 
|  | 262 | } | 
|  | 263 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | 
|  | 264 | data->auto_corr_cck_mrc = | 
|  | 265 | min((u32)ranges->auto_corr_max_cck_mrc, val); | 
|  | 266 | } else if ((false_alarms < min_false_alarms) && | 
|  | 267 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | 
|  | 268 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | 
|  | 269 |  | 
|  | 270 | /* Decrease auto_corr values to increase sensitivity */ | 
|  | 271 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | 
|  | 272 | data->auto_corr_cck = | 
|  | 273 | max((u32)ranges->auto_corr_min_cck, val); | 
|  | 274 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | 
|  | 275 | data->auto_corr_cck_mrc = | 
|  | 276 | max((u32)ranges->auto_corr_min_cck_mrc, val); | 
|  | 277 | } | 
|  | 278 |  | 
|  | 279 | return 0; | 
|  | 280 | } | 
|  | 281 |  | 
|  | 282 |  | 
|  | 283 | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | 
|  | 284 | u32 norm_fa, | 
|  | 285 | u32 rx_enable_time) | 
|  | 286 | { | 
|  | 287 | u32 val; | 
|  | 288 | u32 false_alarms = norm_fa * 200 * 1024; | 
|  | 289 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | 
|  | 290 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | 
|  | 291 | struct iwl_sensitivity_data *data = NULL; | 
|  | 292 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | 
|  | 293 |  | 
|  | 294 | data = &(priv->sensitivity_data); | 
|  | 295 |  | 
|  | 296 | /* If we got too many false alarms this time, reduce sensitivity */ | 
|  | 297 | if (false_alarms > max_false_alarms) { | 
|  | 298 |  | 
|  | 299 | IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n", | 
|  | 300 | false_alarms, max_false_alarms); | 
|  | 301 |  | 
|  | 302 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | 
|  | 303 | data->auto_corr_ofdm = | 
|  | 304 | min((u32)ranges->auto_corr_max_ofdm, val); | 
|  | 305 |  | 
|  | 306 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | 
|  | 307 | data->auto_corr_ofdm_mrc = | 
|  | 308 | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | 
|  | 309 |  | 
|  | 310 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | 
|  | 311 | data->auto_corr_ofdm_x1 = | 
|  | 312 | min((u32)ranges->auto_corr_max_ofdm_x1, val); | 
|  | 313 |  | 
|  | 314 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | 
|  | 315 | data->auto_corr_ofdm_mrc_x1 = | 
|  | 316 | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | 
|  | 317 | } | 
|  | 318 |  | 
|  | 319 | /* Else if we got fewer than desired, increase sensitivity */ | 
|  | 320 | else if (false_alarms < min_false_alarms) { | 
|  | 321 |  | 
|  | 322 | IWL_DEBUG_CALIB("norm FA %u < min FA %u\n", | 
|  | 323 | false_alarms, min_false_alarms); | 
|  | 324 |  | 
|  | 325 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | 
|  | 326 | data->auto_corr_ofdm = | 
|  | 327 | max((u32)ranges->auto_corr_min_ofdm, val); | 
|  | 328 |  | 
|  | 329 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | 
|  | 330 | data->auto_corr_ofdm_mrc = | 
|  | 331 | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | 
|  | 332 |  | 
|  | 333 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | 
|  | 334 | data->auto_corr_ofdm_x1 = | 
|  | 335 | max((u32)ranges->auto_corr_min_ofdm_x1, val); | 
|  | 336 |  | 
|  | 337 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | 
|  | 338 | data->auto_corr_ofdm_mrc_x1 = | 
|  | 339 | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | 
|  | 340 | } else { | 
|  | 341 | IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n", | 
|  | 342 | min_false_alarms, false_alarms, max_false_alarms); | 
|  | 343 | } | 
|  | 344 | return 0; | 
|  | 345 | } | 
|  | 346 |  | 
|  | 347 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | 
|  | 348 | static int iwl_sensitivity_write(struct iwl_priv *priv) | 
|  | 349 | { | 
|  | 350 | int ret = 0; | 
|  | 351 | struct iwl_sensitivity_cmd cmd ; | 
|  | 352 | struct iwl_sensitivity_data *data = NULL; | 
|  | 353 | struct iwl_host_cmd cmd_out = { | 
|  | 354 | .id = SENSITIVITY_CMD, | 
|  | 355 | .len = sizeof(struct iwl_sensitivity_cmd), | 
|  | 356 | .meta.flags = CMD_ASYNC, | 
|  | 357 | .data = &cmd, | 
|  | 358 | }; | 
|  | 359 |  | 
|  | 360 | data = &(priv->sensitivity_data); | 
|  | 361 |  | 
|  | 362 | memset(&cmd, 0, sizeof(cmd)); | 
|  | 363 |  | 
|  | 364 | cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | 
|  | 365 | cpu_to_le16((u16)data->auto_corr_ofdm); | 
|  | 366 | cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | 
|  | 367 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | 
|  | 368 | cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | 
|  | 369 | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | 
|  | 370 | cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | 
|  | 371 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | 
|  | 372 |  | 
|  | 373 | cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | 
|  | 374 | cpu_to_le16((u16)data->auto_corr_cck); | 
|  | 375 | cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | 
|  | 376 | cpu_to_le16((u16)data->auto_corr_cck_mrc); | 
|  | 377 |  | 
|  | 378 | cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] = | 
|  | 379 | cpu_to_le16((u16)data->nrg_th_cck); | 
|  | 380 | cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] = | 
|  | 381 | cpu_to_le16((u16)data->nrg_th_ofdm); | 
|  | 382 |  | 
|  | 383 | cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | 
|  | 384 | __constant_cpu_to_le16(190); | 
|  | 385 | cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | 
|  | 386 | __constant_cpu_to_le16(390); | 
|  | 387 | cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] = | 
|  | 388 | __constant_cpu_to_le16(62); | 
|  | 389 |  | 
|  | 390 | IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | 
|  | 391 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | 
|  | 392 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | 
|  | 393 | data->nrg_th_ofdm); | 
|  | 394 |  | 
|  | 395 | IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n", | 
|  | 396 | data->auto_corr_cck, data->auto_corr_cck_mrc, | 
|  | 397 | data->nrg_th_cck); | 
|  | 398 |  | 
|  | 399 | /* Update uCode's "work" table, and copy it to DSP */ | 
|  | 400 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | 
|  | 401 |  | 
|  | 402 | /* Don't send command to uCode if nothing has changed */ | 
|  | 403 | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | 
|  | 404 | sizeof(u16)*HD_TABLE_SIZE)) { | 
|  | 405 | IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n"); | 
|  | 406 | return 0; | 
|  | 407 | } | 
|  | 408 |  | 
|  | 409 | /* Copy table for comparison next time */ | 
|  | 410 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | 
|  | 411 | sizeof(u16)*HD_TABLE_SIZE); | 
|  | 412 |  | 
|  | 413 | ret = iwl_send_cmd(priv, &cmd_out); | 
|  | 414 | if (ret) | 
|  | 415 | IWL_ERROR("SENSITIVITY_CMD failed\n"); | 
|  | 416 |  | 
|  | 417 | return ret; | 
|  | 418 | } | 
|  | 419 |  | 
|  | 420 | void iwl_init_sensitivity(struct iwl_priv *priv) | 
|  | 421 | { | 
|  | 422 | int ret = 0; | 
|  | 423 | int i; | 
|  | 424 | struct iwl_sensitivity_data *data = NULL; | 
|  | 425 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | 
|  | 426 |  | 
| Tomas Winkler | 445c2df | 2008-05-15 13:54:16 +0800 | [diff] [blame] | 427 | if (priv->disable_sens_cal) | 
|  | 428 | return; | 
|  | 429 |  | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 430 | IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n"); | 
|  | 431 |  | 
|  | 432 | /* Clear driver's sensitivity algo data */ | 
|  | 433 | data = &(priv->sensitivity_data); | 
|  | 434 |  | 
|  | 435 | if (ranges == NULL) | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 436 | return; | 
|  | 437 |  | 
|  | 438 | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | 
|  | 439 |  | 
|  | 440 | data->num_in_cck_no_fa = 0; | 
|  | 441 | data->nrg_curr_state = IWL_FA_TOO_MANY; | 
|  | 442 | data->nrg_prev_state = IWL_FA_TOO_MANY; | 
|  | 443 | data->nrg_silence_ref = 0; | 
|  | 444 | data->nrg_silence_idx = 0; | 
|  | 445 | data->nrg_energy_idx = 0; | 
|  | 446 |  | 
|  | 447 | for (i = 0; i < 10; i++) | 
|  | 448 | data->nrg_value[i] = 0; | 
|  | 449 |  | 
|  | 450 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | 
|  | 451 | data->nrg_silence_rssi[i] = 0; | 
|  | 452 |  | 
|  | 453 | data->auto_corr_ofdm = 90; | 
|  | 454 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | 
|  | 455 | data->auto_corr_ofdm_x1  = ranges->auto_corr_min_ofdm_x1; | 
|  | 456 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | 
|  | 457 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | 
|  | 458 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | 
|  | 459 | data->nrg_th_cck = ranges->nrg_th_cck; | 
|  | 460 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | 
|  | 461 |  | 
|  | 462 | data->last_bad_plcp_cnt_ofdm = 0; | 
|  | 463 | data->last_fa_cnt_ofdm = 0; | 
|  | 464 | data->last_bad_plcp_cnt_cck = 0; | 
|  | 465 | data->last_fa_cnt_cck = 0; | 
|  | 466 |  | 
|  | 467 | ret |= iwl_sensitivity_write(priv); | 
|  | 468 | IWL_DEBUG_CALIB("<<return 0x%X\n", ret); | 
|  | 469 | } | 
|  | 470 | EXPORT_SYMBOL(iwl_init_sensitivity); | 
|  | 471 |  | 
|  | 472 | void iwl_sensitivity_calibration(struct iwl_priv *priv, | 
| Emmanuel Grumbach | 8f91aec | 2008-06-30 17:23:07 +0800 | [diff] [blame] | 473 | struct iwl_notif_statistics *resp) | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 474 | { | 
|  | 475 | u32 rx_enable_time; | 
|  | 476 | u32 fa_cck; | 
|  | 477 | u32 fa_ofdm; | 
|  | 478 | u32 bad_plcp_cck; | 
|  | 479 | u32 bad_plcp_ofdm; | 
|  | 480 | u32 norm_fa_ofdm; | 
|  | 481 | u32 norm_fa_cck; | 
|  | 482 | struct iwl_sensitivity_data *data = NULL; | 
|  | 483 | struct statistics_rx_non_phy *rx_info = &(resp->rx.general); | 
|  | 484 | struct statistics_rx *statistics = &(resp->rx); | 
|  | 485 | unsigned long flags; | 
|  | 486 | struct statistics_general_data statis; | 
|  | 487 |  | 
| Tomas Winkler | 445c2df | 2008-05-15 13:54:16 +0800 | [diff] [blame] | 488 | if (priv->disable_sens_cal) | 
|  | 489 | return; | 
|  | 490 |  | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 491 | data = &(priv->sensitivity_data); | 
|  | 492 |  | 
|  | 493 | if (!iwl_is_associated(priv)) { | 
|  | 494 | IWL_DEBUG_CALIB("<< - not associated\n"); | 
|  | 495 | return; | 
|  | 496 | } | 
|  | 497 |  | 
|  | 498 | spin_lock_irqsave(&priv->lock, flags); | 
|  | 499 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | 
|  | 500 | IWL_DEBUG_CALIB("<< invalid data.\n"); | 
|  | 501 | spin_unlock_irqrestore(&priv->lock, flags); | 
|  | 502 | return; | 
|  | 503 | } | 
|  | 504 |  | 
|  | 505 | /* Extract Statistics: */ | 
|  | 506 | rx_enable_time = le32_to_cpu(rx_info->channel_load); | 
|  | 507 | fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt); | 
|  | 508 | fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt); | 
|  | 509 | bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err); | 
|  | 510 | bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err); | 
|  | 511 |  | 
|  | 512 | statis.beacon_silence_rssi_a = | 
|  | 513 | le32_to_cpu(statistics->general.beacon_silence_rssi_a); | 
|  | 514 | statis.beacon_silence_rssi_b = | 
|  | 515 | le32_to_cpu(statistics->general.beacon_silence_rssi_b); | 
|  | 516 | statis.beacon_silence_rssi_c = | 
|  | 517 | le32_to_cpu(statistics->general.beacon_silence_rssi_c); | 
|  | 518 | statis.beacon_energy_a = | 
|  | 519 | le32_to_cpu(statistics->general.beacon_energy_a); | 
|  | 520 | statis.beacon_energy_b = | 
|  | 521 | le32_to_cpu(statistics->general.beacon_energy_b); | 
|  | 522 | statis.beacon_energy_c = | 
|  | 523 | le32_to_cpu(statistics->general.beacon_energy_c); | 
|  | 524 |  | 
|  | 525 | spin_unlock_irqrestore(&priv->lock, flags); | 
|  | 526 |  | 
|  | 527 | IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time); | 
|  | 528 |  | 
|  | 529 | if (!rx_enable_time) { | 
|  | 530 | IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n"); | 
|  | 531 | return; | 
|  | 532 | } | 
|  | 533 |  | 
|  | 534 | /* These statistics increase monotonically, and do not reset | 
|  | 535 | *   at each beacon.  Calculate difference from last value, or just | 
|  | 536 | *   use the new statistics value if it has reset or wrapped around. */ | 
|  | 537 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | 
|  | 538 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | 
|  | 539 | else { | 
|  | 540 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | 
|  | 541 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | 
|  | 542 | } | 
|  | 543 |  | 
|  | 544 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | 
|  | 545 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | 
|  | 546 | else { | 
|  | 547 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | 
|  | 548 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | 
|  | 549 | } | 
|  | 550 |  | 
|  | 551 | if (data->last_fa_cnt_ofdm > fa_ofdm) | 
|  | 552 | data->last_fa_cnt_ofdm = fa_ofdm; | 
|  | 553 | else { | 
|  | 554 | fa_ofdm -= data->last_fa_cnt_ofdm; | 
|  | 555 | data->last_fa_cnt_ofdm += fa_ofdm; | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | if (data->last_fa_cnt_cck > fa_cck) | 
|  | 559 | data->last_fa_cnt_cck = fa_cck; | 
|  | 560 | else { | 
|  | 561 | fa_cck -= data->last_fa_cnt_cck; | 
|  | 562 | data->last_fa_cnt_cck += fa_cck; | 
|  | 563 | } | 
|  | 564 |  | 
|  | 565 | /* Total aborted signal locks */ | 
|  | 566 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | 
|  | 567 | norm_fa_cck = fa_cck + bad_plcp_cck; | 
|  | 568 |  | 
|  | 569 | IWL_DEBUG_CALIB("cck: fa %u badp %u  ofdm: fa %u badp %u\n", fa_cck, | 
|  | 570 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | 
|  | 571 |  | 
|  | 572 | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | 
|  | 573 | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | 
|  | 574 | iwl_sensitivity_write(priv); | 
|  | 575 |  | 
|  | 576 | return; | 
|  | 577 | } | 
|  | 578 | EXPORT_SYMBOL(iwl_sensitivity_calibration); | 
|  | 579 |  | 
|  | 580 | /* | 
|  | 581 | * Accumulate 20 beacons of signal and noise statistics for each of | 
|  | 582 | *   3 receivers/antennas/rx-chains, then figure out: | 
|  | 583 | * 1)  Which antennas are connected. | 
|  | 584 | * 2)  Differential rx gain settings to balance the 3 receivers. | 
|  | 585 | */ | 
|  | 586 | void iwl_chain_noise_calibration(struct iwl_priv *priv, | 
| Emmanuel Grumbach | 8f91aec | 2008-06-30 17:23:07 +0800 | [diff] [blame] | 587 | struct iwl_notif_statistics *stat_resp) | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 588 | { | 
|  | 589 | struct iwl_chain_noise_data *data = NULL; | 
|  | 590 |  | 
|  | 591 | u32 chain_noise_a; | 
|  | 592 | u32 chain_noise_b; | 
|  | 593 | u32 chain_noise_c; | 
|  | 594 | u32 chain_sig_a; | 
|  | 595 | u32 chain_sig_b; | 
|  | 596 | u32 chain_sig_c; | 
|  | 597 | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | 
|  | 598 | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | 
|  | 599 | u32 max_average_sig; | 
|  | 600 | u16 max_average_sig_antenna_i; | 
|  | 601 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | 
|  | 602 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | 
|  | 603 | u16 i = 0; | 
|  | 604 | u16 rxon_chnum = INITIALIZATION_VALUE; | 
|  | 605 | u16 stat_chnum = INITIALIZATION_VALUE; | 
|  | 606 | u8 rxon_band24; | 
|  | 607 | u8 stat_band24; | 
|  | 608 | u32 active_chains = 0; | 
|  | 609 | u8 num_tx_chains; | 
|  | 610 | unsigned long flags; | 
|  | 611 | struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general); | 
|  | 612 |  | 
| Tomas Winkler | 445c2df | 2008-05-15 13:54:16 +0800 | [diff] [blame] | 613 | if (priv->disable_chain_noise_cal) | 
|  | 614 | return; | 
|  | 615 |  | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 616 | data = &(priv->chain_noise_data); | 
|  | 617 |  | 
|  | 618 | /* Accumulate just the first 20 beacons after the first association, | 
|  | 619 | *   then we're done forever. */ | 
|  | 620 | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | 
|  | 621 | if (data->state == IWL_CHAIN_NOISE_ALIVE) | 
|  | 622 | IWL_DEBUG_CALIB("Wait for noise calib reset\n"); | 
|  | 623 | return; | 
|  | 624 | } | 
|  | 625 |  | 
|  | 626 | spin_lock_irqsave(&priv->lock, flags); | 
|  | 627 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | 
|  | 628 | IWL_DEBUG_CALIB(" << Interference data unavailable\n"); | 
|  | 629 | spin_unlock_irqrestore(&priv->lock, flags); | 
|  | 630 | return; | 
|  | 631 | } | 
|  | 632 |  | 
|  | 633 | rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK); | 
|  | 634 | rxon_chnum = le16_to_cpu(priv->staging_rxon.channel); | 
|  | 635 | stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | 
|  | 636 | stat_chnum = le32_to_cpu(stat_resp->flag) >> 16; | 
|  | 637 |  | 
|  | 638 | /* Make sure we accumulate data for just the associated channel | 
|  | 639 | *   (even if scanning). */ | 
|  | 640 | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | 
|  | 641 | IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n", | 
|  | 642 | rxon_chnum, rxon_band24); | 
|  | 643 | spin_unlock_irqrestore(&priv->lock, flags); | 
|  | 644 | return; | 
|  | 645 | } | 
|  | 646 |  | 
|  | 647 | /* Accumulate beacon statistics values across 20 beacons */ | 
|  | 648 | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | 
|  | 649 | IN_BAND_FILTER; | 
|  | 650 | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | 
|  | 651 | IN_BAND_FILTER; | 
|  | 652 | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | 
|  | 653 | IN_BAND_FILTER; | 
|  | 654 |  | 
|  | 655 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | 
|  | 656 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | 
|  | 657 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | 
|  | 658 |  | 
|  | 659 | spin_unlock_irqrestore(&priv->lock, flags); | 
|  | 660 |  | 
|  | 661 | data->beacon_count++; | 
|  | 662 |  | 
|  | 663 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | 
|  | 664 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | 
|  | 665 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | 
|  | 666 |  | 
|  | 667 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | 
|  | 668 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | 
|  | 669 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | 
|  | 670 |  | 
|  | 671 | IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n", | 
|  | 672 | rxon_chnum, rxon_band24, data->beacon_count); | 
|  | 673 | IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n", | 
|  | 674 | chain_sig_a, chain_sig_b, chain_sig_c); | 
|  | 675 | IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n", | 
|  | 676 | chain_noise_a, chain_noise_b, chain_noise_c); | 
|  | 677 |  | 
|  | 678 | /* If this is the 20th beacon, determine: | 
|  | 679 | * 1)  Disconnected antennas (using signal strengths) | 
|  | 680 | * 2)  Differential gain (using silence noise) to balance receivers */ | 
|  | 681 | if (data->beacon_count != CAL_NUM_OF_BEACONS) | 
|  | 682 | return; | 
|  | 683 |  | 
|  | 684 | /* Analyze signal for disconnected antenna */ | 
|  | 685 | average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS; | 
|  | 686 | average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS; | 
|  | 687 | average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS; | 
|  | 688 |  | 
|  | 689 | if (average_sig[0] >= average_sig[1]) { | 
|  | 690 | max_average_sig = average_sig[0]; | 
|  | 691 | max_average_sig_antenna_i = 0; | 
|  | 692 | active_chains = (1 << max_average_sig_antenna_i); | 
|  | 693 | } else { | 
|  | 694 | max_average_sig = average_sig[1]; | 
|  | 695 | max_average_sig_antenna_i = 1; | 
|  | 696 | active_chains = (1 << max_average_sig_antenna_i); | 
|  | 697 | } | 
|  | 698 |  | 
|  | 699 | if (average_sig[2] >= max_average_sig) { | 
|  | 700 | max_average_sig = average_sig[2]; | 
|  | 701 | max_average_sig_antenna_i = 2; | 
|  | 702 | active_chains = (1 << max_average_sig_antenna_i); | 
|  | 703 | } | 
|  | 704 |  | 
|  | 705 | IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n", | 
|  | 706 | average_sig[0], average_sig[1], average_sig[2]); | 
|  | 707 | IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n", | 
|  | 708 | max_average_sig, max_average_sig_antenna_i); | 
|  | 709 |  | 
|  | 710 | /* Compare signal strengths for all 3 receivers. */ | 
|  | 711 | for (i = 0; i < NUM_RX_CHAINS; i++) { | 
|  | 712 | if (i != max_average_sig_antenna_i) { | 
|  | 713 | s32 rssi_delta = (max_average_sig - average_sig[i]); | 
|  | 714 |  | 
|  | 715 | /* If signal is very weak, compared with | 
|  | 716 | * strongest, mark it as disconnected. */ | 
|  | 717 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | 
|  | 718 | data->disconn_array[i] = 1; | 
|  | 719 | else | 
|  | 720 | active_chains |= (1 << i); | 
|  | 721 | IWL_DEBUG_CALIB("i = %d  rssiDelta = %d  " | 
|  | 722 | "disconn_array[i] = %d\n", | 
|  | 723 | i, rssi_delta, data->disconn_array[i]); | 
|  | 724 | } | 
|  | 725 | } | 
|  | 726 |  | 
|  | 727 | num_tx_chains = 0; | 
|  | 728 | for (i = 0; i < NUM_RX_CHAINS; i++) { | 
|  | 729 | /* loops on all the bits of | 
|  | 730 | * priv->hw_setting.valid_tx_ant */ | 
|  | 731 | u8 ant_msk = (1 << i); | 
|  | 732 | if (!(priv->hw_params.valid_tx_ant & ant_msk)) | 
|  | 733 | continue; | 
|  | 734 |  | 
|  | 735 | num_tx_chains++; | 
|  | 736 | if (data->disconn_array[i] == 0) | 
|  | 737 | /* there is a Tx antenna connected */ | 
|  | 738 | break; | 
|  | 739 | if (num_tx_chains == priv->hw_params.tx_chains_num && | 
|  | 740 | data->disconn_array[i]) { | 
|  | 741 | /* This is the last TX antenna and is also | 
|  | 742 | * disconnected connect it anyway */ | 
|  | 743 | data->disconn_array[i] = 0; | 
|  | 744 | active_chains |= ant_msk; | 
|  | 745 | IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - " | 
|  | 746 | "declare %d as connected\n", i); | 
|  | 747 | break; | 
|  | 748 | } | 
|  | 749 | } | 
|  | 750 |  | 
|  | 751 | IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n", | 
|  | 752 | active_chains); | 
|  | 753 |  | 
|  | 754 | /* Save for use within RXON, TX, SCAN commands, etc. */ | 
| Guy Cohen | fde0db3 | 2008-04-21 15:42:01 -0700 | [diff] [blame] | 755 | /*priv->valid_antenna = active_chains;*/ | 
|  | 756 | /*FIXME: should be reflected in RX chains in RXON */ | 
| Emmanuel Grumbach | f0832f1 | 2008-04-16 16:34:47 -0700 | [diff] [blame] | 757 |  | 
|  | 758 | /* Analyze noise for rx balance */ | 
|  | 759 | average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS); | 
|  | 760 | average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS); | 
|  | 761 | average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS); | 
|  | 762 |  | 
|  | 763 | for (i = 0; i < NUM_RX_CHAINS; i++) { | 
|  | 764 | if (!(data->disconn_array[i]) && | 
|  | 765 | (average_noise[i] <= min_average_noise)) { | 
|  | 766 | /* This means that chain i is active and has | 
|  | 767 | * lower noise values so far: */ | 
|  | 768 | min_average_noise = average_noise[i]; | 
|  | 769 | min_average_noise_antenna_i = i; | 
|  | 770 | } | 
|  | 771 | } | 
|  | 772 |  | 
|  | 773 | IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n", | 
|  | 774 | average_noise[0], average_noise[1], | 
|  | 775 | average_noise[2]); | 
|  | 776 |  | 
|  | 777 | IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n", | 
|  | 778 | min_average_noise, min_average_noise_antenna_i); | 
|  | 779 |  | 
|  | 780 | priv->cfg->ops->utils->gain_computation(priv, average_noise, | 
|  | 781 | min_average_noise_antenna_i, min_average_noise); | 
|  | 782 | } | 
|  | 783 | EXPORT_SYMBOL(iwl_chain_noise_calibration); | 
|  | 784 |  | 
| Tomas Winkler | 4a4a9e8 | 2008-05-29 16:34:54 +0800 | [diff] [blame] | 785 |  | 
|  | 786 | void iwl_reset_run_time_calib(struct iwl_priv *priv) | 
|  | 787 | { | 
|  | 788 | int i; | 
|  | 789 | memset(&(priv->sensitivity_data), 0, | 
|  | 790 | sizeof(struct iwl_sensitivity_data)); | 
|  | 791 | memset(&(priv->chain_noise_data), 0, | 
|  | 792 | sizeof(struct iwl_chain_noise_data)); | 
|  | 793 | for (i = 0; i < NUM_RX_CHAINS; i++) | 
|  | 794 | priv->chain_noise_data.delta_gain_code[i] = | 
|  | 795 | CHAIN_NOISE_DELTA_GAIN_INIT_VAL; | 
|  | 796 |  | 
|  | 797 | /* Ask for statistics now, the uCode will send notification | 
|  | 798 | * periodically after association */ | 
|  | 799 | iwl_send_statistics_request(priv, CMD_ASYNC); | 
|  | 800 | } | 
|  | 801 | EXPORT_SYMBOL(iwl_reset_run_time_calib); | 
|  | 802 |  |