blob: 222c2d0b6ae219adbf0779d804d819130a87da41 [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100891static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
892{
893 rq->nr_numa_running += (p->numa_preferred_nid != -1);
894 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
895}
896
897static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
898{
899 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
900 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
901}
902
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100903struct numa_group {
904 atomic_t refcount;
905
906 spinlock_t lock; /* nr_tasks, tasks */
907 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100908 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100909 struct list_head task_list;
910
911 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100912 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100913 atomic_long_t faults[0];
914};
915
Mel Gormane29cf082013-10-07 11:29:22 +0100916pid_t task_numa_group_id(struct task_struct *p)
917{
918 return p->numa_group ? p->numa_group->gid : 0;
919}
920
Mel Gormanac8e8952013-10-07 11:29:03 +0100921static inline int task_faults_idx(int nid, int priv)
922{
923 return 2 * nid + priv;
924}
925
926static inline unsigned long task_faults(struct task_struct *p, int nid)
927{
928 if (!p->numa_faults)
929 return 0;
930
931 return p->numa_faults[task_faults_idx(nid, 0)] +
932 p->numa_faults[task_faults_idx(nid, 1)];
933}
934
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100935static inline unsigned long group_faults(struct task_struct *p, int nid)
936{
937 if (!p->numa_group)
938 return 0;
939
940 return atomic_long_read(&p->numa_group->faults[2*nid]) +
941 atomic_long_read(&p->numa_group->faults[2*nid+1]);
942}
943
944/*
945 * These return the fraction of accesses done by a particular task, or
946 * task group, on a particular numa node. The group weight is given a
947 * larger multiplier, in order to group tasks together that are almost
948 * evenly spread out between numa nodes.
949 */
950static inline unsigned long task_weight(struct task_struct *p, int nid)
951{
952 unsigned long total_faults;
953
954 if (!p->numa_faults)
955 return 0;
956
957 total_faults = p->total_numa_faults;
958
959 if (!total_faults)
960 return 0;
961
962 return 1000 * task_faults(p, nid) / total_faults;
963}
964
965static inline unsigned long group_weight(struct task_struct *p, int nid)
966{
967 unsigned long total_faults;
968
969 if (!p->numa_group)
970 return 0;
971
972 total_faults = atomic_long_read(&p->numa_group->total_faults);
973
974 if (!total_faults)
975 return 0;
976
Rik van Rielca28aa52013-10-07 11:29:32 +0100977 return 1000 * group_faults(p, nid) / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100978}
979
Mel Gormane6628d52013-10-07 11:29:02 +0100980static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100981static unsigned long source_load(int cpu, int type);
982static unsigned long target_load(int cpu, int type);
983static unsigned long power_of(int cpu);
984static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100985
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100986/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100987struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100988 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100989 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100990
991 /* Total compute capacity of CPUs on a node */
992 unsigned long power;
993
994 /* Approximate capacity in terms of runnable tasks on a node */
995 unsigned long capacity;
996 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100997};
Mel Gormane6628d52013-10-07 11:29:02 +0100998
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100999/*
1000 * XXX borrowed from update_sg_lb_stats
1001 */
1002static void update_numa_stats(struct numa_stats *ns, int nid)
1003{
1004 int cpu;
1005
1006 memset(ns, 0, sizeof(*ns));
1007 for_each_cpu(cpu, cpumask_of_node(nid)) {
1008 struct rq *rq = cpu_rq(cpu);
1009
1010 ns->nr_running += rq->nr_running;
1011 ns->load += weighted_cpuload(cpu);
1012 ns->power += power_of(cpu);
1013 }
1014
1015 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1016 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1017 ns->has_capacity = (ns->nr_running < ns->capacity);
1018}
1019
Mel Gorman58d081b2013-10-07 11:29:10 +01001020struct task_numa_env {
1021 struct task_struct *p;
1022
1023 int src_cpu, src_nid;
1024 int dst_cpu, dst_nid;
1025
1026 struct numa_stats src_stats, dst_stats;
1027
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001028 int imbalance_pct, idx;
1029
1030 struct task_struct *best_task;
1031 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001032 int best_cpu;
1033};
1034
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001035static void task_numa_assign(struct task_numa_env *env,
1036 struct task_struct *p, long imp)
1037{
1038 if (env->best_task)
1039 put_task_struct(env->best_task);
1040 if (p)
1041 get_task_struct(p);
1042
1043 env->best_task = p;
1044 env->best_imp = imp;
1045 env->best_cpu = env->dst_cpu;
1046}
1047
1048/*
1049 * This checks if the overall compute and NUMA accesses of the system would
1050 * be improved if the source tasks was migrated to the target dst_cpu taking
1051 * into account that it might be best if task running on the dst_cpu should
1052 * be exchanged with the source task
1053 */
Rik van Riel887c2902013-10-07 11:29:31 +01001054static void task_numa_compare(struct task_numa_env *env,
1055 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001056{
1057 struct rq *src_rq = cpu_rq(env->src_cpu);
1058 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1059 struct task_struct *cur;
1060 long dst_load, src_load;
1061 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001062 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001063
1064 rcu_read_lock();
1065 cur = ACCESS_ONCE(dst_rq->curr);
1066 if (cur->pid == 0) /* idle */
1067 cur = NULL;
1068
1069 /*
1070 * "imp" is the fault differential for the source task between the
1071 * source and destination node. Calculate the total differential for
1072 * the source task and potential destination task. The more negative
1073 * the value is, the more rmeote accesses that would be expected to
1074 * be incurred if the tasks were swapped.
1075 */
1076 if (cur) {
1077 /* Skip this swap candidate if cannot move to the source cpu */
1078 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1079 goto unlock;
1080
Rik van Riel887c2902013-10-07 11:29:31 +01001081 /*
1082 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001083 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001084 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001085 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001086 imp = taskimp + task_weight(cur, env->src_nid) -
1087 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001088 /*
1089 * Add some hysteresis to prevent swapping the
1090 * tasks within a group over tiny differences.
1091 */
1092 if (cur->numa_group)
1093 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001094 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001095 /*
1096 * Compare the group weights. If a task is all by
1097 * itself (not part of a group), use the task weight
1098 * instead.
1099 */
1100 if (env->p->numa_group)
1101 imp = groupimp;
1102 else
1103 imp = taskimp;
1104
1105 if (cur->numa_group)
1106 imp += group_weight(cur, env->src_nid) -
1107 group_weight(cur, env->dst_nid);
1108 else
1109 imp += task_weight(cur, env->src_nid) -
1110 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001111 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001112 }
1113
1114 if (imp < env->best_imp)
1115 goto unlock;
1116
1117 if (!cur) {
1118 /* Is there capacity at our destination? */
1119 if (env->src_stats.has_capacity &&
1120 !env->dst_stats.has_capacity)
1121 goto unlock;
1122
1123 goto balance;
1124 }
1125
1126 /* Balance doesn't matter much if we're running a task per cpu */
1127 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1128 goto assign;
1129
1130 /*
1131 * In the overloaded case, try and keep the load balanced.
1132 */
1133balance:
1134 dst_load = env->dst_stats.load;
1135 src_load = env->src_stats.load;
1136
1137 /* XXX missing power terms */
1138 load = task_h_load(env->p);
1139 dst_load += load;
1140 src_load -= load;
1141
1142 if (cur) {
1143 load = task_h_load(cur);
1144 dst_load -= load;
1145 src_load += load;
1146 }
1147
1148 /* make src_load the smaller */
1149 if (dst_load < src_load)
1150 swap(dst_load, src_load);
1151
1152 if (src_load * env->imbalance_pct < dst_load * 100)
1153 goto unlock;
1154
1155assign:
1156 task_numa_assign(env, cur, imp);
1157unlock:
1158 rcu_read_unlock();
1159}
1160
Rik van Riel887c2902013-10-07 11:29:31 +01001161static void task_numa_find_cpu(struct task_numa_env *env,
1162 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001163{
1164 int cpu;
1165
1166 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1167 /* Skip this CPU if the source task cannot migrate */
1168 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1169 continue;
1170
1171 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001172 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001173 }
1174}
1175
Mel Gorman58d081b2013-10-07 11:29:10 +01001176static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001177{
Mel Gorman58d081b2013-10-07 11:29:10 +01001178 struct task_numa_env env = {
1179 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001180
Mel Gorman58d081b2013-10-07 11:29:10 +01001181 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001182 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001183
1184 .imbalance_pct = 112,
1185
1186 .best_task = NULL,
1187 .best_imp = 0,
1188 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001189 };
1190 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001191 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001192 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001193 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001194
Mel Gorman58d081b2013-10-07 11:29:10 +01001195 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001196 * Pick the lowest SD_NUMA domain, as that would have the smallest
1197 * imbalance and would be the first to start moving tasks about.
1198 *
1199 * And we want to avoid any moving of tasks about, as that would create
1200 * random movement of tasks -- counter the numa conditions we're trying
1201 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001202 */
Mel Gormane6628d52013-10-07 11:29:02 +01001203 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001204 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1205 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001206 rcu_read_unlock();
1207
Rik van Riel887c2902013-10-07 11:29:31 +01001208 taskweight = task_weight(p, env.src_nid);
1209 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001210 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001211 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001212 taskimp = task_weight(p, env.dst_nid) - taskweight;
1213 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001214 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001215
Rik van Riele1dda8a2013-10-07 11:29:19 +01001216 /* If the preferred nid has capacity, try to use it. */
1217 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001218 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001219
1220 /* No space available on the preferred nid. Look elsewhere. */
1221 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001222 for_each_online_node(nid) {
1223 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001224 continue;
1225
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001226 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001227 taskimp = task_weight(p, nid) - taskweight;
1228 groupimp = group_weight(p, nid) - groupweight;
1229 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001230 continue;
1231
1232 env.dst_nid = nid;
1233 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001234 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001235 }
1236 }
1237
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001238 /* No better CPU than the current one was found. */
1239 if (env.best_cpu == -1)
1240 return -EAGAIN;
1241
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001242 sched_setnuma(p, env.dst_nid);
1243
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001244 if (env.best_task == NULL) {
1245 int ret = migrate_task_to(p, env.best_cpu);
1246 return ret;
1247 }
1248
1249 ret = migrate_swap(p, env.best_task);
1250 put_task_struct(env.best_task);
1251 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001252}
1253
Mel Gorman6b9a7462013-10-07 11:29:11 +01001254/* Attempt to migrate a task to a CPU on the preferred node. */
1255static void numa_migrate_preferred(struct task_struct *p)
1256{
1257 /* Success if task is already running on preferred CPU */
1258 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001259 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1260 /*
1261 * If migration is temporarily disabled due to a task migration
1262 * then re-enable it now as the task is running on its
1263 * preferred node and memory should migrate locally
1264 */
1265 if (!p->numa_migrate_seq)
1266 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001267 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001268 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001269
1270 /* This task has no NUMA fault statistics yet */
1271 if (unlikely(p->numa_preferred_nid == -1))
1272 return;
1273
1274 /* Otherwise, try migrate to a CPU on the preferred node */
1275 if (task_numa_migrate(p) != 0)
1276 p->numa_migrate_retry = jiffies + HZ*5;
1277}
1278
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001279static void task_numa_placement(struct task_struct *p)
1280{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001281 int seq, nid, max_nid = -1, max_group_nid = -1;
1282 unsigned long max_faults = 0, max_group_faults = 0;
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001283 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001284
Hugh Dickins2832bc12012-12-19 17:42:16 -08001285 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001286 if (p->numa_scan_seq == seq)
1287 return;
1288 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001289 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001290 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001291
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001292 /* If the task is part of a group prevent parallel updates to group stats */
1293 if (p->numa_group) {
1294 group_lock = &p->numa_group->lock;
1295 spin_lock(group_lock);
1296 }
1297
Mel Gorman688b7582013-10-07 11:28:58 +01001298 /* Find the node with the highest number of faults */
1299 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001300 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001301 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001302
Mel Gormanac8e8952013-10-07 11:29:03 +01001303 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001304 long diff;
1305
Mel Gormanac8e8952013-10-07 11:29:03 +01001306 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001307 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001308
Mel Gormanac8e8952013-10-07 11:29:03 +01001309 /* Decay existing window, copy faults since last scan */
1310 p->numa_faults[i] >>= 1;
1311 p->numa_faults[i] += p->numa_faults_buffer[i];
1312 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001313
1314 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001315 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001316 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001317 if (p->numa_group) {
1318 /* safe because we can only change our own group */
1319 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001320 atomic_long_add(diff, &p->numa_group->total_faults);
1321 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001322 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001323 }
1324
Mel Gorman688b7582013-10-07 11:28:58 +01001325 if (faults > max_faults) {
1326 max_faults = faults;
1327 max_nid = nid;
1328 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001329
1330 if (group_faults > max_group_faults) {
1331 max_group_faults = group_faults;
1332 max_group_nid = nid;
1333 }
1334 }
1335
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001336 if (p->numa_group) {
1337 /*
1338 * If the preferred task and group nids are different,
1339 * iterate over the nodes again to find the best place.
1340 */
1341 if (max_nid != max_group_nid) {
1342 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001343
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001344 for_each_online_node(nid) {
1345 weight = task_weight(p, nid) + group_weight(p, nid);
1346 if (weight > max_weight) {
1347 max_weight = weight;
1348 max_nid = nid;
1349 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001350 }
1351 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001352
1353 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001354 }
1355
Mel Gorman6b9a7462013-10-07 11:29:11 +01001356 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001357 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001358 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001359 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001360 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001361 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001362}
1363
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001364static inline int get_numa_group(struct numa_group *grp)
1365{
1366 return atomic_inc_not_zero(&grp->refcount);
1367}
1368
1369static inline void put_numa_group(struct numa_group *grp)
1370{
1371 if (atomic_dec_and_test(&grp->refcount))
1372 kfree_rcu(grp, rcu);
1373}
1374
1375static void double_lock(spinlock_t *l1, spinlock_t *l2)
1376{
1377 if (l1 > l2)
1378 swap(l1, l2);
1379
1380 spin_lock(l1);
1381 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1382}
1383
Rik van Rieldabe1d92013-10-07 11:29:34 +01001384static void task_numa_group(struct task_struct *p, int cpupid, int flags)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001385{
1386 struct numa_group *grp, *my_grp;
1387 struct task_struct *tsk;
1388 bool join = false;
1389 int cpu = cpupid_to_cpu(cpupid);
1390 int i;
1391
1392 if (unlikely(!p->numa_group)) {
1393 unsigned int size = sizeof(struct numa_group) +
1394 2*nr_node_ids*sizeof(atomic_long_t);
1395
1396 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1397 if (!grp)
1398 return;
1399
1400 atomic_set(&grp->refcount, 1);
1401 spin_lock_init(&grp->lock);
1402 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001403 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001404
1405 for (i = 0; i < 2*nr_node_ids; i++)
1406 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1407
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001408 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1409
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001410 list_add(&p->numa_entry, &grp->task_list);
1411 grp->nr_tasks++;
1412 rcu_assign_pointer(p->numa_group, grp);
1413 }
1414
1415 rcu_read_lock();
1416 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1417
1418 if (!cpupid_match_pid(tsk, cpupid))
1419 goto unlock;
1420
1421 grp = rcu_dereference(tsk->numa_group);
1422 if (!grp)
1423 goto unlock;
1424
1425 my_grp = p->numa_group;
1426 if (grp == my_grp)
1427 goto unlock;
1428
1429 /*
1430 * Only join the other group if its bigger; if we're the bigger group,
1431 * the other task will join us.
1432 */
1433 if (my_grp->nr_tasks > grp->nr_tasks)
1434 goto unlock;
1435
1436 /*
1437 * Tie-break on the grp address.
1438 */
1439 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1440 goto unlock;
1441
Rik van Rieldabe1d92013-10-07 11:29:34 +01001442 /* Always join threads in the same process. */
1443 if (tsk->mm == current->mm)
1444 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001445
Rik van Rieldabe1d92013-10-07 11:29:34 +01001446 /* Simple filter to avoid false positives due to PID collisions */
1447 if (flags & TNF_SHARED)
1448 join = true;
1449
1450 if (join && !get_numa_group(grp))
1451 join = false;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001452
1453unlock:
1454 rcu_read_unlock();
1455
1456 if (!join)
1457 return;
1458
1459 for (i = 0; i < 2*nr_node_ids; i++) {
1460 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1461 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1462 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001463 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1464 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001465
1466 double_lock(&my_grp->lock, &grp->lock);
1467
1468 list_move(&p->numa_entry, &grp->task_list);
1469 my_grp->nr_tasks--;
1470 grp->nr_tasks++;
1471
1472 spin_unlock(&my_grp->lock);
1473 spin_unlock(&grp->lock);
1474
1475 rcu_assign_pointer(p->numa_group, grp);
1476
1477 put_numa_group(my_grp);
1478}
1479
1480void task_numa_free(struct task_struct *p)
1481{
1482 struct numa_group *grp = p->numa_group;
1483 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001484 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001485
1486 if (grp) {
1487 for (i = 0; i < 2*nr_node_ids; i++)
1488 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1489
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001490 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1491
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001492 spin_lock(&grp->lock);
1493 list_del(&p->numa_entry);
1494 grp->nr_tasks--;
1495 spin_unlock(&grp->lock);
1496 rcu_assign_pointer(p->numa_group, NULL);
1497 put_numa_group(grp);
1498 }
1499
Rik van Riel82727012013-10-07 11:29:28 +01001500 p->numa_faults = NULL;
1501 p->numa_faults_buffer = NULL;
1502 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001503}
1504
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001505/*
1506 * Got a PROT_NONE fault for a page on @node.
1507 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001508void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001509{
1510 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001511 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001512 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001513
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001514 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001515 return;
1516
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001517 /* for example, ksmd faulting in a user's mm */
1518 if (!p->mm)
1519 return;
1520
Rik van Riel82727012013-10-07 11:29:28 +01001521 /* Do not worry about placement if exiting */
1522 if (p->state == TASK_DEAD)
1523 return;
1524
Mel Gormanf809ca92013-10-07 11:28:57 +01001525 /* Allocate buffer to track faults on a per-node basis */
1526 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001527 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001528
Mel Gorman745d6142013-10-07 11:28:59 +01001529 /* numa_faults and numa_faults_buffer share the allocation */
1530 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001531 if (!p->numa_faults)
1532 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001533
1534 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001535 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001536 p->total_numa_faults = 0;
Mel Gormanf809ca92013-10-07 11:28:57 +01001537 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001538
Mel Gormanfb003b82012-11-15 09:01:14 +00001539 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001540 * First accesses are treated as private, otherwise consider accesses
1541 * to be private if the accessing pid has not changed
1542 */
1543 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1544 priv = 1;
1545 } else {
1546 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001547 if (!priv && !(flags & TNF_NO_GROUP))
Rik van Rieldabe1d92013-10-07 11:29:34 +01001548 task_numa_group(p, last_cpupid, flags);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001549 }
1550
1551 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001552 * If pages are properly placed (did not migrate) then scan slower.
1553 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001554 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001555 if (!migrated) {
1556 /* Initialise if necessary */
1557 if (!p->numa_scan_period_max)
1558 p->numa_scan_period_max = task_scan_max(p);
1559
1560 p->numa_scan_period = min(p->numa_scan_period_max,
1561 p->numa_scan_period + 10);
1562 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001563
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001564 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001565
Mel Gorman6b9a7462013-10-07 11:29:11 +01001566 /* Retry task to preferred node migration if it previously failed */
1567 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1568 numa_migrate_preferred(p);
1569
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001570 if (migrated)
1571 p->numa_pages_migrated += pages;
1572
Mel Gormanac8e8952013-10-07 11:29:03 +01001573 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001574}
1575
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001576static void reset_ptenuma_scan(struct task_struct *p)
1577{
1578 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1579 p->mm->numa_scan_offset = 0;
1580}
1581
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001582/*
1583 * The expensive part of numa migration is done from task_work context.
1584 * Triggered from task_tick_numa().
1585 */
1586void task_numa_work(struct callback_head *work)
1587{
1588 unsigned long migrate, next_scan, now = jiffies;
1589 struct task_struct *p = current;
1590 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001591 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001592 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001593 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001594 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001595
1596 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1597
1598 work->next = work; /* protect against double add */
1599 /*
1600 * Who cares about NUMA placement when they're dying.
1601 *
1602 * NOTE: make sure not to dereference p->mm before this check,
1603 * exit_task_work() happens _after_ exit_mm() so we could be called
1604 * without p->mm even though we still had it when we enqueued this
1605 * work.
1606 */
1607 if (p->flags & PF_EXITING)
1608 return;
1609
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001610 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1611 mm->numa_next_scan = now +
1612 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1613 mm->numa_next_reset = now +
1614 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1615 }
1616
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001617 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001618 * Reset the scan period if enough time has gone by. Objective is that
1619 * scanning will be reduced if pages are properly placed. As tasks
1620 * can enter different phases this needs to be re-examined. Lacking
1621 * proper tracking of reference behaviour, this blunt hammer is used.
1622 */
1623 migrate = mm->numa_next_reset;
1624 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001625 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001626 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1627 xchg(&mm->numa_next_reset, next_scan);
1628 }
1629
1630 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001631 * Enforce maximal scan/migration frequency..
1632 */
1633 migrate = mm->numa_next_scan;
1634 if (time_before(now, migrate))
1635 return;
1636
Mel Gorman598f0ec2013-10-07 11:28:55 +01001637 if (p->numa_scan_period == 0) {
1638 p->numa_scan_period_max = task_scan_max(p);
1639 p->numa_scan_period = task_scan_min(p);
1640 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001641
Mel Gormanfb003b82012-11-15 09:01:14 +00001642 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001643 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1644 return;
1645
Mel Gormane14808b2012-11-19 10:59:15 +00001646 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001647 * Delay this task enough that another task of this mm will likely win
1648 * the next time around.
1649 */
1650 p->node_stamp += 2 * TICK_NSEC;
1651
Mel Gorman9f406042012-11-14 18:34:32 +00001652 start = mm->numa_scan_offset;
1653 pages = sysctl_numa_balancing_scan_size;
1654 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1655 if (!pages)
1656 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001657
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001658 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001659 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001660 if (!vma) {
1661 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001662 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001663 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001664 }
Mel Gorman9f406042012-11-14 18:34:32 +00001665 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001666 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001667 continue;
1668
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001669 /*
1670 * Shared library pages mapped by multiple processes are not
1671 * migrated as it is expected they are cache replicated. Avoid
1672 * hinting faults in read-only file-backed mappings or the vdso
1673 * as migrating the pages will be of marginal benefit.
1674 */
1675 if (!vma->vm_mm ||
1676 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1677 continue;
1678
Mel Gorman9f406042012-11-14 18:34:32 +00001679 do {
1680 start = max(start, vma->vm_start);
1681 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1682 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001683 nr_pte_updates += change_prot_numa(vma, start, end);
1684
1685 /*
1686 * Scan sysctl_numa_balancing_scan_size but ensure that
1687 * at least one PTE is updated so that unused virtual
1688 * address space is quickly skipped.
1689 */
1690 if (nr_pte_updates)
1691 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001692
Mel Gorman9f406042012-11-14 18:34:32 +00001693 start = end;
1694 if (pages <= 0)
1695 goto out;
1696 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001697 }
1698
Mel Gorman9f406042012-11-14 18:34:32 +00001699out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001700 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001701 * If the whole process was scanned without updates then no NUMA
1702 * hinting faults are being recorded and scan rate should be lower.
1703 */
1704 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1705 p->numa_scan_period = min(p->numa_scan_period_max,
1706 p->numa_scan_period << 1);
1707
1708 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1709 mm->numa_next_scan = next_scan;
1710 }
1711
1712 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001713 * It is possible to reach the end of the VMA list but the last few
1714 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1715 * would find the !migratable VMA on the next scan but not reset the
1716 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001717 */
1718 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001719 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001720 else
1721 reset_ptenuma_scan(p);
1722 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001723}
1724
1725/*
1726 * Drive the periodic memory faults..
1727 */
1728void task_tick_numa(struct rq *rq, struct task_struct *curr)
1729{
1730 struct callback_head *work = &curr->numa_work;
1731 u64 period, now;
1732
1733 /*
1734 * We don't care about NUMA placement if we don't have memory.
1735 */
1736 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1737 return;
1738
1739 /*
1740 * Using runtime rather than walltime has the dual advantage that
1741 * we (mostly) drive the selection from busy threads and that the
1742 * task needs to have done some actual work before we bother with
1743 * NUMA placement.
1744 */
1745 now = curr->se.sum_exec_runtime;
1746 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1747
1748 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001749 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001750 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001751 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001752
1753 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1754 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1755 task_work_add(curr, work, true);
1756 }
1757 }
1758}
1759#else
1760static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1761{
1762}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001763
1764static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1765{
1766}
1767
1768static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1769{
1770}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001771#endif /* CONFIG_NUMA_BALANCING */
1772
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001773static void
1774account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1775{
1776 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001777 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001778 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001779#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001780 if (entity_is_task(se)) {
1781 struct rq *rq = rq_of(cfs_rq);
1782
1783 account_numa_enqueue(rq, task_of(se));
1784 list_add(&se->group_node, &rq->cfs_tasks);
1785 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001786#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001787 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001788}
1789
1790static void
1791account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1792{
1793 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001794 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001795 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001796 if (entity_is_task(se)) {
1797 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301798 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001799 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001800 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001801}
1802
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001803#ifdef CONFIG_FAIR_GROUP_SCHED
1804# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001805static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1806{
1807 long tg_weight;
1808
1809 /*
1810 * Use this CPU's actual weight instead of the last load_contribution
1811 * to gain a more accurate current total weight. See
1812 * update_cfs_rq_load_contribution().
1813 */
Alex Shibf5b9862013-06-20 10:18:54 +08001814 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001815 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001816 tg_weight += cfs_rq->load.weight;
1817
1818 return tg_weight;
1819}
1820
Paul Turner6d5ab292011-01-21 20:45:01 -08001821static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001822{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001823 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001824
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001825 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001826 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001827
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001828 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001829 if (tg_weight)
1830 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001831
1832 if (shares < MIN_SHARES)
1833 shares = MIN_SHARES;
1834 if (shares > tg->shares)
1835 shares = tg->shares;
1836
1837 return shares;
1838}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001839# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001840static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001841{
1842 return tg->shares;
1843}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001844# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001845static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1846 unsigned long weight)
1847{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001848 if (se->on_rq) {
1849 /* commit outstanding execution time */
1850 if (cfs_rq->curr == se)
1851 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001852 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001853 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001854
1855 update_load_set(&se->load, weight);
1856
1857 if (se->on_rq)
1858 account_entity_enqueue(cfs_rq, se);
1859}
1860
Paul Turner82958362012-10-04 13:18:31 +02001861static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1862
Paul Turner6d5ab292011-01-21 20:45:01 -08001863static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001864{
1865 struct task_group *tg;
1866 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001867 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001868
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001869 tg = cfs_rq->tg;
1870 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001871 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001872 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001873#ifndef CONFIG_SMP
1874 if (likely(se->load.weight == tg->shares))
1875 return;
1876#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001877 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001878
1879 reweight_entity(cfs_rq_of(se), se, shares);
1880}
1881#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001882static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001883{
1884}
1885#endif /* CONFIG_FAIR_GROUP_SCHED */
1886
Alex Shi141965c2013-06-26 13:05:39 +08001887#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001888/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001889 * We choose a half-life close to 1 scheduling period.
1890 * Note: The tables below are dependent on this value.
1891 */
1892#define LOAD_AVG_PERIOD 32
1893#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1894#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1895
1896/* Precomputed fixed inverse multiplies for multiplication by y^n */
1897static const u32 runnable_avg_yN_inv[] = {
1898 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1899 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1900 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1901 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1902 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1903 0x85aac367, 0x82cd8698,
1904};
1905
1906/*
1907 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1908 * over-estimates when re-combining.
1909 */
1910static const u32 runnable_avg_yN_sum[] = {
1911 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1912 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1913 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1914};
1915
1916/*
Paul Turner9d85f212012-10-04 13:18:29 +02001917 * Approximate:
1918 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1919 */
1920static __always_inline u64 decay_load(u64 val, u64 n)
1921{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001922 unsigned int local_n;
1923
1924 if (!n)
1925 return val;
1926 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1927 return 0;
1928
1929 /* after bounds checking we can collapse to 32-bit */
1930 local_n = n;
1931
1932 /*
1933 * As y^PERIOD = 1/2, we can combine
1934 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1935 * With a look-up table which covers k^n (n<PERIOD)
1936 *
1937 * To achieve constant time decay_load.
1938 */
1939 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1940 val >>= local_n / LOAD_AVG_PERIOD;
1941 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001942 }
1943
Paul Turner5b51f2f2012-10-04 13:18:32 +02001944 val *= runnable_avg_yN_inv[local_n];
1945 /* We don't use SRR here since we always want to round down. */
1946 return val >> 32;
1947}
1948
1949/*
1950 * For updates fully spanning n periods, the contribution to runnable
1951 * average will be: \Sum 1024*y^n
1952 *
1953 * We can compute this reasonably efficiently by combining:
1954 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1955 */
1956static u32 __compute_runnable_contrib(u64 n)
1957{
1958 u32 contrib = 0;
1959
1960 if (likely(n <= LOAD_AVG_PERIOD))
1961 return runnable_avg_yN_sum[n];
1962 else if (unlikely(n >= LOAD_AVG_MAX_N))
1963 return LOAD_AVG_MAX;
1964
1965 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1966 do {
1967 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1968 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1969
1970 n -= LOAD_AVG_PERIOD;
1971 } while (n > LOAD_AVG_PERIOD);
1972
1973 contrib = decay_load(contrib, n);
1974 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001975}
1976
1977/*
1978 * We can represent the historical contribution to runnable average as the
1979 * coefficients of a geometric series. To do this we sub-divide our runnable
1980 * history into segments of approximately 1ms (1024us); label the segment that
1981 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1982 *
1983 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1984 * p0 p1 p2
1985 * (now) (~1ms ago) (~2ms ago)
1986 *
1987 * Let u_i denote the fraction of p_i that the entity was runnable.
1988 *
1989 * We then designate the fractions u_i as our co-efficients, yielding the
1990 * following representation of historical load:
1991 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1992 *
1993 * We choose y based on the with of a reasonably scheduling period, fixing:
1994 * y^32 = 0.5
1995 *
1996 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1997 * approximately half as much as the contribution to load within the last ms
1998 * (u_0).
1999 *
2000 * When a period "rolls over" and we have new u_0`, multiplying the previous
2001 * sum again by y is sufficient to update:
2002 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2003 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2004 */
2005static __always_inline int __update_entity_runnable_avg(u64 now,
2006 struct sched_avg *sa,
2007 int runnable)
2008{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002009 u64 delta, periods;
2010 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002011 int delta_w, decayed = 0;
2012
2013 delta = now - sa->last_runnable_update;
2014 /*
2015 * This should only happen when time goes backwards, which it
2016 * unfortunately does during sched clock init when we swap over to TSC.
2017 */
2018 if ((s64)delta < 0) {
2019 sa->last_runnable_update = now;
2020 return 0;
2021 }
2022
2023 /*
2024 * Use 1024ns as the unit of measurement since it's a reasonable
2025 * approximation of 1us and fast to compute.
2026 */
2027 delta >>= 10;
2028 if (!delta)
2029 return 0;
2030 sa->last_runnable_update = now;
2031
2032 /* delta_w is the amount already accumulated against our next period */
2033 delta_w = sa->runnable_avg_period % 1024;
2034 if (delta + delta_w >= 1024) {
2035 /* period roll-over */
2036 decayed = 1;
2037
2038 /*
2039 * Now that we know we're crossing a period boundary, figure
2040 * out how much from delta we need to complete the current
2041 * period and accrue it.
2042 */
2043 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002044 if (runnable)
2045 sa->runnable_avg_sum += delta_w;
2046 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002047
Paul Turner5b51f2f2012-10-04 13:18:32 +02002048 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002049
Paul Turner5b51f2f2012-10-04 13:18:32 +02002050 /* Figure out how many additional periods this update spans */
2051 periods = delta / 1024;
2052 delta %= 1024;
2053
2054 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2055 periods + 1);
2056 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2057 periods + 1);
2058
2059 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2060 runnable_contrib = __compute_runnable_contrib(periods);
2061 if (runnable)
2062 sa->runnable_avg_sum += runnable_contrib;
2063 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002064 }
2065
2066 /* Remainder of delta accrued against u_0` */
2067 if (runnable)
2068 sa->runnable_avg_sum += delta;
2069 sa->runnable_avg_period += delta;
2070
2071 return decayed;
2072}
2073
Paul Turner9ee474f2012-10-04 13:18:30 +02002074/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002075static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002076{
2077 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2078 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2079
2080 decays -= se->avg.decay_count;
2081 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002082 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002083
2084 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2085 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002086
2087 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002088}
2089
Paul Turnerc566e8e2012-10-04 13:18:30 +02002090#ifdef CONFIG_FAIR_GROUP_SCHED
2091static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2092 int force_update)
2093{
2094 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002095 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002096
2097 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2098 tg_contrib -= cfs_rq->tg_load_contrib;
2099
Alex Shibf5b9862013-06-20 10:18:54 +08002100 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2101 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002102 cfs_rq->tg_load_contrib += tg_contrib;
2103 }
2104}
Paul Turner8165e142012-10-04 13:18:31 +02002105
Paul Turnerbb17f652012-10-04 13:18:31 +02002106/*
2107 * Aggregate cfs_rq runnable averages into an equivalent task_group
2108 * representation for computing load contributions.
2109 */
2110static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2111 struct cfs_rq *cfs_rq)
2112{
2113 struct task_group *tg = cfs_rq->tg;
2114 long contrib;
2115
2116 /* The fraction of a cpu used by this cfs_rq */
2117 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2118 sa->runnable_avg_period + 1);
2119 contrib -= cfs_rq->tg_runnable_contrib;
2120
2121 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2122 atomic_add(contrib, &tg->runnable_avg);
2123 cfs_rq->tg_runnable_contrib += contrib;
2124 }
2125}
2126
Paul Turner8165e142012-10-04 13:18:31 +02002127static inline void __update_group_entity_contrib(struct sched_entity *se)
2128{
2129 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2130 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002131 int runnable_avg;
2132
Paul Turner8165e142012-10-04 13:18:31 +02002133 u64 contrib;
2134
2135 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002136 se->avg.load_avg_contrib = div_u64(contrib,
2137 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002138
2139 /*
2140 * For group entities we need to compute a correction term in the case
2141 * that they are consuming <1 cpu so that we would contribute the same
2142 * load as a task of equal weight.
2143 *
2144 * Explicitly co-ordinating this measurement would be expensive, but
2145 * fortunately the sum of each cpus contribution forms a usable
2146 * lower-bound on the true value.
2147 *
2148 * Consider the aggregate of 2 contributions. Either they are disjoint
2149 * (and the sum represents true value) or they are disjoint and we are
2150 * understating by the aggregate of their overlap.
2151 *
2152 * Extending this to N cpus, for a given overlap, the maximum amount we
2153 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2154 * cpus that overlap for this interval and w_i is the interval width.
2155 *
2156 * On a small machine; the first term is well-bounded which bounds the
2157 * total error since w_i is a subset of the period. Whereas on a
2158 * larger machine, while this first term can be larger, if w_i is the
2159 * of consequential size guaranteed to see n_i*w_i quickly converge to
2160 * our upper bound of 1-cpu.
2161 */
2162 runnable_avg = atomic_read(&tg->runnable_avg);
2163 if (runnable_avg < NICE_0_LOAD) {
2164 se->avg.load_avg_contrib *= runnable_avg;
2165 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2166 }
Paul Turner8165e142012-10-04 13:18:31 +02002167}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002168#else
2169static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2170 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002171static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2172 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002173static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002174#endif
2175
Paul Turner8165e142012-10-04 13:18:31 +02002176static inline void __update_task_entity_contrib(struct sched_entity *se)
2177{
2178 u32 contrib;
2179
2180 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2181 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2182 contrib /= (se->avg.runnable_avg_period + 1);
2183 se->avg.load_avg_contrib = scale_load(contrib);
2184}
2185
Paul Turner2dac7542012-10-04 13:18:30 +02002186/* Compute the current contribution to load_avg by se, return any delta */
2187static long __update_entity_load_avg_contrib(struct sched_entity *se)
2188{
2189 long old_contrib = se->avg.load_avg_contrib;
2190
Paul Turner8165e142012-10-04 13:18:31 +02002191 if (entity_is_task(se)) {
2192 __update_task_entity_contrib(se);
2193 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002194 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002195 __update_group_entity_contrib(se);
2196 }
Paul Turner2dac7542012-10-04 13:18:30 +02002197
2198 return se->avg.load_avg_contrib - old_contrib;
2199}
2200
Paul Turner9ee474f2012-10-04 13:18:30 +02002201static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2202 long load_contrib)
2203{
2204 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2205 cfs_rq->blocked_load_avg -= load_contrib;
2206 else
2207 cfs_rq->blocked_load_avg = 0;
2208}
2209
Paul Turnerf1b17282012-10-04 13:18:31 +02002210static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2211
Paul Turner9d85f212012-10-04 13:18:29 +02002212/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002213static inline void update_entity_load_avg(struct sched_entity *se,
2214 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002215{
Paul Turner2dac7542012-10-04 13:18:30 +02002216 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2217 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002218 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002219
Paul Turnerf1b17282012-10-04 13:18:31 +02002220 /*
2221 * For a group entity we need to use their owned cfs_rq_clock_task() in
2222 * case they are the parent of a throttled hierarchy.
2223 */
2224 if (entity_is_task(se))
2225 now = cfs_rq_clock_task(cfs_rq);
2226 else
2227 now = cfs_rq_clock_task(group_cfs_rq(se));
2228
2229 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002230 return;
2231
2232 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002233
2234 if (!update_cfs_rq)
2235 return;
2236
Paul Turner2dac7542012-10-04 13:18:30 +02002237 if (se->on_rq)
2238 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002239 else
2240 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2241}
2242
2243/*
2244 * Decay the load contributed by all blocked children and account this so that
2245 * their contribution may appropriately discounted when they wake up.
2246 */
Paul Turneraff3e492012-10-04 13:18:30 +02002247static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002248{
Paul Turnerf1b17282012-10-04 13:18:31 +02002249 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002250 u64 decays;
2251
2252 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002253 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002254 return;
2255
Alex Shi25099402013-06-20 10:18:55 +08002256 if (atomic_long_read(&cfs_rq->removed_load)) {
2257 unsigned long removed_load;
2258 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002259 subtract_blocked_load_contrib(cfs_rq, removed_load);
2260 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002261
Paul Turneraff3e492012-10-04 13:18:30 +02002262 if (decays) {
2263 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2264 decays);
2265 atomic64_add(decays, &cfs_rq->decay_counter);
2266 cfs_rq->last_decay = now;
2267 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002268
2269 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002270}
Ben Segall18bf2802012-10-04 12:51:20 +02002271
2272static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2273{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002274 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002275 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002276}
Paul Turner2dac7542012-10-04 13:18:30 +02002277
2278/* Add the load generated by se into cfs_rq's child load-average */
2279static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002280 struct sched_entity *se,
2281 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002282{
Paul Turneraff3e492012-10-04 13:18:30 +02002283 /*
2284 * We track migrations using entity decay_count <= 0, on a wake-up
2285 * migration we use a negative decay count to track the remote decays
2286 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002287 *
2288 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2289 * are seen by enqueue_entity_load_avg() as a migration with an already
2290 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002291 */
2292 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002293 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002294 if (se->avg.decay_count) {
2295 /*
2296 * In a wake-up migration we have to approximate the
2297 * time sleeping. This is because we can't synchronize
2298 * clock_task between the two cpus, and it is not
2299 * guaranteed to be read-safe. Instead, we can
2300 * approximate this using our carried decays, which are
2301 * explicitly atomically readable.
2302 */
2303 se->avg.last_runnable_update -= (-se->avg.decay_count)
2304 << 20;
2305 update_entity_load_avg(se, 0);
2306 /* Indicate that we're now synchronized and on-rq */
2307 se->avg.decay_count = 0;
2308 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002309 wakeup = 0;
2310 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002311 /*
2312 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2313 * would have made count negative); we must be careful to avoid
2314 * double-accounting blocked time after synchronizing decays.
2315 */
2316 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2317 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002318 }
2319
Paul Turneraff3e492012-10-04 13:18:30 +02002320 /* migrated tasks did not contribute to our blocked load */
2321 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002322 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002323 update_entity_load_avg(se, 0);
2324 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002325
Paul Turner2dac7542012-10-04 13:18:30 +02002326 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002327 /* we force update consideration on load-balancer moves */
2328 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002329}
2330
Paul Turner9ee474f2012-10-04 13:18:30 +02002331/*
2332 * Remove se's load from this cfs_rq child load-average, if the entity is
2333 * transitioning to a blocked state we track its projected decay using
2334 * blocked_load_avg.
2335 */
Paul Turner2dac7542012-10-04 13:18:30 +02002336static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002337 struct sched_entity *se,
2338 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002339{
Paul Turner9ee474f2012-10-04 13:18:30 +02002340 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002341 /* we force update consideration on load-balancer moves */
2342 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002343
Paul Turner2dac7542012-10-04 13:18:30 +02002344 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002345 if (sleep) {
2346 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2347 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2348 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002349}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002350
2351/*
2352 * Update the rq's load with the elapsed running time before entering
2353 * idle. if the last scheduled task is not a CFS task, idle_enter will
2354 * be the only way to update the runnable statistic.
2355 */
2356void idle_enter_fair(struct rq *this_rq)
2357{
2358 update_rq_runnable_avg(this_rq, 1);
2359}
2360
2361/*
2362 * Update the rq's load with the elapsed idle time before a task is
2363 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2364 * be the only way to update the runnable statistic.
2365 */
2366void idle_exit_fair(struct rq *this_rq)
2367{
2368 update_rq_runnable_avg(this_rq, 0);
2369}
2370
Paul Turner9d85f212012-10-04 13:18:29 +02002371#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002372static inline void update_entity_load_avg(struct sched_entity *se,
2373 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002374static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002375static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002376 struct sched_entity *se,
2377 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002378static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002379 struct sched_entity *se,
2380 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002381static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2382 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002383#endif
2384
Ingo Molnar2396af62007-08-09 11:16:48 +02002385static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002386{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002387#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002388 struct task_struct *tsk = NULL;
2389
2390 if (entity_is_task(se))
2391 tsk = task_of(se);
2392
Lucas De Marchi41acab82010-03-10 23:37:45 -03002393 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002394 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002395
2396 if ((s64)delta < 0)
2397 delta = 0;
2398
Lucas De Marchi41acab82010-03-10 23:37:45 -03002399 if (unlikely(delta > se->statistics.sleep_max))
2400 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002401
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002402 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002403 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002404
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002405 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002406 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002407 trace_sched_stat_sleep(tsk, delta);
2408 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002409 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002410 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002411 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002412
2413 if ((s64)delta < 0)
2414 delta = 0;
2415
Lucas De Marchi41acab82010-03-10 23:37:45 -03002416 if (unlikely(delta > se->statistics.block_max))
2417 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002418
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002419 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002420 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002421
Peter Zijlstrae4143142009-07-23 20:13:26 +02002422 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002423 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002424 se->statistics.iowait_sum += delta;
2425 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002426 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002427 }
2428
Andrew Vaginb781a602011-11-28 12:03:35 +03002429 trace_sched_stat_blocked(tsk, delta);
2430
Peter Zijlstrae4143142009-07-23 20:13:26 +02002431 /*
2432 * Blocking time is in units of nanosecs, so shift by
2433 * 20 to get a milliseconds-range estimation of the
2434 * amount of time that the task spent sleeping:
2435 */
2436 if (unlikely(prof_on == SLEEP_PROFILING)) {
2437 profile_hits(SLEEP_PROFILING,
2438 (void *)get_wchan(tsk),
2439 delta >> 20);
2440 }
2441 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002442 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002443 }
2444#endif
2445}
2446
Peter Zijlstraddc97292007-10-15 17:00:10 +02002447static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2448{
2449#ifdef CONFIG_SCHED_DEBUG
2450 s64 d = se->vruntime - cfs_rq->min_vruntime;
2451
2452 if (d < 0)
2453 d = -d;
2454
2455 if (d > 3*sysctl_sched_latency)
2456 schedstat_inc(cfs_rq, nr_spread_over);
2457#endif
2458}
2459
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002460static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002461place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2462{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002463 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002464
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002465 /*
2466 * The 'current' period is already promised to the current tasks,
2467 * however the extra weight of the new task will slow them down a
2468 * little, place the new task so that it fits in the slot that
2469 * stays open at the end.
2470 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002471 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002472 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002473
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002474 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002475 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002476 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002477
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002478 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002479 * Halve their sleep time's effect, to allow
2480 * for a gentler effect of sleepers:
2481 */
2482 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2483 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002484
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002485 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002486 }
2487
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002488 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302489 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002490}
2491
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002492static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2493
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002494static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002495enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002496{
2497 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002498 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302499 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002500 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002501 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002502 se->vruntime += cfs_rq->min_vruntime;
2503
2504 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002505 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002506 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002507 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002508 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002509 account_entity_enqueue(cfs_rq, se);
2510 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002511
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002512 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002513 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002514 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002515 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002516
Ingo Molnard2417e52007-08-09 11:16:47 +02002517 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002518 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002519 if (se != cfs_rq->curr)
2520 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002521 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002522
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002523 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002524 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002525 check_enqueue_throttle(cfs_rq);
2526 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002527}
2528
Rik van Riel2c13c9192011-02-01 09:48:37 -05002529static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002530{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002531 for_each_sched_entity(se) {
2532 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2533 if (cfs_rq->last == se)
2534 cfs_rq->last = NULL;
2535 else
2536 break;
2537 }
2538}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002539
Rik van Riel2c13c9192011-02-01 09:48:37 -05002540static void __clear_buddies_next(struct sched_entity *se)
2541{
2542 for_each_sched_entity(se) {
2543 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2544 if (cfs_rq->next == se)
2545 cfs_rq->next = NULL;
2546 else
2547 break;
2548 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002549}
2550
Rik van Rielac53db52011-02-01 09:51:03 -05002551static void __clear_buddies_skip(struct sched_entity *se)
2552{
2553 for_each_sched_entity(se) {
2554 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2555 if (cfs_rq->skip == se)
2556 cfs_rq->skip = NULL;
2557 else
2558 break;
2559 }
2560}
2561
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002562static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2563{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002564 if (cfs_rq->last == se)
2565 __clear_buddies_last(se);
2566
2567 if (cfs_rq->next == se)
2568 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002569
2570 if (cfs_rq->skip == se)
2571 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002572}
2573
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002574static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002575
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002576static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002577dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002578{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002579 /*
2580 * Update run-time statistics of the 'current'.
2581 */
2582 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002583 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002584
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002585 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002586 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002587#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002588 if (entity_is_task(se)) {
2589 struct task_struct *tsk = task_of(se);
2590
2591 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002592 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002593 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002594 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002595 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002596#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002597 }
2598
Peter Zijlstra2002c692008-11-11 11:52:33 +01002599 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002600
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002601 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002602 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002603 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002604 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002605
2606 /*
2607 * Normalize the entity after updating the min_vruntime because the
2608 * update can refer to the ->curr item and we need to reflect this
2609 * movement in our normalized position.
2610 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002611 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002612 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002613
Paul Turnerd8b49862011-07-21 09:43:41 -07002614 /* return excess runtime on last dequeue */
2615 return_cfs_rq_runtime(cfs_rq);
2616
Peter Zijlstra1e876232011-05-17 16:21:10 -07002617 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002618 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002619}
2620
2621/*
2622 * Preempt the current task with a newly woken task if needed:
2623 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002624static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002625check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002626{
Peter Zijlstra11697832007-09-05 14:32:49 +02002627 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002628 struct sched_entity *se;
2629 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002630
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002631 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002632 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002633 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002634 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002635 /*
2636 * The current task ran long enough, ensure it doesn't get
2637 * re-elected due to buddy favours.
2638 */
2639 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002640 return;
2641 }
2642
2643 /*
2644 * Ensure that a task that missed wakeup preemption by a
2645 * narrow margin doesn't have to wait for a full slice.
2646 * This also mitigates buddy induced latencies under load.
2647 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002648 if (delta_exec < sysctl_sched_min_granularity)
2649 return;
2650
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002651 se = __pick_first_entity(cfs_rq);
2652 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002653
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002654 if (delta < 0)
2655 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002656
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002657 if (delta > ideal_runtime)
2658 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002659}
2660
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002661static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002662set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002663{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002664 /* 'current' is not kept within the tree. */
2665 if (se->on_rq) {
2666 /*
2667 * Any task has to be enqueued before it get to execute on
2668 * a CPU. So account for the time it spent waiting on the
2669 * runqueue.
2670 */
2671 update_stats_wait_end(cfs_rq, se);
2672 __dequeue_entity(cfs_rq, se);
2673 }
2674
Ingo Molnar79303e92007-08-09 11:16:47 +02002675 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002676 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002677#ifdef CONFIG_SCHEDSTATS
2678 /*
2679 * Track our maximum slice length, if the CPU's load is at
2680 * least twice that of our own weight (i.e. dont track it
2681 * when there are only lesser-weight tasks around):
2682 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002683 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002684 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002685 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2686 }
2687#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002688 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002689}
2690
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002691static int
2692wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2693
Rik van Rielac53db52011-02-01 09:51:03 -05002694/*
2695 * Pick the next process, keeping these things in mind, in this order:
2696 * 1) keep things fair between processes/task groups
2697 * 2) pick the "next" process, since someone really wants that to run
2698 * 3) pick the "last" process, for cache locality
2699 * 4) do not run the "skip" process, if something else is available
2700 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002701static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002702{
Rik van Rielac53db52011-02-01 09:51:03 -05002703 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002704 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002705
Rik van Rielac53db52011-02-01 09:51:03 -05002706 /*
2707 * Avoid running the skip buddy, if running something else can
2708 * be done without getting too unfair.
2709 */
2710 if (cfs_rq->skip == se) {
2711 struct sched_entity *second = __pick_next_entity(se);
2712 if (second && wakeup_preempt_entity(second, left) < 1)
2713 se = second;
2714 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002715
Mike Galbraithf685cea2009-10-23 23:09:22 +02002716 /*
2717 * Prefer last buddy, try to return the CPU to a preempted task.
2718 */
2719 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2720 se = cfs_rq->last;
2721
Rik van Rielac53db52011-02-01 09:51:03 -05002722 /*
2723 * Someone really wants this to run. If it's not unfair, run it.
2724 */
2725 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2726 se = cfs_rq->next;
2727
Mike Galbraithf685cea2009-10-23 23:09:22 +02002728 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002729
2730 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002731}
2732
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002733static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2734
Ingo Molnarab6cde22007-08-09 11:16:48 +02002735static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002736{
2737 /*
2738 * If still on the runqueue then deactivate_task()
2739 * was not called and update_curr() has to be done:
2740 */
2741 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002742 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002743
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002744 /* throttle cfs_rqs exceeding runtime */
2745 check_cfs_rq_runtime(cfs_rq);
2746
Peter Zijlstraddc97292007-10-15 17:00:10 +02002747 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002748 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002749 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002750 /* Put 'current' back into the tree. */
2751 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002752 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002753 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002754 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002755 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002756}
2757
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002758static void
2759entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002760{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002761 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002762 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002763 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002764 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002765
Paul Turner43365bd2010-12-15 19:10:17 -08002766 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002767 * Ensure that runnable average is periodically updated.
2768 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002769 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002770 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002771 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002772
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002773#ifdef CONFIG_SCHED_HRTICK
2774 /*
2775 * queued ticks are scheduled to match the slice, so don't bother
2776 * validating it and just reschedule.
2777 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002778 if (queued) {
2779 resched_task(rq_of(cfs_rq)->curr);
2780 return;
2781 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002782 /*
2783 * don't let the period tick interfere with the hrtick preemption
2784 */
2785 if (!sched_feat(DOUBLE_TICK) &&
2786 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2787 return;
2788#endif
2789
Yong Zhang2c2efae2011-07-29 16:20:33 +08002790 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002791 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002792}
2793
Paul Turnerab84d312011-07-21 09:43:28 -07002794
2795/**************************************************
2796 * CFS bandwidth control machinery
2797 */
2798
2799#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002800
2801#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002802static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002803
2804static inline bool cfs_bandwidth_used(void)
2805{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002806 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002807}
2808
2809void account_cfs_bandwidth_used(int enabled, int was_enabled)
2810{
2811 /* only need to count groups transitioning between enabled/!enabled */
2812 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002813 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002814 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002815 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002816}
2817#else /* HAVE_JUMP_LABEL */
2818static bool cfs_bandwidth_used(void)
2819{
2820 return true;
2821}
2822
2823void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2824#endif /* HAVE_JUMP_LABEL */
2825
Paul Turnerab84d312011-07-21 09:43:28 -07002826/*
2827 * default period for cfs group bandwidth.
2828 * default: 0.1s, units: nanoseconds
2829 */
2830static inline u64 default_cfs_period(void)
2831{
2832 return 100000000ULL;
2833}
Paul Turnerec12cb72011-07-21 09:43:30 -07002834
2835static inline u64 sched_cfs_bandwidth_slice(void)
2836{
2837 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2838}
2839
Paul Turnera9cf55b2011-07-21 09:43:32 -07002840/*
2841 * Replenish runtime according to assigned quota and update expiration time.
2842 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2843 * additional synchronization around rq->lock.
2844 *
2845 * requires cfs_b->lock
2846 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002847void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002848{
2849 u64 now;
2850
2851 if (cfs_b->quota == RUNTIME_INF)
2852 return;
2853
2854 now = sched_clock_cpu(smp_processor_id());
2855 cfs_b->runtime = cfs_b->quota;
2856 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2857}
2858
Peter Zijlstra029632f2011-10-25 10:00:11 +02002859static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2860{
2861 return &tg->cfs_bandwidth;
2862}
2863
Paul Turnerf1b17282012-10-04 13:18:31 +02002864/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2865static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2866{
2867 if (unlikely(cfs_rq->throttle_count))
2868 return cfs_rq->throttled_clock_task;
2869
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002870 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002871}
2872
Paul Turner85dac902011-07-21 09:43:33 -07002873/* returns 0 on failure to allocate runtime */
2874static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002875{
2876 struct task_group *tg = cfs_rq->tg;
2877 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002878 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002879
2880 /* note: this is a positive sum as runtime_remaining <= 0 */
2881 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2882
2883 raw_spin_lock(&cfs_b->lock);
2884 if (cfs_b->quota == RUNTIME_INF)
2885 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002886 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002887 /*
2888 * If the bandwidth pool has become inactive, then at least one
2889 * period must have elapsed since the last consumption.
2890 * Refresh the global state and ensure bandwidth timer becomes
2891 * active.
2892 */
2893 if (!cfs_b->timer_active) {
2894 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002895 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002896 }
Paul Turner58088ad2011-07-21 09:43:31 -07002897
2898 if (cfs_b->runtime > 0) {
2899 amount = min(cfs_b->runtime, min_amount);
2900 cfs_b->runtime -= amount;
2901 cfs_b->idle = 0;
2902 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002903 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002904 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002905 raw_spin_unlock(&cfs_b->lock);
2906
2907 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002908 /*
2909 * we may have advanced our local expiration to account for allowed
2910 * spread between our sched_clock and the one on which runtime was
2911 * issued.
2912 */
2913 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2914 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002915
2916 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002917}
2918
2919/*
2920 * Note: This depends on the synchronization provided by sched_clock and the
2921 * fact that rq->clock snapshots this value.
2922 */
2923static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2924{
2925 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002926
2927 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002928 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002929 return;
2930
2931 if (cfs_rq->runtime_remaining < 0)
2932 return;
2933
2934 /*
2935 * If the local deadline has passed we have to consider the
2936 * possibility that our sched_clock is 'fast' and the global deadline
2937 * has not truly expired.
2938 *
2939 * Fortunately we can check determine whether this the case by checking
2940 * whether the global deadline has advanced.
2941 */
2942
2943 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2944 /* extend local deadline, drift is bounded above by 2 ticks */
2945 cfs_rq->runtime_expires += TICK_NSEC;
2946 } else {
2947 /* global deadline is ahead, expiration has passed */
2948 cfs_rq->runtime_remaining = 0;
2949 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002950}
2951
2952static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2953 unsigned long delta_exec)
2954{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002955 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002956 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002957 expire_cfs_rq_runtime(cfs_rq);
2958
2959 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002960 return;
2961
Paul Turner85dac902011-07-21 09:43:33 -07002962 /*
2963 * if we're unable to extend our runtime we resched so that the active
2964 * hierarchy can be throttled
2965 */
2966 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2967 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002968}
2969
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002970static __always_inline
2971void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002972{
Paul Turner56f570e2011-11-07 20:26:33 -08002973 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002974 return;
2975
2976 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2977}
2978
Paul Turner85dac902011-07-21 09:43:33 -07002979static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2980{
Paul Turner56f570e2011-11-07 20:26:33 -08002981 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002982}
2983
Paul Turner64660c82011-07-21 09:43:36 -07002984/* check whether cfs_rq, or any parent, is throttled */
2985static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2986{
Paul Turner56f570e2011-11-07 20:26:33 -08002987 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002988}
2989
2990/*
2991 * Ensure that neither of the group entities corresponding to src_cpu or
2992 * dest_cpu are members of a throttled hierarchy when performing group
2993 * load-balance operations.
2994 */
2995static inline int throttled_lb_pair(struct task_group *tg,
2996 int src_cpu, int dest_cpu)
2997{
2998 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2999
3000 src_cfs_rq = tg->cfs_rq[src_cpu];
3001 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3002
3003 return throttled_hierarchy(src_cfs_rq) ||
3004 throttled_hierarchy(dest_cfs_rq);
3005}
3006
3007/* updated child weight may affect parent so we have to do this bottom up */
3008static int tg_unthrottle_up(struct task_group *tg, void *data)
3009{
3010 struct rq *rq = data;
3011 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3012
3013 cfs_rq->throttle_count--;
3014#ifdef CONFIG_SMP
3015 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003016 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003017 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003018 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003019 }
3020#endif
3021
3022 return 0;
3023}
3024
3025static int tg_throttle_down(struct task_group *tg, void *data)
3026{
3027 struct rq *rq = data;
3028 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3029
Paul Turner82958362012-10-04 13:18:31 +02003030 /* group is entering throttled state, stop time */
3031 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003032 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003033 cfs_rq->throttle_count++;
3034
3035 return 0;
3036}
3037
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003038static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003039{
3040 struct rq *rq = rq_of(cfs_rq);
3041 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3042 struct sched_entity *se;
3043 long task_delta, dequeue = 1;
3044
3045 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3046
Paul Turnerf1b17282012-10-04 13:18:31 +02003047 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003048 rcu_read_lock();
3049 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3050 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003051
3052 task_delta = cfs_rq->h_nr_running;
3053 for_each_sched_entity(se) {
3054 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3055 /* throttled entity or throttle-on-deactivate */
3056 if (!se->on_rq)
3057 break;
3058
3059 if (dequeue)
3060 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3061 qcfs_rq->h_nr_running -= task_delta;
3062
3063 if (qcfs_rq->load.weight)
3064 dequeue = 0;
3065 }
3066
3067 if (!se)
3068 rq->nr_running -= task_delta;
3069
3070 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003071 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003072 raw_spin_lock(&cfs_b->lock);
3073 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3074 raw_spin_unlock(&cfs_b->lock);
3075}
3076
Peter Zijlstra029632f2011-10-25 10:00:11 +02003077void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003078{
3079 struct rq *rq = rq_of(cfs_rq);
3080 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3081 struct sched_entity *se;
3082 int enqueue = 1;
3083 long task_delta;
3084
Michael Wang22b958d2013-06-04 14:23:39 +08003085 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003086
3087 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003088
3089 update_rq_clock(rq);
3090
Paul Turner671fd9d2011-07-21 09:43:34 -07003091 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003092 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003093 list_del_rcu(&cfs_rq->throttled_list);
3094 raw_spin_unlock(&cfs_b->lock);
3095
Paul Turner64660c82011-07-21 09:43:36 -07003096 /* update hierarchical throttle state */
3097 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3098
Paul Turner671fd9d2011-07-21 09:43:34 -07003099 if (!cfs_rq->load.weight)
3100 return;
3101
3102 task_delta = cfs_rq->h_nr_running;
3103 for_each_sched_entity(se) {
3104 if (se->on_rq)
3105 enqueue = 0;
3106
3107 cfs_rq = cfs_rq_of(se);
3108 if (enqueue)
3109 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3110 cfs_rq->h_nr_running += task_delta;
3111
3112 if (cfs_rq_throttled(cfs_rq))
3113 break;
3114 }
3115
3116 if (!se)
3117 rq->nr_running += task_delta;
3118
3119 /* determine whether we need to wake up potentially idle cpu */
3120 if (rq->curr == rq->idle && rq->cfs.nr_running)
3121 resched_task(rq->curr);
3122}
3123
3124static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3125 u64 remaining, u64 expires)
3126{
3127 struct cfs_rq *cfs_rq;
3128 u64 runtime = remaining;
3129
3130 rcu_read_lock();
3131 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3132 throttled_list) {
3133 struct rq *rq = rq_of(cfs_rq);
3134
3135 raw_spin_lock(&rq->lock);
3136 if (!cfs_rq_throttled(cfs_rq))
3137 goto next;
3138
3139 runtime = -cfs_rq->runtime_remaining + 1;
3140 if (runtime > remaining)
3141 runtime = remaining;
3142 remaining -= runtime;
3143
3144 cfs_rq->runtime_remaining += runtime;
3145 cfs_rq->runtime_expires = expires;
3146
3147 /* we check whether we're throttled above */
3148 if (cfs_rq->runtime_remaining > 0)
3149 unthrottle_cfs_rq(cfs_rq);
3150
3151next:
3152 raw_spin_unlock(&rq->lock);
3153
3154 if (!remaining)
3155 break;
3156 }
3157 rcu_read_unlock();
3158
3159 return remaining;
3160}
3161
Paul Turner58088ad2011-07-21 09:43:31 -07003162/*
3163 * Responsible for refilling a task_group's bandwidth and unthrottling its
3164 * cfs_rqs as appropriate. If there has been no activity within the last
3165 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3166 * used to track this state.
3167 */
3168static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3169{
Paul Turner671fd9d2011-07-21 09:43:34 -07003170 u64 runtime, runtime_expires;
3171 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003172
3173 raw_spin_lock(&cfs_b->lock);
3174 /* no need to continue the timer with no bandwidth constraint */
3175 if (cfs_b->quota == RUNTIME_INF)
3176 goto out_unlock;
3177
Paul Turner671fd9d2011-07-21 09:43:34 -07003178 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3179 /* idle depends on !throttled (for the case of a large deficit) */
3180 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003181 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003182
Paul Turnera9cf55b2011-07-21 09:43:32 -07003183 /* if we're going inactive then everything else can be deferred */
3184 if (idle)
3185 goto out_unlock;
3186
3187 __refill_cfs_bandwidth_runtime(cfs_b);
3188
Paul Turner671fd9d2011-07-21 09:43:34 -07003189 if (!throttled) {
3190 /* mark as potentially idle for the upcoming period */
3191 cfs_b->idle = 1;
3192 goto out_unlock;
3193 }
Paul Turner58088ad2011-07-21 09:43:31 -07003194
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003195 /* account preceding periods in which throttling occurred */
3196 cfs_b->nr_throttled += overrun;
3197
Paul Turner671fd9d2011-07-21 09:43:34 -07003198 /*
3199 * There are throttled entities so we must first use the new bandwidth
3200 * to unthrottle them before making it generally available. This
3201 * ensures that all existing debts will be paid before a new cfs_rq is
3202 * allowed to run.
3203 */
3204 runtime = cfs_b->runtime;
3205 runtime_expires = cfs_b->runtime_expires;
3206 cfs_b->runtime = 0;
3207
3208 /*
3209 * This check is repeated as we are holding onto the new bandwidth
3210 * while we unthrottle. This can potentially race with an unthrottled
3211 * group trying to acquire new bandwidth from the global pool.
3212 */
3213 while (throttled && runtime > 0) {
3214 raw_spin_unlock(&cfs_b->lock);
3215 /* we can't nest cfs_b->lock while distributing bandwidth */
3216 runtime = distribute_cfs_runtime(cfs_b, runtime,
3217 runtime_expires);
3218 raw_spin_lock(&cfs_b->lock);
3219
3220 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3221 }
3222
3223 /* return (any) remaining runtime */
3224 cfs_b->runtime = runtime;
3225 /*
3226 * While we are ensured activity in the period following an
3227 * unthrottle, this also covers the case in which the new bandwidth is
3228 * insufficient to cover the existing bandwidth deficit. (Forcing the
3229 * timer to remain active while there are any throttled entities.)
3230 */
3231 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003232out_unlock:
3233 if (idle)
3234 cfs_b->timer_active = 0;
3235 raw_spin_unlock(&cfs_b->lock);
3236
3237 return idle;
3238}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003239
Paul Turnerd8b49862011-07-21 09:43:41 -07003240/* a cfs_rq won't donate quota below this amount */
3241static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3242/* minimum remaining period time to redistribute slack quota */
3243static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3244/* how long we wait to gather additional slack before distributing */
3245static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3246
3247/* are we near the end of the current quota period? */
3248static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3249{
3250 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3251 u64 remaining;
3252
3253 /* if the call-back is running a quota refresh is already occurring */
3254 if (hrtimer_callback_running(refresh_timer))
3255 return 1;
3256
3257 /* is a quota refresh about to occur? */
3258 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3259 if (remaining < min_expire)
3260 return 1;
3261
3262 return 0;
3263}
3264
3265static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3266{
3267 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3268
3269 /* if there's a quota refresh soon don't bother with slack */
3270 if (runtime_refresh_within(cfs_b, min_left))
3271 return;
3272
3273 start_bandwidth_timer(&cfs_b->slack_timer,
3274 ns_to_ktime(cfs_bandwidth_slack_period));
3275}
3276
3277/* we know any runtime found here is valid as update_curr() precedes return */
3278static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3279{
3280 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3281 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3282
3283 if (slack_runtime <= 0)
3284 return;
3285
3286 raw_spin_lock(&cfs_b->lock);
3287 if (cfs_b->quota != RUNTIME_INF &&
3288 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3289 cfs_b->runtime += slack_runtime;
3290
3291 /* we are under rq->lock, defer unthrottling using a timer */
3292 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3293 !list_empty(&cfs_b->throttled_cfs_rq))
3294 start_cfs_slack_bandwidth(cfs_b);
3295 }
3296 raw_spin_unlock(&cfs_b->lock);
3297
3298 /* even if it's not valid for return we don't want to try again */
3299 cfs_rq->runtime_remaining -= slack_runtime;
3300}
3301
3302static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3303{
Paul Turner56f570e2011-11-07 20:26:33 -08003304 if (!cfs_bandwidth_used())
3305 return;
3306
Paul Turnerfccfdc62011-11-07 20:26:34 -08003307 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003308 return;
3309
3310 __return_cfs_rq_runtime(cfs_rq);
3311}
3312
3313/*
3314 * This is done with a timer (instead of inline with bandwidth return) since
3315 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3316 */
3317static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3318{
3319 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3320 u64 expires;
3321
3322 /* confirm we're still not at a refresh boundary */
3323 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3324 return;
3325
3326 raw_spin_lock(&cfs_b->lock);
3327 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3328 runtime = cfs_b->runtime;
3329 cfs_b->runtime = 0;
3330 }
3331 expires = cfs_b->runtime_expires;
3332 raw_spin_unlock(&cfs_b->lock);
3333
3334 if (!runtime)
3335 return;
3336
3337 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3338
3339 raw_spin_lock(&cfs_b->lock);
3340 if (expires == cfs_b->runtime_expires)
3341 cfs_b->runtime = runtime;
3342 raw_spin_unlock(&cfs_b->lock);
3343}
3344
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003345/*
3346 * When a group wakes up we want to make sure that its quota is not already
3347 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3348 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3349 */
3350static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3351{
Paul Turner56f570e2011-11-07 20:26:33 -08003352 if (!cfs_bandwidth_used())
3353 return;
3354
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003355 /* an active group must be handled by the update_curr()->put() path */
3356 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3357 return;
3358
3359 /* ensure the group is not already throttled */
3360 if (cfs_rq_throttled(cfs_rq))
3361 return;
3362
3363 /* update runtime allocation */
3364 account_cfs_rq_runtime(cfs_rq, 0);
3365 if (cfs_rq->runtime_remaining <= 0)
3366 throttle_cfs_rq(cfs_rq);
3367}
3368
3369/* conditionally throttle active cfs_rq's from put_prev_entity() */
3370static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3371{
Paul Turner56f570e2011-11-07 20:26:33 -08003372 if (!cfs_bandwidth_used())
3373 return;
3374
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003375 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3376 return;
3377
3378 /*
3379 * it's possible for a throttled entity to be forced into a running
3380 * state (e.g. set_curr_task), in this case we're finished.
3381 */
3382 if (cfs_rq_throttled(cfs_rq))
3383 return;
3384
3385 throttle_cfs_rq(cfs_rq);
3386}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003387
Peter Zijlstra029632f2011-10-25 10:00:11 +02003388static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3389{
3390 struct cfs_bandwidth *cfs_b =
3391 container_of(timer, struct cfs_bandwidth, slack_timer);
3392 do_sched_cfs_slack_timer(cfs_b);
3393
3394 return HRTIMER_NORESTART;
3395}
3396
3397static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3398{
3399 struct cfs_bandwidth *cfs_b =
3400 container_of(timer, struct cfs_bandwidth, period_timer);
3401 ktime_t now;
3402 int overrun;
3403 int idle = 0;
3404
3405 for (;;) {
3406 now = hrtimer_cb_get_time(timer);
3407 overrun = hrtimer_forward(timer, now, cfs_b->period);
3408
3409 if (!overrun)
3410 break;
3411
3412 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3413 }
3414
3415 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3416}
3417
3418void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3419{
3420 raw_spin_lock_init(&cfs_b->lock);
3421 cfs_b->runtime = 0;
3422 cfs_b->quota = RUNTIME_INF;
3423 cfs_b->period = ns_to_ktime(default_cfs_period());
3424
3425 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3426 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3427 cfs_b->period_timer.function = sched_cfs_period_timer;
3428 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3429 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3430}
3431
3432static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3433{
3434 cfs_rq->runtime_enabled = 0;
3435 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3436}
3437
3438/* requires cfs_b->lock, may release to reprogram timer */
3439void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3440{
3441 /*
3442 * The timer may be active because we're trying to set a new bandwidth
3443 * period or because we're racing with the tear-down path
3444 * (timer_active==0 becomes visible before the hrtimer call-back
3445 * terminates). In either case we ensure that it's re-programmed
3446 */
3447 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3448 raw_spin_unlock(&cfs_b->lock);
3449 /* ensure cfs_b->lock is available while we wait */
3450 hrtimer_cancel(&cfs_b->period_timer);
3451
3452 raw_spin_lock(&cfs_b->lock);
3453 /* if someone else restarted the timer then we're done */
3454 if (cfs_b->timer_active)
3455 return;
3456 }
3457
3458 cfs_b->timer_active = 1;
3459 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3460}
3461
3462static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3463{
3464 hrtimer_cancel(&cfs_b->period_timer);
3465 hrtimer_cancel(&cfs_b->slack_timer);
3466}
3467
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003468static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003469{
3470 struct cfs_rq *cfs_rq;
3471
3472 for_each_leaf_cfs_rq(rq, cfs_rq) {
3473 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3474
3475 if (!cfs_rq->runtime_enabled)
3476 continue;
3477
3478 /*
3479 * clock_task is not advancing so we just need to make sure
3480 * there's some valid quota amount
3481 */
3482 cfs_rq->runtime_remaining = cfs_b->quota;
3483 if (cfs_rq_throttled(cfs_rq))
3484 unthrottle_cfs_rq(cfs_rq);
3485 }
3486}
3487
3488#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003489static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3490{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003491 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003492}
3493
3494static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3495 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003496static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3497static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003498static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003499
3500static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3501{
3502 return 0;
3503}
Paul Turner64660c82011-07-21 09:43:36 -07003504
3505static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3506{
3507 return 0;
3508}
3509
3510static inline int throttled_lb_pair(struct task_group *tg,
3511 int src_cpu, int dest_cpu)
3512{
3513 return 0;
3514}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003515
3516void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3517
3518#ifdef CONFIG_FAIR_GROUP_SCHED
3519static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003520#endif
3521
Peter Zijlstra029632f2011-10-25 10:00:11 +02003522static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3523{
3524 return NULL;
3525}
3526static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003527static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003528
3529#endif /* CONFIG_CFS_BANDWIDTH */
3530
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003531/**************************************************
3532 * CFS operations on tasks:
3533 */
3534
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003535#ifdef CONFIG_SCHED_HRTICK
3536static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3537{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003538 struct sched_entity *se = &p->se;
3539 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3540
3541 WARN_ON(task_rq(p) != rq);
3542
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003543 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003544 u64 slice = sched_slice(cfs_rq, se);
3545 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3546 s64 delta = slice - ran;
3547
3548 if (delta < 0) {
3549 if (rq->curr == p)
3550 resched_task(p);
3551 return;
3552 }
3553
3554 /*
3555 * Don't schedule slices shorter than 10000ns, that just
3556 * doesn't make sense. Rely on vruntime for fairness.
3557 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003558 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003559 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003560
Peter Zijlstra31656512008-07-18 18:01:23 +02003561 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003562 }
3563}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003564
3565/*
3566 * called from enqueue/dequeue and updates the hrtick when the
3567 * current task is from our class and nr_running is low enough
3568 * to matter.
3569 */
3570static void hrtick_update(struct rq *rq)
3571{
3572 struct task_struct *curr = rq->curr;
3573
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003574 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003575 return;
3576
3577 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3578 hrtick_start_fair(rq, curr);
3579}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303580#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003581static inline void
3582hrtick_start_fair(struct rq *rq, struct task_struct *p)
3583{
3584}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003585
3586static inline void hrtick_update(struct rq *rq)
3587{
3588}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003589#endif
3590
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003591/*
3592 * The enqueue_task method is called before nr_running is
3593 * increased. Here we update the fair scheduling stats and
3594 * then put the task into the rbtree:
3595 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003596static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003597enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003598{
3599 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003600 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003601
3602 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003603 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003604 break;
3605 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003606 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003607
3608 /*
3609 * end evaluation on encountering a throttled cfs_rq
3610 *
3611 * note: in the case of encountering a throttled cfs_rq we will
3612 * post the final h_nr_running increment below.
3613 */
3614 if (cfs_rq_throttled(cfs_rq))
3615 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003616 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003617
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003618 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003619 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003620
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003621 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003622 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003623 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003624
Paul Turner85dac902011-07-21 09:43:33 -07003625 if (cfs_rq_throttled(cfs_rq))
3626 break;
3627
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003628 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003629 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003630 }
3631
Ben Segall18bf2802012-10-04 12:51:20 +02003632 if (!se) {
3633 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003634 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003635 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003636 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003637}
3638
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003639static void set_next_buddy(struct sched_entity *se);
3640
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003641/*
3642 * The dequeue_task method is called before nr_running is
3643 * decreased. We remove the task from the rbtree and
3644 * update the fair scheduling stats:
3645 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003646static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003647{
3648 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003649 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003650 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003651
3652 for_each_sched_entity(se) {
3653 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003654 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003655
3656 /*
3657 * end evaluation on encountering a throttled cfs_rq
3658 *
3659 * note: in the case of encountering a throttled cfs_rq we will
3660 * post the final h_nr_running decrement below.
3661 */
3662 if (cfs_rq_throttled(cfs_rq))
3663 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003664 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003665
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003666 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003667 if (cfs_rq->load.weight) {
3668 /*
3669 * Bias pick_next to pick a task from this cfs_rq, as
3670 * p is sleeping when it is within its sched_slice.
3671 */
3672 if (task_sleep && parent_entity(se))
3673 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003674
3675 /* avoid re-evaluating load for this entity */
3676 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003677 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003678 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003679 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003680 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003681
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003682 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003683 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003684 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003685
Paul Turner85dac902011-07-21 09:43:33 -07003686 if (cfs_rq_throttled(cfs_rq))
3687 break;
3688
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003689 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003690 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003691 }
3692
Ben Segall18bf2802012-10-04 12:51:20 +02003693 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003694 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003695 update_rq_runnable_avg(rq, 1);
3696 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003697 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003698}
3699
Gregory Haskinse7693a32008-01-25 21:08:09 +01003700#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003701/* Used instead of source_load when we know the type == 0 */
3702static unsigned long weighted_cpuload(const int cpu)
3703{
Alex Shib92486c2013-06-20 10:18:50 +08003704 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003705}
3706
3707/*
3708 * Return a low guess at the load of a migration-source cpu weighted
3709 * according to the scheduling class and "nice" value.
3710 *
3711 * We want to under-estimate the load of migration sources, to
3712 * balance conservatively.
3713 */
3714static unsigned long source_load(int cpu, int type)
3715{
3716 struct rq *rq = cpu_rq(cpu);
3717 unsigned long total = weighted_cpuload(cpu);
3718
3719 if (type == 0 || !sched_feat(LB_BIAS))
3720 return total;
3721
3722 return min(rq->cpu_load[type-1], total);
3723}
3724
3725/*
3726 * Return a high guess at the load of a migration-target cpu weighted
3727 * according to the scheduling class and "nice" value.
3728 */
3729static unsigned long target_load(int cpu, int type)
3730{
3731 struct rq *rq = cpu_rq(cpu);
3732 unsigned long total = weighted_cpuload(cpu);
3733
3734 if (type == 0 || !sched_feat(LB_BIAS))
3735 return total;
3736
3737 return max(rq->cpu_load[type-1], total);
3738}
3739
3740static unsigned long power_of(int cpu)
3741{
3742 return cpu_rq(cpu)->cpu_power;
3743}
3744
3745static unsigned long cpu_avg_load_per_task(int cpu)
3746{
3747 struct rq *rq = cpu_rq(cpu);
3748 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003749 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003750
3751 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003752 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003753
3754 return 0;
3755}
3756
Michael Wang62470412013-07-04 12:55:51 +08003757static void record_wakee(struct task_struct *p)
3758{
3759 /*
3760 * Rough decay (wiping) for cost saving, don't worry
3761 * about the boundary, really active task won't care
3762 * about the loss.
3763 */
3764 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3765 current->wakee_flips = 0;
3766 current->wakee_flip_decay_ts = jiffies;
3767 }
3768
3769 if (current->last_wakee != p) {
3770 current->last_wakee = p;
3771 current->wakee_flips++;
3772 }
3773}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003774
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003775static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003776{
3777 struct sched_entity *se = &p->se;
3778 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003779 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003780
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003781#ifndef CONFIG_64BIT
3782 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003783
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003784 do {
3785 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3786 smp_rmb();
3787 min_vruntime = cfs_rq->min_vruntime;
3788 } while (min_vruntime != min_vruntime_copy);
3789#else
3790 min_vruntime = cfs_rq->min_vruntime;
3791#endif
3792
3793 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003794 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003795}
3796
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003797#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003798/*
3799 * effective_load() calculates the load change as seen from the root_task_group
3800 *
3801 * Adding load to a group doesn't make a group heavier, but can cause movement
3802 * of group shares between cpus. Assuming the shares were perfectly aligned one
3803 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003804 *
3805 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3806 * on this @cpu and results in a total addition (subtraction) of @wg to the
3807 * total group weight.
3808 *
3809 * Given a runqueue weight distribution (rw_i) we can compute a shares
3810 * distribution (s_i) using:
3811 *
3812 * s_i = rw_i / \Sum rw_j (1)
3813 *
3814 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3815 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3816 * shares distribution (s_i):
3817 *
3818 * rw_i = { 2, 4, 1, 0 }
3819 * s_i = { 2/7, 4/7, 1/7, 0 }
3820 *
3821 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3822 * task used to run on and the CPU the waker is running on), we need to
3823 * compute the effect of waking a task on either CPU and, in case of a sync
3824 * wakeup, compute the effect of the current task going to sleep.
3825 *
3826 * So for a change of @wl to the local @cpu with an overall group weight change
3827 * of @wl we can compute the new shares distribution (s'_i) using:
3828 *
3829 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3830 *
3831 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3832 * differences in waking a task to CPU 0. The additional task changes the
3833 * weight and shares distributions like:
3834 *
3835 * rw'_i = { 3, 4, 1, 0 }
3836 * s'_i = { 3/8, 4/8, 1/8, 0 }
3837 *
3838 * We can then compute the difference in effective weight by using:
3839 *
3840 * dw_i = S * (s'_i - s_i) (3)
3841 *
3842 * Where 'S' is the group weight as seen by its parent.
3843 *
3844 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3845 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3846 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003847 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003848static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003849{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003850 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003851
Mel Gorman58d081b2013-10-07 11:29:10 +01003852 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003853 return wl;
3854
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003855 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003856 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003857
Paul Turner977dda72011-01-14 17:57:50 -08003858 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003859
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003860 /*
3861 * W = @wg + \Sum rw_j
3862 */
3863 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003864
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003865 /*
3866 * w = rw_i + @wl
3867 */
3868 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003869
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003870 /*
3871 * wl = S * s'_i; see (2)
3872 */
3873 if (W > 0 && w < W)
3874 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003875 else
3876 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003877
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003878 /*
3879 * Per the above, wl is the new se->load.weight value; since
3880 * those are clipped to [MIN_SHARES, ...) do so now. See
3881 * calc_cfs_shares().
3882 */
Paul Turner977dda72011-01-14 17:57:50 -08003883 if (wl < MIN_SHARES)
3884 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003885
3886 /*
3887 * wl = dw_i = S * (s'_i - s_i); see (3)
3888 */
Paul Turner977dda72011-01-14 17:57:50 -08003889 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003890
3891 /*
3892 * Recursively apply this logic to all parent groups to compute
3893 * the final effective load change on the root group. Since
3894 * only the @tg group gets extra weight, all parent groups can
3895 * only redistribute existing shares. @wl is the shift in shares
3896 * resulting from this level per the above.
3897 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003898 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003899 }
3900
3901 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003902}
3903#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003904
Mel Gorman58d081b2013-10-07 11:29:10 +01003905static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003906{
Peter Zijlstra83378262008-06-27 13:41:37 +02003907 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003908}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003909
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003910#endif
3911
Michael Wang62470412013-07-04 12:55:51 +08003912static int wake_wide(struct task_struct *p)
3913{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003914 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003915
3916 /*
3917 * Yeah, it's the switching-frequency, could means many wakee or
3918 * rapidly switch, use factor here will just help to automatically
3919 * adjust the loose-degree, so bigger node will lead to more pull.
3920 */
3921 if (p->wakee_flips > factor) {
3922 /*
3923 * wakee is somewhat hot, it needs certain amount of cpu
3924 * resource, so if waker is far more hot, prefer to leave
3925 * it alone.
3926 */
3927 if (current->wakee_flips > (factor * p->wakee_flips))
3928 return 1;
3929 }
3930
3931 return 0;
3932}
3933
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003934static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003935{
Paul Turnere37b6a72011-01-21 20:44:59 -08003936 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003937 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003938 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003939 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003940 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003941 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003942
Michael Wang62470412013-07-04 12:55:51 +08003943 /*
3944 * If we wake multiple tasks be careful to not bounce
3945 * ourselves around too much.
3946 */
3947 if (wake_wide(p))
3948 return 0;
3949
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003950 idx = sd->wake_idx;
3951 this_cpu = smp_processor_id();
3952 prev_cpu = task_cpu(p);
3953 load = source_load(prev_cpu, idx);
3954 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003955
3956 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003957 * If sync wakeup then subtract the (maximum possible)
3958 * effect of the currently running task from the load
3959 * of the current CPU:
3960 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003961 if (sync) {
3962 tg = task_group(current);
3963 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003964
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003965 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003966 load += effective_load(tg, prev_cpu, 0, -weight);
3967 }
3968
3969 tg = task_group(p);
3970 weight = p->se.load.weight;
3971
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003972 /*
3973 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003974 * due to the sync cause above having dropped this_load to 0, we'll
3975 * always have an imbalance, but there's really nothing you can do
3976 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003977 *
3978 * Otherwise check if either cpus are near enough in load to allow this
3979 * task to be woken on this_cpu.
3980 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003981 if (this_load > 0) {
3982 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003983
3984 this_eff_load = 100;
3985 this_eff_load *= power_of(prev_cpu);
3986 this_eff_load *= this_load +
3987 effective_load(tg, this_cpu, weight, weight);
3988
3989 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3990 prev_eff_load *= power_of(this_cpu);
3991 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3992
3993 balanced = this_eff_load <= prev_eff_load;
3994 } else
3995 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003996
3997 /*
3998 * If the currently running task will sleep within
3999 * a reasonable amount of time then attract this newly
4000 * woken task:
4001 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004002 if (sync && balanced)
4003 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004004
Lucas De Marchi41acab82010-03-10 23:37:45 -03004005 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004006 tl_per_task = cpu_avg_load_per_task(this_cpu);
4007
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004008 if (balanced ||
4009 (this_load <= load &&
4010 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004011 /*
4012 * This domain has SD_WAKE_AFFINE and
4013 * p is cache cold in this domain, and
4014 * there is no bad imbalance.
4015 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004016 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004017 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004018
4019 return 1;
4020 }
4021 return 0;
4022}
4023
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004024/*
4025 * find_idlest_group finds and returns the least busy CPU group within the
4026 * domain.
4027 */
4028static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004029find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004030 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004031{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004032 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004033 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004034 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004035
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004036 do {
4037 unsigned long load, avg_load;
4038 int local_group;
4039 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004040
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004041 /* Skip over this group if it has no CPUs allowed */
4042 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004043 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004044 continue;
4045
4046 local_group = cpumask_test_cpu(this_cpu,
4047 sched_group_cpus(group));
4048
4049 /* Tally up the load of all CPUs in the group */
4050 avg_load = 0;
4051
4052 for_each_cpu(i, sched_group_cpus(group)) {
4053 /* Bias balancing toward cpus of our domain */
4054 if (local_group)
4055 load = source_load(i, load_idx);
4056 else
4057 load = target_load(i, load_idx);
4058
4059 avg_load += load;
4060 }
4061
4062 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004063 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004064
4065 if (local_group) {
4066 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004067 } else if (avg_load < min_load) {
4068 min_load = avg_load;
4069 idlest = group;
4070 }
4071 } while (group = group->next, group != sd->groups);
4072
4073 if (!idlest || 100*this_load < imbalance*min_load)
4074 return NULL;
4075 return idlest;
4076}
4077
4078/*
4079 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4080 */
4081static int
4082find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4083{
4084 unsigned long load, min_load = ULONG_MAX;
4085 int idlest = -1;
4086 int i;
4087
4088 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004089 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004090 load = weighted_cpuload(i);
4091
4092 if (load < min_load || (load == min_load && i == this_cpu)) {
4093 min_load = load;
4094 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004095 }
4096 }
4097
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004098 return idlest;
4099}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004100
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004101/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004102 * Try and locate an idle CPU in the sched_domain.
4103 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004104static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004105{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004106 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004107 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004108 int i = task_cpu(p);
4109
4110 if (idle_cpu(target))
4111 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004112
4113 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004114 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004115 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004116 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4117 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004118
4119 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004120 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004121 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004122 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004123 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004124 sg = sd->groups;
4125 do {
4126 if (!cpumask_intersects(sched_group_cpus(sg),
4127 tsk_cpus_allowed(p)))
4128 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004129
Linus Torvalds37407ea2012-09-16 12:29:43 -07004130 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004131 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004132 goto next;
4133 }
4134
4135 target = cpumask_first_and(sched_group_cpus(sg),
4136 tsk_cpus_allowed(p));
4137 goto done;
4138next:
4139 sg = sg->next;
4140 } while (sg != sd->groups);
4141 }
4142done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004143 return target;
4144}
4145
4146/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004147 * sched_balance_self: balance the current task (running on cpu) in domains
4148 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4149 * SD_BALANCE_EXEC.
4150 *
4151 * Balance, ie. select the least loaded group.
4152 *
4153 * Returns the target CPU number, or the same CPU if no balancing is needed.
4154 *
4155 * preempt must be disabled.
4156 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004157static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004158select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004159{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004160 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004161 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004162 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004163 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004164 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004165
Peter Zijlstra29baa742012-04-23 12:11:21 +02004166 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004167 return prev_cpu;
4168
Peter Zijlstra0763a662009-09-14 19:37:39 +02004169 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004170 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004171 want_affine = 1;
4172 new_cpu = prev_cpu;
4173 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004174
Peter Zijlstradce840a2011-04-07 14:09:50 +02004175 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004176 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004177 if (!(tmp->flags & SD_LOAD_BALANCE))
4178 continue;
4179
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004180 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004181 * If both cpu and prev_cpu are part of this domain,
4182 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004183 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004184 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4185 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4186 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004187 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004188 }
4189
Alex Shif03542a2012-07-26 08:55:34 +08004190 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004191 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004192 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004193
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004194 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004195 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004196 prev_cpu = cpu;
4197
4198 new_cpu = select_idle_sibling(p, prev_cpu);
4199 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004200 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004201
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004202 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004203 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004204 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004205 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004206
Peter Zijlstra0763a662009-09-14 19:37:39 +02004207 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004208 sd = sd->child;
4209 continue;
4210 }
4211
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004212 if (sd_flag & SD_BALANCE_WAKE)
4213 load_idx = sd->wake_idx;
4214
4215 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004216 if (!group) {
4217 sd = sd->child;
4218 continue;
4219 }
4220
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004221 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004222 if (new_cpu == -1 || new_cpu == cpu) {
4223 /* Now try balancing at a lower domain level of cpu */
4224 sd = sd->child;
4225 continue;
4226 }
4227
4228 /* Now try balancing at a lower domain level of new_cpu */
4229 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004230 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004231 sd = NULL;
4232 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004233 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004234 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004235 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004236 sd = tmp;
4237 }
4238 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004239 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004240unlock:
4241 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004242
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004243 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004244}
Paul Turner0a74bef2012-10-04 13:18:30 +02004245
4246/*
4247 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4248 * cfs_rq_of(p) references at time of call are still valid and identify the
4249 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4250 * other assumptions, including the state of rq->lock, should be made.
4251 */
4252static void
4253migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4254{
Paul Turneraff3e492012-10-04 13:18:30 +02004255 struct sched_entity *se = &p->se;
4256 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4257
4258 /*
4259 * Load tracking: accumulate removed load so that it can be processed
4260 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4261 * to blocked load iff they have a positive decay-count. It can never
4262 * be negative here since on-rq tasks have decay-count == 0.
4263 */
4264 if (se->avg.decay_count) {
4265 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004266 atomic_long_add(se->avg.load_avg_contrib,
4267 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004268 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004269}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004270#endif /* CONFIG_SMP */
4271
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004272static unsigned long
4273wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004274{
4275 unsigned long gran = sysctl_sched_wakeup_granularity;
4276
4277 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004278 * Since its curr running now, convert the gran from real-time
4279 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004280 *
4281 * By using 'se' instead of 'curr' we penalize light tasks, so
4282 * they get preempted easier. That is, if 'se' < 'curr' then
4283 * the resulting gran will be larger, therefore penalizing the
4284 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4285 * be smaller, again penalizing the lighter task.
4286 *
4287 * This is especially important for buddies when the leftmost
4288 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004289 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004290 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004291}
4292
4293/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004294 * Should 'se' preempt 'curr'.
4295 *
4296 * |s1
4297 * |s2
4298 * |s3
4299 * g
4300 * |<--->|c
4301 *
4302 * w(c, s1) = -1
4303 * w(c, s2) = 0
4304 * w(c, s3) = 1
4305 *
4306 */
4307static int
4308wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4309{
4310 s64 gran, vdiff = curr->vruntime - se->vruntime;
4311
4312 if (vdiff <= 0)
4313 return -1;
4314
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004315 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004316 if (vdiff > gran)
4317 return 1;
4318
4319 return 0;
4320}
4321
Peter Zijlstra02479092008-11-04 21:25:10 +01004322static void set_last_buddy(struct sched_entity *se)
4323{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004324 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4325 return;
4326
4327 for_each_sched_entity(se)
4328 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004329}
4330
4331static void set_next_buddy(struct sched_entity *se)
4332{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004333 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4334 return;
4335
4336 for_each_sched_entity(se)
4337 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004338}
4339
Rik van Rielac53db52011-02-01 09:51:03 -05004340static void set_skip_buddy(struct sched_entity *se)
4341{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004342 for_each_sched_entity(se)
4343 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004344}
4345
Peter Zijlstra464b7522008-10-24 11:06:15 +02004346/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004347 * Preempt the current task with a newly woken task if needed:
4348 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004349static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004350{
4351 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004352 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004353 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004354 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004355 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004356
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004357 if (unlikely(se == pse))
4358 return;
4359
Paul Turner5238cdd2011-07-21 09:43:37 -07004360 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004361 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004362 * unconditionally check_prempt_curr() after an enqueue (which may have
4363 * lead to a throttle). This both saves work and prevents false
4364 * next-buddy nomination below.
4365 */
4366 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4367 return;
4368
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004369 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004370 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004371 next_buddy_marked = 1;
4372 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004373
Bharata B Raoaec0a512008-08-28 14:42:49 +05304374 /*
4375 * We can come here with TIF_NEED_RESCHED already set from new task
4376 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004377 *
4378 * Note: this also catches the edge-case of curr being in a throttled
4379 * group (e.g. via set_curr_task), since update_curr() (in the
4380 * enqueue of curr) will have resulted in resched being set. This
4381 * prevents us from potentially nominating it as a false LAST_BUDDY
4382 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304383 */
4384 if (test_tsk_need_resched(curr))
4385 return;
4386
Darren Harta2f5c9a2011-02-22 13:04:33 -08004387 /* Idle tasks are by definition preempted by non-idle tasks. */
4388 if (unlikely(curr->policy == SCHED_IDLE) &&
4389 likely(p->policy != SCHED_IDLE))
4390 goto preempt;
4391
Ingo Molnar91c234b2007-10-15 17:00:18 +02004392 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004393 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4394 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004395 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004396 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004397 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004398
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004399 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004400 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004401 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004402 if (wakeup_preempt_entity(se, pse) == 1) {
4403 /*
4404 * Bias pick_next to pick the sched entity that is
4405 * triggering this preemption.
4406 */
4407 if (!next_buddy_marked)
4408 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004409 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004410 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004411
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004412 return;
4413
4414preempt:
4415 resched_task(curr);
4416 /*
4417 * Only set the backward buddy when the current task is still
4418 * on the rq. This can happen when a wakeup gets interleaved
4419 * with schedule on the ->pre_schedule() or idle_balance()
4420 * point, either of which can * drop the rq lock.
4421 *
4422 * Also, during early boot the idle thread is in the fair class,
4423 * for obvious reasons its a bad idea to schedule back to it.
4424 */
4425 if (unlikely(!se->on_rq || curr == rq->idle))
4426 return;
4427
4428 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4429 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004430}
4431
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004432static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004433{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004434 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004435 struct cfs_rq *cfs_rq = &rq->cfs;
4436 struct sched_entity *se;
4437
Tim Blechmann36ace272009-11-24 11:55:45 +01004438 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004439 return NULL;
4440
4441 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004442 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004443 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004444 cfs_rq = group_cfs_rq(se);
4445 } while (cfs_rq);
4446
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004447 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004448 if (hrtick_enabled(rq))
4449 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004450
4451 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004452}
4453
4454/*
4455 * Account for a descheduled task:
4456 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004457static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004458{
4459 struct sched_entity *se = &prev->se;
4460 struct cfs_rq *cfs_rq;
4461
4462 for_each_sched_entity(se) {
4463 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004464 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004465 }
4466}
4467
Rik van Rielac53db52011-02-01 09:51:03 -05004468/*
4469 * sched_yield() is very simple
4470 *
4471 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4472 */
4473static void yield_task_fair(struct rq *rq)
4474{
4475 struct task_struct *curr = rq->curr;
4476 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4477 struct sched_entity *se = &curr->se;
4478
4479 /*
4480 * Are we the only task in the tree?
4481 */
4482 if (unlikely(rq->nr_running == 1))
4483 return;
4484
4485 clear_buddies(cfs_rq, se);
4486
4487 if (curr->policy != SCHED_BATCH) {
4488 update_rq_clock(rq);
4489 /*
4490 * Update run-time statistics of the 'current'.
4491 */
4492 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004493 /*
4494 * Tell update_rq_clock() that we've just updated,
4495 * so we don't do microscopic update in schedule()
4496 * and double the fastpath cost.
4497 */
4498 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004499 }
4500
4501 set_skip_buddy(se);
4502}
4503
Mike Galbraithd95f4122011-02-01 09:50:51 -05004504static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4505{
4506 struct sched_entity *se = &p->se;
4507
Paul Turner5238cdd2011-07-21 09:43:37 -07004508 /* throttled hierarchies are not runnable */
4509 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004510 return false;
4511
4512 /* Tell the scheduler that we'd really like pse to run next. */
4513 set_next_buddy(se);
4514
Mike Galbraithd95f4122011-02-01 09:50:51 -05004515 yield_task_fair(rq);
4516
4517 return true;
4518}
4519
Peter Williams681f3e62007-10-24 18:23:51 +02004520#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004521/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004522 * Fair scheduling class load-balancing methods.
4523 *
4524 * BASICS
4525 *
4526 * The purpose of load-balancing is to achieve the same basic fairness the
4527 * per-cpu scheduler provides, namely provide a proportional amount of compute
4528 * time to each task. This is expressed in the following equation:
4529 *
4530 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4531 *
4532 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4533 * W_i,0 is defined as:
4534 *
4535 * W_i,0 = \Sum_j w_i,j (2)
4536 *
4537 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4538 * is derived from the nice value as per prio_to_weight[].
4539 *
4540 * The weight average is an exponential decay average of the instantaneous
4541 * weight:
4542 *
4543 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4544 *
4545 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4546 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4547 * can also include other factors [XXX].
4548 *
4549 * To achieve this balance we define a measure of imbalance which follows
4550 * directly from (1):
4551 *
4552 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4553 *
4554 * We them move tasks around to minimize the imbalance. In the continuous
4555 * function space it is obvious this converges, in the discrete case we get
4556 * a few fun cases generally called infeasible weight scenarios.
4557 *
4558 * [XXX expand on:
4559 * - infeasible weights;
4560 * - local vs global optima in the discrete case. ]
4561 *
4562 *
4563 * SCHED DOMAINS
4564 *
4565 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4566 * for all i,j solution, we create a tree of cpus that follows the hardware
4567 * topology where each level pairs two lower groups (or better). This results
4568 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4569 * tree to only the first of the previous level and we decrease the frequency
4570 * of load-balance at each level inv. proportional to the number of cpus in
4571 * the groups.
4572 *
4573 * This yields:
4574 *
4575 * log_2 n 1 n
4576 * \Sum { --- * --- * 2^i } = O(n) (5)
4577 * i = 0 2^i 2^i
4578 * `- size of each group
4579 * | | `- number of cpus doing load-balance
4580 * | `- freq
4581 * `- sum over all levels
4582 *
4583 * Coupled with a limit on how many tasks we can migrate every balance pass,
4584 * this makes (5) the runtime complexity of the balancer.
4585 *
4586 * An important property here is that each CPU is still (indirectly) connected
4587 * to every other cpu in at most O(log n) steps:
4588 *
4589 * The adjacency matrix of the resulting graph is given by:
4590 *
4591 * log_2 n
4592 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4593 * k = 0
4594 *
4595 * And you'll find that:
4596 *
4597 * A^(log_2 n)_i,j != 0 for all i,j (7)
4598 *
4599 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4600 * The task movement gives a factor of O(m), giving a convergence complexity
4601 * of:
4602 *
4603 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4604 *
4605 *
4606 * WORK CONSERVING
4607 *
4608 * In order to avoid CPUs going idle while there's still work to do, new idle
4609 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4610 * tree itself instead of relying on other CPUs to bring it work.
4611 *
4612 * This adds some complexity to both (5) and (8) but it reduces the total idle
4613 * time.
4614 *
4615 * [XXX more?]
4616 *
4617 *
4618 * CGROUPS
4619 *
4620 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4621 *
4622 * s_k,i
4623 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4624 * S_k
4625 *
4626 * Where
4627 *
4628 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4629 *
4630 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4631 *
4632 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4633 * property.
4634 *
4635 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4636 * rewrite all of this once again.]
4637 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004638
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004639static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4640
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004641enum fbq_type { regular, remote, all };
4642
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004643#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004644#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004645#define LBF_DST_PINNED 0x04
4646#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004647
4648struct lb_env {
4649 struct sched_domain *sd;
4650
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004651 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304652 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004653
4654 int dst_cpu;
4655 struct rq *dst_rq;
4656
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304657 struct cpumask *dst_grpmask;
4658 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004659 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004660 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004661 /* The set of CPUs under consideration for load-balancing */
4662 struct cpumask *cpus;
4663
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004664 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004665
4666 unsigned int loop;
4667 unsigned int loop_break;
4668 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004669
4670 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004671};
4672
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004673/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004674 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004675 * Both runqueues must be locked.
4676 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004677static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004678{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004679 deactivate_task(env->src_rq, p, 0);
4680 set_task_cpu(p, env->dst_cpu);
4681 activate_task(env->dst_rq, p, 0);
4682 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004683#ifdef CONFIG_NUMA_BALANCING
4684 if (p->numa_preferred_nid != -1) {
4685 int src_nid = cpu_to_node(env->src_cpu);
4686 int dst_nid = cpu_to_node(env->dst_cpu);
4687
4688 /*
4689 * If the load balancer has moved the task then limit
4690 * migrations from taking place in the short term in
4691 * case this is a short-lived migration.
4692 */
4693 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4694 p->numa_migrate_seq = 0;
4695 }
4696#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004697}
4698
4699/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004700 * Is this task likely cache-hot:
4701 */
4702static int
4703task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4704{
4705 s64 delta;
4706
4707 if (p->sched_class != &fair_sched_class)
4708 return 0;
4709
4710 if (unlikely(p->policy == SCHED_IDLE))
4711 return 0;
4712
4713 /*
4714 * Buddy candidates are cache hot:
4715 */
4716 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4717 (&p->se == cfs_rq_of(&p->se)->next ||
4718 &p->se == cfs_rq_of(&p->se)->last))
4719 return 1;
4720
4721 if (sysctl_sched_migration_cost == -1)
4722 return 1;
4723 if (sysctl_sched_migration_cost == 0)
4724 return 0;
4725
4726 delta = now - p->se.exec_start;
4727
4728 return delta < (s64)sysctl_sched_migration_cost;
4729}
4730
Mel Gorman3a7053b2013-10-07 11:29:00 +01004731#ifdef CONFIG_NUMA_BALANCING
4732/* Returns true if the destination node has incurred more faults */
4733static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4734{
4735 int src_nid, dst_nid;
4736
4737 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4738 !(env->sd->flags & SD_NUMA)) {
4739 return false;
4740 }
4741
4742 src_nid = cpu_to_node(env->src_cpu);
4743 dst_nid = cpu_to_node(env->dst_cpu);
4744
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004745 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004746 return false;
4747
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004748 /* Always encourage migration to the preferred node. */
4749 if (dst_nid == p->numa_preferred_nid)
4750 return true;
4751
Rik van Riel887c2902013-10-07 11:29:31 +01004752 /* If both task and group weight improve, this move is a winner. */
4753 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4754 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004755 return true;
4756
4757 return false;
4758}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004759
4760
4761static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4762{
4763 int src_nid, dst_nid;
4764
4765 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4766 return false;
4767
4768 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4769 return false;
4770
4771 src_nid = cpu_to_node(env->src_cpu);
4772 dst_nid = cpu_to_node(env->dst_cpu);
4773
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004774 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004775 return false;
4776
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004777 /* Migrating away from the preferred node is always bad. */
4778 if (src_nid == p->numa_preferred_nid)
4779 return true;
4780
Rik van Riel887c2902013-10-07 11:29:31 +01004781 /* If either task or group weight get worse, don't do it. */
4782 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4783 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004784 return true;
4785
4786 return false;
4787}
4788
Mel Gorman3a7053b2013-10-07 11:29:00 +01004789#else
4790static inline bool migrate_improves_locality(struct task_struct *p,
4791 struct lb_env *env)
4792{
4793 return false;
4794}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004795
4796static inline bool migrate_degrades_locality(struct task_struct *p,
4797 struct lb_env *env)
4798{
4799 return false;
4800}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004801#endif
4802
Peter Zijlstra029632f2011-10-25 10:00:11 +02004803/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004804 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4805 */
4806static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004807int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004808{
4809 int tsk_cache_hot = 0;
4810 /*
4811 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004812 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004813 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004814 * 3) running (obviously), or
4815 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004816 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004817 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4818 return 0;
4819
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004820 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004821 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304822
Lucas De Marchi41acab82010-03-10 23:37:45 -03004823 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304824
Peter Zijlstra62633222013-08-19 12:41:09 +02004825 env->flags |= LBF_SOME_PINNED;
4826
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304827 /*
4828 * Remember if this task can be migrated to any other cpu in
4829 * our sched_group. We may want to revisit it if we couldn't
4830 * meet load balance goals by pulling other tasks on src_cpu.
4831 *
4832 * Also avoid computing new_dst_cpu if we have already computed
4833 * one in current iteration.
4834 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004835 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304836 return 0;
4837
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004838 /* Prevent to re-select dst_cpu via env's cpus */
4839 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4840 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004841 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004842 env->new_dst_cpu = cpu;
4843 break;
4844 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304845 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004846
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004847 return 0;
4848 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304849
4850 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004851 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004852
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004853 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004854 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004855 return 0;
4856 }
4857
4858 /*
4859 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004860 * 1) destination numa is preferred
4861 * 2) task is cache cold, or
4862 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004863 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004864 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004865 if (!tsk_cache_hot)
4866 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004867
4868 if (migrate_improves_locality(p, env)) {
4869#ifdef CONFIG_SCHEDSTATS
4870 if (tsk_cache_hot) {
4871 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4872 schedstat_inc(p, se.statistics.nr_forced_migrations);
4873 }
4874#endif
4875 return 1;
4876 }
4877
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004878 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004879 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004880
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004881 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004882 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004883 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004884 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004885
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004886 return 1;
4887 }
4888
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004889 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4890 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004891}
4892
Peter Zijlstra897c3952009-12-17 17:45:42 +01004893/*
4894 * move_one_task tries to move exactly one task from busiest to this_rq, as
4895 * part of active balancing operations within "domain".
4896 * Returns 1 if successful and 0 otherwise.
4897 *
4898 * Called with both runqueues locked.
4899 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004900static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004901{
4902 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004903
Peter Zijlstra367456c2012-02-20 21:49:09 +01004904 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004905 if (!can_migrate_task(p, env))
4906 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004907
Peter Zijlstra367456c2012-02-20 21:49:09 +01004908 move_task(p, env);
4909 /*
4910 * Right now, this is only the second place move_task()
4911 * is called, so we can safely collect move_task()
4912 * stats here rather than inside move_task().
4913 */
4914 schedstat_inc(env->sd, lb_gained[env->idle]);
4915 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004916 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004917 return 0;
4918}
4919
Peter Zijlstraeb953082012-04-17 13:38:40 +02004920static const unsigned int sched_nr_migrate_break = 32;
4921
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004922/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004923 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004924 * this_rq, as part of a balancing operation within domain "sd".
4925 * Returns 1 if successful and 0 otherwise.
4926 *
4927 * Called with both runqueues locked.
4928 */
4929static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004930{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004931 struct list_head *tasks = &env->src_rq->cfs_tasks;
4932 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004933 unsigned long load;
4934 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004935
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004936 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004937 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004938
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004939 while (!list_empty(tasks)) {
4940 p = list_first_entry(tasks, struct task_struct, se.group_node);
4941
Peter Zijlstra367456c2012-02-20 21:49:09 +01004942 env->loop++;
4943 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004944 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004945 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004946
4947 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004948 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004949 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004950 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004951 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004952 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004953
Joonsoo Kimd3198082013-04-23 17:27:40 +09004954 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004955 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004956
Peter Zijlstra367456c2012-02-20 21:49:09 +01004957 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004958
Peter Zijlstraeb953082012-04-17 13:38:40 +02004959 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004960 goto next;
4961
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004962 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004963 goto next;
4964
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004965 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004966 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004967 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004968
4969#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004970 /*
4971 * NEWIDLE balancing is a source of latency, so preemptible
4972 * kernels will stop after the first task is pulled to minimize
4973 * the critical section.
4974 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004975 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004976 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004977#endif
4978
Peter Zijlstraee00e662009-12-17 17:25:20 +01004979 /*
4980 * We only want to steal up to the prescribed amount of
4981 * weighted load.
4982 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004983 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004984 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004985
Peter Zijlstra367456c2012-02-20 21:49:09 +01004986 continue;
4987next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004988 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004989 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004990
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004991 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004992 * Right now, this is one of only two places move_task() is called,
4993 * so we can safely collect move_task() stats here rather than
4994 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004995 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004996 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004997
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004998 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004999}
5000
Peter Zijlstra230059de2009-12-17 17:47:12 +01005001#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005002/*
5003 * update tg->load_weight by folding this cpu's load_avg
5004 */
Paul Turner48a16752012-10-04 13:18:31 +02005005static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005006{
Paul Turner48a16752012-10-04 13:18:31 +02005007 struct sched_entity *se = tg->se[cpu];
5008 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005009
Paul Turner48a16752012-10-04 13:18:31 +02005010 /* throttled entities do not contribute to load */
5011 if (throttled_hierarchy(cfs_rq))
5012 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005013
Paul Turneraff3e492012-10-04 13:18:30 +02005014 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005015
Paul Turner82958362012-10-04 13:18:31 +02005016 if (se) {
5017 update_entity_load_avg(se, 1);
5018 /*
5019 * We pivot on our runnable average having decayed to zero for
5020 * list removal. This generally implies that all our children
5021 * have also been removed (modulo rounding error or bandwidth
5022 * control); however, such cases are rare and we can fix these
5023 * at enqueue.
5024 *
5025 * TODO: fix up out-of-order children on enqueue.
5026 */
5027 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5028 list_del_leaf_cfs_rq(cfs_rq);
5029 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005030 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005031 update_rq_runnable_avg(rq, rq->nr_running);
5032 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005033}
5034
Paul Turner48a16752012-10-04 13:18:31 +02005035static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005036{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005037 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005038 struct cfs_rq *cfs_rq;
5039 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005040
Paul Turner48a16752012-10-04 13:18:31 +02005041 raw_spin_lock_irqsave(&rq->lock, flags);
5042 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005043 /*
5044 * Iterates the task_group tree in a bottom up fashion, see
5045 * list_add_leaf_cfs_rq() for details.
5046 */
Paul Turner64660c82011-07-21 09:43:36 -07005047 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005048 /*
5049 * Note: We may want to consider periodically releasing
5050 * rq->lock about these updates so that creating many task
5051 * groups does not result in continually extending hold time.
5052 */
5053 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005054 }
Paul Turner48a16752012-10-04 13:18:31 +02005055
5056 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005057}
5058
Peter Zijlstra9763b672011-07-13 13:09:25 +02005059/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005060 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005061 * This needs to be done in a top-down fashion because the load of a child
5062 * group is a fraction of its parents load.
5063 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005064static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005065{
Vladimir Davydov68520792013-07-15 17:49:19 +04005066 struct rq *rq = rq_of(cfs_rq);
5067 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005068 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005069 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005070
Vladimir Davydov68520792013-07-15 17:49:19 +04005071 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005072 return;
5073
Vladimir Davydov68520792013-07-15 17:49:19 +04005074 cfs_rq->h_load_next = NULL;
5075 for_each_sched_entity(se) {
5076 cfs_rq = cfs_rq_of(se);
5077 cfs_rq->h_load_next = se;
5078 if (cfs_rq->last_h_load_update == now)
5079 break;
5080 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005081
Vladimir Davydov68520792013-07-15 17:49:19 +04005082 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005083 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005084 cfs_rq->last_h_load_update = now;
5085 }
5086
5087 while ((se = cfs_rq->h_load_next) != NULL) {
5088 load = cfs_rq->h_load;
5089 load = div64_ul(load * se->avg.load_avg_contrib,
5090 cfs_rq->runnable_load_avg + 1);
5091 cfs_rq = group_cfs_rq(se);
5092 cfs_rq->h_load = load;
5093 cfs_rq->last_h_load_update = now;
5094 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005095}
5096
Peter Zijlstra367456c2012-02-20 21:49:09 +01005097static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005098{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005099 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005100
Vladimir Davydov68520792013-07-15 17:49:19 +04005101 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005102 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5103 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005104}
5105#else
Paul Turner48a16752012-10-04 13:18:31 +02005106static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005107{
5108}
5109
Peter Zijlstra367456c2012-02-20 21:49:09 +01005110static unsigned long task_h_load(struct task_struct *p)
5111{
Alex Shia003a252013-06-20 10:18:51 +08005112 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005113}
5114#endif
5115
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005116/********** Helpers for find_busiest_group ************************/
5117/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005118 * sg_lb_stats - stats of a sched_group required for load_balancing
5119 */
5120struct sg_lb_stats {
5121 unsigned long avg_load; /*Avg load across the CPUs of the group */
5122 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005123 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005124 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005125 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005126 unsigned int sum_nr_running; /* Nr tasks running in the group */
5127 unsigned int group_capacity;
5128 unsigned int idle_cpus;
5129 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005130 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005131 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005132#ifdef CONFIG_NUMA_BALANCING
5133 unsigned int nr_numa_running;
5134 unsigned int nr_preferred_running;
5135#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005136};
5137
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005138/*
5139 * sd_lb_stats - Structure to store the statistics of a sched_domain
5140 * during load balancing.
5141 */
5142struct sd_lb_stats {
5143 struct sched_group *busiest; /* Busiest group in this sd */
5144 struct sched_group *local; /* Local group in this sd */
5145 unsigned long total_load; /* Total load of all groups in sd */
5146 unsigned long total_pwr; /* Total power of all groups in sd */
5147 unsigned long avg_load; /* Average load across all groups in sd */
5148
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005149 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005150 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005151};
5152
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005153static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5154{
5155 /*
5156 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5157 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5158 * We must however clear busiest_stat::avg_load because
5159 * update_sd_pick_busiest() reads this before assignment.
5160 */
5161 *sds = (struct sd_lb_stats){
5162 .busiest = NULL,
5163 .local = NULL,
5164 .total_load = 0UL,
5165 .total_pwr = 0UL,
5166 .busiest_stat = {
5167 .avg_load = 0UL,
5168 },
5169 };
5170}
5171
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005172/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005173 * get_sd_load_idx - Obtain the load index for a given sched domain.
5174 * @sd: The sched_domain whose load_idx is to be obtained.
5175 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005176 *
5177 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005178 */
5179static inline int get_sd_load_idx(struct sched_domain *sd,
5180 enum cpu_idle_type idle)
5181{
5182 int load_idx;
5183
5184 switch (idle) {
5185 case CPU_NOT_IDLE:
5186 load_idx = sd->busy_idx;
5187 break;
5188
5189 case CPU_NEWLY_IDLE:
5190 load_idx = sd->newidle_idx;
5191 break;
5192 default:
5193 load_idx = sd->idle_idx;
5194 break;
5195 }
5196
5197 return load_idx;
5198}
5199
Li Zefan15f803c2013-03-05 16:07:11 +08005200static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005201{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005202 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005203}
5204
5205unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5206{
5207 return default_scale_freq_power(sd, cpu);
5208}
5209
Li Zefan15f803c2013-03-05 16:07:11 +08005210static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005211{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005212 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005213 unsigned long smt_gain = sd->smt_gain;
5214
5215 smt_gain /= weight;
5216
5217 return smt_gain;
5218}
5219
5220unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5221{
5222 return default_scale_smt_power(sd, cpu);
5223}
5224
Li Zefan15f803c2013-03-05 16:07:11 +08005225static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005226{
5227 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005228 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005229
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005230 /*
5231 * Since we're reading these variables without serialization make sure
5232 * we read them once before doing sanity checks on them.
5233 */
5234 age_stamp = ACCESS_ONCE(rq->age_stamp);
5235 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005236
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005237 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005238
5239 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005240 /* Ensures that power won't end up being negative */
5241 available = 0;
5242 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005243 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005244 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005245
Nikhil Rao1399fa72011-05-18 10:09:39 -07005246 if (unlikely((s64)total < SCHED_POWER_SCALE))
5247 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005248
Nikhil Rao1399fa72011-05-18 10:09:39 -07005249 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005250
5251 return div_u64(available, total);
5252}
5253
5254static void update_cpu_power(struct sched_domain *sd, int cpu)
5255{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005256 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005257 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005258 struct sched_group *sdg = sd->groups;
5259
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005260 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5261 if (sched_feat(ARCH_POWER))
5262 power *= arch_scale_smt_power(sd, cpu);
5263 else
5264 power *= default_scale_smt_power(sd, cpu);
5265
Nikhil Rao1399fa72011-05-18 10:09:39 -07005266 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005267 }
5268
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005269 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005270
5271 if (sched_feat(ARCH_POWER))
5272 power *= arch_scale_freq_power(sd, cpu);
5273 else
5274 power *= default_scale_freq_power(sd, cpu);
5275
Nikhil Rao1399fa72011-05-18 10:09:39 -07005276 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005277
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005278 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005279 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280
5281 if (!power)
5282 power = 1;
5283
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005284 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005285 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005286}
5287
Peter Zijlstra029632f2011-10-25 10:00:11 +02005288void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005289{
5290 struct sched_domain *child = sd->child;
5291 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005292 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005293 unsigned long interval;
5294
5295 interval = msecs_to_jiffies(sd->balance_interval);
5296 interval = clamp(interval, 1UL, max_load_balance_interval);
5297 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005298
5299 if (!child) {
5300 update_cpu_power(sd, cpu);
5301 return;
5302 }
5303
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005304 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005305
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005306 if (child->flags & SD_OVERLAP) {
5307 /*
5308 * SD_OVERLAP domains cannot assume that child groups
5309 * span the current group.
5310 */
5311
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005312 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5313 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5314
5315 power_orig += sg->sgp->power_orig;
5316 power += sg->sgp->power;
5317 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005318 } else {
5319 /*
5320 * !SD_OVERLAP domains can assume that child groups
5321 * span the current group.
5322 */
5323
5324 group = child->groups;
5325 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005326 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005327 power += group->sgp->power;
5328 group = group->next;
5329 } while (group != child->groups);
5330 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005331
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005332 sdg->sgp->power_orig = power_orig;
5333 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005334}
5335
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005336/*
5337 * Try and fix up capacity for tiny siblings, this is needed when
5338 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5339 * which on its own isn't powerful enough.
5340 *
5341 * See update_sd_pick_busiest() and check_asym_packing().
5342 */
5343static inline int
5344fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5345{
5346 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005347 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005348 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005349 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005350 return 0;
5351
5352 /*
5353 * If ~90% of the cpu_power is still there, we're good.
5354 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005355 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005356 return 1;
5357
5358 return 0;
5359}
5360
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005361/*
5362 * Group imbalance indicates (and tries to solve) the problem where balancing
5363 * groups is inadequate due to tsk_cpus_allowed() constraints.
5364 *
5365 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5366 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5367 * Something like:
5368 *
5369 * { 0 1 2 3 } { 4 5 6 7 }
5370 * * * * *
5371 *
5372 * If we were to balance group-wise we'd place two tasks in the first group and
5373 * two tasks in the second group. Clearly this is undesired as it will overload
5374 * cpu 3 and leave one of the cpus in the second group unused.
5375 *
5376 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005377 * by noticing the lower domain failed to reach balance and had difficulty
5378 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005379 *
5380 * When this is so detected; this group becomes a candidate for busiest; see
5381 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005382 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005383 * to create an effective group imbalance.
5384 *
5385 * This is a somewhat tricky proposition since the next run might not find the
5386 * group imbalance and decide the groups need to be balanced again. A most
5387 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005388 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005389
Peter Zijlstra62633222013-08-19 12:41:09 +02005390static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005391{
Peter Zijlstra62633222013-08-19 12:41:09 +02005392 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005393}
5394
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005395/*
5396 * Compute the group capacity.
5397 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005398 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5399 * first dividing out the smt factor and computing the actual number of cores
5400 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005401 */
5402static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5403{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005404 unsigned int capacity, smt, cpus;
5405 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005406
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005407 power = group->sgp->power;
5408 power_orig = group->sgp->power_orig;
5409 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005410
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005411 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5412 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5413 capacity = cpus / smt; /* cores */
5414
5415 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005416 if (!capacity)
5417 capacity = fix_small_capacity(env->sd, group);
5418
5419 return capacity;
5420}
5421
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005422/**
5423 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5424 * @env: The load balancing environment.
5425 * @group: sched_group whose statistics are to be updated.
5426 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5427 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005428 * @sgs: variable to hold the statistics for this group.
5429 */
5430static inline void update_sg_lb_stats(struct lb_env *env,
5431 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005432 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005433{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005434 unsigned long nr_running;
5435 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005436 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005437
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005438 memset(sgs, 0, sizeof(*sgs));
5439
Michael Wangb9403132012-07-12 16:10:13 +08005440 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005441 struct rq *rq = cpu_rq(i);
5442
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005443 nr_running = rq->nr_running;
5444
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005445 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005446 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005447 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005448 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005449 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005450
5451 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005452 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005453#ifdef CONFIG_NUMA_BALANCING
5454 sgs->nr_numa_running += rq->nr_numa_running;
5455 sgs->nr_preferred_running += rq->nr_preferred_running;
5456#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005457 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005458 if (idle_cpu(i))
5459 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005460 }
5461
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005462 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005463 sgs->group_power = group->sgp->power;
5464 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005465
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005466 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005467 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005468
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005469 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005470
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005471 sgs->group_imb = sg_imbalanced(group);
5472 sgs->group_capacity = sg_capacity(env, group);
5473
Nikhil Raofab47622010-10-15 13:12:29 -07005474 if (sgs->group_capacity > sgs->sum_nr_running)
5475 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005476}
5477
5478/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005479 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005480 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005481 * @sds: sched_domain statistics
5482 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005483 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005484 *
5485 * Determine if @sg is a busier group than the previously selected
5486 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005487 *
5488 * Return: %true if @sg is a busier group than the previously selected
5489 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005490 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005491static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005492 struct sd_lb_stats *sds,
5493 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005494 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005495{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005496 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005497 return false;
5498
5499 if (sgs->sum_nr_running > sgs->group_capacity)
5500 return true;
5501
5502 if (sgs->group_imb)
5503 return true;
5504
5505 /*
5506 * ASYM_PACKING needs to move all the work to the lowest
5507 * numbered CPUs in the group, therefore mark all groups
5508 * higher than ourself as busy.
5509 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005510 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5511 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005512 if (!sds->busiest)
5513 return true;
5514
5515 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5516 return true;
5517 }
5518
5519 return false;
5520}
5521
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005522#ifdef CONFIG_NUMA_BALANCING
5523static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5524{
5525 if (sgs->sum_nr_running > sgs->nr_numa_running)
5526 return regular;
5527 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5528 return remote;
5529 return all;
5530}
5531
5532static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5533{
5534 if (rq->nr_running > rq->nr_numa_running)
5535 return regular;
5536 if (rq->nr_running > rq->nr_preferred_running)
5537 return remote;
5538 return all;
5539}
5540#else
5541static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5542{
5543 return all;
5544}
5545
5546static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5547{
5548 return regular;
5549}
5550#endif /* CONFIG_NUMA_BALANCING */
5551
Michael Neuling532cb4c2010-06-08 14:57:02 +10005552/**
Hui Kang461819a2011-10-11 23:00:59 -04005553 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005554 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005555 * @balance: Should we balance.
5556 * @sds: variable to hold the statistics for this sched_domain.
5557 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005558static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005559{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005560 struct sched_domain *child = env->sd->child;
5561 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005562 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005563 int load_idx, prefer_sibling = 0;
5564
5565 if (child && child->flags & SD_PREFER_SIBLING)
5566 prefer_sibling = 1;
5567
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005568 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005569
5570 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005571 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005572 int local_group;
5573
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005574 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005575 if (local_group) {
5576 sds->local = sg;
5577 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005578
5579 if (env->idle != CPU_NEWLY_IDLE ||
5580 time_after_eq(jiffies, sg->sgp->next_update))
5581 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005582 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005583
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005584 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005585
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005586 if (local_group)
5587 goto next_group;
5588
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005589 /*
5590 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005591 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005592 * and move all the excess tasks away. We lower the capacity
5593 * of a group only if the local group has the capacity to fit
5594 * these excess tasks, i.e. nr_running < group_capacity. The
5595 * extra check prevents the case where you always pull from the
5596 * heaviest group when it is already under-utilized (possible
5597 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005598 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005599 if (prefer_sibling && sds->local &&
5600 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005601 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005602
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005603 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005604 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005605 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005606 }
5607
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005608next_group:
5609 /* Now, start updating sd_lb_stats */
5610 sds->total_load += sgs->group_load;
5611 sds->total_pwr += sgs->group_power;
5612
Michael Neuling532cb4c2010-06-08 14:57:02 +10005613 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005614 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005615
5616 if (env->sd->flags & SD_NUMA)
5617 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005618}
5619
Michael Neuling532cb4c2010-06-08 14:57:02 +10005620/**
5621 * check_asym_packing - Check to see if the group is packed into the
5622 * sched doman.
5623 *
5624 * This is primarily intended to used at the sibling level. Some
5625 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5626 * case of POWER7, it can move to lower SMT modes only when higher
5627 * threads are idle. When in lower SMT modes, the threads will
5628 * perform better since they share less core resources. Hence when we
5629 * have idle threads, we want them to be the higher ones.
5630 *
5631 * This packing function is run on idle threads. It checks to see if
5632 * the busiest CPU in this domain (core in the P7 case) has a higher
5633 * CPU number than the packing function is being run on. Here we are
5634 * assuming lower CPU number will be equivalent to lower a SMT thread
5635 * number.
5636 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005637 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005638 * this CPU. The amount of the imbalance is returned in *imbalance.
5639 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005640 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005641 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005642 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005643static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005644{
5645 int busiest_cpu;
5646
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005647 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005648 return 0;
5649
5650 if (!sds->busiest)
5651 return 0;
5652
5653 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005654 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005655 return 0;
5656
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005657 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005658 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5659 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005660
Michael Neuling532cb4c2010-06-08 14:57:02 +10005661 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005662}
5663
5664/**
5665 * fix_small_imbalance - Calculate the minor imbalance that exists
5666 * amongst the groups of a sched_domain, during
5667 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005668 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005669 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005670 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005671static inline
5672void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005673{
5674 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5675 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005676 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005677 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005678
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005679 local = &sds->local_stat;
5680 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005681
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005682 if (!local->sum_nr_running)
5683 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5684 else if (busiest->load_per_task > local->load_per_task)
5685 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005686
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005687 scaled_busy_load_per_task =
5688 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005689 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005690
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005691 if (busiest->avg_load + scaled_busy_load_per_task >=
5692 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005693 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005694 return;
5695 }
5696
5697 /*
5698 * OK, we don't have enough imbalance to justify moving tasks,
5699 * however we may be able to increase total CPU power used by
5700 * moving them.
5701 */
5702
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005703 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005704 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005705 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005706 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005707 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005708
5709 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005710 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005711 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005712 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005713 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005714 min(busiest->load_per_task,
5715 busiest->avg_load - tmp);
5716 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005717
5718 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005719 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005720 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005721 tmp = (busiest->avg_load * busiest->group_power) /
5722 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005723 } else {
5724 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005725 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005726 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005727 pwr_move += local->group_power *
5728 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005729 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005730
5731 /* Move if we gain throughput */
5732 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005733 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005734}
5735
5736/**
5737 * calculate_imbalance - Calculate the amount of imbalance present within the
5738 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005739 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005740 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005741 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005742static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005743{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005744 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005745 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005746
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005747 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005748 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005749
5750 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005751 /*
5752 * In the group_imb case we cannot rely on group-wide averages
5753 * to ensure cpu-load equilibrium, look at wider averages. XXX
5754 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005755 busiest->load_per_task =
5756 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005757 }
5758
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005759 /*
5760 * In the presence of smp nice balancing, certain scenarios can have
5761 * max load less than avg load(as we skip the groups at or below
5762 * its cpu_power, while calculating max_load..)
5763 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005764 if (busiest->avg_load <= sds->avg_load ||
5765 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005766 env->imbalance = 0;
5767 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005768 }
5769
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005770 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005771 /*
5772 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005773 * Except of course for the group_imb case, since then we might
5774 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005775 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005776 load_above_capacity =
5777 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005778
Nikhil Rao1399fa72011-05-18 10:09:39 -07005779 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005780 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005781 }
5782
5783 /*
5784 * We're trying to get all the cpus to the average_load, so we don't
5785 * want to push ourselves above the average load, nor do we wish to
5786 * reduce the max loaded cpu below the average load. At the same time,
5787 * we also don't want to reduce the group load below the group capacity
5788 * (so that we can implement power-savings policies etc). Thus we look
5789 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005790 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005791 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005792
5793 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005794 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005795 max_pull * busiest->group_power,
5796 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005797 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005798
5799 /*
5800 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005801 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005802 * a think about bumping its value to force at least one task to be
5803 * moved
5804 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005805 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005806 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005807}
Nikhil Raofab47622010-10-15 13:12:29 -07005808
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005809/******* find_busiest_group() helpers end here *********************/
5810
5811/**
5812 * find_busiest_group - Returns the busiest group within the sched_domain
5813 * if there is an imbalance. If there isn't an imbalance, and
5814 * the user has opted for power-savings, it returns a group whose
5815 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5816 * such a group exists.
5817 *
5818 * Also calculates the amount of weighted load which should be moved
5819 * to restore balance.
5820 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005821 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005822 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005823 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005824 * - If no imbalance and user has opted for power-savings balance,
5825 * return the least loaded group whose CPUs can be
5826 * put to idle by rebalancing its tasks onto our group.
5827 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005828static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005829{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005830 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005831 struct sd_lb_stats sds;
5832
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005833 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005834
5835 /*
5836 * Compute the various statistics relavent for load balancing at
5837 * this level.
5838 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005839 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005840 local = &sds.local_stat;
5841 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005842
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005843 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5844 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005845 return sds.busiest;
5846
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005847 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005848 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005849 goto out_balanced;
5850
Nikhil Rao1399fa72011-05-18 10:09:39 -07005851 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005852
Peter Zijlstra866ab432011-02-21 18:56:47 +01005853 /*
5854 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005855 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005856 * isn't true due to cpus_allowed constraints and the like.
5857 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005858 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005859 goto force_balance;
5860
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005861 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005862 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5863 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005864 goto force_balance;
5865
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005866 /*
5867 * If the local group is more busy than the selected busiest group
5868 * don't try and pull any tasks.
5869 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005870 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005871 goto out_balanced;
5872
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005873 /*
5874 * Don't pull any tasks if this group is already above the domain
5875 * average load.
5876 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005877 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005878 goto out_balanced;
5879
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005880 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005881 /*
5882 * This cpu is idle. If the busiest group load doesn't
5883 * have more tasks than the number of available cpu's and
5884 * there is no imbalance between this and busiest group
5885 * wrt to idle cpu's, it is balanced.
5886 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005887 if ((local->idle_cpus < busiest->idle_cpus) &&
5888 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005889 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005890 } else {
5891 /*
5892 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5893 * imbalance_pct to be conservative.
5894 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005895 if (100 * busiest->avg_load <=
5896 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005897 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005898 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005899
Nikhil Raofab47622010-10-15 13:12:29 -07005900force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005901 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005902 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005903 return sds.busiest;
5904
5905out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005906 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005907 return NULL;
5908}
5909
5910/*
5911 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5912 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005913static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005914 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005915{
5916 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005917 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005918 int i;
5919
Peter Zijlstra6906a402013-08-19 15:20:21 +02005920 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005921 unsigned long power, capacity, wl;
5922 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005923
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005924 rq = cpu_rq(i);
5925 rt = fbq_classify_rq(rq);
5926
5927 /*
5928 * We classify groups/runqueues into three groups:
5929 * - regular: there are !numa tasks
5930 * - remote: there are numa tasks that run on the 'wrong' node
5931 * - all: there is no distinction
5932 *
5933 * In order to avoid migrating ideally placed numa tasks,
5934 * ignore those when there's better options.
5935 *
5936 * If we ignore the actual busiest queue to migrate another
5937 * task, the next balance pass can still reduce the busiest
5938 * queue by moving tasks around inside the node.
5939 *
5940 * If we cannot move enough load due to this classification
5941 * the next pass will adjust the group classification and
5942 * allow migration of more tasks.
5943 *
5944 * Both cases only affect the total convergence complexity.
5945 */
5946 if (rt > env->fbq_type)
5947 continue;
5948
5949 power = power_of(i);
5950 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005951 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005952 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005953
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005954 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005955
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005956 /*
5957 * When comparing with imbalance, use weighted_cpuload()
5958 * which is not scaled with the cpu power.
5959 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005960 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005961 continue;
5962
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005963 /*
5964 * For the load comparisons with the other cpu's, consider
5965 * the weighted_cpuload() scaled with the cpu power, so that
5966 * the load can be moved away from the cpu that is potentially
5967 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005968 *
5969 * Thus we're looking for max(wl_i / power_i), crosswise
5970 * multiplication to rid ourselves of the division works out
5971 * to: wl_i * power_j > wl_j * power_i; where j is our
5972 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005973 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005974 if (wl * busiest_power > busiest_load * power) {
5975 busiest_load = wl;
5976 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005977 busiest = rq;
5978 }
5979 }
5980
5981 return busiest;
5982}
5983
5984/*
5985 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5986 * so long as it is large enough.
5987 */
5988#define MAX_PINNED_INTERVAL 512
5989
5990/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005991DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005992
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005993static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005994{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005995 struct sched_domain *sd = env->sd;
5996
5997 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005998
5999 /*
6000 * ASYM_PACKING needs to force migrate tasks from busy but
6001 * higher numbered CPUs in order to pack all tasks in the
6002 * lowest numbered CPUs.
6003 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006004 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006005 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006006 }
6007
6008 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6009}
6010
Tejun Heo969c7922010-05-06 18:49:21 +02006011static int active_load_balance_cpu_stop(void *data);
6012
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006013static int should_we_balance(struct lb_env *env)
6014{
6015 struct sched_group *sg = env->sd->groups;
6016 struct cpumask *sg_cpus, *sg_mask;
6017 int cpu, balance_cpu = -1;
6018
6019 /*
6020 * In the newly idle case, we will allow all the cpu's
6021 * to do the newly idle load balance.
6022 */
6023 if (env->idle == CPU_NEWLY_IDLE)
6024 return 1;
6025
6026 sg_cpus = sched_group_cpus(sg);
6027 sg_mask = sched_group_mask(sg);
6028 /* Try to find first idle cpu */
6029 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6030 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6031 continue;
6032
6033 balance_cpu = cpu;
6034 break;
6035 }
6036
6037 if (balance_cpu == -1)
6038 balance_cpu = group_balance_cpu(sg);
6039
6040 /*
6041 * First idle cpu or the first cpu(busiest) in this sched group
6042 * is eligible for doing load balancing at this and above domains.
6043 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006044 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006045}
6046
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006047/*
6048 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6049 * tasks if there is an imbalance.
6050 */
6051static int load_balance(int this_cpu, struct rq *this_rq,
6052 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006053 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006054{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306055 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006056 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006057 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006058 struct rq *busiest;
6059 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006060 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006061
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006062 struct lb_env env = {
6063 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006064 .dst_cpu = this_cpu,
6065 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306066 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006067 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006068 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08006069 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006070 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006071 };
6072
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006073 /*
6074 * For NEWLY_IDLE load_balancing, we don't need to consider
6075 * other cpus in our group
6076 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006077 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006078 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006079
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006080 cpumask_copy(cpus, cpu_active_mask);
6081
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006082 schedstat_inc(sd, lb_count[idle]);
6083
6084redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006085 if (!should_we_balance(&env)) {
6086 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006087 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006088 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006089
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006090 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006091 if (!group) {
6092 schedstat_inc(sd, lb_nobusyg[idle]);
6093 goto out_balanced;
6094 }
6095
Michael Wangb9403132012-07-12 16:10:13 +08006096 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006097 if (!busiest) {
6098 schedstat_inc(sd, lb_nobusyq[idle]);
6099 goto out_balanced;
6100 }
6101
Michael Wang78feefc2012-08-06 16:41:59 +08006102 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006103
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006104 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006105
6106 ld_moved = 0;
6107 if (busiest->nr_running > 1) {
6108 /*
6109 * Attempt to move tasks. If find_busiest_group has found
6110 * an imbalance but busiest->nr_running <= 1, the group is
6111 * still unbalanced. ld_moved simply stays zero, so it is
6112 * correctly treated as an imbalance.
6113 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006114 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006115 env.src_cpu = busiest->cpu;
6116 env.src_rq = busiest;
6117 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006118
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006119more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006120 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006121 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306122
6123 /*
6124 * cur_ld_moved - load moved in current iteration
6125 * ld_moved - cumulative load moved across iterations
6126 */
6127 cur_ld_moved = move_tasks(&env);
6128 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006129 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006130 local_irq_restore(flags);
6131
6132 /*
6133 * some other cpu did the load balance for us.
6134 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306135 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6136 resched_cpu(env.dst_cpu);
6137
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006138 if (env.flags & LBF_NEED_BREAK) {
6139 env.flags &= ~LBF_NEED_BREAK;
6140 goto more_balance;
6141 }
6142
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306143 /*
6144 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6145 * us and move them to an alternate dst_cpu in our sched_group
6146 * where they can run. The upper limit on how many times we
6147 * iterate on same src_cpu is dependent on number of cpus in our
6148 * sched_group.
6149 *
6150 * This changes load balance semantics a bit on who can move
6151 * load to a given_cpu. In addition to the given_cpu itself
6152 * (or a ilb_cpu acting on its behalf where given_cpu is
6153 * nohz-idle), we now have balance_cpu in a position to move
6154 * load to given_cpu. In rare situations, this may cause
6155 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6156 * _independently_ and at _same_ time to move some load to
6157 * given_cpu) causing exceess load to be moved to given_cpu.
6158 * This however should not happen so much in practice and
6159 * moreover subsequent load balance cycles should correct the
6160 * excess load moved.
6161 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006162 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306163
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006164 /* Prevent to re-select dst_cpu via env's cpus */
6165 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6166
Michael Wang78feefc2012-08-06 16:41:59 +08006167 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306168 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006169 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306170 env.loop = 0;
6171 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006172
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306173 /*
6174 * Go back to "more_balance" rather than "redo" since we
6175 * need to continue with same src_cpu.
6176 */
6177 goto more_balance;
6178 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006179
Peter Zijlstra62633222013-08-19 12:41:09 +02006180 /*
6181 * We failed to reach balance because of affinity.
6182 */
6183 if (sd_parent) {
6184 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6185
6186 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6187 *group_imbalance = 1;
6188 } else if (*group_imbalance)
6189 *group_imbalance = 0;
6190 }
6191
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006192 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006193 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006194 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306195 if (!cpumask_empty(cpus)) {
6196 env.loop = 0;
6197 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006198 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306199 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006200 goto out_balanced;
6201 }
6202 }
6203
6204 if (!ld_moved) {
6205 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006206 /*
6207 * Increment the failure counter only on periodic balance.
6208 * We do not want newidle balance, which can be very
6209 * frequent, pollute the failure counter causing
6210 * excessive cache_hot migrations and active balances.
6211 */
6212 if (idle != CPU_NEWLY_IDLE)
6213 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006214
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006215 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006216 raw_spin_lock_irqsave(&busiest->lock, flags);
6217
Tejun Heo969c7922010-05-06 18:49:21 +02006218 /* don't kick the active_load_balance_cpu_stop,
6219 * if the curr task on busiest cpu can't be
6220 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006221 */
6222 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006223 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006224 raw_spin_unlock_irqrestore(&busiest->lock,
6225 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006226 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006227 goto out_one_pinned;
6228 }
6229
Tejun Heo969c7922010-05-06 18:49:21 +02006230 /*
6231 * ->active_balance synchronizes accesses to
6232 * ->active_balance_work. Once set, it's cleared
6233 * only after active load balance is finished.
6234 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006235 if (!busiest->active_balance) {
6236 busiest->active_balance = 1;
6237 busiest->push_cpu = this_cpu;
6238 active_balance = 1;
6239 }
6240 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006241
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006242 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006243 stop_one_cpu_nowait(cpu_of(busiest),
6244 active_load_balance_cpu_stop, busiest,
6245 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006246 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006247
6248 /*
6249 * We've kicked active balancing, reset the failure
6250 * counter.
6251 */
6252 sd->nr_balance_failed = sd->cache_nice_tries+1;
6253 }
6254 } else
6255 sd->nr_balance_failed = 0;
6256
6257 if (likely(!active_balance)) {
6258 /* We were unbalanced, so reset the balancing interval */
6259 sd->balance_interval = sd->min_interval;
6260 } else {
6261 /*
6262 * If we've begun active balancing, start to back off. This
6263 * case may not be covered by the all_pinned logic if there
6264 * is only 1 task on the busy runqueue (because we don't call
6265 * move_tasks).
6266 */
6267 if (sd->balance_interval < sd->max_interval)
6268 sd->balance_interval *= 2;
6269 }
6270
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006271 goto out;
6272
6273out_balanced:
6274 schedstat_inc(sd, lb_balanced[idle]);
6275
6276 sd->nr_balance_failed = 0;
6277
6278out_one_pinned:
6279 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006280 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006281 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006282 (sd->balance_interval < sd->max_interval))
6283 sd->balance_interval *= 2;
6284
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006285 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006286out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006287 return ld_moved;
6288}
6289
6290/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006291 * idle_balance is called by schedule() if this_cpu is about to become
6292 * idle. Attempts to pull tasks from other CPUs.
6293 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006294void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006295{
6296 struct sched_domain *sd;
6297 int pulled_task = 0;
6298 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006299 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006300
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006301 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006302
6303 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6304 return;
6305
Peter Zijlstraf492e122009-12-23 15:29:42 +01006306 /*
6307 * Drop the rq->lock, but keep IRQ/preempt disabled.
6308 */
6309 raw_spin_unlock(&this_rq->lock);
6310
Paul Turner48a16752012-10-04 13:18:31 +02006311 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006312 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006313 for_each_domain(this_cpu, sd) {
6314 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006315 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006316 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006317
6318 if (!(sd->flags & SD_LOAD_BALANCE))
6319 continue;
6320
Jason Low9bd721c2013-09-13 11:26:52 -07006321 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6322 break;
6323
Peter Zijlstraf492e122009-12-23 15:29:42 +01006324 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006325 t0 = sched_clock_cpu(this_cpu);
6326
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006327 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006328 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006329 sd, CPU_NEWLY_IDLE,
6330 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006331
6332 domain_cost = sched_clock_cpu(this_cpu) - t0;
6333 if (domain_cost > sd->max_newidle_lb_cost)
6334 sd->max_newidle_lb_cost = domain_cost;
6335
6336 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006337 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006338
6339 interval = msecs_to_jiffies(sd->balance_interval);
6340 if (time_after(next_balance, sd->last_balance + interval))
6341 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006342 if (pulled_task) {
6343 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006344 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006345 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006346 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006347 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006348
6349 raw_spin_lock(&this_rq->lock);
6350
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006351 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6352 /*
6353 * We are going idle. next_balance may be set based on
6354 * a busy processor. So reset next_balance.
6355 */
6356 this_rq->next_balance = next_balance;
6357 }
Jason Low9bd721c2013-09-13 11:26:52 -07006358
6359 if (curr_cost > this_rq->max_idle_balance_cost)
6360 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006361}
6362
6363/*
Tejun Heo969c7922010-05-06 18:49:21 +02006364 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6365 * running tasks off the busiest CPU onto idle CPUs. It requires at
6366 * least 1 task to be running on each physical CPU where possible, and
6367 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006368 */
Tejun Heo969c7922010-05-06 18:49:21 +02006369static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006370{
Tejun Heo969c7922010-05-06 18:49:21 +02006371 struct rq *busiest_rq = data;
6372 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006373 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006374 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006375 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006376
6377 raw_spin_lock_irq(&busiest_rq->lock);
6378
6379 /* make sure the requested cpu hasn't gone down in the meantime */
6380 if (unlikely(busiest_cpu != smp_processor_id() ||
6381 !busiest_rq->active_balance))
6382 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006383
6384 /* Is there any task to move? */
6385 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006386 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006387
6388 /*
6389 * This condition is "impossible", if it occurs
6390 * we need to fix it. Originally reported by
6391 * Bjorn Helgaas on a 128-cpu setup.
6392 */
6393 BUG_ON(busiest_rq == target_rq);
6394
6395 /* move a task from busiest_rq to target_rq */
6396 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006397
6398 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006399 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006400 for_each_domain(target_cpu, sd) {
6401 if ((sd->flags & SD_LOAD_BALANCE) &&
6402 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6403 break;
6404 }
6405
6406 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006407 struct lb_env env = {
6408 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006409 .dst_cpu = target_cpu,
6410 .dst_rq = target_rq,
6411 .src_cpu = busiest_rq->cpu,
6412 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006413 .idle = CPU_IDLE,
6414 };
6415
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006416 schedstat_inc(sd, alb_count);
6417
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006418 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006419 schedstat_inc(sd, alb_pushed);
6420 else
6421 schedstat_inc(sd, alb_failed);
6422 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006423 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006424 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006425out_unlock:
6426 busiest_rq->active_balance = 0;
6427 raw_spin_unlock_irq(&busiest_rq->lock);
6428 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006429}
6430
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006431#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006432/*
6433 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006434 * - When one of the busy CPUs notice that there may be an idle rebalancing
6435 * needed, they will kick the idle load balancer, which then does idle
6436 * load balancing for all the idle CPUs.
6437 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006438static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006439 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006440 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006441 unsigned long next_balance; /* in jiffy units */
6442} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006443
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006444static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006445{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006446 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006447
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006448 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6449 return ilb;
6450
6451 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006452}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006453
6454/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006455 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6456 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6457 * CPU (if there is one).
6458 */
6459static void nohz_balancer_kick(int cpu)
6460{
6461 int ilb_cpu;
6462
6463 nohz.next_balance++;
6464
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006465 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006466
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006467 if (ilb_cpu >= nr_cpu_ids)
6468 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006469
Suresh Siddhacd490c52011-12-06 11:26:34 -08006470 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006471 return;
6472 /*
6473 * Use smp_send_reschedule() instead of resched_cpu().
6474 * This way we generate a sched IPI on the target cpu which
6475 * is idle. And the softirq performing nohz idle load balance
6476 * will be run before returning from the IPI.
6477 */
6478 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006479 return;
6480}
6481
Alex Shic1cc0172012-09-10 15:10:58 +08006482static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006483{
6484 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6485 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6486 atomic_dec(&nohz.nr_cpus);
6487 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6488 }
6489}
6490
Suresh Siddha69e1e812011-12-01 17:07:33 -08006491static inline void set_cpu_sd_state_busy(void)
6492{
6493 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006494
Suresh Siddha69e1e812011-12-01 17:07:33 -08006495 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006496 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006497
6498 if (!sd || !sd->nohz_idle)
6499 goto unlock;
6500 sd->nohz_idle = 0;
6501
6502 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006503 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006504unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006505 rcu_read_unlock();
6506}
6507
6508void set_cpu_sd_state_idle(void)
6509{
6510 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006511
Suresh Siddha69e1e812011-12-01 17:07:33 -08006512 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006513 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006514
6515 if (!sd || sd->nohz_idle)
6516 goto unlock;
6517 sd->nohz_idle = 1;
6518
6519 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006520 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006521unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006522 rcu_read_unlock();
6523}
6524
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006525/*
Alex Shic1cc0172012-09-10 15:10:58 +08006526 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006527 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006528 */
Alex Shic1cc0172012-09-10 15:10:58 +08006529void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006530{
Suresh Siddha71325962012-01-19 18:28:57 -08006531 /*
6532 * If this cpu is going down, then nothing needs to be done.
6533 */
6534 if (!cpu_active(cpu))
6535 return;
6536
Alex Shic1cc0172012-09-10 15:10:58 +08006537 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6538 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006539
Alex Shic1cc0172012-09-10 15:10:58 +08006540 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6541 atomic_inc(&nohz.nr_cpus);
6542 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006543}
Suresh Siddha71325962012-01-19 18:28:57 -08006544
Paul Gortmaker0db06282013-06-19 14:53:51 -04006545static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006546 unsigned long action, void *hcpu)
6547{
6548 switch (action & ~CPU_TASKS_FROZEN) {
6549 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006550 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006551 return NOTIFY_OK;
6552 default:
6553 return NOTIFY_DONE;
6554 }
6555}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006556#endif
6557
6558static DEFINE_SPINLOCK(balancing);
6559
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006560/*
6561 * Scale the max load_balance interval with the number of CPUs in the system.
6562 * This trades load-balance latency on larger machines for less cross talk.
6563 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006564void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006565{
6566 max_load_balance_interval = HZ*num_online_cpus()/10;
6567}
6568
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006569/*
6570 * It checks each scheduling domain to see if it is due to be balanced,
6571 * and initiates a balancing operation if so.
6572 *
Libinb9b08532013-04-01 19:14:01 +08006573 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006574 */
6575static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6576{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006577 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006578 struct rq *rq = cpu_rq(cpu);
6579 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006580 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006581 /* Earliest time when we have to do rebalance again */
6582 unsigned long next_balance = jiffies + 60*HZ;
6583 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006584 int need_serialize, need_decay = 0;
6585 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006586
Paul Turner48a16752012-10-04 13:18:31 +02006587 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006588
Peter Zijlstradce840a2011-04-07 14:09:50 +02006589 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006590 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006591 /*
6592 * Decay the newidle max times here because this is a regular
6593 * visit to all the domains. Decay ~1% per second.
6594 */
6595 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6596 sd->max_newidle_lb_cost =
6597 (sd->max_newidle_lb_cost * 253) / 256;
6598 sd->next_decay_max_lb_cost = jiffies + HZ;
6599 need_decay = 1;
6600 }
6601 max_cost += sd->max_newidle_lb_cost;
6602
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006603 if (!(sd->flags & SD_LOAD_BALANCE))
6604 continue;
6605
Jason Lowf48627e2013-09-13 11:26:53 -07006606 /*
6607 * Stop the load balance at this level. There is another
6608 * CPU in our sched group which is doing load balancing more
6609 * actively.
6610 */
6611 if (!continue_balancing) {
6612 if (need_decay)
6613 continue;
6614 break;
6615 }
6616
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006617 interval = sd->balance_interval;
6618 if (idle != CPU_IDLE)
6619 interval *= sd->busy_factor;
6620
6621 /* scale ms to jiffies */
6622 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006623 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006624
6625 need_serialize = sd->flags & SD_SERIALIZE;
6626
6627 if (need_serialize) {
6628 if (!spin_trylock(&balancing))
6629 goto out;
6630 }
6631
6632 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006633 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006634 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006635 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006636 * env->dst_cpu, so we can't know our idle
6637 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006638 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006639 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006640 }
6641 sd->last_balance = jiffies;
6642 }
6643 if (need_serialize)
6644 spin_unlock(&balancing);
6645out:
6646 if (time_after(next_balance, sd->last_balance + interval)) {
6647 next_balance = sd->last_balance + interval;
6648 update_next_balance = 1;
6649 }
Jason Lowf48627e2013-09-13 11:26:53 -07006650 }
6651 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006652 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006653 * Ensure the rq-wide value also decays but keep it at a
6654 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006655 */
Jason Lowf48627e2013-09-13 11:26:53 -07006656 rq->max_idle_balance_cost =
6657 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006658 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006659 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006660
6661 /*
6662 * next_balance will be updated only when there is a need.
6663 * When the cpu is attached to null domain for ex, it will not be
6664 * updated.
6665 */
6666 if (likely(update_next_balance))
6667 rq->next_balance = next_balance;
6668}
6669
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006670#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006671/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006672 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006673 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6674 */
6675static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6676{
6677 struct rq *this_rq = cpu_rq(this_cpu);
6678 struct rq *rq;
6679 int balance_cpu;
6680
Suresh Siddha1c792db2011-12-01 17:07:32 -08006681 if (idle != CPU_IDLE ||
6682 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6683 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006684
6685 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006686 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006687 continue;
6688
6689 /*
6690 * If this cpu gets work to do, stop the load balancing
6691 * work being done for other cpus. Next load
6692 * balancing owner will pick it up.
6693 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006694 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006695 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006696
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006697 rq = cpu_rq(balance_cpu);
6698
6699 raw_spin_lock_irq(&rq->lock);
6700 update_rq_clock(rq);
6701 update_idle_cpu_load(rq);
6702 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006703
6704 rebalance_domains(balance_cpu, CPU_IDLE);
6705
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006706 if (time_after(this_rq->next_balance, rq->next_balance))
6707 this_rq->next_balance = rq->next_balance;
6708 }
6709 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006710end:
6711 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006712}
6713
6714/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006715 * Current heuristic for kicking the idle load balancer in the presence
6716 * of an idle cpu is the system.
6717 * - This rq has more than one task.
6718 * - At any scheduler domain level, this cpu's scheduler group has multiple
6719 * busy cpu's exceeding the group's power.
6720 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6721 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006722 */
6723static inline int nohz_kick_needed(struct rq *rq, int cpu)
6724{
6725 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006726 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006727
Suresh Siddha1c792db2011-12-01 17:07:32 -08006728 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006729 return 0;
6730
Suresh Siddha1c792db2011-12-01 17:07:32 -08006731 /*
6732 * We may be recently in ticked or tickless idle mode. At the first
6733 * busy tick after returning from idle, we will update the busy stats.
6734 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006735 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006736 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006737
6738 /*
6739 * None are in tickless mode and hence no need for NOHZ idle load
6740 * balancing.
6741 */
6742 if (likely(!atomic_read(&nohz.nr_cpus)))
6743 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006744
6745 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006746 return 0;
6747
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006748 if (rq->nr_running >= 2)
6749 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006750
Peter Zijlstra067491b2011-12-07 14:32:08 +01006751 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006752 for_each_domain(cpu, sd) {
6753 struct sched_group *sg = sd->groups;
6754 struct sched_group_power *sgp = sg->sgp;
6755 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006756
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006757 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006758 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006759
6760 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6761 && (cpumask_first_and(nohz.idle_cpus_mask,
6762 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006763 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006764
6765 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6766 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006767 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006768 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006769 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006770
6771need_kick_unlock:
6772 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006773need_kick:
6774 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006775}
6776#else
6777static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6778#endif
6779
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006780/*
6781 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006782 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006783 */
6784static void run_rebalance_domains(struct softirq_action *h)
6785{
6786 int this_cpu = smp_processor_id();
6787 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006788 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006789 CPU_IDLE : CPU_NOT_IDLE;
6790
6791 rebalance_domains(this_cpu, idle);
6792
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006793 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006794 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006795 * balancing on behalf of the other idle cpus whose ticks are
6796 * stopped.
6797 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006798 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006799}
6800
6801static inline int on_null_domain(int cpu)
6802{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006803 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006804}
6805
6806/*
6807 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006808 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006809void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006810{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006811 /* Don't need to rebalance while attached to NULL domain */
6812 if (time_after_eq(jiffies, rq->next_balance) &&
6813 likely(!on_null_domain(cpu)))
6814 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006815#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006816 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006817 nohz_balancer_kick(cpu);
6818#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006819}
6820
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006821static void rq_online_fair(struct rq *rq)
6822{
6823 update_sysctl();
6824}
6825
6826static void rq_offline_fair(struct rq *rq)
6827{
6828 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006829
6830 /* Ensure any throttled groups are reachable by pick_next_task */
6831 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006832}
6833
Dhaval Giani55e12e52008-06-24 23:39:43 +05306834#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006835
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006836/*
6837 * scheduler tick hitting a task of our scheduling class:
6838 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006839static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006840{
6841 struct cfs_rq *cfs_rq;
6842 struct sched_entity *se = &curr->se;
6843
6844 for_each_sched_entity(se) {
6845 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006846 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006847 }
Ben Segall18bf2802012-10-04 12:51:20 +02006848
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006849 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006850 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006851
Ben Segall18bf2802012-10-04 12:51:20 +02006852 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006853}
6854
6855/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006856 * called on fork with the child task as argument from the parent's context
6857 * - child not yet on the tasklist
6858 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006859 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006860static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006861{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006862 struct cfs_rq *cfs_rq;
6863 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006864 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006865 struct rq *rq = this_rq();
6866 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006867
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006868 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006869
Peter Zijlstra861d0342010-08-19 13:31:43 +02006870 update_rq_clock(rq);
6871
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006872 cfs_rq = task_cfs_rq(current);
6873 curr = cfs_rq->curr;
6874
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006875 /*
6876 * Not only the cpu but also the task_group of the parent might have
6877 * been changed after parent->se.parent,cfs_rq were copied to
6878 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6879 * of child point to valid ones.
6880 */
6881 rcu_read_lock();
6882 __set_task_cpu(p, this_cpu);
6883 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006884
Ting Yang7109c442007-08-28 12:53:24 +02006885 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006886
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006887 if (curr)
6888 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006889 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006890
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006891 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006892 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006893 * Upon rescheduling, sched_class::put_prev_task() will place
6894 * 'current' within the tree based on its new key value.
6895 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006896 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306897 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006898 }
6899
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006900 se->vruntime -= cfs_rq->min_vruntime;
6901
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006902 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006903}
6904
Steven Rostedtcb469842008-01-25 21:08:22 +01006905/*
6906 * Priority of the task has changed. Check to see if we preempt
6907 * the current task.
6908 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006909static void
6910prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006911{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006912 if (!p->se.on_rq)
6913 return;
6914
Steven Rostedtcb469842008-01-25 21:08:22 +01006915 /*
6916 * Reschedule if we are currently running on this runqueue and
6917 * our priority decreased, or if we are not currently running on
6918 * this runqueue and our priority is higher than the current's
6919 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006920 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006921 if (p->prio > oldprio)
6922 resched_task(rq->curr);
6923 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006924 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006925}
6926
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006927static void switched_from_fair(struct rq *rq, struct task_struct *p)
6928{
6929 struct sched_entity *se = &p->se;
6930 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6931
6932 /*
6933 * Ensure the task's vruntime is normalized, so that when its
6934 * switched back to the fair class the enqueue_entity(.flags=0) will
6935 * do the right thing.
6936 *
6937 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6938 * have normalized the vruntime, if it was !on_rq, then only when
6939 * the task is sleeping will it still have non-normalized vruntime.
6940 */
6941 if (!se->on_rq && p->state != TASK_RUNNING) {
6942 /*
6943 * Fix up our vruntime so that the current sleep doesn't
6944 * cause 'unlimited' sleep bonus.
6945 */
6946 place_entity(cfs_rq, se, 0);
6947 se->vruntime -= cfs_rq->min_vruntime;
6948 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006949
Alex Shi141965c2013-06-26 13:05:39 +08006950#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006951 /*
6952 * Remove our load from contribution when we leave sched_fair
6953 * and ensure we don't carry in an old decay_count if we
6954 * switch back.
6955 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006956 if (se->avg.decay_count) {
6957 __synchronize_entity_decay(se);
6958 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006959 }
6960#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006961}
6962
Steven Rostedtcb469842008-01-25 21:08:22 +01006963/*
6964 * We switched to the sched_fair class.
6965 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006966static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006967{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006968 if (!p->se.on_rq)
6969 return;
6970
Steven Rostedtcb469842008-01-25 21:08:22 +01006971 /*
6972 * We were most likely switched from sched_rt, so
6973 * kick off the schedule if running, otherwise just see
6974 * if we can still preempt the current task.
6975 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006976 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006977 resched_task(rq->curr);
6978 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006979 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006980}
6981
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006982/* Account for a task changing its policy or group.
6983 *
6984 * This routine is mostly called to set cfs_rq->curr field when a task
6985 * migrates between groups/classes.
6986 */
6987static void set_curr_task_fair(struct rq *rq)
6988{
6989 struct sched_entity *se = &rq->curr->se;
6990
Paul Turnerec12cb72011-07-21 09:43:30 -07006991 for_each_sched_entity(se) {
6992 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6993
6994 set_next_entity(cfs_rq, se);
6995 /* ensure bandwidth has been allocated on our new cfs_rq */
6996 account_cfs_rq_runtime(cfs_rq, 0);
6997 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006998}
6999
Peter Zijlstra029632f2011-10-25 10:00:11 +02007000void init_cfs_rq(struct cfs_rq *cfs_rq)
7001{
7002 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007003 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7004#ifndef CONFIG_64BIT
7005 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7006#endif
Alex Shi141965c2013-06-26 13:05:39 +08007007#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007008 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007009 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007010#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007011}
7012
Peter Zijlstra810b3812008-02-29 15:21:01 -05007013#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007014static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007015{
Paul Turneraff3e492012-10-04 13:18:30 +02007016 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007017 /*
7018 * If the task was not on the rq at the time of this cgroup movement
7019 * it must have been asleep, sleeping tasks keep their ->vruntime
7020 * absolute on their old rq until wakeup (needed for the fair sleeper
7021 * bonus in place_entity()).
7022 *
7023 * If it was on the rq, we've just 'preempted' it, which does convert
7024 * ->vruntime to a relative base.
7025 *
7026 * Make sure both cases convert their relative position when migrating
7027 * to another cgroup's rq. This does somewhat interfere with the
7028 * fair sleeper stuff for the first placement, but who cares.
7029 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007030 /*
7031 * When !on_rq, vruntime of the task has usually NOT been normalized.
7032 * But there are some cases where it has already been normalized:
7033 *
7034 * - Moving a forked child which is waiting for being woken up by
7035 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007036 * - Moving a task which has been woken up by try_to_wake_up() and
7037 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007038 *
7039 * To prevent boost or penalty in the new cfs_rq caused by delta
7040 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7041 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007042 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007043 on_rq = 1;
7044
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007045 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007046 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7047 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007048 if (!on_rq) {
7049 cfs_rq = cfs_rq_of(&p->se);
7050 p->se.vruntime += cfs_rq->min_vruntime;
7051#ifdef CONFIG_SMP
7052 /*
7053 * migrate_task_rq_fair() will have removed our previous
7054 * contribution, but we must synchronize for ongoing future
7055 * decay.
7056 */
7057 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7058 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7059#endif
7060 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007061}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007062
7063void free_fair_sched_group(struct task_group *tg)
7064{
7065 int i;
7066
7067 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7068
7069 for_each_possible_cpu(i) {
7070 if (tg->cfs_rq)
7071 kfree(tg->cfs_rq[i]);
7072 if (tg->se)
7073 kfree(tg->se[i]);
7074 }
7075
7076 kfree(tg->cfs_rq);
7077 kfree(tg->se);
7078}
7079
7080int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7081{
7082 struct cfs_rq *cfs_rq;
7083 struct sched_entity *se;
7084 int i;
7085
7086 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7087 if (!tg->cfs_rq)
7088 goto err;
7089 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7090 if (!tg->se)
7091 goto err;
7092
7093 tg->shares = NICE_0_LOAD;
7094
7095 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7096
7097 for_each_possible_cpu(i) {
7098 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7099 GFP_KERNEL, cpu_to_node(i));
7100 if (!cfs_rq)
7101 goto err;
7102
7103 se = kzalloc_node(sizeof(struct sched_entity),
7104 GFP_KERNEL, cpu_to_node(i));
7105 if (!se)
7106 goto err_free_rq;
7107
7108 init_cfs_rq(cfs_rq);
7109 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7110 }
7111
7112 return 1;
7113
7114err_free_rq:
7115 kfree(cfs_rq);
7116err:
7117 return 0;
7118}
7119
7120void unregister_fair_sched_group(struct task_group *tg, int cpu)
7121{
7122 struct rq *rq = cpu_rq(cpu);
7123 unsigned long flags;
7124
7125 /*
7126 * Only empty task groups can be destroyed; so we can speculatively
7127 * check on_list without danger of it being re-added.
7128 */
7129 if (!tg->cfs_rq[cpu]->on_list)
7130 return;
7131
7132 raw_spin_lock_irqsave(&rq->lock, flags);
7133 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7134 raw_spin_unlock_irqrestore(&rq->lock, flags);
7135}
7136
7137void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7138 struct sched_entity *se, int cpu,
7139 struct sched_entity *parent)
7140{
7141 struct rq *rq = cpu_rq(cpu);
7142
7143 cfs_rq->tg = tg;
7144 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007145 init_cfs_rq_runtime(cfs_rq);
7146
7147 tg->cfs_rq[cpu] = cfs_rq;
7148 tg->se[cpu] = se;
7149
7150 /* se could be NULL for root_task_group */
7151 if (!se)
7152 return;
7153
7154 if (!parent)
7155 se->cfs_rq = &rq->cfs;
7156 else
7157 se->cfs_rq = parent->my_q;
7158
7159 se->my_q = cfs_rq;
7160 update_load_set(&se->load, 0);
7161 se->parent = parent;
7162}
7163
7164static DEFINE_MUTEX(shares_mutex);
7165
7166int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7167{
7168 int i;
7169 unsigned long flags;
7170
7171 /*
7172 * We can't change the weight of the root cgroup.
7173 */
7174 if (!tg->se[0])
7175 return -EINVAL;
7176
7177 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7178
7179 mutex_lock(&shares_mutex);
7180 if (tg->shares == shares)
7181 goto done;
7182
7183 tg->shares = shares;
7184 for_each_possible_cpu(i) {
7185 struct rq *rq = cpu_rq(i);
7186 struct sched_entity *se;
7187
7188 se = tg->se[i];
7189 /* Propagate contribution to hierarchy */
7190 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007191
7192 /* Possible calls to update_curr() need rq clock */
7193 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007194 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007195 update_cfs_shares(group_cfs_rq(se));
7196 raw_spin_unlock_irqrestore(&rq->lock, flags);
7197 }
7198
7199done:
7200 mutex_unlock(&shares_mutex);
7201 return 0;
7202}
7203#else /* CONFIG_FAIR_GROUP_SCHED */
7204
7205void free_fair_sched_group(struct task_group *tg) { }
7206
7207int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7208{
7209 return 1;
7210}
7211
7212void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7213
7214#endif /* CONFIG_FAIR_GROUP_SCHED */
7215
Peter Zijlstra810b3812008-02-29 15:21:01 -05007216
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007217static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007218{
7219 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007220 unsigned int rr_interval = 0;
7221
7222 /*
7223 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7224 * idle runqueue:
7225 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007226 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007227 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007228
7229 return rr_interval;
7230}
7231
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007232/*
7233 * All the scheduling class methods:
7234 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007235const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007236 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007237 .enqueue_task = enqueue_task_fair,
7238 .dequeue_task = dequeue_task_fair,
7239 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007240 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007241
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007242 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007243
7244 .pick_next_task = pick_next_task_fair,
7245 .put_prev_task = put_prev_task_fair,
7246
Peter Williams681f3e62007-10-24 18:23:51 +02007247#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007248 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007249 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007250
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007251 .rq_online = rq_online_fair,
7252 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007253
7254 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007255#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007256
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007257 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007258 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007259 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007260
7261 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007262 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007263 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007264
Peter Williams0d721ce2009-09-21 01:31:53 +00007265 .get_rr_interval = get_rr_interval_fair,
7266
Peter Zijlstra810b3812008-02-29 15:21:01 -05007267#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007268 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007269#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007270};
7271
7272#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007273void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007274{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007275 struct cfs_rq *cfs_rq;
7276
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007277 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007278 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007279 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007280 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007281}
7282#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007283
7284__init void init_sched_fair_class(void)
7285{
7286#ifdef CONFIG_SMP
7287 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7288
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007289#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007290 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007291 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007292 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007293#endif
7294#endif /* SMP */
7295
7296}