blob: e7884dc3416d27f5a77f67edb24a880574728bdc [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200829
830/* Portion of address space to scan in MB */
831unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200832
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200833/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
834unsigned int sysctl_numa_balancing_scan_delay = 1000;
835
Rik van Rielde1c9ce2013-10-07 11:29:39 +0100836/*
837 * After skipping a page migration on a shared page, skip N more numa page
838 * migrations unconditionally. This reduces the number of NUMA migrations
839 * in shared memory workloads, and has the effect of pulling tasks towards
840 * where their memory lives, over pulling the memory towards the task.
841 */
842unsigned int sysctl_numa_balancing_migrate_deferred = 16;
843
Mel Gorman598f0ec2013-10-07 11:28:55 +0100844static unsigned int task_nr_scan_windows(struct task_struct *p)
845{
846 unsigned long rss = 0;
847 unsigned long nr_scan_pages;
848
849 /*
850 * Calculations based on RSS as non-present and empty pages are skipped
851 * by the PTE scanner and NUMA hinting faults should be trapped based
852 * on resident pages
853 */
854 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
855 rss = get_mm_rss(p->mm);
856 if (!rss)
857 rss = nr_scan_pages;
858
859 rss = round_up(rss, nr_scan_pages);
860 return rss / nr_scan_pages;
861}
862
863/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
864#define MAX_SCAN_WINDOW 2560
865
866static unsigned int task_scan_min(struct task_struct *p)
867{
868 unsigned int scan, floor;
869 unsigned int windows = 1;
870
871 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
872 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
873 floor = 1000 / windows;
874
875 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
876 return max_t(unsigned int, floor, scan);
877}
878
879static unsigned int task_scan_max(struct task_struct *p)
880{
881 unsigned int smin = task_scan_min(p);
882 unsigned int smax;
883
884 /* Watch for min being lower than max due to floor calculations */
885 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
886 return max(smin, smax);
887}
888
Mel Gorman3a7053b2013-10-07 11:29:00 +0100889/*
890 * Once a preferred node is selected the scheduler balancer will prefer moving
891 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
892 * scans. This will give the process the chance to accumulate more faults on
893 * the preferred node but still allow the scheduler to move the task again if
894 * the nodes CPUs are overloaded.
895 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100896unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100897
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +0100898static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
899{
900 rq->nr_numa_running += (p->numa_preferred_nid != -1);
901 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
902}
903
904static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
905{
906 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
907 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
908}
909
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100910struct numa_group {
911 atomic_t refcount;
912
913 spinlock_t lock; /* nr_tasks, tasks */
914 int nr_tasks;
Mel Gormane29cf082013-10-07 11:29:22 +0100915 pid_t gid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100916 struct list_head task_list;
917
918 struct rcu_head rcu;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100919 atomic_long_t total_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +0100920 atomic_long_t faults[0];
921};
922
Mel Gormane29cf082013-10-07 11:29:22 +0100923pid_t task_numa_group_id(struct task_struct *p)
924{
925 return p->numa_group ? p->numa_group->gid : 0;
926}
927
Mel Gormanac8e8952013-10-07 11:29:03 +0100928static inline int task_faults_idx(int nid, int priv)
929{
930 return 2 * nid + priv;
931}
932
933static inline unsigned long task_faults(struct task_struct *p, int nid)
934{
935 if (!p->numa_faults)
936 return 0;
937
938 return p->numa_faults[task_faults_idx(nid, 0)] +
939 p->numa_faults[task_faults_idx(nid, 1)];
940}
941
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100942static inline unsigned long group_faults(struct task_struct *p, int nid)
943{
944 if (!p->numa_group)
945 return 0;
946
947 return atomic_long_read(&p->numa_group->faults[2*nid]) +
948 atomic_long_read(&p->numa_group->faults[2*nid+1]);
949}
950
951/*
952 * These return the fraction of accesses done by a particular task, or
953 * task group, on a particular numa node. The group weight is given a
954 * larger multiplier, in order to group tasks together that are almost
955 * evenly spread out between numa nodes.
956 */
957static inline unsigned long task_weight(struct task_struct *p, int nid)
958{
959 unsigned long total_faults;
960
961 if (!p->numa_faults)
962 return 0;
963
964 total_faults = p->total_numa_faults;
965
966 if (!total_faults)
967 return 0;
968
969 return 1000 * task_faults(p, nid) / total_faults;
970}
971
972static inline unsigned long group_weight(struct task_struct *p, int nid)
973{
974 unsigned long total_faults;
975
976 if (!p->numa_group)
977 return 0;
978
979 total_faults = atomic_long_read(&p->numa_group->total_faults);
980
981 if (!total_faults)
982 return 0;
983
Rik van Rielca28aa52013-10-07 11:29:32 +0100984 return 1000 * group_faults(p, nid) / total_faults;
Mel Gorman83e1d2c2013-10-07 11:29:27 +0100985}
986
Mel Gormane6628d52013-10-07 11:29:02 +0100987static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100988static unsigned long source_load(int cpu, int type);
989static unsigned long target_load(int cpu, int type);
990static unsigned long power_of(int cpu);
991static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100992
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100993/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100994struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100995 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100996 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100997
998 /* Total compute capacity of CPUs on a node */
999 unsigned long power;
1000
1001 /* Approximate capacity in terms of runnable tasks on a node */
1002 unsigned long capacity;
1003 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +01001004};
Mel Gormane6628d52013-10-07 11:29:02 +01001005
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001006/*
1007 * XXX borrowed from update_sg_lb_stats
1008 */
1009static void update_numa_stats(struct numa_stats *ns, int nid)
1010{
1011 int cpu;
1012
1013 memset(ns, 0, sizeof(*ns));
1014 for_each_cpu(cpu, cpumask_of_node(nid)) {
1015 struct rq *rq = cpu_rq(cpu);
1016
1017 ns->nr_running += rq->nr_running;
1018 ns->load += weighted_cpuload(cpu);
1019 ns->power += power_of(cpu);
1020 }
1021
1022 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
1023 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
1024 ns->has_capacity = (ns->nr_running < ns->capacity);
1025}
1026
Mel Gorman58d081b2013-10-07 11:29:10 +01001027struct task_numa_env {
1028 struct task_struct *p;
1029
1030 int src_cpu, src_nid;
1031 int dst_cpu, dst_nid;
1032
1033 struct numa_stats src_stats, dst_stats;
1034
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001035 int imbalance_pct, idx;
1036
1037 struct task_struct *best_task;
1038 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001039 int best_cpu;
1040};
1041
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001042static void task_numa_assign(struct task_numa_env *env,
1043 struct task_struct *p, long imp)
1044{
1045 if (env->best_task)
1046 put_task_struct(env->best_task);
1047 if (p)
1048 get_task_struct(p);
1049
1050 env->best_task = p;
1051 env->best_imp = imp;
1052 env->best_cpu = env->dst_cpu;
1053}
1054
1055/*
1056 * This checks if the overall compute and NUMA accesses of the system would
1057 * be improved if the source tasks was migrated to the target dst_cpu taking
1058 * into account that it might be best if task running on the dst_cpu should
1059 * be exchanged with the source task
1060 */
Rik van Riel887c2902013-10-07 11:29:31 +01001061static void task_numa_compare(struct task_numa_env *env,
1062 long taskimp, long groupimp)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001063{
1064 struct rq *src_rq = cpu_rq(env->src_cpu);
1065 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1066 struct task_struct *cur;
1067 long dst_load, src_load;
1068 long load;
Rik van Riel887c2902013-10-07 11:29:31 +01001069 long imp = (groupimp > 0) ? groupimp : taskimp;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001070
1071 rcu_read_lock();
1072 cur = ACCESS_ONCE(dst_rq->curr);
1073 if (cur->pid == 0) /* idle */
1074 cur = NULL;
1075
1076 /*
1077 * "imp" is the fault differential for the source task between the
1078 * source and destination node. Calculate the total differential for
1079 * the source task and potential destination task. The more negative
1080 * the value is, the more rmeote accesses that would be expected to
1081 * be incurred if the tasks were swapped.
1082 */
1083 if (cur) {
1084 /* Skip this swap candidate if cannot move to the source cpu */
1085 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1086 goto unlock;
1087
Rik van Riel887c2902013-10-07 11:29:31 +01001088 /*
1089 * If dst and source tasks are in the same NUMA group, or not
Rik van Rielca28aa52013-10-07 11:29:32 +01001090 * in any group then look only at task weights.
Rik van Riel887c2902013-10-07 11:29:31 +01001091 */
Rik van Rielca28aa52013-10-07 11:29:32 +01001092 if (cur->numa_group == env->p->numa_group) {
Rik van Riel887c2902013-10-07 11:29:31 +01001093 imp = taskimp + task_weight(cur, env->src_nid) -
1094 task_weight(cur, env->dst_nid);
Rik van Rielca28aa52013-10-07 11:29:32 +01001095 /*
1096 * Add some hysteresis to prevent swapping the
1097 * tasks within a group over tiny differences.
1098 */
1099 if (cur->numa_group)
1100 imp -= imp/16;
Rik van Riel887c2902013-10-07 11:29:31 +01001101 } else {
Rik van Rielca28aa52013-10-07 11:29:32 +01001102 /*
1103 * Compare the group weights. If a task is all by
1104 * itself (not part of a group), use the task weight
1105 * instead.
1106 */
1107 if (env->p->numa_group)
1108 imp = groupimp;
1109 else
1110 imp = taskimp;
1111
1112 if (cur->numa_group)
1113 imp += group_weight(cur, env->src_nid) -
1114 group_weight(cur, env->dst_nid);
1115 else
1116 imp += task_weight(cur, env->src_nid) -
1117 task_weight(cur, env->dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001118 }
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001119 }
1120
1121 if (imp < env->best_imp)
1122 goto unlock;
1123
1124 if (!cur) {
1125 /* Is there capacity at our destination? */
1126 if (env->src_stats.has_capacity &&
1127 !env->dst_stats.has_capacity)
1128 goto unlock;
1129
1130 goto balance;
1131 }
1132
1133 /* Balance doesn't matter much if we're running a task per cpu */
1134 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1135 goto assign;
1136
1137 /*
1138 * In the overloaded case, try and keep the load balanced.
1139 */
1140balance:
1141 dst_load = env->dst_stats.load;
1142 src_load = env->src_stats.load;
1143
1144 /* XXX missing power terms */
1145 load = task_h_load(env->p);
1146 dst_load += load;
1147 src_load -= load;
1148
1149 if (cur) {
1150 load = task_h_load(cur);
1151 dst_load -= load;
1152 src_load += load;
1153 }
1154
1155 /* make src_load the smaller */
1156 if (dst_load < src_load)
1157 swap(dst_load, src_load);
1158
1159 if (src_load * env->imbalance_pct < dst_load * 100)
1160 goto unlock;
1161
1162assign:
1163 task_numa_assign(env, cur, imp);
1164unlock:
1165 rcu_read_unlock();
1166}
1167
Rik van Riel887c2902013-10-07 11:29:31 +01001168static void task_numa_find_cpu(struct task_numa_env *env,
1169 long taskimp, long groupimp)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001170{
1171 int cpu;
1172
1173 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1174 /* Skip this CPU if the source task cannot migrate */
1175 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1176 continue;
1177
1178 env->dst_cpu = cpu;
Rik van Riel887c2902013-10-07 11:29:31 +01001179 task_numa_compare(env, taskimp, groupimp);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001180 }
1181}
1182
Mel Gorman58d081b2013-10-07 11:29:10 +01001183static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001184{
Mel Gorman58d081b2013-10-07 11:29:10 +01001185 struct task_numa_env env = {
1186 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001187
Mel Gorman58d081b2013-10-07 11:29:10 +01001188 .src_cpu = task_cpu(p),
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001189 .src_nid = task_node(p),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001190
1191 .imbalance_pct = 112,
1192
1193 .best_task = NULL,
1194 .best_imp = 0,
1195 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001196 };
1197 struct sched_domain *sd;
Rik van Riel887c2902013-10-07 11:29:31 +01001198 unsigned long taskweight, groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001199 int nid, ret;
Rik van Riel887c2902013-10-07 11:29:31 +01001200 long taskimp, groupimp;
Mel Gormane6628d52013-10-07 11:29:02 +01001201
Mel Gorman58d081b2013-10-07 11:29:10 +01001202 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001203 * Pick the lowest SD_NUMA domain, as that would have the smallest
1204 * imbalance and would be the first to start moving tasks about.
1205 *
1206 * And we want to avoid any moving of tasks about, as that would create
1207 * random movement of tasks -- counter the numa conditions we're trying
1208 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001209 */
Mel Gormane6628d52013-10-07 11:29:02 +01001210 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001211 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1212 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001213 rcu_read_unlock();
1214
Rik van Riel887c2902013-10-07 11:29:31 +01001215 taskweight = task_weight(p, env.src_nid);
1216 groupweight = group_weight(p, env.src_nid);
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001217 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001218 env.dst_nid = p->numa_preferred_nid;
Rik van Riel887c2902013-10-07 11:29:31 +01001219 taskimp = task_weight(p, env.dst_nid) - taskweight;
1220 groupimp = group_weight(p, env.dst_nid) - groupweight;
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001221 update_numa_stats(&env.dst_stats, env.dst_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001222
Rik van Riele1dda8a2013-10-07 11:29:19 +01001223 /* If the preferred nid has capacity, try to use it. */
1224 if (env.dst_stats.has_capacity)
Rik van Riel887c2902013-10-07 11:29:31 +01001225 task_numa_find_cpu(&env, taskimp, groupimp);
Rik van Riele1dda8a2013-10-07 11:29:19 +01001226
1227 /* No space available on the preferred nid. Look elsewhere. */
1228 if (env.best_cpu == -1) {
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001229 for_each_online_node(nid) {
1230 if (nid == env.src_nid || nid == p->numa_preferred_nid)
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001231 continue;
1232
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001233 /* Only consider nodes where both task and groups benefit */
Rik van Riel887c2902013-10-07 11:29:31 +01001234 taskimp = task_weight(p, nid) - taskweight;
1235 groupimp = group_weight(p, nid) - groupweight;
1236 if (taskimp < 0 && groupimp < 0)
Mel Gorman2c8a50a2013-10-07 11:29:18 +01001237 continue;
1238
1239 env.dst_nid = nid;
1240 update_numa_stats(&env.dst_stats, env.dst_nid);
Rik van Riel887c2902013-10-07 11:29:31 +01001241 task_numa_find_cpu(&env, taskimp, groupimp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001242 }
1243 }
1244
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001245 /* No better CPU than the current one was found. */
1246 if (env.best_cpu == -1)
1247 return -EAGAIN;
1248
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001249 sched_setnuma(p, env.dst_nid);
1250
Rik van Riel04bb2f92013-10-07 11:29:36 +01001251 /*
1252 * Reset the scan period if the task is being rescheduled on an
1253 * alternative node to recheck if the tasks is now properly placed.
1254 */
1255 p->numa_scan_period = task_scan_min(p);
1256
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001257 if (env.best_task == NULL) {
1258 int ret = migrate_task_to(p, env.best_cpu);
1259 return ret;
1260 }
1261
1262 ret = migrate_swap(p, env.best_task);
1263 put_task_struct(env.best_task);
1264 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001265}
1266
Mel Gorman6b9a7462013-10-07 11:29:11 +01001267/* Attempt to migrate a task to a CPU on the preferred node. */
1268static void numa_migrate_preferred(struct task_struct *p)
1269{
1270 /* Success if task is already running on preferred CPU */
1271 p->numa_migrate_retry = 0;
Rik van Riel1e3646f2013-10-07 11:29:38 +01001272 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid)
Mel Gorman6b9a7462013-10-07 11:29:11 +01001273 return;
1274
1275 /* This task has no NUMA fault statistics yet */
1276 if (unlikely(p->numa_preferred_nid == -1))
1277 return;
1278
1279 /* Otherwise, try migrate to a CPU on the preferred node */
1280 if (task_numa_migrate(p) != 0)
1281 p->numa_migrate_retry = jiffies + HZ*5;
1282}
1283
Rik van Riel04bb2f92013-10-07 11:29:36 +01001284/*
1285 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1286 * increments. The more local the fault statistics are, the higher the scan
1287 * period will be for the next scan window. If local/remote ratio is below
1288 * NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS) the
1289 * scan period will decrease
1290 */
1291#define NUMA_PERIOD_SLOTS 10
1292#define NUMA_PERIOD_THRESHOLD 3
1293
1294/*
1295 * Increase the scan period (slow down scanning) if the majority of
1296 * our memory is already on our local node, or if the majority of
1297 * the page accesses are shared with other processes.
1298 * Otherwise, decrease the scan period.
1299 */
1300static void update_task_scan_period(struct task_struct *p,
1301 unsigned long shared, unsigned long private)
1302{
1303 unsigned int period_slot;
1304 int ratio;
1305 int diff;
1306
1307 unsigned long remote = p->numa_faults_locality[0];
1308 unsigned long local = p->numa_faults_locality[1];
1309
1310 /*
1311 * If there were no record hinting faults then either the task is
1312 * completely idle or all activity is areas that are not of interest
1313 * to automatic numa balancing. Scan slower
1314 */
1315 if (local + shared == 0) {
1316 p->numa_scan_period = min(p->numa_scan_period_max,
1317 p->numa_scan_period << 1);
1318
1319 p->mm->numa_next_scan = jiffies +
1320 msecs_to_jiffies(p->numa_scan_period);
1321
1322 return;
1323 }
1324
1325 /*
1326 * Prepare to scale scan period relative to the current period.
1327 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1328 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1329 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1330 */
1331 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1332 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1333 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1334 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1335 if (!slot)
1336 slot = 1;
1337 diff = slot * period_slot;
1338 } else {
1339 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1340
1341 /*
1342 * Scale scan rate increases based on sharing. There is an
1343 * inverse relationship between the degree of sharing and
1344 * the adjustment made to the scanning period. Broadly
1345 * speaking the intent is that there is little point
1346 * scanning faster if shared accesses dominate as it may
1347 * simply bounce migrations uselessly
1348 */
1349 period_slot = DIV_ROUND_UP(diff, NUMA_PERIOD_SLOTS);
1350 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared));
1351 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1352 }
1353
1354 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1355 task_scan_min(p), task_scan_max(p));
1356 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1357}
1358
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001359static void task_numa_placement(struct task_struct *p)
1360{
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001361 int seq, nid, max_nid = -1, max_group_nid = -1;
1362 unsigned long max_faults = 0, max_group_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001363 unsigned long fault_types[2] = { 0, 0 };
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001364 spinlock_t *group_lock = NULL;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001365
Hugh Dickins2832bc12012-12-19 17:42:16 -08001366 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001367 if (p->numa_scan_seq == seq)
1368 return;
1369 p->numa_scan_seq = seq;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001370 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001371
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001372 /* If the task is part of a group prevent parallel updates to group stats */
1373 if (p->numa_group) {
1374 group_lock = &p->numa_group->lock;
1375 spin_lock(group_lock);
1376 }
1377
Mel Gorman688b7582013-10-07 11:28:58 +01001378 /* Find the node with the highest number of faults */
1379 for_each_online_node(nid) {
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001380 unsigned long faults = 0, group_faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001381 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001382
Mel Gormanac8e8952013-10-07 11:29:03 +01001383 for (priv = 0; priv < 2; priv++) {
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001384 long diff;
1385
Mel Gormanac8e8952013-10-07 11:29:03 +01001386 i = task_faults_idx(nid, priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001387 diff = -p->numa_faults[i];
Mel Gorman745d6142013-10-07 11:28:59 +01001388
Mel Gormanac8e8952013-10-07 11:29:03 +01001389 /* Decay existing window, copy faults since last scan */
1390 p->numa_faults[i] >>= 1;
1391 p->numa_faults[i] += p->numa_faults_buffer[i];
Rik van Riel04bb2f92013-10-07 11:29:36 +01001392 fault_types[priv] += p->numa_faults_buffer[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001393 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001394
1395 faults += p->numa_faults[i];
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001396 diff += p->numa_faults[i];
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001397 p->total_numa_faults += diff;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001398 if (p->numa_group) {
1399 /* safe because we can only change our own group */
1400 atomic_long_add(diff, &p->numa_group->faults[i]);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001401 atomic_long_add(diff, &p->numa_group->total_faults);
1402 group_faults += atomic_long_read(&p->numa_group->faults[i]);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001403 }
Mel Gormanac8e8952013-10-07 11:29:03 +01001404 }
1405
Mel Gorman688b7582013-10-07 11:28:58 +01001406 if (faults > max_faults) {
1407 max_faults = faults;
1408 max_nid = nid;
1409 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001410
1411 if (group_faults > max_group_faults) {
1412 max_group_faults = group_faults;
1413 max_group_nid = nid;
1414 }
1415 }
1416
Rik van Riel04bb2f92013-10-07 11:29:36 +01001417 update_task_scan_period(p, fault_types[0], fault_types[1]);
1418
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001419 if (p->numa_group) {
1420 /*
1421 * If the preferred task and group nids are different,
1422 * iterate over the nodes again to find the best place.
1423 */
1424 if (max_nid != max_group_nid) {
1425 unsigned long weight, max_weight = 0;
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001426
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001427 for_each_online_node(nid) {
1428 weight = task_weight(p, nid) + group_weight(p, nid);
1429 if (weight > max_weight) {
1430 max_weight = weight;
1431 max_nid = nid;
1432 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001433 }
1434 }
Mel Gorman7dbd13e2013-10-07 11:29:29 +01001435
1436 spin_unlock(group_lock);
Mel Gorman688b7582013-10-07 11:28:58 +01001437 }
1438
Mel Gorman6b9a7462013-10-07 11:29:11 +01001439 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001440 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001441 /* Update the preferred nid and migrate task if possible */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001442 sched_setnuma(p, max_nid);
Mel Gorman6b9a7462013-10-07 11:29:11 +01001443 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001444 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001445}
1446
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001447static inline int get_numa_group(struct numa_group *grp)
1448{
1449 return atomic_inc_not_zero(&grp->refcount);
1450}
1451
1452static inline void put_numa_group(struct numa_group *grp)
1453{
1454 if (atomic_dec_and_test(&grp->refcount))
1455 kfree_rcu(grp, rcu);
1456}
1457
1458static void double_lock(spinlock_t *l1, spinlock_t *l2)
1459{
1460 if (l1 > l2)
1461 swap(l1, l2);
1462
1463 spin_lock(l1);
1464 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1465}
1466
Mel Gorman3e6a9412013-10-07 11:29:35 +01001467static void task_numa_group(struct task_struct *p, int cpupid, int flags,
1468 int *priv)
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001469{
1470 struct numa_group *grp, *my_grp;
1471 struct task_struct *tsk;
1472 bool join = false;
1473 int cpu = cpupid_to_cpu(cpupid);
1474 int i;
1475
1476 if (unlikely(!p->numa_group)) {
1477 unsigned int size = sizeof(struct numa_group) +
1478 2*nr_node_ids*sizeof(atomic_long_t);
1479
1480 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1481 if (!grp)
1482 return;
1483
1484 atomic_set(&grp->refcount, 1);
1485 spin_lock_init(&grp->lock);
1486 INIT_LIST_HEAD(&grp->task_list);
Mel Gormane29cf082013-10-07 11:29:22 +01001487 grp->gid = p->pid;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001488
1489 for (i = 0; i < 2*nr_node_ids; i++)
1490 atomic_long_set(&grp->faults[i], p->numa_faults[i]);
1491
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001492 atomic_long_set(&grp->total_faults, p->total_numa_faults);
1493
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001494 list_add(&p->numa_entry, &grp->task_list);
1495 grp->nr_tasks++;
1496 rcu_assign_pointer(p->numa_group, grp);
1497 }
1498
1499 rcu_read_lock();
1500 tsk = ACCESS_ONCE(cpu_rq(cpu)->curr);
1501
1502 if (!cpupid_match_pid(tsk, cpupid))
1503 goto unlock;
1504
1505 grp = rcu_dereference(tsk->numa_group);
1506 if (!grp)
1507 goto unlock;
1508
1509 my_grp = p->numa_group;
1510 if (grp == my_grp)
1511 goto unlock;
1512
1513 /*
1514 * Only join the other group if its bigger; if we're the bigger group,
1515 * the other task will join us.
1516 */
1517 if (my_grp->nr_tasks > grp->nr_tasks)
1518 goto unlock;
1519
1520 /*
1521 * Tie-break on the grp address.
1522 */
1523 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
1524 goto unlock;
1525
Rik van Rieldabe1d92013-10-07 11:29:34 +01001526 /* Always join threads in the same process. */
1527 if (tsk->mm == current->mm)
1528 join = true;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001529
Rik van Rieldabe1d92013-10-07 11:29:34 +01001530 /* Simple filter to avoid false positives due to PID collisions */
1531 if (flags & TNF_SHARED)
1532 join = true;
1533
Mel Gorman3e6a9412013-10-07 11:29:35 +01001534 /* Update priv based on whether false sharing was detected */
1535 *priv = !join;
1536
Rik van Rieldabe1d92013-10-07 11:29:34 +01001537 if (join && !get_numa_group(grp))
1538 join = false;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001539
1540unlock:
1541 rcu_read_unlock();
1542
1543 if (!join)
1544 return;
1545
1546 for (i = 0; i < 2*nr_node_ids; i++) {
1547 atomic_long_sub(p->numa_faults[i], &my_grp->faults[i]);
1548 atomic_long_add(p->numa_faults[i], &grp->faults[i]);
1549 }
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001550 atomic_long_sub(p->total_numa_faults, &my_grp->total_faults);
1551 atomic_long_add(p->total_numa_faults, &grp->total_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001552
1553 double_lock(&my_grp->lock, &grp->lock);
1554
1555 list_move(&p->numa_entry, &grp->task_list);
1556 my_grp->nr_tasks--;
1557 grp->nr_tasks++;
1558
1559 spin_unlock(&my_grp->lock);
1560 spin_unlock(&grp->lock);
1561
1562 rcu_assign_pointer(p->numa_group, grp);
1563
1564 put_numa_group(my_grp);
1565}
1566
1567void task_numa_free(struct task_struct *p)
1568{
1569 struct numa_group *grp = p->numa_group;
1570 int i;
Rik van Riel82727012013-10-07 11:29:28 +01001571 void *numa_faults = p->numa_faults;
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001572
1573 if (grp) {
1574 for (i = 0; i < 2*nr_node_ids; i++)
1575 atomic_long_sub(p->numa_faults[i], &grp->faults[i]);
1576
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001577 atomic_long_sub(p->total_numa_faults, &grp->total_faults);
1578
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001579 spin_lock(&grp->lock);
1580 list_del(&p->numa_entry);
1581 grp->nr_tasks--;
1582 spin_unlock(&grp->lock);
1583 rcu_assign_pointer(p->numa_group, NULL);
1584 put_numa_group(grp);
1585 }
1586
Rik van Riel82727012013-10-07 11:29:28 +01001587 p->numa_faults = NULL;
1588 p->numa_faults_buffer = NULL;
1589 kfree(numa_faults);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001590}
1591
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001592/*
1593 * Got a PROT_NONE fault for a page on @node.
1594 */
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001595void task_numa_fault(int last_cpupid, int node, int pages, int flags)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001596{
1597 struct task_struct *p = current;
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001598 bool migrated = flags & TNF_MIGRATED;
Mel Gormanac8e8952013-10-07 11:29:03 +01001599 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001600
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001601 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001602 return;
1603
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001604 /* for example, ksmd faulting in a user's mm */
1605 if (!p->mm)
1606 return;
1607
Rik van Riel82727012013-10-07 11:29:28 +01001608 /* Do not worry about placement if exiting */
1609 if (p->state == TASK_DEAD)
1610 return;
1611
Mel Gormanf809ca92013-10-07 11:28:57 +01001612 /* Allocate buffer to track faults on a per-node basis */
1613 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001614 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001615
Mel Gorman745d6142013-10-07 11:28:59 +01001616 /* numa_faults and numa_faults_buffer share the allocation */
1617 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001618 if (!p->numa_faults)
1619 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001620
1621 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001622 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gorman83e1d2c2013-10-07 11:29:27 +01001623 p->total_numa_faults = 0;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001624 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
Mel Gormanf809ca92013-10-07 11:28:57 +01001625 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001626
Mel Gormanfb003b82012-11-15 09:01:14 +00001627 /*
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001628 * First accesses are treated as private, otherwise consider accesses
1629 * to be private if the accessing pid has not changed
1630 */
1631 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
1632 priv = 1;
1633 } else {
1634 priv = cpupid_match_pid(p, last_cpupid);
Peter Zijlstra6688cc02013-10-07 11:29:24 +01001635 if (!priv && !(flags & TNF_NO_GROUP))
Mel Gorman3e6a9412013-10-07 11:29:35 +01001636 task_numa_group(p, last_cpupid, flags, &priv);
Peter Zijlstra8c8a7432013-10-07 11:29:21 +01001637 }
1638
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001639 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001640
Mel Gorman6b9a7462013-10-07 11:29:11 +01001641 /* Retry task to preferred node migration if it previously failed */
1642 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1643 numa_migrate_preferred(p);
1644
Ingo Molnarb32e86b2013-10-07 11:29:30 +01001645 if (migrated)
1646 p->numa_pages_migrated += pages;
1647
Mel Gormanac8e8952013-10-07 11:29:03 +01001648 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Rik van Riel04bb2f92013-10-07 11:29:36 +01001649 p->numa_faults_locality[!!(flags & TNF_FAULT_LOCAL)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001650}
1651
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001652static void reset_ptenuma_scan(struct task_struct *p)
1653{
1654 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1655 p->mm->numa_scan_offset = 0;
1656}
1657
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001658/*
1659 * The expensive part of numa migration is done from task_work context.
1660 * Triggered from task_tick_numa().
1661 */
1662void task_numa_work(struct callback_head *work)
1663{
1664 unsigned long migrate, next_scan, now = jiffies;
1665 struct task_struct *p = current;
1666 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001667 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001668 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001669 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001670 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001671
1672 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1673
1674 work->next = work; /* protect against double add */
1675 /*
1676 * Who cares about NUMA placement when they're dying.
1677 *
1678 * NOTE: make sure not to dereference p->mm before this check,
1679 * exit_task_work() happens _after_ exit_mm() so we could be called
1680 * without p->mm even though we still had it when we enqueued this
1681 * work.
1682 */
1683 if (p->flags & PF_EXITING)
1684 return;
1685
Mel Gorman930aa172013-10-07 11:29:37 +01001686 if (!mm->numa_next_scan) {
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001687 mm->numa_next_scan = now +
1688 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001689 }
1690
1691 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001692 * Enforce maximal scan/migration frequency..
1693 */
1694 migrate = mm->numa_next_scan;
1695 if (time_before(now, migrate))
1696 return;
1697
Mel Gorman598f0ec2013-10-07 11:28:55 +01001698 if (p->numa_scan_period == 0) {
1699 p->numa_scan_period_max = task_scan_max(p);
1700 p->numa_scan_period = task_scan_min(p);
1701 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001702
Mel Gormanfb003b82012-11-15 09:01:14 +00001703 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001704 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1705 return;
1706
Mel Gormane14808b2012-11-19 10:59:15 +00001707 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001708 * Delay this task enough that another task of this mm will likely win
1709 * the next time around.
1710 */
1711 p->node_stamp += 2 * TICK_NSEC;
1712
Mel Gorman9f406042012-11-14 18:34:32 +00001713 start = mm->numa_scan_offset;
1714 pages = sysctl_numa_balancing_scan_size;
1715 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1716 if (!pages)
1717 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001718
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001719 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001720 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001721 if (!vma) {
1722 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001723 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001724 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001725 }
Mel Gorman9f406042012-11-14 18:34:32 +00001726 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001727 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001728 continue;
1729
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001730 /*
1731 * Shared library pages mapped by multiple processes are not
1732 * migrated as it is expected they are cache replicated. Avoid
1733 * hinting faults in read-only file-backed mappings or the vdso
1734 * as migrating the pages will be of marginal benefit.
1735 */
1736 if (!vma->vm_mm ||
1737 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1738 continue;
1739
Mel Gorman9f406042012-11-14 18:34:32 +00001740 do {
1741 start = max(start, vma->vm_start);
1742 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1743 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001744 nr_pte_updates += change_prot_numa(vma, start, end);
1745
1746 /*
1747 * Scan sysctl_numa_balancing_scan_size but ensure that
1748 * at least one PTE is updated so that unused virtual
1749 * address space is quickly skipped.
1750 */
1751 if (nr_pte_updates)
1752 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001753
Mel Gorman9f406042012-11-14 18:34:32 +00001754 start = end;
1755 if (pages <= 0)
1756 goto out;
1757 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001758 }
1759
Mel Gorman9f406042012-11-14 18:34:32 +00001760out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001761 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001762 * It is possible to reach the end of the VMA list but the last few
1763 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1764 * would find the !migratable VMA on the next scan but not reset the
1765 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001766 */
1767 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001768 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001769 else
1770 reset_ptenuma_scan(p);
1771 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001772}
1773
1774/*
1775 * Drive the periodic memory faults..
1776 */
1777void task_tick_numa(struct rq *rq, struct task_struct *curr)
1778{
1779 struct callback_head *work = &curr->numa_work;
1780 u64 period, now;
1781
1782 /*
1783 * We don't care about NUMA placement if we don't have memory.
1784 */
1785 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1786 return;
1787
1788 /*
1789 * Using runtime rather than walltime has the dual advantage that
1790 * we (mostly) drive the selection from busy threads and that the
1791 * task needs to have done some actual work before we bother with
1792 * NUMA placement.
1793 */
1794 now = curr->se.sum_exec_runtime;
1795 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1796
1797 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001798 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001799 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001800 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001801
1802 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1803 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1804 task_work_add(curr, work, true);
1805 }
1806 }
1807}
1808#else
1809static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1810{
1811}
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001812
1813static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1814{
1815}
1816
1817static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1818{
1819}
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001820#endif /* CONFIG_NUMA_BALANCING */
1821
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001822static void
1823account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1824{
1825 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001826 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001827 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001828#ifdef CONFIG_SMP
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001829 if (entity_is_task(se)) {
1830 struct rq *rq = rq_of(cfs_rq);
1831
1832 account_numa_enqueue(rq, task_of(se));
1833 list_add(&se->group_node, &rq->cfs_tasks);
1834 }
Peter Zijlstra367456c2012-02-20 21:49:09 +01001835#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001836 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001837}
1838
1839static void
1840account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1841{
1842 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001843 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001844 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001845 if (entity_is_task(se)) {
1846 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
Bharata B Raob87f1722008-09-25 09:53:54 +05301847 list_del_init(&se->group_node);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01001848 }
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001849 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001850}
1851
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001852#ifdef CONFIG_FAIR_GROUP_SCHED
1853# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001854static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1855{
1856 long tg_weight;
1857
1858 /*
1859 * Use this CPU's actual weight instead of the last load_contribution
1860 * to gain a more accurate current total weight. See
1861 * update_cfs_rq_load_contribution().
1862 */
Alex Shibf5b9862013-06-20 10:18:54 +08001863 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001864 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001865 tg_weight += cfs_rq->load.weight;
1866
1867 return tg_weight;
1868}
1869
Paul Turner6d5ab292011-01-21 20:45:01 -08001870static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001871{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001872 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001873
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001874 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001875 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001876
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001877 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001878 if (tg_weight)
1879 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001880
1881 if (shares < MIN_SHARES)
1882 shares = MIN_SHARES;
1883 if (shares > tg->shares)
1884 shares = tg->shares;
1885
1886 return shares;
1887}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001888# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001889static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001890{
1891 return tg->shares;
1892}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001893# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001894static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1895 unsigned long weight)
1896{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001897 if (se->on_rq) {
1898 /* commit outstanding execution time */
1899 if (cfs_rq->curr == se)
1900 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001901 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001902 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001903
1904 update_load_set(&se->load, weight);
1905
1906 if (se->on_rq)
1907 account_entity_enqueue(cfs_rq, se);
1908}
1909
Paul Turner82958362012-10-04 13:18:31 +02001910static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1911
Paul Turner6d5ab292011-01-21 20:45:01 -08001912static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001913{
1914 struct task_group *tg;
1915 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001916 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001917
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001918 tg = cfs_rq->tg;
1919 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001920 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001921 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001922#ifndef CONFIG_SMP
1923 if (likely(se->load.weight == tg->shares))
1924 return;
1925#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001926 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001927
1928 reweight_entity(cfs_rq_of(se), se, shares);
1929}
1930#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001931static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001932{
1933}
1934#endif /* CONFIG_FAIR_GROUP_SCHED */
1935
Alex Shi141965c2013-06-26 13:05:39 +08001936#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001937/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001938 * We choose a half-life close to 1 scheduling period.
1939 * Note: The tables below are dependent on this value.
1940 */
1941#define LOAD_AVG_PERIOD 32
1942#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1943#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1944
1945/* Precomputed fixed inverse multiplies for multiplication by y^n */
1946static const u32 runnable_avg_yN_inv[] = {
1947 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1948 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1949 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1950 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1951 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1952 0x85aac367, 0x82cd8698,
1953};
1954
1955/*
1956 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1957 * over-estimates when re-combining.
1958 */
1959static const u32 runnable_avg_yN_sum[] = {
1960 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1961 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1962 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1963};
1964
1965/*
Paul Turner9d85f212012-10-04 13:18:29 +02001966 * Approximate:
1967 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1968 */
1969static __always_inline u64 decay_load(u64 val, u64 n)
1970{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001971 unsigned int local_n;
1972
1973 if (!n)
1974 return val;
1975 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1976 return 0;
1977
1978 /* after bounds checking we can collapse to 32-bit */
1979 local_n = n;
1980
1981 /*
1982 * As y^PERIOD = 1/2, we can combine
1983 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1984 * With a look-up table which covers k^n (n<PERIOD)
1985 *
1986 * To achieve constant time decay_load.
1987 */
1988 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1989 val >>= local_n / LOAD_AVG_PERIOD;
1990 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001991 }
1992
Paul Turner5b51f2f2012-10-04 13:18:32 +02001993 val *= runnable_avg_yN_inv[local_n];
1994 /* We don't use SRR here since we always want to round down. */
1995 return val >> 32;
1996}
1997
1998/*
1999 * For updates fully spanning n periods, the contribution to runnable
2000 * average will be: \Sum 1024*y^n
2001 *
2002 * We can compute this reasonably efficiently by combining:
2003 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2004 */
2005static u32 __compute_runnable_contrib(u64 n)
2006{
2007 u32 contrib = 0;
2008
2009 if (likely(n <= LOAD_AVG_PERIOD))
2010 return runnable_avg_yN_sum[n];
2011 else if (unlikely(n >= LOAD_AVG_MAX_N))
2012 return LOAD_AVG_MAX;
2013
2014 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
2015 do {
2016 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
2017 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
2018
2019 n -= LOAD_AVG_PERIOD;
2020 } while (n > LOAD_AVG_PERIOD);
2021
2022 contrib = decay_load(contrib, n);
2023 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02002024}
2025
2026/*
2027 * We can represent the historical contribution to runnable average as the
2028 * coefficients of a geometric series. To do this we sub-divide our runnable
2029 * history into segments of approximately 1ms (1024us); label the segment that
2030 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2031 *
2032 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2033 * p0 p1 p2
2034 * (now) (~1ms ago) (~2ms ago)
2035 *
2036 * Let u_i denote the fraction of p_i that the entity was runnable.
2037 *
2038 * We then designate the fractions u_i as our co-efficients, yielding the
2039 * following representation of historical load:
2040 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2041 *
2042 * We choose y based on the with of a reasonably scheduling period, fixing:
2043 * y^32 = 0.5
2044 *
2045 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2046 * approximately half as much as the contribution to load within the last ms
2047 * (u_0).
2048 *
2049 * When a period "rolls over" and we have new u_0`, multiplying the previous
2050 * sum again by y is sufficient to update:
2051 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2052 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2053 */
2054static __always_inline int __update_entity_runnable_avg(u64 now,
2055 struct sched_avg *sa,
2056 int runnable)
2057{
Paul Turner5b51f2f2012-10-04 13:18:32 +02002058 u64 delta, periods;
2059 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002060 int delta_w, decayed = 0;
2061
2062 delta = now - sa->last_runnable_update;
2063 /*
2064 * This should only happen when time goes backwards, which it
2065 * unfortunately does during sched clock init when we swap over to TSC.
2066 */
2067 if ((s64)delta < 0) {
2068 sa->last_runnable_update = now;
2069 return 0;
2070 }
2071
2072 /*
2073 * Use 1024ns as the unit of measurement since it's a reasonable
2074 * approximation of 1us and fast to compute.
2075 */
2076 delta >>= 10;
2077 if (!delta)
2078 return 0;
2079 sa->last_runnable_update = now;
2080
2081 /* delta_w is the amount already accumulated against our next period */
2082 delta_w = sa->runnable_avg_period % 1024;
2083 if (delta + delta_w >= 1024) {
2084 /* period roll-over */
2085 decayed = 1;
2086
2087 /*
2088 * Now that we know we're crossing a period boundary, figure
2089 * out how much from delta we need to complete the current
2090 * period and accrue it.
2091 */
2092 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02002093 if (runnable)
2094 sa->runnable_avg_sum += delta_w;
2095 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002096
Paul Turner5b51f2f2012-10-04 13:18:32 +02002097 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02002098
Paul Turner5b51f2f2012-10-04 13:18:32 +02002099 /* Figure out how many additional periods this update spans */
2100 periods = delta / 1024;
2101 delta %= 1024;
2102
2103 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
2104 periods + 1);
2105 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
2106 periods + 1);
2107
2108 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
2109 runnable_contrib = __compute_runnable_contrib(periods);
2110 if (runnable)
2111 sa->runnable_avg_sum += runnable_contrib;
2112 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02002113 }
2114
2115 /* Remainder of delta accrued against u_0` */
2116 if (runnable)
2117 sa->runnable_avg_sum += delta;
2118 sa->runnable_avg_period += delta;
2119
2120 return decayed;
2121}
2122
Paul Turner9ee474f2012-10-04 13:18:30 +02002123/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02002124static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02002125{
2126 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2127 u64 decays = atomic64_read(&cfs_rq->decay_counter);
2128
2129 decays -= se->avg.decay_count;
2130 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02002131 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02002132
2133 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
2134 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02002135
2136 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02002137}
2138
Paul Turnerc566e8e2012-10-04 13:18:30 +02002139#ifdef CONFIG_FAIR_GROUP_SCHED
2140static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2141 int force_update)
2142{
2143 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08002144 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02002145
2146 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
2147 tg_contrib -= cfs_rq->tg_load_contrib;
2148
Alex Shibf5b9862013-06-20 10:18:54 +08002149 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
2150 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02002151 cfs_rq->tg_load_contrib += tg_contrib;
2152 }
2153}
Paul Turner8165e142012-10-04 13:18:31 +02002154
Paul Turnerbb17f652012-10-04 13:18:31 +02002155/*
2156 * Aggregate cfs_rq runnable averages into an equivalent task_group
2157 * representation for computing load contributions.
2158 */
2159static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2160 struct cfs_rq *cfs_rq)
2161{
2162 struct task_group *tg = cfs_rq->tg;
2163 long contrib;
2164
2165 /* The fraction of a cpu used by this cfs_rq */
2166 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
2167 sa->runnable_avg_period + 1);
2168 contrib -= cfs_rq->tg_runnable_contrib;
2169
2170 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
2171 atomic_add(contrib, &tg->runnable_avg);
2172 cfs_rq->tg_runnable_contrib += contrib;
2173 }
2174}
2175
Paul Turner8165e142012-10-04 13:18:31 +02002176static inline void __update_group_entity_contrib(struct sched_entity *se)
2177{
2178 struct cfs_rq *cfs_rq = group_cfs_rq(se);
2179 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02002180 int runnable_avg;
2181
Paul Turner8165e142012-10-04 13:18:31 +02002182 u64 contrib;
2183
2184 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08002185 se->avg.load_avg_contrib = div_u64(contrib,
2186 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02002187
2188 /*
2189 * For group entities we need to compute a correction term in the case
2190 * that they are consuming <1 cpu so that we would contribute the same
2191 * load as a task of equal weight.
2192 *
2193 * Explicitly co-ordinating this measurement would be expensive, but
2194 * fortunately the sum of each cpus contribution forms a usable
2195 * lower-bound on the true value.
2196 *
2197 * Consider the aggregate of 2 contributions. Either they are disjoint
2198 * (and the sum represents true value) or they are disjoint and we are
2199 * understating by the aggregate of their overlap.
2200 *
2201 * Extending this to N cpus, for a given overlap, the maximum amount we
2202 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
2203 * cpus that overlap for this interval and w_i is the interval width.
2204 *
2205 * On a small machine; the first term is well-bounded which bounds the
2206 * total error since w_i is a subset of the period. Whereas on a
2207 * larger machine, while this first term can be larger, if w_i is the
2208 * of consequential size guaranteed to see n_i*w_i quickly converge to
2209 * our upper bound of 1-cpu.
2210 */
2211 runnable_avg = atomic_read(&tg->runnable_avg);
2212 if (runnable_avg < NICE_0_LOAD) {
2213 se->avg.load_avg_contrib *= runnable_avg;
2214 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
2215 }
Paul Turner8165e142012-10-04 13:18:31 +02002216}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002217#else
2218static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
2219 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02002220static inline void __update_tg_runnable_avg(struct sched_avg *sa,
2221 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02002222static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02002223#endif
2224
Paul Turner8165e142012-10-04 13:18:31 +02002225static inline void __update_task_entity_contrib(struct sched_entity *se)
2226{
2227 u32 contrib;
2228
2229 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
2230 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
2231 contrib /= (se->avg.runnable_avg_period + 1);
2232 se->avg.load_avg_contrib = scale_load(contrib);
2233}
2234
Paul Turner2dac7542012-10-04 13:18:30 +02002235/* Compute the current contribution to load_avg by se, return any delta */
2236static long __update_entity_load_avg_contrib(struct sched_entity *se)
2237{
2238 long old_contrib = se->avg.load_avg_contrib;
2239
Paul Turner8165e142012-10-04 13:18:31 +02002240 if (entity_is_task(se)) {
2241 __update_task_entity_contrib(se);
2242 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02002243 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02002244 __update_group_entity_contrib(se);
2245 }
Paul Turner2dac7542012-10-04 13:18:30 +02002246
2247 return se->avg.load_avg_contrib - old_contrib;
2248}
2249
Paul Turner9ee474f2012-10-04 13:18:30 +02002250static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
2251 long load_contrib)
2252{
2253 if (likely(load_contrib < cfs_rq->blocked_load_avg))
2254 cfs_rq->blocked_load_avg -= load_contrib;
2255 else
2256 cfs_rq->blocked_load_avg = 0;
2257}
2258
Paul Turnerf1b17282012-10-04 13:18:31 +02002259static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
2260
Paul Turner9d85f212012-10-04 13:18:29 +02002261/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02002262static inline void update_entity_load_avg(struct sched_entity *se,
2263 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02002264{
Paul Turner2dac7542012-10-04 13:18:30 +02002265 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2266 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02002267 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02002268
Paul Turnerf1b17282012-10-04 13:18:31 +02002269 /*
2270 * For a group entity we need to use their owned cfs_rq_clock_task() in
2271 * case they are the parent of a throttled hierarchy.
2272 */
2273 if (entity_is_task(se))
2274 now = cfs_rq_clock_task(cfs_rq);
2275 else
2276 now = cfs_rq_clock_task(group_cfs_rq(se));
2277
2278 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02002279 return;
2280
2281 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02002282
2283 if (!update_cfs_rq)
2284 return;
2285
Paul Turner2dac7542012-10-04 13:18:30 +02002286 if (se->on_rq)
2287 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02002288 else
2289 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
2290}
2291
2292/*
2293 * Decay the load contributed by all blocked children and account this so that
2294 * their contribution may appropriately discounted when they wake up.
2295 */
Paul Turneraff3e492012-10-04 13:18:30 +02002296static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002297{
Paul Turnerf1b17282012-10-04 13:18:31 +02002298 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002299 u64 decays;
2300
2301 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02002302 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02002303 return;
2304
Alex Shi25099402013-06-20 10:18:55 +08002305 if (atomic_long_read(&cfs_rq->removed_load)) {
2306 unsigned long removed_load;
2307 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02002308 subtract_blocked_load_contrib(cfs_rq, removed_load);
2309 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002310
Paul Turneraff3e492012-10-04 13:18:30 +02002311 if (decays) {
2312 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
2313 decays);
2314 atomic64_add(decays, &cfs_rq->decay_counter);
2315 cfs_rq->last_decay = now;
2316 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02002317
2318 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02002319}
Ben Segall18bf2802012-10-04 12:51:20 +02002320
2321static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
2322{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002323 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02002324 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02002325}
Paul Turner2dac7542012-10-04 13:18:30 +02002326
2327/* Add the load generated by se into cfs_rq's child load-average */
2328static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002329 struct sched_entity *se,
2330 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02002331{
Paul Turneraff3e492012-10-04 13:18:30 +02002332 /*
2333 * We track migrations using entity decay_count <= 0, on a wake-up
2334 * migration we use a negative decay count to track the remote decays
2335 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08002336 *
2337 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
2338 * are seen by enqueue_entity_load_avg() as a migration with an already
2339 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02002340 */
2341 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002342 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02002343 if (se->avg.decay_count) {
2344 /*
2345 * In a wake-up migration we have to approximate the
2346 * time sleeping. This is because we can't synchronize
2347 * clock_task between the two cpus, and it is not
2348 * guaranteed to be read-safe. Instead, we can
2349 * approximate this using our carried decays, which are
2350 * explicitly atomically readable.
2351 */
2352 se->avg.last_runnable_update -= (-se->avg.decay_count)
2353 << 20;
2354 update_entity_load_avg(se, 0);
2355 /* Indicate that we're now synchronized and on-rq */
2356 se->avg.decay_count = 0;
2357 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002358 wakeup = 0;
2359 } else {
Alex Shi282cf492013-06-20 10:18:48 +08002360 /*
2361 * Task re-woke on same cpu (or else migrate_task_rq_fair()
2362 * would have made count negative); we must be careful to avoid
2363 * double-accounting blocked time after synchronizing decays.
2364 */
2365 se->avg.last_runnable_update += __synchronize_entity_decay(se)
2366 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02002367 }
2368
Paul Turneraff3e492012-10-04 13:18:30 +02002369 /* migrated tasks did not contribute to our blocked load */
2370 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02002371 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02002372 update_entity_load_avg(se, 0);
2373 }
Paul Turner9ee474f2012-10-04 13:18:30 +02002374
Paul Turner2dac7542012-10-04 13:18:30 +02002375 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02002376 /* we force update consideration on load-balancer moves */
2377 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02002378}
2379
Paul Turner9ee474f2012-10-04 13:18:30 +02002380/*
2381 * Remove se's load from this cfs_rq child load-average, if the entity is
2382 * transitioning to a blocked state we track its projected decay using
2383 * blocked_load_avg.
2384 */
Paul Turner2dac7542012-10-04 13:18:30 +02002385static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002386 struct sched_entity *se,
2387 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002388{
Paul Turner9ee474f2012-10-04 13:18:30 +02002389 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002390 /* we force update consideration on load-balancer moves */
2391 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002392
Paul Turner2dac7542012-10-04 13:18:30 +02002393 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002394 if (sleep) {
2395 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2396 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2397 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002398}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002399
2400/*
2401 * Update the rq's load with the elapsed running time before entering
2402 * idle. if the last scheduled task is not a CFS task, idle_enter will
2403 * be the only way to update the runnable statistic.
2404 */
2405void idle_enter_fair(struct rq *this_rq)
2406{
2407 update_rq_runnable_avg(this_rq, 1);
2408}
2409
2410/*
2411 * Update the rq's load with the elapsed idle time before a task is
2412 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2413 * be the only way to update the runnable statistic.
2414 */
2415void idle_exit_fair(struct rq *this_rq)
2416{
2417 update_rq_runnable_avg(this_rq, 0);
2418}
2419
Paul Turner9d85f212012-10-04 13:18:29 +02002420#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002421static inline void update_entity_load_avg(struct sched_entity *se,
2422 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002423static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002424static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002425 struct sched_entity *se,
2426 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002427static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002428 struct sched_entity *se,
2429 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002430static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2431 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002432#endif
2433
Ingo Molnar2396af62007-08-09 11:16:48 +02002434static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002435{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002436#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002437 struct task_struct *tsk = NULL;
2438
2439 if (entity_is_task(se))
2440 tsk = task_of(se);
2441
Lucas De Marchi41acab82010-03-10 23:37:45 -03002442 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002443 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002444
2445 if ((s64)delta < 0)
2446 delta = 0;
2447
Lucas De Marchi41acab82010-03-10 23:37:45 -03002448 if (unlikely(delta > se->statistics.sleep_max))
2449 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002450
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002451 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002452 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002453
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002454 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002455 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002456 trace_sched_stat_sleep(tsk, delta);
2457 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002458 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002459 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002460 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002461
2462 if ((s64)delta < 0)
2463 delta = 0;
2464
Lucas De Marchi41acab82010-03-10 23:37:45 -03002465 if (unlikely(delta > se->statistics.block_max))
2466 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002467
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002468 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002469 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002470
Peter Zijlstrae4143142009-07-23 20:13:26 +02002471 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002472 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002473 se->statistics.iowait_sum += delta;
2474 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002475 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002476 }
2477
Andrew Vaginb781a602011-11-28 12:03:35 +03002478 trace_sched_stat_blocked(tsk, delta);
2479
Peter Zijlstrae4143142009-07-23 20:13:26 +02002480 /*
2481 * Blocking time is in units of nanosecs, so shift by
2482 * 20 to get a milliseconds-range estimation of the
2483 * amount of time that the task spent sleeping:
2484 */
2485 if (unlikely(prof_on == SLEEP_PROFILING)) {
2486 profile_hits(SLEEP_PROFILING,
2487 (void *)get_wchan(tsk),
2488 delta >> 20);
2489 }
2490 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002491 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002492 }
2493#endif
2494}
2495
Peter Zijlstraddc97292007-10-15 17:00:10 +02002496static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2497{
2498#ifdef CONFIG_SCHED_DEBUG
2499 s64 d = se->vruntime - cfs_rq->min_vruntime;
2500
2501 if (d < 0)
2502 d = -d;
2503
2504 if (d > 3*sysctl_sched_latency)
2505 schedstat_inc(cfs_rq, nr_spread_over);
2506#endif
2507}
2508
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002509static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002510place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2511{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002512 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002513
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002514 /*
2515 * The 'current' period is already promised to the current tasks,
2516 * however the extra weight of the new task will slow them down a
2517 * little, place the new task so that it fits in the slot that
2518 * stays open at the end.
2519 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002520 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002521 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002522
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002523 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002524 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002525 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002526
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002527 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002528 * Halve their sleep time's effect, to allow
2529 * for a gentler effect of sleepers:
2530 */
2531 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2532 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002533
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002534 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002535 }
2536
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002537 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302538 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002539}
2540
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002541static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2542
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002543static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002544enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002545{
2546 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002547 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302548 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002549 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002550 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002551 se->vruntime += cfs_rq->min_vruntime;
2552
2553 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002554 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002555 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002556 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002557 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002558 account_entity_enqueue(cfs_rq, se);
2559 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002560
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002561 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002562 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002563 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002564 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002565
Ingo Molnard2417e52007-08-09 11:16:47 +02002566 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002567 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002568 if (se != cfs_rq->curr)
2569 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002570 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002571
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002572 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002573 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002574 check_enqueue_throttle(cfs_rq);
2575 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002576}
2577
Rik van Riel2c13c9192011-02-01 09:48:37 -05002578static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002579{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002580 for_each_sched_entity(se) {
2581 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2582 if (cfs_rq->last == se)
2583 cfs_rq->last = NULL;
2584 else
2585 break;
2586 }
2587}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002588
Rik van Riel2c13c9192011-02-01 09:48:37 -05002589static void __clear_buddies_next(struct sched_entity *se)
2590{
2591 for_each_sched_entity(se) {
2592 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2593 if (cfs_rq->next == se)
2594 cfs_rq->next = NULL;
2595 else
2596 break;
2597 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002598}
2599
Rik van Rielac53db52011-02-01 09:51:03 -05002600static void __clear_buddies_skip(struct sched_entity *se)
2601{
2602 for_each_sched_entity(se) {
2603 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2604 if (cfs_rq->skip == se)
2605 cfs_rq->skip = NULL;
2606 else
2607 break;
2608 }
2609}
2610
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002611static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2612{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002613 if (cfs_rq->last == se)
2614 __clear_buddies_last(se);
2615
2616 if (cfs_rq->next == se)
2617 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002618
2619 if (cfs_rq->skip == se)
2620 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002621}
2622
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002623static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002624
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002625static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002626dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002627{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002628 /*
2629 * Update run-time statistics of the 'current'.
2630 */
2631 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002632 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002633
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002634 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002635 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002636#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002637 if (entity_is_task(se)) {
2638 struct task_struct *tsk = task_of(se);
2639
2640 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002641 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002642 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002643 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002644 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002645#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002646 }
2647
Peter Zijlstra2002c692008-11-11 11:52:33 +01002648 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002649
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002650 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002651 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002652 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002653 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002654
2655 /*
2656 * Normalize the entity after updating the min_vruntime because the
2657 * update can refer to the ->curr item and we need to reflect this
2658 * movement in our normalized position.
2659 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002660 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002661 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002662
Paul Turnerd8b49862011-07-21 09:43:41 -07002663 /* return excess runtime on last dequeue */
2664 return_cfs_rq_runtime(cfs_rq);
2665
Peter Zijlstra1e876232011-05-17 16:21:10 -07002666 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002667 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002668}
2669
2670/*
2671 * Preempt the current task with a newly woken task if needed:
2672 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002673static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002674check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002675{
Peter Zijlstra11697832007-09-05 14:32:49 +02002676 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002677 struct sched_entity *se;
2678 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002679
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002680 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002681 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002682 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002683 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002684 /*
2685 * The current task ran long enough, ensure it doesn't get
2686 * re-elected due to buddy favours.
2687 */
2688 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002689 return;
2690 }
2691
2692 /*
2693 * Ensure that a task that missed wakeup preemption by a
2694 * narrow margin doesn't have to wait for a full slice.
2695 * This also mitigates buddy induced latencies under load.
2696 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002697 if (delta_exec < sysctl_sched_min_granularity)
2698 return;
2699
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002700 se = __pick_first_entity(cfs_rq);
2701 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002702
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002703 if (delta < 0)
2704 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002705
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002706 if (delta > ideal_runtime)
2707 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002708}
2709
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002710static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002711set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002712{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002713 /* 'current' is not kept within the tree. */
2714 if (se->on_rq) {
2715 /*
2716 * Any task has to be enqueued before it get to execute on
2717 * a CPU. So account for the time it spent waiting on the
2718 * runqueue.
2719 */
2720 update_stats_wait_end(cfs_rq, se);
2721 __dequeue_entity(cfs_rq, se);
2722 }
2723
Ingo Molnar79303e92007-08-09 11:16:47 +02002724 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002725 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002726#ifdef CONFIG_SCHEDSTATS
2727 /*
2728 * Track our maximum slice length, if the CPU's load is at
2729 * least twice that of our own weight (i.e. dont track it
2730 * when there are only lesser-weight tasks around):
2731 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002732 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002733 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002734 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2735 }
2736#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002737 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002738}
2739
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002740static int
2741wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2742
Rik van Rielac53db52011-02-01 09:51:03 -05002743/*
2744 * Pick the next process, keeping these things in mind, in this order:
2745 * 1) keep things fair between processes/task groups
2746 * 2) pick the "next" process, since someone really wants that to run
2747 * 3) pick the "last" process, for cache locality
2748 * 4) do not run the "skip" process, if something else is available
2749 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002750static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002751{
Rik van Rielac53db52011-02-01 09:51:03 -05002752 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002753 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002754
Rik van Rielac53db52011-02-01 09:51:03 -05002755 /*
2756 * Avoid running the skip buddy, if running something else can
2757 * be done without getting too unfair.
2758 */
2759 if (cfs_rq->skip == se) {
2760 struct sched_entity *second = __pick_next_entity(se);
2761 if (second && wakeup_preempt_entity(second, left) < 1)
2762 se = second;
2763 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002764
Mike Galbraithf685cea2009-10-23 23:09:22 +02002765 /*
2766 * Prefer last buddy, try to return the CPU to a preempted task.
2767 */
2768 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2769 se = cfs_rq->last;
2770
Rik van Rielac53db52011-02-01 09:51:03 -05002771 /*
2772 * Someone really wants this to run. If it's not unfair, run it.
2773 */
2774 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2775 se = cfs_rq->next;
2776
Mike Galbraithf685cea2009-10-23 23:09:22 +02002777 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002778
2779 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002780}
2781
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002782static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2783
Ingo Molnarab6cde22007-08-09 11:16:48 +02002784static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002785{
2786 /*
2787 * If still on the runqueue then deactivate_task()
2788 * was not called and update_curr() has to be done:
2789 */
2790 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002791 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002792
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002793 /* throttle cfs_rqs exceeding runtime */
2794 check_cfs_rq_runtime(cfs_rq);
2795
Peter Zijlstraddc97292007-10-15 17:00:10 +02002796 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002797 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002798 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002799 /* Put 'current' back into the tree. */
2800 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002801 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002802 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002803 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002804 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002805}
2806
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002807static void
2808entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002809{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002810 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002811 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002812 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002813 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002814
Paul Turner43365bd2010-12-15 19:10:17 -08002815 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002816 * Ensure that runnable average is periodically updated.
2817 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002818 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002819 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002820 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002821
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002822#ifdef CONFIG_SCHED_HRTICK
2823 /*
2824 * queued ticks are scheduled to match the slice, so don't bother
2825 * validating it and just reschedule.
2826 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002827 if (queued) {
2828 resched_task(rq_of(cfs_rq)->curr);
2829 return;
2830 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002831 /*
2832 * don't let the period tick interfere with the hrtick preemption
2833 */
2834 if (!sched_feat(DOUBLE_TICK) &&
2835 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2836 return;
2837#endif
2838
Yong Zhang2c2efae2011-07-29 16:20:33 +08002839 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002840 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002841}
2842
Paul Turnerab84d312011-07-21 09:43:28 -07002843
2844/**************************************************
2845 * CFS bandwidth control machinery
2846 */
2847
2848#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002849
2850#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002851static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002852
2853static inline bool cfs_bandwidth_used(void)
2854{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002855 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002856}
2857
2858void account_cfs_bandwidth_used(int enabled, int was_enabled)
2859{
2860 /* only need to count groups transitioning between enabled/!enabled */
2861 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002862 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002863 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002864 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002865}
2866#else /* HAVE_JUMP_LABEL */
2867static bool cfs_bandwidth_used(void)
2868{
2869 return true;
2870}
2871
2872void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2873#endif /* HAVE_JUMP_LABEL */
2874
Paul Turnerab84d312011-07-21 09:43:28 -07002875/*
2876 * default period for cfs group bandwidth.
2877 * default: 0.1s, units: nanoseconds
2878 */
2879static inline u64 default_cfs_period(void)
2880{
2881 return 100000000ULL;
2882}
Paul Turnerec12cb72011-07-21 09:43:30 -07002883
2884static inline u64 sched_cfs_bandwidth_slice(void)
2885{
2886 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2887}
2888
Paul Turnera9cf55b2011-07-21 09:43:32 -07002889/*
2890 * Replenish runtime according to assigned quota and update expiration time.
2891 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2892 * additional synchronization around rq->lock.
2893 *
2894 * requires cfs_b->lock
2895 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002896void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002897{
2898 u64 now;
2899
2900 if (cfs_b->quota == RUNTIME_INF)
2901 return;
2902
2903 now = sched_clock_cpu(smp_processor_id());
2904 cfs_b->runtime = cfs_b->quota;
2905 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2906}
2907
Peter Zijlstra029632f2011-10-25 10:00:11 +02002908static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2909{
2910 return &tg->cfs_bandwidth;
2911}
2912
Paul Turnerf1b17282012-10-04 13:18:31 +02002913/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2914static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2915{
2916 if (unlikely(cfs_rq->throttle_count))
2917 return cfs_rq->throttled_clock_task;
2918
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002919 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002920}
2921
Paul Turner85dac902011-07-21 09:43:33 -07002922/* returns 0 on failure to allocate runtime */
2923static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002924{
2925 struct task_group *tg = cfs_rq->tg;
2926 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002927 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002928
2929 /* note: this is a positive sum as runtime_remaining <= 0 */
2930 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2931
2932 raw_spin_lock(&cfs_b->lock);
2933 if (cfs_b->quota == RUNTIME_INF)
2934 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002935 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002936 /*
2937 * If the bandwidth pool has become inactive, then at least one
2938 * period must have elapsed since the last consumption.
2939 * Refresh the global state and ensure bandwidth timer becomes
2940 * active.
2941 */
2942 if (!cfs_b->timer_active) {
2943 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002944 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002945 }
Paul Turner58088ad2011-07-21 09:43:31 -07002946
2947 if (cfs_b->runtime > 0) {
2948 amount = min(cfs_b->runtime, min_amount);
2949 cfs_b->runtime -= amount;
2950 cfs_b->idle = 0;
2951 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002952 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002953 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002954 raw_spin_unlock(&cfs_b->lock);
2955
2956 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002957 /*
2958 * we may have advanced our local expiration to account for allowed
2959 * spread between our sched_clock and the one on which runtime was
2960 * issued.
2961 */
2962 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2963 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002964
2965 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002966}
2967
2968/*
2969 * Note: This depends on the synchronization provided by sched_clock and the
2970 * fact that rq->clock snapshots this value.
2971 */
2972static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2973{
2974 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002975
2976 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002977 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002978 return;
2979
2980 if (cfs_rq->runtime_remaining < 0)
2981 return;
2982
2983 /*
2984 * If the local deadline has passed we have to consider the
2985 * possibility that our sched_clock is 'fast' and the global deadline
2986 * has not truly expired.
2987 *
2988 * Fortunately we can check determine whether this the case by checking
2989 * whether the global deadline has advanced.
2990 */
2991
2992 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2993 /* extend local deadline, drift is bounded above by 2 ticks */
2994 cfs_rq->runtime_expires += TICK_NSEC;
2995 } else {
2996 /* global deadline is ahead, expiration has passed */
2997 cfs_rq->runtime_remaining = 0;
2998 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002999}
3000
3001static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3002 unsigned long delta_exec)
3003{
Paul Turnera9cf55b2011-07-21 09:43:32 -07003004 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07003005 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07003006 expire_cfs_rq_runtime(cfs_rq);
3007
3008 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07003009 return;
3010
Paul Turner85dac902011-07-21 09:43:33 -07003011 /*
3012 * if we're unable to extend our runtime we resched so that the active
3013 * hierarchy can be throttled
3014 */
3015 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
3016 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07003017}
3018
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003019static __always_inline
3020void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07003021{
Paul Turner56f570e2011-11-07 20:26:33 -08003022 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07003023 return;
3024
3025 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3026}
3027
Paul Turner85dac902011-07-21 09:43:33 -07003028static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3029{
Paul Turner56f570e2011-11-07 20:26:33 -08003030 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07003031}
3032
Paul Turner64660c82011-07-21 09:43:36 -07003033/* check whether cfs_rq, or any parent, is throttled */
3034static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3035{
Paul Turner56f570e2011-11-07 20:26:33 -08003036 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07003037}
3038
3039/*
3040 * Ensure that neither of the group entities corresponding to src_cpu or
3041 * dest_cpu are members of a throttled hierarchy when performing group
3042 * load-balance operations.
3043 */
3044static inline int throttled_lb_pair(struct task_group *tg,
3045 int src_cpu, int dest_cpu)
3046{
3047 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3048
3049 src_cfs_rq = tg->cfs_rq[src_cpu];
3050 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3051
3052 return throttled_hierarchy(src_cfs_rq) ||
3053 throttled_hierarchy(dest_cfs_rq);
3054}
3055
3056/* updated child weight may affect parent so we have to do this bottom up */
3057static int tg_unthrottle_up(struct task_group *tg, void *data)
3058{
3059 struct rq *rq = data;
3060 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3061
3062 cfs_rq->throttle_count--;
3063#ifdef CONFIG_SMP
3064 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02003065 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003066 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02003067 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07003068 }
3069#endif
3070
3071 return 0;
3072}
3073
3074static int tg_throttle_down(struct task_group *tg, void *data)
3075{
3076 struct rq *rq = data;
3077 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3078
Paul Turner82958362012-10-04 13:18:31 +02003079 /* group is entering throttled state, stop time */
3080 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003081 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07003082 cfs_rq->throttle_count++;
3083
3084 return 0;
3085}
3086
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003087static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07003088{
3089 struct rq *rq = rq_of(cfs_rq);
3090 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3091 struct sched_entity *se;
3092 long task_delta, dequeue = 1;
3093
3094 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3095
Paul Turnerf1b17282012-10-04 13:18:31 +02003096 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07003097 rcu_read_lock();
3098 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3099 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07003100
3101 task_delta = cfs_rq->h_nr_running;
3102 for_each_sched_entity(se) {
3103 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3104 /* throttled entity or throttle-on-deactivate */
3105 if (!se->on_rq)
3106 break;
3107
3108 if (dequeue)
3109 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3110 qcfs_rq->h_nr_running -= task_delta;
3111
3112 if (qcfs_rq->load.weight)
3113 dequeue = 0;
3114 }
3115
3116 if (!se)
3117 rq->nr_running -= task_delta;
3118
3119 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003120 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07003121 raw_spin_lock(&cfs_b->lock);
3122 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
3123 raw_spin_unlock(&cfs_b->lock);
3124}
3125
Peter Zijlstra029632f2011-10-25 10:00:11 +02003126void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07003127{
3128 struct rq *rq = rq_of(cfs_rq);
3129 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3130 struct sched_entity *se;
3131 int enqueue = 1;
3132 long task_delta;
3133
Michael Wang22b958d2013-06-04 14:23:39 +08003134 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07003135
3136 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02003137
3138 update_rq_clock(rq);
3139
Paul Turner671fd9d2011-07-21 09:43:34 -07003140 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003141 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07003142 list_del_rcu(&cfs_rq->throttled_list);
3143 raw_spin_unlock(&cfs_b->lock);
3144
Paul Turner64660c82011-07-21 09:43:36 -07003145 /* update hierarchical throttle state */
3146 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3147
Paul Turner671fd9d2011-07-21 09:43:34 -07003148 if (!cfs_rq->load.weight)
3149 return;
3150
3151 task_delta = cfs_rq->h_nr_running;
3152 for_each_sched_entity(se) {
3153 if (se->on_rq)
3154 enqueue = 0;
3155
3156 cfs_rq = cfs_rq_of(se);
3157 if (enqueue)
3158 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3159 cfs_rq->h_nr_running += task_delta;
3160
3161 if (cfs_rq_throttled(cfs_rq))
3162 break;
3163 }
3164
3165 if (!se)
3166 rq->nr_running += task_delta;
3167
3168 /* determine whether we need to wake up potentially idle cpu */
3169 if (rq->curr == rq->idle && rq->cfs.nr_running)
3170 resched_task(rq->curr);
3171}
3172
3173static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
3174 u64 remaining, u64 expires)
3175{
3176 struct cfs_rq *cfs_rq;
3177 u64 runtime = remaining;
3178
3179 rcu_read_lock();
3180 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
3181 throttled_list) {
3182 struct rq *rq = rq_of(cfs_rq);
3183
3184 raw_spin_lock(&rq->lock);
3185 if (!cfs_rq_throttled(cfs_rq))
3186 goto next;
3187
3188 runtime = -cfs_rq->runtime_remaining + 1;
3189 if (runtime > remaining)
3190 runtime = remaining;
3191 remaining -= runtime;
3192
3193 cfs_rq->runtime_remaining += runtime;
3194 cfs_rq->runtime_expires = expires;
3195
3196 /* we check whether we're throttled above */
3197 if (cfs_rq->runtime_remaining > 0)
3198 unthrottle_cfs_rq(cfs_rq);
3199
3200next:
3201 raw_spin_unlock(&rq->lock);
3202
3203 if (!remaining)
3204 break;
3205 }
3206 rcu_read_unlock();
3207
3208 return remaining;
3209}
3210
Paul Turner58088ad2011-07-21 09:43:31 -07003211/*
3212 * Responsible for refilling a task_group's bandwidth and unthrottling its
3213 * cfs_rqs as appropriate. If there has been no activity within the last
3214 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
3215 * used to track this state.
3216 */
3217static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
3218{
Paul Turner671fd9d2011-07-21 09:43:34 -07003219 u64 runtime, runtime_expires;
3220 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07003221
3222 raw_spin_lock(&cfs_b->lock);
3223 /* no need to continue the timer with no bandwidth constraint */
3224 if (cfs_b->quota == RUNTIME_INF)
3225 goto out_unlock;
3226
Paul Turner671fd9d2011-07-21 09:43:34 -07003227 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3228 /* idle depends on !throttled (for the case of a large deficit) */
3229 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003230 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07003231
Paul Turnera9cf55b2011-07-21 09:43:32 -07003232 /* if we're going inactive then everything else can be deferred */
3233 if (idle)
3234 goto out_unlock;
3235
3236 __refill_cfs_bandwidth_runtime(cfs_b);
3237
Paul Turner671fd9d2011-07-21 09:43:34 -07003238 if (!throttled) {
3239 /* mark as potentially idle for the upcoming period */
3240 cfs_b->idle = 1;
3241 goto out_unlock;
3242 }
Paul Turner58088ad2011-07-21 09:43:31 -07003243
Nikhil Raoe8da1b12011-07-21 09:43:40 -07003244 /* account preceding periods in which throttling occurred */
3245 cfs_b->nr_throttled += overrun;
3246
Paul Turner671fd9d2011-07-21 09:43:34 -07003247 /*
3248 * There are throttled entities so we must first use the new bandwidth
3249 * to unthrottle them before making it generally available. This
3250 * ensures that all existing debts will be paid before a new cfs_rq is
3251 * allowed to run.
3252 */
3253 runtime = cfs_b->runtime;
3254 runtime_expires = cfs_b->runtime_expires;
3255 cfs_b->runtime = 0;
3256
3257 /*
3258 * This check is repeated as we are holding onto the new bandwidth
3259 * while we unthrottle. This can potentially race with an unthrottled
3260 * group trying to acquire new bandwidth from the global pool.
3261 */
3262 while (throttled && runtime > 0) {
3263 raw_spin_unlock(&cfs_b->lock);
3264 /* we can't nest cfs_b->lock while distributing bandwidth */
3265 runtime = distribute_cfs_runtime(cfs_b, runtime,
3266 runtime_expires);
3267 raw_spin_lock(&cfs_b->lock);
3268
3269 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
3270 }
3271
3272 /* return (any) remaining runtime */
3273 cfs_b->runtime = runtime;
3274 /*
3275 * While we are ensured activity in the period following an
3276 * unthrottle, this also covers the case in which the new bandwidth is
3277 * insufficient to cover the existing bandwidth deficit. (Forcing the
3278 * timer to remain active while there are any throttled entities.)
3279 */
3280 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07003281out_unlock:
3282 if (idle)
3283 cfs_b->timer_active = 0;
3284 raw_spin_unlock(&cfs_b->lock);
3285
3286 return idle;
3287}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003288
Paul Turnerd8b49862011-07-21 09:43:41 -07003289/* a cfs_rq won't donate quota below this amount */
3290static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
3291/* minimum remaining period time to redistribute slack quota */
3292static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
3293/* how long we wait to gather additional slack before distributing */
3294static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
3295
3296/* are we near the end of the current quota period? */
3297static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
3298{
3299 struct hrtimer *refresh_timer = &cfs_b->period_timer;
3300 u64 remaining;
3301
3302 /* if the call-back is running a quota refresh is already occurring */
3303 if (hrtimer_callback_running(refresh_timer))
3304 return 1;
3305
3306 /* is a quota refresh about to occur? */
3307 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
3308 if (remaining < min_expire)
3309 return 1;
3310
3311 return 0;
3312}
3313
3314static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
3315{
3316 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
3317
3318 /* if there's a quota refresh soon don't bother with slack */
3319 if (runtime_refresh_within(cfs_b, min_left))
3320 return;
3321
3322 start_bandwidth_timer(&cfs_b->slack_timer,
3323 ns_to_ktime(cfs_bandwidth_slack_period));
3324}
3325
3326/* we know any runtime found here is valid as update_curr() precedes return */
3327static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3328{
3329 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3330 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
3331
3332 if (slack_runtime <= 0)
3333 return;
3334
3335 raw_spin_lock(&cfs_b->lock);
3336 if (cfs_b->quota != RUNTIME_INF &&
3337 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
3338 cfs_b->runtime += slack_runtime;
3339
3340 /* we are under rq->lock, defer unthrottling using a timer */
3341 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
3342 !list_empty(&cfs_b->throttled_cfs_rq))
3343 start_cfs_slack_bandwidth(cfs_b);
3344 }
3345 raw_spin_unlock(&cfs_b->lock);
3346
3347 /* even if it's not valid for return we don't want to try again */
3348 cfs_rq->runtime_remaining -= slack_runtime;
3349}
3350
3351static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3352{
Paul Turner56f570e2011-11-07 20:26:33 -08003353 if (!cfs_bandwidth_used())
3354 return;
3355
Paul Turnerfccfdc62011-11-07 20:26:34 -08003356 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07003357 return;
3358
3359 __return_cfs_rq_runtime(cfs_rq);
3360}
3361
3362/*
3363 * This is done with a timer (instead of inline with bandwidth return) since
3364 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
3365 */
3366static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
3367{
3368 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
3369 u64 expires;
3370
3371 /* confirm we're still not at a refresh boundary */
3372 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
3373 return;
3374
3375 raw_spin_lock(&cfs_b->lock);
3376 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
3377 runtime = cfs_b->runtime;
3378 cfs_b->runtime = 0;
3379 }
3380 expires = cfs_b->runtime_expires;
3381 raw_spin_unlock(&cfs_b->lock);
3382
3383 if (!runtime)
3384 return;
3385
3386 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3387
3388 raw_spin_lock(&cfs_b->lock);
3389 if (expires == cfs_b->runtime_expires)
3390 cfs_b->runtime = runtime;
3391 raw_spin_unlock(&cfs_b->lock);
3392}
3393
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003394/*
3395 * When a group wakes up we want to make sure that its quota is not already
3396 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3397 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3398 */
3399static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3400{
Paul Turner56f570e2011-11-07 20:26:33 -08003401 if (!cfs_bandwidth_used())
3402 return;
3403
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003404 /* an active group must be handled by the update_curr()->put() path */
3405 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3406 return;
3407
3408 /* ensure the group is not already throttled */
3409 if (cfs_rq_throttled(cfs_rq))
3410 return;
3411
3412 /* update runtime allocation */
3413 account_cfs_rq_runtime(cfs_rq, 0);
3414 if (cfs_rq->runtime_remaining <= 0)
3415 throttle_cfs_rq(cfs_rq);
3416}
3417
3418/* conditionally throttle active cfs_rq's from put_prev_entity() */
3419static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3420{
Paul Turner56f570e2011-11-07 20:26:33 -08003421 if (!cfs_bandwidth_used())
3422 return;
3423
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003424 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3425 return;
3426
3427 /*
3428 * it's possible for a throttled entity to be forced into a running
3429 * state (e.g. set_curr_task), in this case we're finished.
3430 */
3431 if (cfs_rq_throttled(cfs_rq))
3432 return;
3433
3434 throttle_cfs_rq(cfs_rq);
3435}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003436
Peter Zijlstra029632f2011-10-25 10:00:11 +02003437static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3438{
3439 struct cfs_bandwidth *cfs_b =
3440 container_of(timer, struct cfs_bandwidth, slack_timer);
3441 do_sched_cfs_slack_timer(cfs_b);
3442
3443 return HRTIMER_NORESTART;
3444}
3445
3446static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3447{
3448 struct cfs_bandwidth *cfs_b =
3449 container_of(timer, struct cfs_bandwidth, period_timer);
3450 ktime_t now;
3451 int overrun;
3452 int idle = 0;
3453
3454 for (;;) {
3455 now = hrtimer_cb_get_time(timer);
3456 overrun = hrtimer_forward(timer, now, cfs_b->period);
3457
3458 if (!overrun)
3459 break;
3460
3461 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3462 }
3463
3464 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3465}
3466
3467void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3468{
3469 raw_spin_lock_init(&cfs_b->lock);
3470 cfs_b->runtime = 0;
3471 cfs_b->quota = RUNTIME_INF;
3472 cfs_b->period = ns_to_ktime(default_cfs_period());
3473
3474 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3475 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3476 cfs_b->period_timer.function = sched_cfs_period_timer;
3477 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3478 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3479}
3480
3481static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3482{
3483 cfs_rq->runtime_enabled = 0;
3484 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3485}
3486
3487/* requires cfs_b->lock, may release to reprogram timer */
3488void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3489{
3490 /*
3491 * The timer may be active because we're trying to set a new bandwidth
3492 * period or because we're racing with the tear-down path
3493 * (timer_active==0 becomes visible before the hrtimer call-back
3494 * terminates). In either case we ensure that it's re-programmed
3495 */
3496 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3497 raw_spin_unlock(&cfs_b->lock);
3498 /* ensure cfs_b->lock is available while we wait */
3499 hrtimer_cancel(&cfs_b->period_timer);
3500
3501 raw_spin_lock(&cfs_b->lock);
3502 /* if someone else restarted the timer then we're done */
3503 if (cfs_b->timer_active)
3504 return;
3505 }
3506
3507 cfs_b->timer_active = 1;
3508 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3509}
3510
3511static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3512{
3513 hrtimer_cancel(&cfs_b->period_timer);
3514 hrtimer_cancel(&cfs_b->slack_timer);
3515}
3516
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003517static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003518{
3519 struct cfs_rq *cfs_rq;
3520
3521 for_each_leaf_cfs_rq(rq, cfs_rq) {
3522 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3523
3524 if (!cfs_rq->runtime_enabled)
3525 continue;
3526
3527 /*
3528 * clock_task is not advancing so we just need to make sure
3529 * there's some valid quota amount
3530 */
3531 cfs_rq->runtime_remaining = cfs_b->quota;
3532 if (cfs_rq_throttled(cfs_rq))
3533 unthrottle_cfs_rq(cfs_rq);
3534 }
3535}
3536
3537#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003538static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3539{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003540 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003541}
3542
3543static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3544 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003545static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3546static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003547static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003548
3549static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3550{
3551 return 0;
3552}
Paul Turner64660c82011-07-21 09:43:36 -07003553
3554static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3555{
3556 return 0;
3557}
3558
3559static inline int throttled_lb_pair(struct task_group *tg,
3560 int src_cpu, int dest_cpu)
3561{
3562 return 0;
3563}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003564
3565void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3566
3567#ifdef CONFIG_FAIR_GROUP_SCHED
3568static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003569#endif
3570
Peter Zijlstra029632f2011-10-25 10:00:11 +02003571static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3572{
3573 return NULL;
3574}
3575static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003576static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003577
3578#endif /* CONFIG_CFS_BANDWIDTH */
3579
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003580/**************************************************
3581 * CFS operations on tasks:
3582 */
3583
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003584#ifdef CONFIG_SCHED_HRTICK
3585static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3586{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003587 struct sched_entity *se = &p->se;
3588 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3589
3590 WARN_ON(task_rq(p) != rq);
3591
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003592 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003593 u64 slice = sched_slice(cfs_rq, se);
3594 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3595 s64 delta = slice - ran;
3596
3597 if (delta < 0) {
3598 if (rq->curr == p)
3599 resched_task(p);
3600 return;
3601 }
3602
3603 /*
3604 * Don't schedule slices shorter than 10000ns, that just
3605 * doesn't make sense. Rely on vruntime for fairness.
3606 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003607 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003608 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003609
Peter Zijlstra31656512008-07-18 18:01:23 +02003610 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003611 }
3612}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003613
3614/*
3615 * called from enqueue/dequeue and updates the hrtick when the
3616 * current task is from our class and nr_running is low enough
3617 * to matter.
3618 */
3619static void hrtick_update(struct rq *rq)
3620{
3621 struct task_struct *curr = rq->curr;
3622
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003623 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003624 return;
3625
3626 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3627 hrtick_start_fair(rq, curr);
3628}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303629#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003630static inline void
3631hrtick_start_fair(struct rq *rq, struct task_struct *p)
3632{
3633}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003634
3635static inline void hrtick_update(struct rq *rq)
3636{
3637}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003638#endif
3639
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003640/*
3641 * The enqueue_task method is called before nr_running is
3642 * increased. Here we update the fair scheduling stats and
3643 * then put the task into the rbtree:
3644 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003645static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003646enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003647{
3648 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003649 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003650
3651 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003652 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003653 break;
3654 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003655 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003656
3657 /*
3658 * end evaluation on encountering a throttled cfs_rq
3659 *
3660 * note: in the case of encountering a throttled cfs_rq we will
3661 * post the final h_nr_running increment below.
3662 */
3663 if (cfs_rq_throttled(cfs_rq))
3664 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003665 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003666
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003667 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003668 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003669
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003670 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003671 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003672 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003673
Paul Turner85dac902011-07-21 09:43:33 -07003674 if (cfs_rq_throttled(cfs_rq))
3675 break;
3676
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003677 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003678 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003679 }
3680
Ben Segall18bf2802012-10-04 12:51:20 +02003681 if (!se) {
3682 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003683 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003684 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003685 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003686}
3687
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003688static void set_next_buddy(struct sched_entity *se);
3689
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003690/*
3691 * The dequeue_task method is called before nr_running is
3692 * decreased. We remove the task from the rbtree and
3693 * update the fair scheduling stats:
3694 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003695static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003696{
3697 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003698 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003699 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003700
3701 for_each_sched_entity(se) {
3702 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003703 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003704
3705 /*
3706 * end evaluation on encountering a throttled cfs_rq
3707 *
3708 * note: in the case of encountering a throttled cfs_rq we will
3709 * post the final h_nr_running decrement below.
3710 */
3711 if (cfs_rq_throttled(cfs_rq))
3712 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003713 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003714
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003715 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003716 if (cfs_rq->load.weight) {
3717 /*
3718 * Bias pick_next to pick a task from this cfs_rq, as
3719 * p is sleeping when it is within its sched_slice.
3720 */
3721 if (task_sleep && parent_entity(se))
3722 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003723
3724 /* avoid re-evaluating load for this entity */
3725 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003726 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003727 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003728 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003729 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003730
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003731 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003732 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003733 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003734
Paul Turner85dac902011-07-21 09:43:33 -07003735 if (cfs_rq_throttled(cfs_rq))
3736 break;
3737
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003738 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003739 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003740 }
3741
Ben Segall18bf2802012-10-04 12:51:20 +02003742 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003743 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003744 update_rq_runnable_avg(rq, 1);
3745 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003746 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003747}
3748
Gregory Haskinse7693a32008-01-25 21:08:09 +01003749#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003750/* Used instead of source_load when we know the type == 0 */
3751static unsigned long weighted_cpuload(const int cpu)
3752{
Alex Shib92486c2013-06-20 10:18:50 +08003753 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003754}
3755
3756/*
3757 * Return a low guess at the load of a migration-source cpu weighted
3758 * according to the scheduling class and "nice" value.
3759 *
3760 * We want to under-estimate the load of migration sources, to
3761 * balance conservatively.
3762 */
3763static unsigned long source_load(int cpu, int type)
3764{
3765 struct rq *rq = cpu_rq(cpu);
3766 unsigned long total = weighted_cpuload(cpu);
3767
3768 if (type == 0 || !sched_feat(LB_BIAS))
3769 return total;
3770
3771 return min(rq->cpu_load[type-1], total);
3772}
3773
3774/*
3775 * Return a high guess at the load of a migration-target cpu weighted
3776 * according to the scheduling class and "nice" value.
3777 */
3778static unsigned long target_load(int cpu, int type)
3779{
3780 struct rq *rq = cpu_rq(cpu);
3781 unsigned long total = weighted_cpuload(cpu);
3782
3783 if (type == 0 || !sched_feat(LB_BIAS))
3784 return total;
3785
3786 return max(rq->cpu_load[type-1], total);
3787}
3788
3789static unsigned long power_of(int cpu)
3790{
3791 return cpu_rq(cpu)->cpu_power;
3792}
3793
3794static unsigned long cpu_avg_load_per_task(int cpu)
3795{
3796 struct rq *rq = cpu_rq(cpu);
3797 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003798 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003799
3800 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003801 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003802
3803 return 0;
3804}
3805
Michael Wang62470412013-07-04 12:55:51 +08003806static void record_wakee(struct task_struct *p)
3807{
3808 /*
3809 * Rough decay (wiping) for cost saving, don't worry
3810 * about the boundary, really active task won't care
3811 * about the loss.
3812 */
3813 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3814 current->wakee_flips = 0;
3815 current->wakee_flip_decay_ts = jiffies;
3816 }
3817
3818 if (current->last_wakee != p) {
3819 current->last_wakee = p;
3820 current->wakee_flips++;
3821 }
3822}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003823
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003824static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003825{
3826 struct sched_entity *se = &p->se;
3827 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003828 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003829
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003830#ifndef CONFIG_64BIT
3831 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003832
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003833 do {
3834 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3835 smp_rmb();
3836 min_vruntime = cfs_rq->min_vruntime;
3837 } while (min_vruntime != min_vruntime_copy);
3838#else
3839 min_vruntime = cfs_rq->min_vruntime;
3840#endif
3841
3842 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003843 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003844}
3845
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003846#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003847/*
3848 * effective_load() calculates the load change as seen from the root_task_group
3849 *
3850 * Adding load to a group doesn't make a group heavier, but can cause movement
3851 * of group shares between cpus. Assuming the shares were perfectly aligned one
3852 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003853 *
3854 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3855 * on this @cpu and results in a total addition (subtraction) of @wg to the
3856 * total group weight.
3857 *
3858 * Given a runqueue weight distribution (rw_i) we can compute a shares
3859 * distribution (s_i) using:
3860 *
3861 * s_i = rw_i / \Sum rw_j (1)
3862 *
3863 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3864 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3865 * shares distribution (s_i):
3866 *
3867 * rw_i = { 2, 4, 1, 0 }
3868 * s_i = { 2/7, 4/7, 1/7, 0 }
3869 *
3870 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3871 * task used to run on and the CPU the waker is running on), we need to
3872 * compute the effect of waking a task on either CPU and, in case of a sync
3873 * wakeup, compute the effect of the current task going to sleep.
3874 *
3875 * So for a change of @wl to the local @cpu with an overall group weight change
3876 * of @wl we can compute the new shares distribution (s'_i) using:
3877 *
3878 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3879 *
3880 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3881 * differences in waking a task to CPU 0. The additional task changes the
3882 * weight and shares distributions like:
3883 *
3884 * rw'_i = { 3, 4, 1, 0 }
3885 * s'_i = { 3/8, 4/8, 1/8, 0 }
3886 *
3887 * We can then compute the difference in effective weight by using:
3888 *
3889 * dw_i = S * (s'_i - s_i) (3)
3890 *
3891 * Where 'S' is the group weight as seen by its parent.
3892 *
3893 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3894 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3895 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003896 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003897static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003898{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003899 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003900
Mel Gorman58d081b2013-10-07 11:29:10 +01003901 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003902 return wl;
3903
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003904 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003905 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003906
Paul Turner977dda72011-01-14 17:57:50 -08003907 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003908
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003909 /*
3910 * W = @wg + \Sum rw_j
3911 */
3912 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003913
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003914 /*
3915 * w = rw_i + @wl
3916 */
3917 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003918
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003919 /*
3920 * wl = S * s'_i; see (2)
3921 */
3922 if (W > 0 && w < W)
3923 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003924 else
3925 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003926
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003927 /*
3928 * Per the above, wl is the new se->load.weight value; since
3929 * those are clipped to [MIN_SHARES, ...) do so now. See
3930 * calc_cfs_shares().
3931 */
Paul Turner977dda72011-01-14 17:57:50 -08003932 if (wl < MIN_SHARES)
3933 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003934
3935 /*
3936 * wl = dw_i = S * (s'_i - s_i); see (3)
3937 */
Paul Turner977dda72011-01-14 17:57:50 -08003938 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003939
3940 /*
3941 * Recursively apply this logic to all parent groups to compute
3942 * the final effective load change on the root group. Since
3943 * only the @tg group gets extra weight, all parent groups can
3944 * only redistribute existing shares. @wl is the shift in shares
3945 * resulting from this level per the above.
3946 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003947 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003948 }
3949
3950 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003951}
3952#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003953
Mel Gorman58d081b2013-10-07 11:29:10 +01003954static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003955{
Peter Zijlstra83378262008-06-27 13:41:37 +02003956 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003957}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003958
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003959#endif
3960
Michael Wang62470412013-07-04 12:55:51 +08003961static int wake_wide(struct task_struct *p)
3962{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003963 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003964
3965 /*
3966 * Yeah, it's the switching-frequency, could means many wakee or
3967 * rapidly switch, use factor here will just help to automatically
3968 * adjust the loose-degree, so bigger node will lead to more pull.
3969 */
3970 if (p->wakee_flips > factor) {
3971 /*
3972 * wakee is somewhat hot, it needs certain amount of cpu
3973 * resource, so if waker is far more hot, prefer to leave
3974 * it alone.
3975 */
3976 if (current->wakee_flips > (factor * p->wakee_flips))
3977 return 1;
3978 }
3979
3980 return 0;
3981}
3982
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003983static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003984{
Paul Turnere37b6a72011-01-21 20:44:59 -08003985 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003986 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003987 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003988 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003989 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003990 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003991
Michael Wang62470412013-07-04 12:55:51 +08003992 /*
3993 * If we wake multiple tasks be careful to not bounce
3994 * ourselves around too much.
3995 */
3996 if (wake_wide(p))
3997 return 0;
3998
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003999 idx = sd->wake_idx;
4000 this_cpu = smp_processor_id();
4001 prev_cpu = task_cpu(p);
4002 load = source_load(prev_cpu, idx);
4003 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004004
4005 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004006 * If sync wakeup then subtract the (maximum possible)
4007 * effect of the currently running task from the load
4008 * of the current CPU:
4009 */
Peter Zijlstra83378262008-06-27 13:41:37 +02004010 if (sync) {
4011 tg = task_group(current);
4012 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004013
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004014 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02004015 load += effective_load(tg, prev_cpu, 0, -weight);
4016 }
4017
4018 tg = task_group(p);
4019 weight = p->se.load.weight;
4020
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004021 /*
4022 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004023 * due to the sync cause above having dropped this_load to 0, we'll
4024 * always have an imbalance, but there's really nothing you can do
4025 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02004026 *
4027 * Otherwise check if either cpus are near enough in load to allow this
4028 * task to be woken on this_cpu.
4029 */
Paul Turnere37b6a72011-01-21 20:44:59 -08004030 if (this_load > 0) {
4031 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004032
4033 this_eff_load = 100;
4034 this_eff_load *= power_of(prev_cpu);
4035 this_eff_load *= this_load +
4036 effective_load(tg, this_cpu, weight, weight);
4037
4038 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
4039 prev_eff_load *= power_of(this_cpu);
4040 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
4041
4042 balanced = this_eff_load <= prev_eff_load;
4043 } else
4044 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004045
4046 /*
4047 * If the currently running task will sleep within
4048 * a reasonable amount of time then attract this newly
4049 * woken task:
4050 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02004051 if (sync && balanced)
4052 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004053
Lucas De Marchi41acab82010-03-10 23:37:45 -03004054 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02004055 tl_per_task = cpu_avg_load_per_task(this_cpu);
4056
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004057 if (balanced ||
4058 (this_load <= load &&
4059 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004060 /*
4061 * This domain has SD_WAKE_AFFINE and
4062 * p is cache cold in this domain, and
4063 * there is no bad imbalance.
4064 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004065 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004066 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01004067
4068 return 1;
4069 }
4070 return 0;
4071}
4072
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004073/*
4074 * find_idlest_group finds and returns the least busy CPU group within the
4075 * domain.
4076 */
4077static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02004078find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004079 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01004080{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07004081 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004082 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004083 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004084
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004085 do {
4086 unsigned long load, avg_load;
4087 int local_group;
4088 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004089
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004090 /* Skip over this group if it has no CPUs allowed */
4091 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004092 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004093 continue;
4094
4095 local_group = cpumask_test_cpu(this_cpu,
4096 sched_group_cpus(group));
4097
4098 /* Tally up the load of all CPUs in the group */
4099 avg_load = 0;
4100
4101 for_each_cpu(i, sched_group_cpus(group)) {
4102 /* Bias balancing toward cpus of our domain */
4103 if (local_group)
4104 load = source_load(i, load_idx);
4105 else
4106 load = target_load(i, load_idx);
4107
4108 avg_load += load;
4109 }
4110
4111 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004112 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004113
4114 if (local_group) {
4115 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004116 } else if (avg_load < min_load) {
4117 min_load = avg_load;
4118 idlest = group;
4119 }
4120 } while (group = group->next, group != sd->groups);
4121
4122 if (!idlest || 100*this_load < imbalance*min_load)
4123 return NULL;
4124 return idlest;
4125}
4126
4127/*
4128 * find_idlest_cpu - find the idlest cpu among the cpus in group.
4129 */
4130static int
4131find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
4132{
4133 unsigned long load, min_load = ULONG_MAX;
4134 int idlest = -1;
4135 int i;
4136
4137 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004138 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004139 load = weighted_cpuload(i);
4140
4141 if (load < min_load || (load == min_load && i == this_cpu)) {
4142 min_load = load;
4143 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004144 }
4145 }
4146
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004147 return idlest;
4148}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004149
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004150/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004151 * Try and locate an idle CPU in the sched_domain.
4152 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004153static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004154{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004155 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07004156 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004157 int i = task_cpu(p);
4158
4159 if (idle_cpu(target))
4160 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004161
4162 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004163 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004164 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004165 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
4166 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004167
4168 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07004169 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004170 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01004171 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08004172 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07004173 sg = sd->groups;
4174 do {
4175 if (!cpumask_intersects(sched_group_cpus(sg),
4176 tsk_cpus_allowed(p)))
4177 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02004178
Linus Torvalds37407ea2012-09-16 12:29:43 -07004179 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01004180 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07004181 goto next;
4182 }
4183
4184 target = cpumask_first_and(sched_group_cpus(sg),
4185 tsk_cpus_allowed(p));
4186 goto done;
4187next:
4188 sg = sg->next;
4189 } while (sg != sd->groups);
4190 }
4191done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01004192 return target;
4193}
4194
4195/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004196 * sched_balance_self: balance the current task (running on cpu) in domains
4197 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
4198 * SD_BALANCE_EXEC.
4199 *
4200 * Balance, ie. select the least loaded group.
4201 *
4202 * Returns the target CPU number, or the same CPU if no balancing is needed.
4203 *
4204 * preempt must be disabled.
4205 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01004206static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01004207select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004208{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004209 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004210 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004211 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004212 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004213 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004214
Peter Zijlstra29baa742012-04-23 12:11:21 +02004215 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01004216 return prev_cpu;
4217
Peter Zijlstra0763a662009-09-14 19:37:39 +02004218 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02004219 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004220 want_affine = 1;
4221 new_cpu = prev_cpu;
4222 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01004223
Peter Zijlstradce840a2011-04-07 14:09:50 +02004224 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004225 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01004226 if (!(tmp->flags & SD_LOAD_BALANCE))
4227 continue;
4228
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004229 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004230 * If both cpu and prev_cpu are part of this domain,
4231 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01004232 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07004233 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
4234 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
4235 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08004236 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004237 }
4238
Alex Shif03542a2012-07-26 08:55:34 +08004239 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02004240 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004241 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004242
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004243 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08004244 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02004245 prev_cpu = cpu;
4246
4247 new_cpu = select_idle_sibling(p, prev_cpu);
4248 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01004249 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02004250
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004251 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004252 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004253 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004254 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004255
Peter Zijlstra0763a662009-09-14 19:37:39 +02004256 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004257 sd = sd->child;
4258 continue;
4259 }
4260
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02004261 if (sd_flag & SD_BALANCE_WAKE)
4262 load_idx = sd->wake_idx;
4263
4264 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004265 if (!group) {
4266 sd = sd->child;
4267 continue;
4268 }
4269
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02004270 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004271 if (new_cpu == -1 || new_cpu == cpu) {
4272 /* Now try balancing at a lower domain level of cpu */
4273 sd = sd->child;
4274 continue;
4275 }
4276
4277 /* Now try balancing at a lower domain level of new_cpu */
4278 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004279 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004280 sd = NULL;
4281 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004282 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004283 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02004284 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02004285 sd = tmp;
4286 }
4287 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01004288 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02004289unlock:
4290 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01004291
Peter Zijlstrac88d5912009-09-10 13:50:02 +02004292 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01004293}
Paul Turner0a74bef2012-10-04 13:18:30 +02004294
4295/*
4296 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
4297 * cfs_rq_of(p) references at time of call are still valid and identify the
4298 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
4299 * other assumptions, including the state of rq->lock, should be made.
4300 */
4301static void
4302migrate_task_rq_fair(struct task_struct *p, int next_cpu)
4303{
Paul Turneraff3e492012-10-04 13:18:30 +02004304 struct sched_entity *se = &p->se;
4305 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4306
4307 /*
4308 * Load tracking: accumulate removed load so that it can be processed
4309 * when we next update owning cfs_rq under rq->lock. Tasks contribute
4310 * to blocked load iff they have a positive decay-count. It can never
4311 * be negative here since on-rq tasks have decay-count == 0.
4312 */
4313 if (se->avg.decay_count) {
4314 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08004315 atomic_long_add(se->avg.load_avg_contrib,
4316 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02004317 }
Paul Turner0a74bef2012-10-04 13:18:30 +02004318}
Gregory Haskinse7693a32008-01-25 21:08:09 +01004319#endif /* CONFIG_SMP */
4320
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004321static unsigned long
4322wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004323{
4324 unsigned long gran = sysctl_sched_wakeup_granularity;
4325
4326 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004327 * Since its curr running now, convert the gran from real-time
4328 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01004329 *
4330 * By using 'se' instead of 'curr' we penalize light tasks, so
4331 * they get preempted easier. That is, if 'se' < 'curr' then
4332 * the resulting gran will be larger, therefore penalizing the
4333 * lighter, if otoh 'se' > 'curr' then the resulting gran will
4334 * be smaller, again penalizing the lighter task.
4335 *
4336 * This is especially important for buddies when the leftmost
4337 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004338 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08004339 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02004340}
4341
4342/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02004343 * Should 'se' preempt 'curr'.
4344 *
4345 * |s1
4346 * |s2
4347 * |s3
4348 * g
4349 * |<--->|c
4350 *
4351 * w(c, s1) = -1
4352 * w(c, s2) = 0
4353 * w(c, s3) = 1
4354 *
4355 */
4356static int
4357wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
4358{
4359 s64 gran, vdiff = curr->vruntime - se->vruntime;
4360
4361 if (vdiff <= 0)
4362 return -1;
4363
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01004364 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02004365 if (vdiff > gran)
4366 return 1;
4367
4368 return 0;
4369}
4370
Peter Zijlstra02479092008-11-04 21:25:10 +01004371static void set_last_buddy(struct sched_entity *se)
4372{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004373 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4374 return;
4375
4376 for_each_sched_entity(se)
4377 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004378}
4379
4380static void set_next_buddy(struct sched_entity *se)
4381{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004382 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
4383 return;
4384
4385 for_each_sched_entity(se)
4386 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004387}
4388
Rik van Rielac53db52011-02-01 09:51:03 -05004389static void set_skip_buddy(struct sched_entity *se)
4390{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004391 for_each_sched_entity(se)
4392 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004393}
4394
Peter Zijlstra464b7522008-10-24 11:06:15 +02004395/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004396 * Preempt the current task with a newly woken task if needed:
4397 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004398static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004399{
4400 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004401 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004402 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004403 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004404 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004405
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004406 if (unlikely(se == pse))
4407 return;
4408
Paul Turner5238cdd2011-07-21 09:43:37 -07004409 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004410 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004411 * unconditionally check_prempt_curr() after an enqueue (which may have
4412 * lead to a throttle). This both saves work and prevents false
4413 * next-buddy nomination below.
4414 */
4415 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4416 return;
4417
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004418 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004419 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004420 next_buddy_marked = 1;
4421 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004422
Bharata B Raoaec0a512008-08-28 14:42:49 +05304423 /*
4424 * We can come here with TIF_NEED_RESCHED already set from new task
4425 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004426 *
4427 * Note: this also catches the edge-case of curr being in a throttled
4428 * group (e.g. via set_curr_task), since update_curr() (in the
4429 * enqueue of curr) will have resulted in resched being set. This
4430 * prevents us from potentially nominating it as a false LAST_BUDDY
4431 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304432 */
4433 if (test_tsk_need_resched(curr))
4434 return;
4435
Darren Harta2f5c9a2011-02-22 13:04:33 -08004436 /* Idle tasks are by definition preempted by non-idle tasks. */
4437 if (unlikely(curr->policy == SCHED_IDLE) &&
4438 likely(p->policy != SCHED_IDLE))
4439 goto preempt;
4440
Ingo Molnar91c234b2007-10-15 17:00:18 +02004441 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004442 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4443 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004444 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004445 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004446 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004447
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004448 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004449 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004450 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004451 if (wakeup_preempt_entity(se, pse) == 1) {
4452 /*
4453 * Bias pick_next to pick the sched entity that is
4454 * triggering this preemption.
4455 */
4456 if (!next_buddy_marked)
4457 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004458 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004459 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004460
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004461 return;
4462
4463preempt:
4464 resched_task(curr);
4465 /*
4466 * Only set the backward buddy when the current task is still
4467 * on the rq. This can happen when a wakeup gets interleaved
4468 * with schedule on the ->pre_schedule() or idle_balance()
4469 * point, either of which can * drop the rq lock.
4470 *
4471 * Also, during early boot the idle thread is in the fair class,
4472 * for obvious reasons its a bad idea to schedule back to it.
4473 */
4474 if (unlikely(!se->on_rq || curr == rq->idle))
4475 return;
4476
4477 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4478 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004479}
4480
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004481static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004482{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004483 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004484 struct cfs_rq *cfs_rq = &rq->cfs;
4485 struct sched_entity *se;
4486
Tim Blechmann36ace272009-11-24 11:55:45 +01004487 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004488 return NULL;
4489
4490 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004491 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004492 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004493 cfs_rq = group_cfs_rq(se);
4494 } while (cfs_rq);
4495
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004496 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004497 if (hrtick_enabled(rq))
4498 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004499
4500 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004501}
4502
4503/*
4504 * Account for a descheduled task:
4505 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004506static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004507{
4508 struct sched_entity *se = &prev->se;
4509 struct cfs_rq *cfs_rq;
4510
4511 for_each_sched_entity(se) {
4512 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004513 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004514 }
4515}
4516
Rik van Rielac53db52011-02-01 09:51:03 -05004517/*
4518 * sched_yield() is very simple
4519 *
4520 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4521 */
4522static void yield_task_fair(struct rq *rq)
4523{
4524 struct task_struct *curr = rq->curr;
4525 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4526 struct sched_entity *se = &curr->se;
4527
4528 /*
4529 * Are we the only task in the tree?
4530 */
4531 if (unlikely(rq->nr_running == 1))
4532 return;
4533
4534 clear_buddies(cfs_rq, se);
4535
4536 if (curr->policy != SCHED_BATCH) {
4537 update_rq_clock(rq);
4538 /*
4539 * Update run-time statistics of the 'current'.
4540 */
4541 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004542 /*
4543 * Tell update_rq_clock() that we've just updated,
4544 * so we don't do microscopic update in schedule()
4545 * and double the fastpath cost.
4546 */
4547 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004548 }
4549
4550 set_skip_buddy(se);
4551}
4552
Mike Galbraithd95f4122011-02-01 09:50:51 -05004553static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4554{
4555 struct sched_entity *se = &p->se;
4556
Paul Turner5238cdd2011-07-21 09:43:37 -07004557 /* throttled hierarchies are not runnable */
4558 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004559 return false;
4560
4561 /* Tell the scheduler that we'd really like pse to run next. */
4562 set_next_buddy(se);
4563
Mike Galbraithd95f4122011-02-01 09:50:51 -05004564 yield_task_fair(rq);
4565
4566 return true;
4567}
4568
Peter Williams681f3e62007-10-24 18:23:51 +02004569#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004570/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004571 * Fair scheduling class load-balancing methods.
4572 *
4573 * BASICS
4574 *
4575 * The purpose of load-balancing is to achieve the same basic fairness the
4576 * per-cpu scheduler provides, namely provide a proportional amount of compute
4577 * time to each task. This is expressed in the following equation:
4578 *
4579 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4580 *
4581 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4582 * W_i,0 is defined as:
4583 *
4584 * W_i,0 = \Sum_j w_i,j (2)
4585 *
4586 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4587 * is derived from the nice value as per prio_to_weight[].
4588 *
4589 * The weight average is an exponential decay average of the instantaneous
4590 * weight:
4591 *
4592 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4593 *
4594 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4595 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4596 * can also include other factors [XXX].
4597 *
4598 * To achieve this balance we define a measure of imbalance which follows
4599 * directly from (1):
4600 *
4601 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4602 *
4603 * We them move tasks around to minimize the imbalance. In the continuous
4604 * function space it is obvious this converges, in the discrete case we get
4605 * a few fun cases generally called infeasible weight scenarios.
4606 *
4607 * [XXX expand on:
4608 * - infeasible weights;
4609 * - local vs global optima in the discrete case. ]
4610 *
4611 *
4612 * SCHED DOMAINS
4613 *
4614 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4615 * for all i,j solution, we create a tree of cpus that follows the hardware
4616 * topology where each level pairs two lower groups (or better). This results
4617 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4618 * tree to only the first of the previous level and we decrease the frequency
4619 * of load-balance at each level inv. proportional to the number of cpus in
4620 * the groups.
4621 *
4622 * This yields:
4623 *
4624 * log_2 n 1 n
4625 * \Sum { --- * --- * 2^i } = O(n) (5)
4626 * i = 0 2^i 2^i
4627 * `- size of each group
4628 * | | `- number of cpus doing load-balance
4629 * | `- freq
4630 * `- sum over all levels
4631 *
4632 * Coupled with a limit on how many tasks we can migrate every balance pass,
4633 * this makes (5) the runtime complexity of the balancer.
4634 *
4635 * An important property here is that each CPU is still (indirectly) connected
4636 * to every other cpu in at most O(log n) steps:
4637 *
4638 * The adjacency matrix of the resulting graph is given by:
4639 *
4640 * log_2 n
4641 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4642 * k = 0
4643 *
4644 * And you'll find that:
4645 *
4646 * A^(log_2 n)_i,j != 0 for all i,j (7)
4647 *
4648 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4649 * The task movement gives a factor of O(m), giving a convergence complexity
4650 * of:
4651 *
4652 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4653 *
4654 *
4655 * WORK CONSERVING
4656 *
4657 * In order to avoid CPUs going idle while there's still work to do, new idle
4658 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4659 * tree itself instead of relying on other CPUs to bring it work.
4660 *
4661 * This adds some complexity to both (5) and (8) but it reduces the total idle
4662 * time.
4663 *
4664 * [XXX more?]
4665 *
4666 *
4667 * CGROUPS
4668 *
4669 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4670 *
4671 * s_k,i
4672 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4673 * S_k
4674 *
4675 * Where
4676 *
4677 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4678 *
4679 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4680 *
4681 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4682 * property.
4683 *
4684 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4685 * rewrite all of this once again.]
4686 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004687
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004688static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4689
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004690enum fbq_type { regular, remote, all };
4691
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004692#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004693#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004694#define LBF_DST_PINNED 0x04
4695#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004696
4697struct lb_env {
4698 struct sched_domain *sd;
4699
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004700 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304701 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004702
4703 int dst_cpu;
4704 struct rq *dst_rq;
4705
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304706 struct cpumask *dst_grpmask;
4707 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004708 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004709 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004710 /* The set of CPUs under consideration for load-balancing */
4711 struct cpumask *cpus;
4712
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004713 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004714
4715 unsigned int loop;
4716 unsigned int loop_break;
4717 unsigned int loop_max;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01004718
4719 enum fbq_type fbq_type;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004720};
4721
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004722/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004723 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004724 * Both runqueues must be locked.
4725 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004726static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004727{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004728 deactivate_task(env->src_rq, p, 0);
4729 set_task_cpu(p, env->dst_cpu);
4730 activate_task(env->dst_rq, p, 0);
4731 check_preempt_curr(env->dst_rq, p, 0);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004732}
4733
4734/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004735 * Is this task likely cache-hot:
4736 */
4737static int
4738task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4739{
4740 s64 delta;
4741
4742 if (p->sched_class != &fair_sched_class)
4743 return 0;
4744
4745 if (unlikely(p->policy == SCHED_IDLE))
4746 return 0;
4747
4748 /*
4749 * Buddy candidates are cache hot:
4750 */
4751 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4752 (&p->se == cfs_rq_of(&p->se)->next ||
4753 &p->se == cfs_rq_of(&p->se)->last))
4754 return 1;
4755
4756 if (sysctl_sched_migration_cost == -1)
4757 return 1;
4758 if (sysctl_sched_migration_cost == 0)
4759 return 0;
4760
4761 delta = now - p->se.exec_start;
4762
4763 return delta < (s64)sysctl_sched_migration_cost;
4764}
4765
Mel Gorman3a7053b2013-10-07 11:29:00 +01004766#ifdef CONFIG_NUMA_BALANCING
4767/* Returns true if the destination node has incurred more faults */
4768static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4769{
4770 int src_nid, dst_nid;
4771
4772 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4773 !(env->sd->flags & SD_NUMA)) {
4774 return false;
4775 }
4776
4777 src_nid = cpu_to_node(env->src_cpu);
4778 dst_nid = cpu_to_node(env->dst_cpu);
4779
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004780 if (src_nid == dst_nid)
Mel Gorman3a7053b2013-10-07 11:29:00 +01004781 return false;
4782
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004783 /* Always encourage migration to the preferred node. */
4784 if (dst_nid == p->numa_preferred_nid)
4785 return true;
4786
Rik van Riel887c2902013-10-07 11:29:31 +01004787 /* If both task and group weight improve, this move is a winner. */
4788 if (task_weight(p, dst_nid) > task_weight(p, src_nid) &&
4789 group_weight(p, dst_nid) > group_weight(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004790 return true;
4791
4792 return false;
4793}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004794
4795
4796static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4797{
4798 int src_nid, dst_nid;
4799
4800 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4801 return false;
4802
4803 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4804 return false;
4805
4806 src_nid = cpu_to_node(env->src_cpu);
4807 dst_nid = cpu_to_node(env->dst_cpu);
4808
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004809 if (src_nid == dst_nid)
Mel Gorman7a0f3082013-10-07 11:29:01 +01004810 return false;
4811
Mel Gorman83e1d2c2013-10-07 11:29:27 +01004812 /* Migrating away from the preferred node is always bad. */
4813 if (src_nid == p->numa_preferred_nid)
4814 return true;
4815
Rik van Riel887c2902013-10-07 11:29:31 +01004816 /* If either task or group weight get worse, don't do it. */
4817 if (task_weight(p, dst_nid) < task_weight(p, src_nid) ||
4818 group_weight(p, dst_nid) < group_weight(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004819 return true;
4820
4821 return false;
4822}
4823
Mel Gorman3a7053b2013-10-07 11:29:00 +01004824#else
4825static inline bool migrate_improves_locality(struct task_struct *p,
4826 struct lb_env *env)
4827{
4828 return false;
4829}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004830
4831static inline bool migrate_degrades_locality(struct task_struct *p,
4832 struct lb_env *env)
4833{
4834 return false;
4835}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004836#endif
4837
Peter Zijlstra029632f2011-10-25 10:00:11 +02004838/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004839 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4840 */
4841static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004842int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004843{
4844 int tsk_cache_hot = 0;
4845 /*
4846 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004847 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004848 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004849 * 3) running (obviously), or
4850 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004851 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004852 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4853 return 0;
4854
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004855 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004856 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304857
Lucas De Marchi41acab82010-03-10 23:37:45 -03004858 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304859
Peter Zijlstra62633222013-08-19 12:41:09 +02004860 env->flags |= LBF_SOME_PINNED;
4861
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304862 /*
4863 * Remember if this task can be migrated to any other cpu in
4864 * our sched_group. We may want to revisit it if we couldn't
4865 * meet load balance goals by pulling other tasks on src_cpu.
4866 *
4867 * Also avoid computing new_dst_cpu if we have already computed
4868 * one in current iteration.
4869 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004870 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304871 return 0;
4872
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004873 /* Prevent to re-select dst_cpu via env's cpus */
4874 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4875 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004876 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004877 env->new_dst_cpu = cpu;
4878 break;
4879 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304880 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004881
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004882 return 0;
4883 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304884
4885 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004886 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004887
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004888 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004889 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004890 return 0;
4891 }
4892
4893 /*
4894 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004895 * 1) destination numa is preferred
4896 * 2) task is cache cold, or
4897 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004898 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004899 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004900 if (!tsk_cache_hot)
4901 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004902
4903 if (migrate_improves_locality(p, env)) {
4904#ifdef CONFIG_SCHEDSTATS
4905 if (tsk_cache_hot) {
4906 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4907 schedstat_inc(p, se.statistics.nr_forced_migrations);
4908 }
4909#endif
4910 return 1;
4911 }
4912
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004913 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004914 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004915
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004916 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004917 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004918 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004919 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004920
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004921 return 1;
4922 }
4923
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004924 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4925 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004926}
4927
Peter Zijlstra897c3952009-12-17 17:45:42 +01004928/*
4929 * move_one_task tries to move exactly one task from busiest to this_rq, as
4930 * part of active balancing operations within "domain".
4931 * Returns 1 if successful and 0 otherwise.
4932 *
4933 * Called with both runqueues locked.
4934 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004935static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004936{
4937 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004938
Peter Zijlstra367456c2012-02-20 21:49:09 +01004939 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004940 if (!can_migrate_task(p, env))
4941 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004942
Peter Zijlstra367456c2012-02-20 21:49:09 +01004943 move_task(p, env);
4944 /*
4945 * Right now, this is only the second place move_task()
4946 * is called, so we can safely collect move_task()
4947 * stats here rather than inside move_task().
4948 */
4949 schedstat_inc(env->sd, lb_gained[env->idle]);
4950 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004951 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004952 return 0;
4953}
4954
Peter Zijlstraeb953082012-04-17 13:38:40 +02004955static const unsigned int sched_nr_migrate_break = 32;
4956
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004957/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004958 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004959 * this_rq, as part of a balancing operation within domain "sd".
4960 * Returns 1 if successful and 0 otherwise.
4961 *
4962 * Called with both runqueues locked.
4963 */
4964static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004965{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004966 struct list_head *tasks = &env->src_rq->cfs_tasks;
4967 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004968 unsigned long load;
4969 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004970
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004971 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004972 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004973
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004974 while (!list_empty(tasks)) {
4975 p = list_first_entry(tasks, struct task_struct, se.group_node);
4976
Peter Zijlstra367456c2012-02-20 21:49:09 +01004977 env->loop++;
4978 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004979 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004980 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004981
4982 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004983 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004984 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004985 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004986 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004987 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004988
Joonsoo Kimd3198082013-04-23 17:27:40 +09004989 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004990 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004991
Peter Zijlstra367456c2012-02-20 21:49:09 +01004992 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004993
Peter Zijlstraeb953082012-04-17 13:38:40 +02004994 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004995 goto next;
4996
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004997 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004998 goto next;
4999
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005000 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01005001 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005002 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005003
5004#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01005005 /*
5006 * NEWIDLE balancing is a source of latency, so preemptible
5007 * kernels will stop after the first task is pulled to minimize
5008 * the critical section.
5009 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005010 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005011 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005012#endif
5013
Peter Zijlstraee00e662009-12-17 17:25:20 +01005014 /*
5015 * We only want to steal up to the prescribed amount of
5016 * weighted load.
5017 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005018 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01005019 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005020
Peter Zijlstra367456c2012-02-20 21:49:09 +01005021 continue;
5022next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005023 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005024 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005025
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005026 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005027 * Right now, this is one of only two places move_task() is called,
5028 * so we can safely collect move_task() stats here rather than
5029 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005030 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005031 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005032
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005033 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005034}
5035
Peter Zijlstra230059de2009-12-17 17:47:12 +01005036#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005037/*
5038 * update tg->load_weight by folding this cpu's load_avg
5039 */
Paul Turner48a16752012-10-04 13:18:31 +02005040static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005041{
Paul Turner48a16752012-10-04 13:18:31 +02005042 struct sched_entity *se = tg->se[cpu];
5043 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005044
Paul Turner48a16752012-10-04 13:18:31 +02005045 /* throttled entities do not contribute to load */
5046 if (throttled_hierarchy(cfs_rq))
5047 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005048
Paul Turneraff3e492012-10-04 13:18:30 +02005049 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005050
Paul Turner82958362012-10-04 13:18:31 +02005051 if (se) {
5052 update_entity_load_avg(se, 1);
5053 /*
5054 * We pivot on our runnable average having decayed to zero for
5055 * list removal. This generally implies that all our children
5056 * have also been removed (modulo rounding error or bandwidth
5057 * control); however, such cases are rare and we can fix these
5058 * at enqueue.
5059 *
5060 * TODO: fix up out-of-order children on enqueue.
5061 */
5062 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
5063 list_del_leaf_cfs_rq(cfs_rq);
5064 } else {
Paul Turner48a16752012-10-04 13:18:31 +02005065 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02005066 update_rq_runnable_avg(rq, rq->nr_running);
5067 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005068}
5069
Paul Turner48a16752012-10-04 13:18:31 +02005070static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005071{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005072 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02005073 struct cfs_rq *cfs_rq;
5074 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005075
Paul Turner48a16752012-10-04 13:18:31 +02005076 raw_spin_lock_irqsave(&rq->lock, flags);
5077 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02005078 /*
5079 * Iterates the task_group tree in a bottom up fashion, see
5080 * list_add_leaf_cfs_rq() for details.
5081 */
Paul Turner64660c82011-07-21 09:43:36 -07005082 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02005083 /*
5084 * Note: We may want to consider periodically releasing
5085 * rq->lock about these updates so that creating many task
5086 * groups does not result in continually extending hold time.
5087 */
5088 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07005089 }
Paul Turner48a16752012-10-04 13:18:31 +02005090
5091 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005092}
5093
Peter Zijlstra9763b672011-07-13 13:09:25 +02005094/*
Vladimir Davydov68520792013-07-15 17:49:19 +04005095 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02005096 * This needs to be done in a top-down fashion because the load of a child
5097 * group is a fraction of its parents load.
5098 */
Vladimir Davydov68520792013-07-15 17:49:19 +04005099static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02005100{
Vladimir Davydov68520792013-07-15 17:49:19 +04005101 struct rq *rq = rq_of(cfs_rq);
5102 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005103 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04005104 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005105
Vladimir Davydov68520792013-07-15 17:49:19 +04005106 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005107 return;
5108
Vladimir Davydov68520792013-07-15 17:49:19 +04005109 cfs_rq->h_load_next = NULL;
5110 for_each_sched_entity(se) {
5111 cfs_rq = cfs_rq_of(se);
5112 cfs_rq->h_load_next = se;
5113 if (cfs_rq->last_h_load_update == now)
5114 break;
5115 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02005116
Vladimir Davydov68520792013-07-15 17:49:19 +04005117 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04005118 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04005119 cfs_rq->last_h_load_update = now;
5120 }
5121
5122 while ((se = cfs_rq->h_load_next) != NULL) {
5123 load = cfs_rq->h_load;
5124 load = div64_ul(load * se->avg.load_avg_contrib,
5125 cfs_rq->runnable_load_avg + 1);
5126 cfs_rq = group_cfs_rq(se);
5127 cfs_rq->h_load = load;
5128 cfs_rq->last_h_load_update = now;
5129 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02005130}
5131
Peter Zijlstra367456c2012-02-20 21:49:09 +01005132static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01005133{
Peter Zijlstra367456c2012-02-20 21:49:09 +01005134 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005135
Vladimir Davydov68520792013-07-15 17:49:19 +04005136 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08005137 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
5138 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01005139}
5140#else
Paul Turner48a16752012-10-04 13:18:31 +02005141static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08005142{
5143}
5144
Peter Zijlstra367456c2012-02-20 21:49:09 +01005145static unsigned long task_h_load(struct task_struct *p)
5146{
Alex Shia003a252013-06-20 10:18:51 +08005147 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01005148}
5149#endif
5150
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005151/********** Helpers for find_busiest_group ************************/
5152/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005153 * sg_lb_stats - stats of a sched_group required for load_balancing
5154 */
5155struct sg_lb_stats {
5156 unsigned long avg_load; /*Avg load across the CPUs of the group */
5157 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005158 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005159 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005160 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005161 unsigned int sum_nr_running; /* Nr tasks running in the group */
5162 unsigned int group_capacity;
5163 unsigned int idle_cpus;
5164 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005165 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07005166 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005167#ifdef CONFIG_NUMA_BALANCING
5168 unsigned int nr_numa_running;
5169 unsigned int nr_preferred_running;
5170#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005171};
5172
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005173/*
5174 * sd_lb_stats - Structure to store the statistics of a sched_domain
5175 * during load balancing.
5176 */
5177struct sd_lb_stats {
5178 struct sched_group *busiest; /* Busiest group in this sd */
5179 struct sched_group *local; /* Local group in this sd */
5180 unsigned long total_load; /* Total load of all groups in sd */
5181 unsigned long total_pwr; /* Total power of all groups in sd */
5182 unsigned long avg_load; /* Average load across all groups in sd */
5183
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005184 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005185 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005186};
5187
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005188static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
5189{
5190 /*
5191 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
5192 * local_stat because update_sg_lb_stats() does a full clear/assignment.
5193 * We must however clear busiest_stat::avg_load because
5194 * update_sd_pick_busiest() reads this before assignment.
5195 */
5196 *sds = (struct sd_lb_stats){
5197 .busiest = NULL,
5198 .local = NULL,
5199 .total_load = 0UL,
5200 .total_pwr = 0UL,
5201 .busiest_stat = {
5202 .avg_load = 0UL,
5203 },
5204 };
5205}
5206
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005207/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005208 * get_sd_load_idx - Obtain the load index for a given sched domain.
5209 * @sd: The sched_domain whose load_idx is to be obtained.
5210 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005211 *
5212 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005213 */
5214static inline int get_sd_load_idx(struct sched_domain *sd,
5215 enum cpu_idle_type idle)
5216{
5217 int load_idx;
5218
5219 switch (idle) {
5220 case CPU_NOT_IDLE:
5221 load_idx = sd->busy_idx;
5222 break;
5223
5224 case CPU_NEWLY_IDLE:
5225 load_idx = sd->newidle_idx;
5226 break;
5227 default:
5228 load_idx = sd->idle_idx;
5229 break;
5230 }
5231
5232 return load_idx;
5233}
5234
Li Zefan15f803c2013-03-05 16:07:11 +08005235static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005236{
Nikhil Rao1399fa72011-05-18 10:09:39 -07005237 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005238}
5239
5240unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
5241{
5242 return default_scale_freq_power(sd, cpu);
5243}
5244
Li Zefan15f803c2013-03-05 16:07:11 +08005245static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005246{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005247 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005248 unsigned long smt_gain = sd->smt_gain;
5249
5250 smt_gain /= weight;
5251
5252 return smt_gain;
5253}
5254
5255unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
5256{
5257 return default_scale_smt_power(sd, cpu);
5258}
5259
Li Zefan15f803c2013-03-05 16:07:11 +08005260static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005261{
5262 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005263 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005264
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005265 /*
5266 * Since we're reading these variables without serialization make sure
5267 * we read them once before doing sanity checks on them.
5268 */
5269 age_stamp = ACCESS_ONCE(rq->age_stamp);
5270 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005271
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005272 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005273
5274 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005275 /* Ensures that power won't end up being negative */
5276 available = 0;
5277 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02005278 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07005279 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280
Nikhil Rao1399fa72011-05-18 10:09:39 -07005281 if (unlikely((s64)total < SCHED_POWER_SCALE))
5282 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005283
Nikhil Rao1399fa72011-05-18 10:09:39 -07005284 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005285
5286 return div_u64(available, total);
5287}
5288
5289static void update_cpu_power(struct sched_domain *sd, int cpu)
5290{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02005291 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07005292 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005293 struct sched_group *sdg = sd->groups;
5294
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005295 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
5296 if (sched_feat(ARCH_POWER))
5297 power *= arch_scale_smt_power(sd, cpu);
5298 else
5299 power *= default_scale_smt_power(sd, cpu);
5300
Nikhil Rao1399fa72011-05-18 10:09:39 -07005301 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005302 }
5303
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005304 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005305
5306 if (sched_feat(ARCH_POWER))
5307 power *= arch_scale_freq_power(sd, cpu);
5308 else
5309 power *= default_scale_freq_power(sd, cpu);
5310
Nikhil Rao1399fa72011-05-18 10:09:39 -07005311 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005312
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005313 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005314 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005315
5316 if (!power)
5317 power = 1;
5318
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02005319 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005320 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005321}
5322
Peter Zijlstra029632f2011-10-25 10:00:11 +02005323void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005324{
5325 struct sched_domain *child = sd->child;
5326 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005327 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01005328 unsigned long interval;
5329
5330 interval = msecs_to_jiffies(sd->balance_interval);
5331 interval = clamp(interval, 1UL, max_load_balance_interval);
5332 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005333
5334 if (!child) {
5335 update_cpu_power(sd, cpu);
5336 return;
5337 }
5338
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005339 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005340
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005341 if (child->flags & SD_OVERLAP) {
5342 /*
5343 * SD_OVERLAP domains cannot assume that child groups
5344 * span the current group.
5345 */
5346
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005347 for_each_cpu(cpu, sched_group_cpus(sdg)) {
5348 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
5349
5350 power_orig += sg->sgp->power_orig;
5351 power += sg->sgp->power;
5352 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005353 } else {
5354 /*
5355 * !SD_OVERLAP domains can assume that child groups
5356 * span the current group.
5357 */
5358
5359 group = child->groups;
5360 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005361 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02005362 power += group->sgp->power;
5363 group = group->next;
5364 } while (group != child->groups);
5365 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005366
Peter Zijlstra863bffc2013-08-28 11:44:39 +02005367 sdg->sgp->power_orig = power_orig;
5368 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005369}
5370
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005371/*
5372 * Try and fix up capacity for tiny siblings, this is needed when
5373 * things like SD_ASYM_PACKING need f_b_g to select another sibling
5374 * which on its own isn't powerful enough.
5375 *
5376 * See update_sd_pick_busiest() and check_asym_packing().
5377 */
5378static inline int
5379fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
5380{
5381 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07005382 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005383 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02005384 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005385 return 0;
5386
5387 /*
5388 * If ~90% of the cpu_power is still there, we're good.
5389 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005390 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005391 return 1;
5392
5393 return 0;
5394}
5395
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005396/*
5397 * Group imbalance indicates (and tries to solve) the problem where balancing
5398 * groups is inadequate due to tsk_cpus_allowed() constraints.
5399 *
5400 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5401 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5402 * Something like:
5403 *
5404 * { 0 1 2 3 } { 4 5 6 7 }
5405 * * * * *
5406 *
5407 * If we were to balance group-wise we'd place two tasks in the first group and
5408 * two tasks in the second group. Clearly this is undesired as it will overload
5409 * cpu 3 and leave one of the cpus in the second group unused.
5410 *
5411 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005412 * by noticing the lower domain failed to reach balance and had difficulty
5413 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005414 *
5415 * When this is so detected; this group becomes a candidate for busiest; see
5416 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005417 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005418 * to create an effective group imbalance.
5419 *
5420 * This is a somewhat tricky proposition since the next run might not find the
5421 * group imbalance and decide the groups need to be balanced again. A most
5422 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005423 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005424
Peter Zijlstra62633222013-08-19 12:41:09 +02005425static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005426{
Peter Zijlstra62633222013-08-19 12:41:09 +02005427 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005428}
5429
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005430/*
5431 * Compute the group capacity.
5432 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005433 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5434 * first dividing out the smt factor and computing the actual number of cores
5435 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005436 */
5437static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5438{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005439 unsigned int capacity, smt, cpus;
5440 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005441
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005442 power = group->sgp->power;
5443 power_orig = group->sgp->power_orig;
5444 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005445
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005446 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5447 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5448 capacity = cpus / smt; /* cores */
5449
5450 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005451 if (!capacity)
5452 capacity = fix_small_capacity(env->sd, group);
5453
5454 return capacity;
5455}
5456
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005457/**
5458 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5459 * @env: The load balancing environment.
5460 * @group: sched_group whose statistics are to be updated.
5461 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5462 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005463 * @sgs: variable to hold the statistics for this group.
5464 */
5465static inline void update_sg_lb_stats(struct lb_env *env,
5466 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005467 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005468{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005469 unsigned long nr_running;
5470 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005471 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005472
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005473 memset(sgs, 0, sizeof(*sgs));
5474
Michael Wangb9403132012-07-12 16:10:13 +08005475 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005476 struct rq *rq = cpu_rq(i);
5477
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005478 nr_running = rq->nr_running;
5479
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005480 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005481 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005482 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005483 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005484 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005485
5486 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005487 sgs->sum_nr_running += nr_running;
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005488#ifdef CONFIG_NUMA_BALANCING
5489 sgs->nr_numa_running += rq->nr_numa_running;
5490 sgs->nr_preferred_running += rq->nr_preferred_running;
5491#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005492 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005493 if (idle_cpu(i))
5494 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005495 }
5496
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005497 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005498 sgs->group_power = group->sgp->power;
5499 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005500
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005501 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005502 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005503
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005504 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005505
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005506 sgs->group_imb = sg_imbalanced(group);
5507 sgs->group_capacity = sg_capacity(env, group);
5508
Nikhil Raofab47622010-10-15 13:12:29 -07005509 if (sgs->group_capacity > sgs->sum_nr_running)
5510 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005511}
5512
5513/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005514 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005515 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005516 * @sds: sched_domain statistics
5517 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005518 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005519 *
5520 * Determine if @sg is a busier group than the previously selected
5521 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005522 *
5523 * Return: %true if @sg is a busier group than the previously selected
5524 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005525 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005526static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005527 struct sd_lb_stats *sds,
5528 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005529 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005530{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005531 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005532 return false;
5533
5534 if (sgs->sum_nr_running > sgs->group_capacity)
5535 return true;
5536
5537 if (sgs->group_imb)
5538 return true;
5539
5540 /*
5541 * ASYM_PACKING needs to move all the work to the lowest
5542 * numbered CPUs in the group, therefore mark all groups
5543 * higher than ourself as busy.
5544 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005545 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5546 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005547 if (!sds->busiest)
5548 return true;
5549
5550 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5551 return true;
5552 }
5553
5554 return false;
5555}
5556
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005557#ifdef CONFIG_NUMA_BALANCING
5558static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5559{
5560 if (sgs->sum_nr_running > sgs->nr_numa_running)
5561 return regular;
5562 if (sgs->sum_nr_running > sgs->nr_preferred_running)
5563 return remote;
5564 return all;
5565}
5566
5567static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5568{
5569 if (rq->nr_running > rq->nr_numa_running)
5570 return regular;
5571 if (rq->nr_running > rq->nr_preferred_running)
5572 return remote;
5573 return all;
5574}
5575#else
5576static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
5577{
5578 return all;
5579}
5580
5581static inline enum fbq_type fbq_classify_rq(struct rq *rq)
5582{
5583 return regular;
5584}
5585#endif /* CONFIG_NUMA_BALANCING */
5586
Michael Neuling532cb4c2010-06-08 14:57:02 +10005587/**
Hui Kang461819a2011-10-11 23:00:59 -04005588 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005589 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005590 * @balance: Should we balance.
5591 * @sds: variable to hold the statistics for this sched_domain.
5592 */
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005593static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005594{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005595 struct sched_domain *child = env->sd->child;
5596 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005597 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005598 int load_idx, prefer_sibling = 0;
5599
5600 if (child && child->flags & SD_PREFER_SIBLING)
5601 prefer_sibling = 1;
5602
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005603 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005604
5605 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005606 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005607 int local_group;
5608
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005609 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005610 if (local_group) {
5611 sds->local = sg;
5612 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005613
5614 if (env->idle != CPU_NEWLY_IDLE ||
5615 time_after_eq(jiffies, sg->sgp->next_update))
5616 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005617 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005618
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005619 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005620
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005621 if (local_group)
5622 goto next_group;
5623
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005624 /*
5625 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005626 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005627 * and move all the excess tasks away. We lower the capacity
5628 * of a group only if the local group has the capacity to fit
5629 * these excess tasks, i.e. nr_running < group_capacity. The
5630 * extra check prevents the case where you always pull from the
5631 * heaviest group when it is already under-utilized (possible
5632 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005633 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005634 if (prefer_sibling && sds->local &&
5635 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005636 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005637
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005638 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005639 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005640 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005641 }
5642
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005643next_group:
5644 /* Now, start updating sd_lb_stats */
5645 sds->total_load += sgs->group_load;
5646 sds->total_pwr += sgs->group_power;
5647
Michael Neuling532cb4c2010-06-08 14:57:02 +10005648 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005649 } while (sg != env->sd->groups);
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005650
5651 if (env->sd->flags & SD_NUMA)
5652 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005653}
5654
Michael Neuling532cb4c2010-06-08 14:57:02 +10005655/**
5656 * check_asym_packing - Check to see if the group is packed into the
5657 * sched doman.
5658 *
5659 * This is primarily intended to used at the sibling level. Some
5660 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5661 * case of POWER7, it can move to lower SMT modes only when higher
5662 * threads are idle. When in lower SMT modes, the threads will
5663 * perform better since they share less core resources. Hence when we
5664 * have idle threads, we want them to be the higher ones.
5665 *
5666 * This packing function is run on idle threads. It checks to see if
5667 * the busiest CPU in this domain (core in the P7 case) has a higher
5668 * CPU number than the packing function is being run on. Here we are
5669 * assuming lower CPU number will be equivalent to lower a SMT thread
5670 * number.
5671 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005672 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005673 * this CPU. The amount of the imbalance is returned in *imbalance.
5674 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005675 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005676 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005677 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005678static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005679{
5680 int busiest_cpu;
5681
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005682 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005683 return 0;
5684
5685 if (!sds->busiest)
5686 return 0;
5687
5688 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005689 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005690 return 0;
5691
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005692 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005693 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5694 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005695
Michael Neuling532cb4c2010-06-08 14:57:02 +10005696 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005697}
5698
5699/**
5700 * fix_small_imbalance - Calculate the minor imbalance that exists
5701 * amongst the groups of a sched_domain, during
5702 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005703 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005704 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005705 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005706static inline
5707void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005708{
5709 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5710 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005711 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005712 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005713
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005714 local = &sds->local_stat;
5715 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005716
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005717 if (!local->sum_nr_running)
5718 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5719 else if (busiest->load_per_task > local->load_per_task)
5720 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005721
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005722 scaled_busy_load_per_task =
5723 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005724 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005725
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005726 if (busiest->avg_load + scaled_busy_load_per_task >=
5727 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005728 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005729 return;
5730 }
5731
5732 /*
5733 * OK, we don't have enough imbalance to justify moving tasks,
5734 * however we may be able to increase total CPU power used by
5735 * moving them.
5736 */
5737
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005738 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005739 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005740 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005741 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005742 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005743
5744 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005745 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005746 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005747 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005748 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005749 min(busiest->load_per_task,
5750 busiest->avg_load - tmp);
5751 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005752
5753 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005754 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005755 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005756 tmp = (busiest->avg_load * busiest->group_power) /
5757 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005758 } else {
5759 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005760 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005761 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005762 pwr_move += local->group_power *
5763 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005764 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005765
5766 /* Move if we gain throughput */
5767 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005768 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005769}
5770
5771/**
5772 * calculate_imbalance - Calculate the amount of imbalance present within the
5773 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005774 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005775 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005776 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005777static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005778{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005779 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005780 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005781
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005782 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005783 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005784
5785 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005786 /*
5787 * In the group_imb case we cannot rely on group-wide averages
5788 * to ensure cpu-load equilibrium, look at wider averages. XXX
5789 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005790 busiest->load_per_task =
5791 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005792 }
5793
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005794 /*
5795 * In the presence of smp nice balancing, certain scenarios can have
5796 * max load less than avg load(as we skip the groups at or below
5797 * its cpu_power, while calculating max_load..)
5798 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005799 if (busiest->avg_load <= sds->avg_load ||
5800 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005801 env->imbalance = 0;
5802 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005803 }
5804
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005805 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005806 /*
5807 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005808 * Except of course for the group_imb case, since then we might
5809 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005810 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005811 load_above_capacity =
5812 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005813
Nikhil Rao1399fa72011-05-18 10:09:39 -07005814 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005815 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005816 }
5817
5818 /*
5819 * We're trying to get all the cpus to the average_load, so we don't
5820 * want to push ourselves above the average load, nor do we wish to
5821 * reduce the max loaded cpu below the average load. At the same time,
5822 * we also don't want to reduce the group load below the group capacity
5823 * (so that we can implement power-savings policies etc). Thus we look
5824 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005825 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005826 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005827
5828 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005829 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005830 max_pull * busiest->group_power,
5831 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005832 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005833
5834 /*
5835 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005836 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005837 * a think about bumping its value to force at least one task to be
5838 * moved
5839 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005840 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005841 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005842}
Nikhil Raofab47622010-10-15 13:12:29 -07005843
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005844/******* find_busiest_group() helpers end here *********************/
5845
5846/**
5847 * find_busiest_group - Returns the busiest group within the sched_domain
5848 * if there is an imbalance. If there isn't an imbalance, and
5849 * the user has opted for power-savings, it returns a group whose
5850 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5851 * such a group exists.
5852 *
5853 * Also calculates the amount of weighted load which should be moved
5854 * to restore balance.
5855 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005856 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005857 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005858 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005859 * - If no imbalance and user has opted for power-savings balance,
5860 * return the least loaded group whose CPUs can be
5861 * put to idle by rebalancing its tasks onto our group.
5862 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005863static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005864{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005865 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005866 struct sd_lb_stats sds;
5867
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005868 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005869
5870 /*
5871 * Compute the various statistics relavent for load balancing at
5872 * this level.
5873 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005874 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005875 local = &sds.local_stat;
5876 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005877
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005878 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5879 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005880 return sds.busiest;
5881
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005882 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005883 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005884 goto out_balanced;
5885
Nikhil Rao1399fa72011-05-18 10:09:39 -07005886 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005887
Peter Zijlstra866ab432011-02-21 18:56:47 +01005888 /*
5889 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005890 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005891 * isn't true due to cpus_allowed constraints and the like.
5892 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005893 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005894 goto force_balance;
5895
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005896 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005897 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5898 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005899 goto force_balance;
5900
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005901 /*
5902 * If the local group is more busy than the selected busiest group
5903 * don't try and pull any tasks.
5904 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005905 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005906 goto out_balanced;
5907
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005908 /*
5909 * Don't pull any tasks if this group is already above the domain
5910 * average load.
5911 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005912 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005913 goto out_balanced;
5914
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005915 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005916 /*
5917 * This cpu is idle. If the busiest group load doesn't
5918 * have more tasks than the number of available cpu's and
5919 * there is no imbalance between this and busiest group
5920 * wrt to idle cpu's, it is balanced.
5921 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005922 if ((local->idle_cpus < busiest->idle_cpus) &&
5923 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005924 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005925 } else {
5926 /*
5927 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5928 * imbalance_pct to be conservative.
5929 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005930 if (100 * busiest->avg_load <=
5931 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005932 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005933 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005934
Nikhil Raofab47622010-10-15 13:12:29 -07005935force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005936 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005937 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005938 return sds.busiest;
5939
5940out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005941 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005942 return NULL;
5943}
5944
5945/*
5946 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5947 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005948static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005949 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005950{
5951 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005952 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005953 int i;
5954
Peter Zijlstra6906a402013-08-19 15:20:21 +02005955 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005956 unsigned long power, capacity, wl;
5957 enum fbq_type rt;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005958
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01005959 rq = cpu_rq(i);
5960 rt = fbq_classify_rq(rq);
5961
5962 /*
5963 * We classify groups/runqueues into three groups:
5964 * - regular: there are !numa tasks
5965 * - remote: there are numa tasks that run on the 'wrong' node
5966 * - all: there is no distinction
5967 *
5968 * In order to avoid migrating ideally placed numa tasks,
5969 * ignore those when there's better options.
5970 *
5971 * If we ignore the actual busiest queue to migrate another
5972 * task, the next balance pass can still reduce the busiest
5973 * queue by moving tasks around inside the node.
5974 *
5975 * If we cannot move enough load due to this classification
5976 * the next pass will adjust the group classification and
5977 * allow migration of more tasks.
5978 *
5979 * Both cases only affect the total convergence complexity.
5980 */
5981 if (rt > env->fbq_type)
5982 continue;
5983
5984 power = power_of(i);
5985 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005986 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005987 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005988
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005989 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005990
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005991 /*
5992 * When comparing with imbalance, use weighted_cpuload()
5993 * which is not scaled with the cpu power.
5994 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005995 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005996 continue;
5997
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005998 /*
5999 * For the load comparisons with the other cpu's, consider
6000 * the weighted_cpuload() scaled with the cpu power, so that
6001 * the load can be moved away from the cpu that is potentially
6002 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006003 *
6004 * Thus we're looking for max(wl_i / power_i), crosswise
6005 * multiplication to rid ourselves of the division works out
6006 * to: wl_i * power_j > wl_j * power_i; where j is our
6007 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01006008 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09006009 if (wl * busiest_power > busiest_load * power) {
6010 busiest_load = wl;
6011 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006012 busiest = rq;
6013 }
6014 }
6015
6016 return busiest;
6017}
6018
6019/*
6020 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
6021 * so long as it is large enough.
6022 */
6023#define MAX_PINNED_INTERVAL 512
6024
6025/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09006026DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006027
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006028static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006029{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006030 struct sched_domain *sd = env->sd;
6031
6032 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10006033
6034 /*
6035 * ASYM_PACKING needs to force migrate tasks from busy but
6036 * higher numbered CPUs in order to pack all tasks in the
6037 * lowest numbered CPUs.
6038 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006039 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10006040 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01006041 }
6042
6043 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
6044}
6045
Tejun Heo969c7922010-05-06 18:49:21 +02006046static int active_load_balance_cpu_stop(void *data);
6047
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006048static int should_we_balance(struct lb_env *env)
6049{
6050 struct sched_group *sg = env->sd->groups;
6051 struct cpumask *sg_cpus, *sg_mask;
6052 int cpu, balance_cpu = -1;
6053
6054 /*
6055 * In the newly idle case, we will allow all the cpu's
6056 * to do the newly idle load balance.
6057 */
6058 if (env->idle == CPU_NEWLY_IDLE)
6059 return 1;
6060
6061 sg_cpus = sched_group_cpus(sg);
6062 sg_mask = sched_group_mask(sg);
6063 /* Try to find first idle cpu */
6064 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
6065 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
6066 continue;
6067
6068 balance_cpu = cpu;
6069 break;
6070 }
6071
6072 if (balance_cpu == -1)
6073 balance_cpu = group_balance_cpu(sg);
6074
6075 /*
6076 * First idle cpu or the first cpu(busiest) in this sched group
6077 * is eligible for doing load balancing at this and above domains.
6078 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09006079 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006080}
6081
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006082/*
6083 * Check this_cpu to ensure it is balanced within domain. Attempt to move
6084 * tasks if there is an imbalance.
6085 */
6086static int load_balance(int this_cpu, struct rq *this_rq,
6087 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006088 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006089{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306090 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02006091 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006092 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006093 struct rq *busiest;
6094 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09006095 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006096
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006097 struct lb_env env = {
6098 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006099 .dst_cpu = this_cpu,
6100 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306101 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006102 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02006103 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08006104 .cpus = cpus,
Peter Zijlstra0ec8aa02013-10-07 11:29:33 +01006105 .fbq_type = all,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006106 };
6107
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006108 /*
6109 * For NEWLY_IDLE load_balancing, we don't need to consider
6110 * other cpus in our group
6111 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006112 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006113 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09006114
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006115 cpumask_copy(cpus, cpu_active_mask);
6116
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006117 schedstat_inc(sd, lb_count[idle]);
6118
6119redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006120 if (!should_we_balance(&env)) {
6121 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006122 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006123 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006124
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006125 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006126 if (!group) {
6127 schedstat_inc(sd, lb_nobusyg[idle]);
6128 goto out_balanced;
6129 }
6130
Michael Wangb9403132012-07-12 16:10:13 +08006131 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006132 if (!busiest) {
6133 schedstat_inc(sd, lb_nobusyq[idle]);
6134 goto out_balanced;
6135 }
6136
Michael Wang78feefc2012-08-06 16:41:59 +08006137 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006138
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006139 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006140
6141 ld_moved = 0;
6142 if (busiest->nr_running > 1) {
6143 /*
6144 * Attempt to move tasks. If find_busiest_group has found
6145 * an imbalance but busiest->nr_running <= 1, the group is
6146 * still unbalanced. ld_moved simply stays zero, so it is
6147 * correctly treated as an imbalance.
6148 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006149 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02006150 env.src_cpu = busiest->cpu;
6151 env.src_rq = busiest;
6152 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006153
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01006154more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006155 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08006156 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306157
6158 /*
6159 * cur_ld_moved - load moved in current iteration
6160 * ld_moved - cumulative load moved across iterations
6161 */
6162 cur_ld_moved = move_tasks(&env);
6163 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08006164 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006165 local_irq_restore(flags);
6166
6167 /*
6168 * some other cpu did the load balance for us.
6169 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306170 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
6171 resched_cpu(env.dst_cpu);
6172
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09006173 if (env.flags & LBF_NEED_BREAK) {
6174 env.flags &= ~LBF_NEED_BREAK;
6175 goto more_balance;
6176 }
6177
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306178 /*
6179 * Revisit (affine) tasks on src_cpu that couldn't be moved to
6180 * us and move them to an alternate dst_cpu in our sched_group
6181 * where they can run. The upper limit on how many times we
6182 * iterate on same src_cpu is dependent on number of cpus in our
6183 * sched_group.
6184 *
6185 * This changes load balance semantics a bit on who can move
6186 * load to a given_cpu. In addition to the given_cpu itself
6187 * (or a ilb_cpu acting on its behalf where given_cpu is
6188 * nohz-idle), we now have balance_cpu in a position to move
6189 * load to given_cpu. In rare situations, this may cause
6190 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
6191 * _independently_ and at _same_ time to move some load to
6192 * given_cpu) causing exceess load to be moved to given_cpu.
6193 * This however should not happen so much in practice and
6194 * moreover subsequent load balance cycles should correct the
6195 * excess load moved.
6196 */
Peter Zijlstra62633222013-08-19 12:41:09 +02006197 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306198
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04006199 /* Prevent to re-select dst_cpu via env's cpus */
6200 cpumask_clear_cpu(env.dst_cpu, env.cpus);
6201
Michael Wang78feefc2012-08-06 16:41:59 +08006202 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306203 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02006204 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306205 env.loop = 0;
6206 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09006207
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05306208 /*
6209 * Go back to "more_balance" rather than "redo" since we
6210 * need to continue with same src_cpu.
6211 */
6212 goto more_balance;
6213 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006214
Peter Zijlstra62633222013-08-19 12:41:09 +02006215 /*
6216 * We failed to reach balance because of affinity.
6217 */
6218 if (sd_parent) {
6219 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
6220
6221 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
6222 *group_imbalance = 1;
6223 } else if (*group_imbalance)
6224 *group_imbalance = 0;
6225 }
6226
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006227 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006228 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006229 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306230 if (!cpumask_empty(cpus)) {
6231 env.loop = 0;
6232 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006233 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05306234 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006235 goto out_balanced;
6236 }
6237 }
6238
6239 if (!ld_moved) {
6240 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07006241 /*
6242 * Increment the failure counter only on periodic balance.
6243 * We do not want newidle balance, which can be very
6244 * frequent, pollute the failure counter causing
6245 * excessive cache_hot migrations and active balances.
6246 */
6247 if (idle != CPU_NEWLY_IDLE)
6248 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006249
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006250 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006251 raw_spin_lock_irqsave(&busiest->lock, flags);
6252
Tejun Heo969c7922010-05-06 18:49:21 +02006253 /* don't kick the active_load_balance_cpu_stop,
6254 * if the curr task on busiest cpu can't be
6255 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006256 */
6257 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02006258 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006259 raw_spin_unlock_irqrestore(&busiest->lock,
6260 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006261 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006262 goto out_one_pinned;
6263 }
6264
Tejun Heo969c7922010-05-06 18:49:21 +02006265 /*
6266 * ->active_balance synchronizes accesses to
6267 * ->active_balance_work. Once set, it's cleared
6268 * only after active load balance is finished.
6269 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006270 if (!busiest->active_balance) {
6271 busiest->active_balance = 1;
6272 busiest->push_cpu = this_cpu;
6273 active_balance = 1;
6274 }
6275 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02006276
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006277 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02006278 stop_one_cpu_nowait(cpu_of(busiest),
6279 active_load_balance_cpu_stop, busiest,
6280 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02006281 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006282
6283 /*
6284 * We've kicked active balancing, reset the failure
6285 * counter.
6286 */
6287 sd->nr_balance_failed = sd->cache_nice_tries+1;
6288 }
6289 } else
6290 sd->nr_balance_failed = 0;
6291
6292 if (likely(!active_balance)) {
6293 /* We were unbalanced, so reset the balancing interval */
6294 sd->balance_interval = sd->min_interval;
6295 } else {
6296 /*
6297 * If we've begun active balancing, start to back off. This
6298 * case may not be covered by the all_pinned logic if there
6299 * is only 1 task on the busy runqueue (because we don't call
6300 * move_tasks).
6301 */
6302 if (sd->balance_interval < sd->max_interval)
6303 sd->balance_interval *= 2;
6304 }
6305
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006306 goto out;
6307
6308out_balanced:
6309 schedstat_inc(sd, lb_balanced[idle]);
6310
6311 sd->nr_balance_failed = 0;
6312
6313out_one_pinned:
6314 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006315 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02006316 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006317 (sd->balance_interval < sd->max_interval))
6318 sd->balance_interval *= 2;
6319
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08006320 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006321out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006322 return ld_moved;
6323}
6324
6325/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006326 * idle_balance is called by schedule() if this_cpu is about to become
6327 * idle. Attempts to pull tasks from other CPUs.
6328 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006329void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006330{
6331 struct sched_domain *sd;
6332 int pulled_task = 0;
6333 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07006334 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006335
Frederic Weisbecker78becc22013-04-12 01:51:02 +02006336 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006337
6338 if (this_rq->avg_idle < sysctl_sched_migration_cost)
6339 return;
6340
Peter Zijlstraf492e122009-12-23 15:29:42 +01006341 /*
6342 * Drop the rq->lock, but keep IRQ/preempt disabled.
6343 */
6344 raw_spin_unlock(&this_rq->lock);
6345
Paul Turner48a16752012-10-04 13:18:31 +02006346 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02006347 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006348 for_each_domain(this_cpu, sd) {
6349 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006350 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07006351 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006352
6353 if (!(sd->flags & SD_LOAD_BALANCE))
6354 continue;
6355
Jason Low9bd721c2013-09-13 11:26:52 -07006356 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
6357 break;
6358
Peter Zijlstraf492e122009-12-23 15:29:42 +01006359 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07006360 t0 = sched_clock_cpu(this_cpu);
6361
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006362 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01006363 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006364 sd, CPU_NEWLY_IDLE,
6365 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07006366
6367 domain_cost = sched_clock_cpu(this_cpu) - t0;
6368 if (domain_cost > sd->max_newidle_lb_cost)
6369 sd->max_newidle_lb_cost = domain_cost;
6370
6371 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01006372 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006373
6374 interval = msecs_to_jiffies(sd->balance_interval);
6375 if (time_after(next_balance, sd->last_balance + interval))
6376 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006377 if (pulled_task) {
6378 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006379 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08006380 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006381 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006382 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01006383
6384 raw_spin_lock(&this_rq->lock);
6385
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006386 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
6387 /*
6388 * We are going idle. next_balance may be set based on
6389 * a busy processor. So reset next_balance.
6390 */
6391 this_rq->next_balance = next_balance;
6392 }
Jason Low9bd721c2013-09-13 11:26:52 -07006393
6394 if (curr_cost > this_rq->max_idle_balance_cost)
6395 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006396}
6397
6398/*
Tejun Heo969c7922010-05-06 18:49:21 +02006399 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
6400 * running tasks off the busiest CPU onto idle CPUs. It requires at
6401 * least 1 task to be running on each physical CPU where possible, and
6402 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006403 */
Tejun Heo969c7922010-05-06 18:49:21 +02006404static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006405{
Tejun Heo969c7922010-05-06 18:49:21 +02006406 struct rq *busiest_rq = data;
6407 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006408 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02006409 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006410 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02006411
6412 raw_spin_lock_irq(&busiest_rq->lock);
6413
6414 /* make sure the requested cpu hasn't gone down in the meantime */
6415 if (unlikely(busiest_cpu != smp_processor_id() ||
6416 !busiest_rq->active_balance))
6417 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006418
6419 /* Is there any task to move? */
6420 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02006421 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006422
6423 /*
6424 * This condition is "impossible", if it occurs
6425 * we need to fix it. Originally reported by
6426 * Bjorn Helgaas on a 128-cpu setup.
6427 */
6428 BUG_ON(busiest_rq == target_rq);
6429
6430 /* move a task from busiest_rq to target_rq */
6431 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006432
6433 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02006434 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006435 for_each_domain(target_cpu, sd) {
6436 if ((sd->flags & SD_LOAD_BALANCE) &&
6437 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
6438 break;
6439 }
6440
6441 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006442 struct lb_env env = {
6443 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01006444 .dst_cpu = target_cpu,
6445 .dst_rq = target_rq,
6446 .src_cpu = busiest_rq->cpu,
6447 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006448 .idle = CPU_IDLE,
6449 };
6450
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006451 schedstat_inc(sd, alb_count);
6452
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006453 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006454 schedstat_inc(sd, alb_pushed);
6455 else
6456 schedstat_inc(sd, alb_failed);
6457 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006458 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006459 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006460out_unlock:
6461 busiest_rq->active_balance = 0;
6462 raw_spin_unlock_irq(&busiest_rq->lock);
6463 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006464}
6465
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006466#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006467/*
6468 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006469 * - When one of the busy CPUs notice that there may be an idle rebalancing
6470 * needed, they will kick the idle load balancer, which then does idle
6471 * load balancing for all the idle CPUs.
6472 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006473static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006474 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006475 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006476 unsigned long next_balance; /* in jiffy units */
6477} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006478
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006479static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006480{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006481 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006482
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006483 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6484 return ilb;
6485
6486 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006487}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006488
6489/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006490 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6491 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6492 * CPU (if there is one).
6493 */
6494static void nohz_balancer_kick(int cpu)
6495{
6496 int ilb_cpu;
6497
6498 nohz.next_balance++;
6499
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006500 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006501
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006502 if (ilb_cpu >= nr_cpu_ids)
6503 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006504
Suresh Siddhacd490c52011-12-06 11:26:34 -08006505 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006506 return;
6507 /*
6508 * Use smp_send_reschedule() instead of resched_cpu().
6509 * This way we generate a sched IPI on the target cpu which
6510 * is idle. And the softirq performing nohz idle load balance
6511 * will be run before returning from the IPI.
6512 */
6513 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006514 return;
6515}
6516
Alex Shic1cc0172012-09-10 15:10:58 +08006517static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006518{
6519 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6520 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6521 atomic_dec(&nohz.nr_cpus);
6522 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6523 }
6524}
6525
Suresh Siddha69e1e812011-12-01 17:07:33 -08006526static inline void set_cpu_sd_state_busy(void)
6527{
6528 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006529
Suresh Siddha69e1e812011-12-01 17:07:33 -08006530 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006531 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006532
6533 if (!sd || !sd->nohz_idle)
6534 goto unlock;
6535 sd->nohz_idle = 0;
6536
6537 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006538 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006539unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006540 rcu_read_unlock();
6541}
6542
6543void set_cpu_sd_state_idle(void)
6544{
6545 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006546
Suresh Siddha69e1e812011-12-01 17:07:33 -08006547 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006548 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006549
6550 if (!sd || sd->nohz_idle)
6551 goto unlock;
6552 sd->nohz_idle = 1;
6553
6554 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006555 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006556unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006557 rcu_read_unlock();
6558}
6559
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006560/*
Alex Shic1cc0172012-09-10 15:10:58 +08006561 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006562 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006563 */
Alex Shic1cc0172012-09-10 15:10:58 +08006564void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006565{
Suresh Siddha71325962012-01-19 18:28:57 -08006566 /*
6567 * If this cpu is going down, then nothing needs to be done.
6568 */
6569 if (!cpu_active(cpu))
6570 return;
6571
Alex Shic1cc0172012-09-10 15:10:58 +08006572 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6573 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006574
Alex Shic1cc0172012-09-10 15:10:58 +08006575 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6576 atomic_inc(&nohz.nr_cpus);
6577 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006578}
Suresh Siddha71325962012-01-19 18:28:57 -08006579
Paul Gortmaker0db06282013-06-19 14:53:51 -04006580static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006581 unsigned long action, void *hcpu)
6582{
6583 switch (action & ~CPU_TASKS_FROZEN) {
6584 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006585 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006586 return NOTIFY_OK;
6587 default:
6588 return NOTIFY_DONE;
6589 }
6590}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006591#endif
6592
6593static DEFINE_SPINLOCK(balancing);
6594
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006595/*
6596 * Scale the max load_balance interval with the number of CPUs in the system.
6597 * This trades load-balance latency on larger machines for less cross talk.
6598 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006599void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006600{
6601 max_load_balance_interval = HZ*num_online_cpus()/10;
6602}
6603
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006604/*
6605 * It checks each scheduling domain to see if it is due to be balanced,
6606 * and initiates a balancing operation if so.
6607 *
Libinb9b08532013-04-01 19:14:01 +08006608 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006609 */
6610static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6611{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006612 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006613 struct rq *rq = cpu_rq(cpu);
6614 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006615 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006616 /* Earliest time when we have to do rebalance again */
6617 unsigned long next_balance = jiffies + 60*HZ;
6618 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006619 int need_serialize, need_decay = 0;
6620 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006621
Paul Turner48a16752012-10-04 13:18:31 +02006622 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006623
Peter Zijlstradce840a2011-04-07 14:09:50 +02006624 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006625 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006626 /*
6627 * Decay the newidle max times here because this is a regular
6628 * visit to all the domains. Decay ~1% per second.
6629 */
6630 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6631 sd->max_newidle_lb_cost =
6632 (sd->max_newidle_lb_cost * 253) / 256;
6633 sd->next_decay_max_lb_cost = jiffies + HZ;
6634 need_decay = 1;
6635 }
6636 max_cost += sd->max_newidle_lb_cost;
6637
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006638 if (!(sd->flags & SD_LOAD_BALANCE))
6639 continue;
6640
Jason Lowf48627e2013-09-13 11:26:53 -07006641 /*
6642 * Stop the load balance at this level. There is another
6643 * CPU in our sched group which is doing load balancing more
6644 * actively.
6645 */
6646 if (!continue_balancing) {
6647 if (need_decay)
6648 continue;
6649 break;
6650 }
6651
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006652 interval = sd->balance_interval;
6653 if (idle != CPU_IDLE)
6654 interval *= sd->busy_factor;
6655
6656 /* scale ms to jiffies */
6657 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006658 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006659
6660 need_serialize = sd->flags & SD_SERIALIZE;
6661
6662 if (need_serialize) {
6663 if (!spin_trylock(&balancing))
6664 goto out;
6665 }
6666
6667 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006668 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006669 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006670 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006671 * env->dst_cpu, so we can't know our idle
6672 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006673 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006674 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006675 }
6676 sd->last_balance = jiffies;
6677 }
6678 if (need_serialize)
6679 spin_unlock(&balancing);
6680out:
6681 if (time_after(next_balance, sd->last_balance + interval)) {
6682 next_balance = sd->last_balance + interval;
6683 update_next_balance = 1;
6684 }
Jason Lowf48627e2013-09-13 11:26:53 -07006685 }
6686 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006687 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006688 * Ensure the rq-wide value also decays but keep it at a
6689 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006690 */
Jason Lowf48627e2013-09-13 11:26:53 -07006691 rq->max_idle_balance_cost =
6692 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006693 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006694 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006695
6696 /*
6697 * next_balance will be updated only when there is a need.
6698 * When the cpu is attached to null domain for ex, it will not be
6699 * updated.
6700 */
6701 if (likely(update_next_balance))
6702 rq->next_balance = next_balance;
6703}
6704
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006705#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006706/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006707 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006708 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6709 */
6710static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6711{
6712 struct rq *this_rq = cpu_rq(this_cpu);
6713 struct rq *rq;
6714 int balance_cpu;
6715
Suresh Siddha1c792db2011-12-01 17:07:32 -08006716 if (idle != CPU_IDLE ||
6717 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6718 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006719
6720 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006721 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006722 continue;
6723
6724 /*
6725 * If this cpu gets work to do, stop the load balancing
6726 * work being done for other cpus. Next load
6727 * balancing owner will pick it up.
6728 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006729 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006730 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006731
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006732 rq = cpu_rq(balance_cpu);
6733
6734 raw_spin_lock_irq(&rq->lock);
6735 update_rq_clock(rq);
6736 update_idle_cpu_load(rq);
6737 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006738
6739 rebalance_domains(balance_cpu, CPU_IDLE);
6740
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006741 if (time_after(this_rq->next_balance, rq->next_balance))
6742 this_rq->next_balance = rq->next_balance;
6743 }
6744 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006745end:
6746 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006747}
6748
6749/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006750 * Current heuristic for kicking the idle load balancer in the presence
6751 * of an idle cpu is the system.
6752 * - This rq has more than one task.
6753 * - At any scheduler domain level, this cpu's scheduler group has multiple
6754 * busy cpu's exceeding the group's power.
6755 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6756 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006757 */
6758static inline int nohz_kick_needed(struct rq *rq, int cpu)
6759{
6760 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006761 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006762
Suresh Siddha1c792db2011-12-01 17:07:32 -08006763 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006764 return 0;
6765
Suresh Siddha1c792db2011-12-01 17:07:32 -08006766 /*
6767 * We may be recently in ticked or tickless idle mode. At the first
6768 * busy tick after returning from idle, we will update the busy stats.
6769 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006770 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006771 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006772
6773 /*
6774 * None are in tickless mode and hence no need for NOHZ idle load
6775 * balancing.
6776 */
6777 if (likely(!atomic_read(&nohz.nr_cpus)))
6778 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006779
6780 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006781 return 0;
6782
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006783 if (rq->nr_running >= 2)
6784 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006785
Peter Zijlstra067491b2011-12-07 14:32:08 +01006786 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006787 for_each_domain(cpu, sd) {
6788 struct sched_group *sg = sd->groups;
6789 struct sched_group_power *sgp = sg->sgp;
6790 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006791
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006792 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006793 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006794
6795 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6796 && (cpumask_first_and(nohz.idle_cpus_mask,
6797 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006798 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006799
6800 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6801 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006802 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006803 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006804 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006805
6806need_kick_unlock:
6807 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006808need_kick:
6809 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006810}
6811#else
6812static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6813#endif
6814
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006815/*
6816 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006817 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006818 */
6819static void run_rebalance_domains(struct softirq_action *h)
6820{
6821 int this_cpu = smp_processor_id();
6822 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006823 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006824 CPU_IDLE : CPU_NOT_IDLE;
6825
6826 rebalance_domains(this_cpu, idle);
6827
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006828 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006829 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006830 * balancing on behalf of the other idle cpus whose ticks are
6831 * stopped.
6832 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006833 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006834}
6835
6836static inline int on_null_domain(int cpu)
6837{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006838 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006839}
6840
6841/*
6842 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006843 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006844void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006845{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006846 /* Don't need to rebalance while attached to NULL domain */
6847 if (time_after_eq(jiffies, rq->next_balance) &&
6848 likely(!on_null_domain(cpu)))
6849 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006850#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006851 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006852 nohz_balancer_kick(cpu);
6853#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006854}
6855
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006856static void rq_online_fair(struct rq *rq)
6857{
6858 update_sysctl();
6859}
6860
6861static void rq_offline_fair(struct rq *rq)
6862{
6863 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006864
6865 /* Ensure any throttled groups are reachable by pick_next_task */
6866 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006867}
6868
Dhaval Giani55e12e52008-06-24 23:39:43 +05306869#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006870
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006871/*
6872 * scheduler tick hitting a task of our scheduling class:
6873 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006874static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006875{
6876 struct cfs_rq *cfs_rq;
6877 struct sched_entity *se = &curr->se;
6878
6879 for_each_sched_entity(se) {
6880 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006881 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006882 }
Ben Segall18bf2802012-10-04 12:51:20 +02006883
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006884 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006885 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006886
Ben Segall18bf2802012-10-04 12:51:20 +02006887 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006888}
6889
6890/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006891 * called on fork with the child task as argument from the parent's context
6892 * - child not yet on the tasklist
6893 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006894 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006895static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006896{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006897 struct cfs_rq *cfs_rq;
6898 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006899 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006900 struct rq *rq = this_rq();
6901 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006902
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006903 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006904
Peter Zijlstra861d0342010-08-19 13:31:43 +02006905 update_rq_clock(rq);
6906
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006907 cfs_rq = task_cfs_rq(current);
6908 curr = cfs_rq->curr;
6909
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006910 /*
6911 * Not only the cpu but also the task_group of the parent might have
6912 * been changed after parent->se.parent,cfs_rq were copied to
6913 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6914 * of child point to valid ones.
6915 */
6916 rcu_read_lock();
6917 __set_task_cpu(p, this_cpu);
6918 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006919
Ting Yang7109c442007-08-28 12:53:24 +02006920 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006921
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006922 if (curr)
6923 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006924 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006925
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006926 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006927 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006928 * Upon rescheduling, sched_class::put_prev_task() will place
6929 * 'current' within the tree based on its new key value.
6930 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006931 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306932 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006933 }
6934
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006935 se->vruntime -= cfs_rq->min_vruntime;
6936
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006937 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006938}
6939
Steven Rostedtcb469842008-01-25 21:08:22 +01006940/*
6941 * Priority of the task has changed. Check to see if we preempt
6942 * the current task.
6943 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006944static void
6945prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006946{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006947 if (!p->se.on_rq)
6948 return;
6949
Steven Rostedtcb469842008-01-25 21:08:22 +01006950 /*
6951 * Reschedule if we are currently running on this runqueue and
6952 * our priority decreased, or if we are not currently running on
6953 * this runqueue and our priority is higher than the current's
6954 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006955 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006956 if (p->prio > oldprio)
6957 resched_task(rq->curr);
6958 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006959 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006960}
6961
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006962static void switched_from_fair(struct rq *rq, struct task_struct *p)
6963{
6964 struct sched_entity *se = &p->se;
6965 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6966
6967 /*
6968 * Ensure the task's vruntime is normalized, so that when its
6969 * switched back to the fair class the enqueue_entity(.flags=0) will
6970 * do the right thing.
6971 *
6972 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6973 * have normalized the vruntime, if it was !on_rq, then only when
6974 * the task is sleeping will it still have non-normalized vruntime.
6975 */
6976 if (!se->on_rq && p->state != TASK_RUNNING) {
6977 /*
6978 * Fix up our vruntime so that the current sleep doesn't
6979 * cause 'unlimited' sleep bonus.
6980 */
6981 place_entity(cfs_rq, se, 0);
6982 se->vruntime -= cfs_rq->min_vruntime;
6983 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006984
Alex Shi141965c2013-06-26 13:05:39 +08006985#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006986 /*
6987 * Remove our load from contribution when we leave sched_fair
6988 * and ensure we don't carry in an old decay_count if we
6989 * switch back.
6990 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006991 if (se->avg.decay_count) {
6992 __synchronize_entity_decay(se);
6993 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006994 }
6995#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006996}
6997
Steven Rostedtcb469842008-01-25 21:08:22 +01006998/*
6999 * We switched to the sched_fair class.
7000 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007001static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007002{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007003 if (!p->se.on_rq)
7004 return;
7005
Steven Rostedtcb469842008-01-25 21:08:22 +01007006 /*
7007 * We were most likely switched from sched_rt, so
7008 * kick off the schedule if running, otherwise just see
7009 * if we can still preempt the current task.
7010 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007011 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01007012 resched_task(rq->curr);
7013 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02007014 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01007015}
7016
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007017/* Account for a task changing its policy or group.
7018 *
7019 * This routine is mostly called to set cfs_rq->curr field when a task
7020 * migrates between groups/classes.
7021 */
7022static void set_curr_task_fair(struct rq *rq)
7023{
7024 struct sched_entity *se = &rq->curr->se;
7025
Paul Turnerec12cb72011-07-21 09:43:30 -07007026 for_each_sched_entity(se) {
7027 struct cfs_rq *cfs_rq = cfs_rq_of(se);
7028
7029 set_next_entity(cfs_rq, se);
7030 /* ensure bandwidth has been allocated on our new cfs_rq */
7031 account_cfs_rq_runtime(cfs_rq, 0);
7032 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007033}
7034
Peter Zijlstra029632f2011-10-25 10:00:11 +02007035void init_cfs_rq(struct cfs_rq *cfs_rq)
7036{
7037 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007038 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7039#ifndef CONFIG_64BIT
7040 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
7041#endif
Alex Shi141965c2013-06-26 13:05:39 +08007042#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02007043 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08007044 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02007045#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007046}
7047
Peter Zijlstra810b3812008-02-29 15:21:01 -05007048#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007049static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05007050{
Paul Turneraff3e492012-10-04 13:18:30 +02007051 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007052 /*
7053 * If the task was not on the rq at the time of this cgroup movement
7054 * it must have been asleep, sleeping tasks keep their ->vruntime
7055 * absolute on their old rq until wakeup (needed for the fair sleeper
7056 * bonus in place_entity()).
7057 *
7058 * If it was on the rq, we've just 'preempted' it, which does convert
7059 * ->vruntime to a relative base.
7060 *
7061 * Make sure both cases convert their relative position when migrating
7062 * to another cgroup's rq. This does somewhat interfere with the
7063 * fair sleeper stuff for the first placement, but who cares.
7064 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007065 /*
7066 * When !on_rq, vruntime of the task has usually NOT been normalized.
7067 * But there are some cases where it has already been normalized:
7068 *
7069 * - Moving a forked child which is waiting for being woken up by
7070 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007071 * - Moving a task which has been woken up by try_to_wake_up() and
7072 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007073 *
7074 * To prevent boost or penalty in the new cfs_rq caused by delta
7075 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
7076 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09007077 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09007078 on_rq = 1;
7079
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007080 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007081 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
7082 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02007083 if (!on_rq) {
7084 cfs_rq = cfs_rq_of(&p->se);
7085 p->se.vruntime += cfs_rq->min_vruntime;
7086#ifdef CONFIG_SMP
7087 /*
7088 * migrate_task_rq_fair() will have removed our previous
7089 * contribution, but we must synchronize for ongoing future
7090 * decay.
7091 */
7092 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
7093 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
7094#endif
7095 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05007096}
Peter Zijlstra029632f2011-10-25 10:00:11 +02007097
7098void free_fair_sched_group(struct task_group *tg)
7099{
7100 int i;
7101
7102 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
7103
7104 for_each_possible_cpu(i) {
7105 if (tg->cfs_rq)
7106 kfree(tg->cfs_rq[i]);
7107 if (tg->se)
7108 kfree(tg->se[i]);
7109 }
7110
7111 kfree(tg->cfs_rq);
7112 kfree(tg->se);
7113}
7114
7115int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7116{
7117 struct cfs_rq *cfs_rq;
7118 struct sched_entity *se;
7119 int i;
7120
7121 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7122 if (!tg->cfs_rq)
7123 goto err;
7124 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7125 if (!tg->se)
7126 goto err;
7127
7128 tg->shares = NICE_0_LOAD;
7129
7130 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
7131
7132 for_each_possible_cpu(i) {
7133 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7134 GFP_KERNEL, cpu_to_node(i));
7135 if (!cfs_rq)
7136 goto err;
7137
7138 se = kzalloc_node(sizeof(struct sched_entity),
7139 GFP_KERNEL, cpu_to_node(i));
7140 if (!se)
7141 goto err_free_rq;
7142
7143 init_cfs_rq(cfs_rq);
7144 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
7145 }
7146
7147 return 1;
7148
7149err_free_rq:
7150 kfree(cfs_rq);
7151err:
7152 return 0;
7153}
7154
7155void unregister_fair_sched_group(struct task_group *tg, int cpu)
7156{
7157 struct rq *rq = cpu_rq(cpu);
7158 unsigned long flags;
7159
7160 /*
7161 * Only empty task groups can be destroyed; so we can speculatively
7162 * check on_list without danger of it being re-added.
7163 */
7164 if (!tg->cfs_rq[cpu]->on_list)
7165 return;
7166
7167 raw_spin_lock_irqsave(&rq->lock, flags);
7168 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
7169 raw_spin_unlock_irqrestore(&rq->lock, flags);
7170}
7171
7172void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7173 struct sched_entity *se, int cpu,
7174 struct sched_entity *parent)
7175{
7176 struct rq *rq = cpu_rq(cpu);
7177
7178 cfs_rq->tg = tg;
7179 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007180 init_cfs_rq_runtime(cfs_rq);
7181
7182 tg->cfs_rq[cpu] = cfs_rq;
7183 tg->se[cpu] = se;
7184
7185 /* se could be NULL for root_task_group */
7186 if (!se)
7187 return;
7188
7189 if (!parent)
7190 se->cfs_rq = &rq->cfs;
7191 else
7192 se->cfs_rq = parent->my_q;
7193
7194 se->my_q = cfs_rq;
7195 update_load_set(&se->load, 0);
7196 se->parent = parent;
7197}
7198
7199static DEFINE_MUTEX(shares_mutex);
7200
7201int sched_group_set_shares(struct task_group *tg, unsigned long shares)
7202{
7203 int i;
7204 unsigned long flags;
7205
7206 /*
7207 * We can't change the weight of the root cgroup.
7208 */
7209 if (!tg->se[0])
7210 return -EINVAL;
7211
7212 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
7213
7214 mutex_lock(&shares_mutex);
7215 if (tg->shares == shares)
7216 goto done;
7217
7218 tg->shares = shares;
7219 for_each_possible_cpu(i) {
7220 struct rq *rq = cpu_rq(i);
7221 struct sched_entity *se;
7222
7223 se = tg->se[i];
7224 /* Propagate contribution to hierarchy */
7225 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02007226
7227 /* Possible calls to update_curr() need rq clock */
7228 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08007229 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02007230 update_cfs_shares(group_cfs_rq(se));
7231 raw_spin_unlock_irqrestore(&rq->lock, flags);
7232 }
7233
7234done:
7235 mutex_unlock(&shares_mutex);
7236 return 0;
7237}
7238#else /* CONFIG_FAIR_GROUP_SCHED */
7239
7240void free_fair_sched_group(struct task_group *tg) { }
7241
7242int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7243{
7244 return 1;
7245}
7246
7247void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
7248
7249#endif /* CONFIG_FAIR_GROUP_SCHED */
7250
Peter Zijlstra810b3812008-02-29 15:21:01 -05007251
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07007252static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00007253{
7254 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00007255 unsigned int rr_interval = 0;
7256
7257 /*
7258 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
7259 * idle runqueue:
7260 */
Peter Williams0d721ce2009-09-21 01:31:53 +00007261 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08007262 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00007263
7264 return rr_interval;
7265}
7266
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007267/*
7268 * All the scheduling class methods:
7269 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02007270const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02007271 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007272 .enqueue_task = enqueue_task_fair,
7273 .dequeue_task = dequeue_task_fair,
7274 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05007275 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007276
Ingo Molnar2e09bf52007-10-15 17:00:05 +02007277 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007278
7279 .pick_next_task = pick_next_task_fair,
7280 .put_prev_task = put_prev_task_fair,
7281
Peter Williams681f3e62007-10-24 18:23:51 +02007282#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08007283 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02007284 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08007285
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01007286 .rq_online = rq_online_fair,
7287 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01007288
7289 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02007290#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007291
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02007292 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007293 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01007294 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007295
7296 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01007297 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01007298 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007299
Peter Williams0d721ce2009-09-21 01:31:53 +00007300 .get_rr_interval = get_rr_interval_fair,
7301
Peter Zijlstra810b3812008-02-29 15:21:01 -05007302#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02007303 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05007304#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007305};
7306
7307#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02007308void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007309{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007310 struct cfs_rq *cfs_rq;
7311
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007312 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02007313 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02007314 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01007315 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02007316}
7317#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02007318
7319__init void init_sched_fair_class(void)
7320{
7321#ifdef CONFIG_SMP
7322 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7323
Frederic Weisbecker3451d022011-08-10 23:21:01 +02007324#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08007325 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02007326 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08007327 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02007328#endif
7329#endif /* SMP */
7330
7331}