blob: 0a8a820672f447edfe46036a48373b6fa408a847 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
Linus Torvalds1da177e2005-04-16 15:20:36 -07002 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
8 *
9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
10 * to make clock more stable (2.4.0-test5). The only thing
11 * that this code assumes is that the timebases have been synchronized
12 * by firmware on SMP and are never stopped (never do sleep
13 * on SMP then, nap and doze are OK).
14 *
15 * Speeded up do_gettimeofday by getting rid of references to
16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
17 *
18 * TODO (not necessarily in this file):
19 * - improve precision and reproducibility of timebase frequency
20 * measurement at boot time. (for iSeries, we calibrate the timebase
21 * against the Titan chip's clock.)
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
27 * "A Kernel Model for Precision Timekeeping" by Dave Mills
28 *
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
33 */
34
Linus Torvalds1da177e2005-04-16 15:20:36 -070035#include <linux/errno.h>
36#include <linux/module.h>
37#include <linux/sched.h>
38#include <linux/kernel.h>
39#include <linux/param.h>
40#include <linux/string.h>
41#include <linux/mm.h>
42#include <linux/interrupt.h>
43#include <linux/timex.h>
44#include <linux/kernel_stat.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#include <linux/time.h>
46#include <linux/init.h>
47#include <linux/profile.h>
48#include <linux/cpu.h>
49#include <linux/security.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100050#include <linux/percpu.h>
51#include <linux/rtc.h>
Paul Mackerras092b8f32006-02-20 10:38:56 +110052#include <linux/jiffies.h>
Paul Mackerrasc6622f62006-02-24 10:06:59 +110053#include <linux/posix-timers.h>
David Howells7d12e782006-10-05 14:55:46 +010054#include <linux/irq.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070055
Linus Torvalds1da177e2005-04-16 15:20:36 -070056#include <asm/io.h>
57#include <asm/processor.h>
58#include <asm/nvram.h>
59#include <asm/cache.h>
60#include <asm/machdep.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100061#include <asm/uaccess.h>
62#include <asm/time.h>
63#include <asm/prom.h>
64#include <asm/irq.h>
65#include <asm/div64.h>
Paul Mackerras2249ca92005-11-07 13:18:13 +110066#include <asm/smp.h>
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +110067#include <asm/vdso_datapage.h>
Paul Mackerrasf2783c12005-10-20 09:23:26 +100068#ifdef CONFIG_PPC64
Paul Mackerrasf2783c12005-10-20 09:23:26 +100069#include <asm/firmware.h>
70#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070071#ifdef CONFIG_PPC_ISERIES
Kelly Daly8875ccf2005-11-02 14:13:34 +110072#include <asm/iseries/it_lp_queue.h>
Kelly Daly8021b8a2005-11-02 11:41:12 +110073#include <asm/iseries/hv_call_xm.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070074#endif
Olof Johansson732ee212005-11-07 00:57:55 -080075#include <asm/smp.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070076
Linus Torvalds1da177e2005-04-16 15:20:36 -070077/* keep track of when we need to update the rtc */
78time_t last_rtc_update;
Linus Torvalds1da177e2005-04-16 15:20:36 -070079#ifdef CONFIG_PPC_ISERIES
80unsigned long iSeries_recal_titan = 0;
81unsigned long iSeries_recal_tb = 0;
82static unsigned long first_settimeofday = 1;
83#endif
84
Paul Mackerrasf2783c12005-10-20 09:23:26 +100085/* The decrementer counts down by 128 every 128ns on a 601. */
86#define DECREMENTER_COUNT_601 (1000000000 / HZ)
87
Linus Torvalds1da177e2005-04-16 15:20:36 -070088#define XSEC_PER_SEC (1024*1024)
89
Paul Mackerrasf2783c12005-10-20 09:23:26 +100090#ifdef CONFIG_PPC64
91#define SCALE_XSEC(xsec, max) (((xsec) * max) / XSEC_PER_SEC)
92#else
93/* compute ((xsec << 12) * max) >> 32 */
94#define SCALE_XSEC(xsec, max) mulhwu((xsec) << 12, max)
95#endif
96
Linus Torvalds1da177e2005-04-16 15:20:36 -070097unsigned long tb_ticks_per_jiffy;
98unsigned long tb_ticks_per_usec = 100; /* sane default */
99EXPORT_SYMBOL(tb_ticks_per_usec);
100unsigned long tb_ticks_per_sec;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100101EXPORT_SYMBOL(tb_ticks_per_sec); /* for cputime_t conversions */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000102u64 tb_to_xs;
103unsigned tb_to_us;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100104
Roman Zippel19923c12006-06-26 00:25:18 -0700105#define TICKLEN_SCALE TICK_LENGTH_SHIFT
Paul Mackerras092b8f32006-02-20 10:38:56 +1100106u64 last_tick_len; /* units are ns / 2^TICKLEN_SCALE */
107u64 ticklen_to_xs; /* 0.64 fraction */
108
109/* If last_tick_len corresponds to about 1/HZ seconds, then
110 last_tick_len << TICKLEN_SHIFT will be about 2^63. */
111#define TICKLEN_SHIFT (63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
112
Linus Torvalds1da177e2005-04-16 15:20:36 -0700113DEFINE_SPINLOCK(rtc_lock);
Benjamin Herrenschmidt6ae3db12005-06-27 14:36:35 -0700114EXPORT_SYMBOL_GPL(rtc_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700115
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000116u64 tb_to_ns_scale;
117unsigned tb_to_ns_shift;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700118
119struct gettimeofday_struct do_gtod;
120
Linus Torvalds1da177e2005-04-16 15:20:36 -0700121extern struct timezone sys_tz;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000122static long timezone_offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700123
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000124unsigned long ppc_proc_freq;
125unsigned long ppc_tb_freq;
126
Paul Mackerraseb36c282006-08-30 16:13:16 +1000127static u64 tb_last_jiffy __cacheline_aligned_in_smp;
128static DEFINE_PER_CPU(u64, last_jiffy);
Paul Mackerras96c44502005-10-23 17:14:56 +1000129
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100130#ifdef CONFIG_VIRT_CPU_ACCOUNTING
131/*
132 * Factors for converting from cputime_t (timebase ticks) to
133 * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
134 * These are all stored as 0.64 fixed-point binary fractions.
135 */
136u64 __cputime_jiffies_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100137EXPORT_SYMBOL(__cputime_jiffies_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100138u64 __cputime_msec_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100139EXPORT_SYMBOL(__cputime_msec_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100140u64 __cputime_sec_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100141EXPORT_SYMBOL(__cputime_sec_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100142u64 __cputime_clockt_factor;
Paul Mackerras2cf82c02006-02-27 15:41:47 +1100143EXPORT_SYMBOL(__cputime_clockt_factor);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100144
145static void calc_cputime_factors(void)
146{
147 struct div_result res;
148
149 div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
150 __cputime_jiffies_factor = res.result_low;
151 div128_by_32(1000, 0, tb_ticks_per_sec, &res);
152 __cputime_msec_factor = res.result_low;
153 div128_by_32(1, 0, tb_ticks_per_sec, &res);
154 __cputime_sec_factor = res.result_low;
155 div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
156 __cputime_clockt_factor = res.result_low;
157}
158
159/*
160 * Read the PURR on systems that have it, otherwise the timebase.
161 */
162static u64 read_purr(void)
163{
164 if (cpu_has_feature(CPU_FTR_PURR))
165 return mfspr(SPRN_PURR);
166 return mftb();
167}
168
169/*
170 * Account time for a transition between system, hard irq
171 * or soft irq state.
172 */
173void account_system_vtime(struct task_struct *tsk)
174{
175 u64 now, delta;
176 unsigned long flags;
177
178 local_irq_save(flags);
179 now = read_purr();
180 delta = now - get_paca()->startpurr;
181 get_paca()->startpurr = now;
182 if (!in_interrupt()) {
183 delta += get_paca()->system_time;
184 get_paca()->system_time = 0;
185 }
186 account_system_time(tsk, 0, delta);
187 local_irq_restore(flags);
188}
189
190/*
191 * Transfer the user and system times accumulated in the paca
192 * by the exception entry and exit code to the generic process
193 * user and system time records.
194 * Must be called with interrupts disabled.
195 */
196void account_process_vtime(struct task_struct *tsk)
197{
198 cputime_t utime;
199
200 utime = get_paca()->user_time;
201 get_paca()->user_time = 0;
202 account_user_time(tsk, utime);
203}
204
205static void account_process_time(struct pt_regs *regs)
206{
207 int cpu = smp_processor_id();
208
209 account_process_vtime(current);
210 run_local_timers();
211 if (rcu_pending(cpu))
212 rcu_check_callbacks(cpu, user_mode(regs));
213 scheduler_tick();
214 run_posix_cpu_timers(current);
215}
216
217#ifdef CONFIG_PPC_SPLPAR
218/*
219 * Stuff for accounting stolen time.
220 */
221struct cpu_purr_data {
222 int initialized; /* thread is running */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100223 u64 tb; /* last TB value read */
224 u64 purr; /* last PURR value read */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100225};
226
Nathan Lynchdf211c82007-05-23 10:51:25 +1000227/*
228 * Each entry in the cpu_purr_data array is manipulated only by its
229 * "owner" cpu -- usually in the timer interrupt but also occasionally
230 * in process context for cpu online. As long as cpus do not touch
231 * each others' cpu_purr_data, disabling local interrupts is
232 * sufficient to serialize accesses.
233 */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100234static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
235
236static void snapshot_tb_and_purr(void *data)
237{
Nathan Lynchdf211c82007-05-23 10:51:25 +1000238 unsigned long flags;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100239 struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
240
Nathan Lynchdf211c82007-05-23 10:51:25 +1000241 local_irq_save(flags);
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000242 p->tb = mftb();
243 p->purr = mfspr(SPRN_PURR);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100244 wmb();
245 p->initialized = 1;
Nathan Lynchdf211c82007-05-23 10:51:25 +1000246 local_irq_restore(flags);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100247}
248
249/*
250 * Called during boot when all cpus have come up.
251 */
252void snapshot_timebases(void)
253{
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100254 if (!cpu_has_feature(CPU_FTR_PURR))
255 return;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100256 on_each_cpu(snapshot_tb_and_purr, NULL, 0, 1);
257}
258
Nathan Lynchdf211c82007-05-23 10:51:25 +1000259/*
260 * Must be called with interrupts disabled.
261 */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100262void calculate_steal_time(void)
263{
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000264 u64 tb, purr;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100265 s64 stolen;
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000266 struct cpu_purr_data *pme;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100267
268 if (!cpu_has_feature(CPU_FTR_PURR))
269 return;
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000270 pme = &per_cpu(cpu_purr_data, smp_processor_id());
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100271 if (!pme->initialized)
272 return; /* this can happen in early boot */
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100273 tb = mftb();
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000274 purr = mfspr(SPRN_PURR);
275 stolen = (tb - pme->tb) - (purr - pme->purr);
276 if (stolen > 0)
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100277 account_steal_time(current, stolen);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100278 pme->tb = tb;
279 pme->purr = purr;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100280}
281
282/*
283 * Must be called before the cpu is added to the online map when
284 * a cpu is being brought up at runtime.
285 */
286static void snapshot_purr(void)
287{
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000288 struct cpu_purr_data *pme;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100289 unsigned long flags;
290
291 if (!cpu_has_feature(CPU_FTR_PURR))
292 return;
Nathan Lynchdf211c82007-05-23 10:51:25 +1000293 local_irq_save(flags);
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000294 pme = &per_cpu(cpu_purr_data, smp_processor_id());
Stephen Rothwellcbcdb932006-10-17 23:08:35 +1000295 pme->tb = mftb();
296 pme->purr = mfspr(SPRN_PURR);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100297 pme->initialized = 1;
Nathan Lynchdf211c82007-05-23 10:51:25 +1000298 local_irq_restore(flags);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100299}
300
301#endif /* CONFIG_PPC_SPLPAR */
302
303#else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
304#define calc_cputime_factors()
305#define account_process_time(regs) update_process_times(user_mode(regs))
306#define calculate_steal_time() do { } while (0)
307#endif
308
309#if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
310#define snapshot_purr() do { } while (0)
311#endif
312
313/*
314 * Called when a cpu comes up after the system has finished booting,
315 * i.e. as a result of a hotplug cpu action.
316 */
317void snapshot_timebase(void)
318{
319 __get_cpu_var(last_jiffy) = get_tb();
320 snapshot_purr();
321}
322
Paul Mackerras6defa382005-11-18 13:44:17 +1100323void __delay(unsigned long loops)
324{
325 unsigned long start;
326 int diff;
327
328 if (__USE_RTC()) {
329 start = get_rtcl();
330 do {
331 /* the RTCL register wraps at 1000000000 */
332 diff = get_rtcl() - start;
333 if (diff < 0)
334 diff += 1000000000;
335 } while (diff < loops);
336 } else {
337 start = get_tbl();
338 while (get_tbl() - start < loops)
339 HMT_low();
340 HMT_medium();
341 }
342}
343EXPORT_SYMBOL(__delay);
344
345void udelay(unsigned long usecs)
346{
347 __delay(tb_ticks_per_usec * usecs);
348}
349EXPORT_SYMBOL(udelay);
350
Linus Torvalds1da177e2005-04-16 15:20:36 -0700351static __inline__ void timer_check_rtc(void)
352{
353 /*
354 * update the rtc when needed, this should be performed on the
355 * right fraction of a second. Half or full second ?
356 * Full second works on mk48t59 clocks, others need testing.
357 * Note that this update is basically only used through
358 * the adjtimex system calls. Setting the HW clock in
359 * any other way is a /dev/rtc and userland business.
360 * This is still wrong by -0.5/+1.5 jiffies because of the
361 * timer interrupt resolution and possible delay, but here we
362 * hit a quantization limit which can only be solved by higher
363 * resolution timers and decoupling time management from timer
364 * interrupts. This is also wrong on the clocks
365 * which require being written at the half second boundary.
366 * We should have an rtc call that only sets the minutes and
367 * seconds like on Intel to avoid problems with non UTC clocks.
368 */
Kumar Galad2e61512005-10-20 11:43:33 -0500369 if (ppc_md.set_rtc_time && ntp_synced() &&
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000370 xtime.tv_sec - last_rtc_update >= 659 &&
Paul Mackerras092b8f32006-02-20 10:38:56 +1100371 abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ) {
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000372 struct rtc_time tm;
373 to_tm(xtime.tv_sec + 1 + timezone_offset, &tm);
374 tm.tm_year -= 1900;
375 tm.tm_mon -= 1;
376 if (ppc_md.set_rtc_time(&tm) == 0)
377 last_rtc_update = xtime.tv_sec + 1;
378 else
379 /* Try again one minute later */
380 last_rtc_update += 60;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700381 }
382}
383
384/*
385 * This version of gettimeofday has microsecond resolution.
386 */
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500387static inline void __do_gettimeofday(struct timeval *tv)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388{
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000389 unsigned long sec, usec;
390 u64 tb_ticks, xsec;
391 struct gettimeofday_vars *temp_varp;
392 u64 temp_tb_to_xs, temp_stamp_xsec;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700393
394 /*
395 * These calculations are faster (gets rid of divides)
396 * if done in units of 1/2^20 rather than microseconds.
397 * The conversion to microseconds at the end is done
398 * without a divide (and in fact, without a multiply)
399 */
400 temp_varp = do_gtod.varp;
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500401
402 /* Sampling the time base must be done after loading
403 * do_gtod.varp in order to avoid racing with update_gtod.
404 */
405 data_barrier(temp_varp);
406 tb_ticks = get_tb() - temp_varp->tb_orig_stamp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700407 temp_tb_to_xs = temp_varp->tb_to_xs;
408 temp_stamp_xsec = temp_varp->stamp_xsec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000409 xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700410 sec = xsec / XSEC_PER_SEC;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000411 usec = (unsigned long)xsec & (XSEC_PER_SEC - 1);
412 usec = SCALE_XSEC(usec, 1000000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700413
414 tv->tv_sec = sec;
415 tv->tv_usec = usec;
416}
417
418void do_gettimeofday(struct timeval *tv)
419{
Paul Mackerras96c44502005-10-23 17:14:56 +1000420 if (__USE_RTC()) {
421 /* do this the old way */
422 unsigned long flags, seq;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100423 unsigned int sec, nsec, usec;
Paul Mackerras96c44502005-10-23 17:14:56 +1000424
425 do {
426 seq = read_seqbegin_irqsave(&xtime_lock, flags);
427 sec = xtime.tv_sec;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000428 nsec = xtime.tv_nsec + tb_ticks_since(tb_last_jiffy);
Paul Mackerras96c44502005-10-23 17:14:56 +1000429 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
Paul Mackerras092b8f32006-02-20 10:38:56 +1100430 usec = nsec / 1000;
Paul Mackerras96c44502005-10-23 17:14:56 +1000431 while (usec >= 1000000) {
432 usec -= 1000000;
433 ++sec;
434 }
435 tv->tv_sec = sec;
436 tv->tv_usec = usec;
437 return;
438 }
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500439 __do_gettimeofday(tv);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700440}
441
442EXPORT_SYMBOL(do_gettimeofday);
443
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000444/*
445 * There are two copies of tb_to_xs and stamp_xsec so that no
446 * lock is needed to access and use these values in
447 * do_gettimeofday. We alternate the copies and as long as a
448 * reasonable time elapses between changes, there will never
449 * be inconsistent values. ntpd has a minimum of one minute
450 * between updates.
451 */
452static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
Paul Mackerras5d14a182005-10-20 22:33:06 +1000453 u64 new_tb_to_xs)
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000454{
455 unsigned temp_idx;
456 struct gettimeofday_vars *temp_varp;
457
458 temp_idx = (do_gtod.var_idx == 0);
459 temp_varp = &do_gtod.vars[temp_idx];
460
461 temp_varp->tb_to_xs = new_tb_to_xs;
462 temp_varp->tb_orig_stamp = new_tb_stamp;
463 temp_varp->stamp_xsec = new_stamp_xsec;
464 smp_mb();
465 do_gtod.varp = temp_varp;
466 do_gtod.var_idx = temp_idx;
467
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000468 /*
469 * tb_update_count is used to allow the userspace gettimeofday code
470 * to assure itself that it sees a consistent view of the tb_to_xs and
471 * stamp_xsec variables. It reads the tb_update_count, then reads
472 * tb_to_xs and stamp_xsec and then reads tb_update_count again. If
473 * the two values of tb_update_count match and are even then the
474 * tb_to_xs and stamp_xsec values are consistent. If not, then it
475 * loops back and reads them again until this criteria is met.
Paul Mackerras0a45d442006-03-15 13:47:15 +1100476 * We expect the caller to have done the first increment of
477 * vdso_data->tb_update_count already.
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000478 */
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100479 vdso_data->tb_orig_stamp = new_tb_stamp;
480 vdso_data->stamp_xsec = new_stamp_xsec;
481 vdso_data->tb_to_xs = new_tb_to_xs;
482 vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
483 vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000484 smp_wmb();
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100485 ++(vdso_data->tb_update_count);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486}
487
488/*
489 * When the timebase - tb_orig_stamp gets too big, we do a manipulation
490 * between tb_orig_stamp and stamp_xsec. The goal here is to keep the
491 * difference tb - tb_orig_stamp small enough to always fit inside a
492 * 32 bits number. This is a requirement of our fast 32 bits userland
493 * implementation in the vdso. If we "miss" a call to this function
494 * (interrupt latency, CPU locked in a spinlock, ...) and we end up
495 * with a too big difference, then the vdso will fallback to calling
496 * the syscall
497 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000498static __inline__ void timer_recalc_offset(u64 cur_tb)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700499{
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000500 unsigned long offset;
501 u64 new_stamp_xsec;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100502 u64 tlen, t2x;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100503 u64 tb, xsec_old, xsec_new;
504 struct gettimeofday_vars *varp;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700505
Paul Mackerras96c44502005-10-23 17:14:56 +1000506 if (__USE_RTC())
507 return;
Roman Zippel19923c12006-06-26 00:25:18 -0700508 tlen = current_tick_length();
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000509 offset = cur_tb - do_gtod.varp->tb_orig_stamp;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100510 if (tlen == last_tick_len && offset < 0x80000000u)
511 return;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100512 if (tlen != last_tick_len) {
513 t2x = mulhdu(tlen << TICKLEN_SHIFT, ticklen_to_xs);
514 last_tick_len = tlen;
515 } else
516 t2x = do_gtod.varp->tb_to_xs;
517 new_stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
518 do_div(new_stamp_xsec, 1000000000);
519 new_stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
Paul Mackerras0a45d442006-03-15 13:47:15 +1100520
521 ++vdso_data->tb_update_count;
522 smp_mb();
523
524 /*
525 * Make sure time doesn't go backwards for userspace gettimeofday.
526 */
527 tb = get_tb();
528 varp = do_gtod.varp;
529 xsec_old = mulhdu(tb - varp->tb_orig_stamp, varp->tb_to_xs)
530 + varp->stamp_xsec;
531 xsec_new = mulhdu(tb - cur_tb, t2x) + new_stamp_xsec;
532 if (xsec_new < xsec_old)
533 new_stamp_xsec += xsec_old - xsec_new;
534
Paul Mackerras092b8f32006-02-20 10:38:56 +1100535 update_gtod(cur_tb, new_stamp_xsec, t2x);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700536}
537
538#ifdef CONFIG_SMP
539unsigned long profile_pc(struct pt_regs *regs)
540{
541 unsigned long pc = instruction_pointer(regs);
542
543 if (in_lock_functions(pc))
544 return regs->link;
545
546 return pc;
547}
548EXPORT_SYMBOL(profile_pc);
549#endif
550
551#ifdef CONFIG_PPC_ISERIES
552
553/*
554 * This function recalibrates the timebase based on the 49-bit time-of-day
555 * value in the Titan chip. The Titan is much more accurate than the value
556 * returned by the service processor for the timebase frequency.
557 */
558
559static void iSeries_tb_recal(void)
560{
561 struct div_result divres;
562 unsigned long titan, tb;
563 tb = get_tb();
564 titan = HvCallXm_loadTod();
565 if ( iSeries_recal_titan ) {
566 unsigned long tb_ticks = tb - iSeries_recal_tb;
567 unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
568 unsigned long new_tb_ticks_per_sec = (tb_ticks * USEC_PER_SEC)/titan_usec;
569 unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ;
570 long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
571 char sign = '+';
572 /* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
573 new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
574
575 if ( tick_diff < 0 ) {
576 tick_diff = -tick_diff;
577 sign = '-';
578 }
579 if ( tick_diff ) {
580 if ( tick_diff < tb_ticks_per_jiffy/25 ) {
581 printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
582 new_tb_ticks_per_jiffy, sign, tick_diff );
583 tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
584 tb_ticks_per_sec = new_tb_ticks_per_sec;
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100585 calc_cputime_factors();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700586 div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
587 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
588 tb_to_xs = divres.result_low;
589 do_gtod.varp->tb_to_xs = tb_to_xs;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100590 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
591 vdso_data->tb_to_xs = tb_to_xs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700592 }
593 else {
594 printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
595 " new tb_ticks_per_jiffy = %lu\n"
596 " old tb_ticks_per_jiffy = %lu\n",
597 new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
598 }
599 }
600 }
601 iSeries_recal_titan = titan;
602 iSeries_recal_tb = tb;
603}
604#endif
605
606/*
607 * For iSeries shared processors, we have to let the hypervisor
608 * set the hardware decrementer. We set a virtual decrementer
609 * in the lppaca and call the hypervisor if the virtual
610 * decrementer is less than the current value in the hardware
611 * decrementer. (almost always the new decrementer value will
612 * be greater than the current hardware decementer so the hypervisor
613 * call will not be needed)
614 */
615
Linus Torvalds1da177e2005-04-16 15:20:36 -0700616/*
617 * timer_interrupt - gets called when the decrementer overflows,
618 * with interrupts disabled.
619 */
Kumar Galac7aeffc2005-09-19 09:30:27 -0500620void timer_interrupt(struct pt_regs * regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700621{
David Howells7d12e782006-10-05 14:55:46 +0100622 struct pt_regs *old_regs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700623 int next_dec;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000624 int cpu = smp_processor_id();
625 unsigned long ticks;
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500626 u64 tb_next_jiffy;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000627
628#ifdef CONFIG_PPC32
629 if (atomic_read(&ppc_n_lost_interrupts) != 0)
630 do_IRQ(regs);
631#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632
David Howells7d12e782006-10-05 14:55:46 +0100633 old_regs = set_irq_regs(regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700634 irq_enter();
635
David Howells7d12e782006-10-05 14:55:46 +0100636 profile_tick(CPU_PROFILING);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100637 calculate_steal_time();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700638
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000639#ifdef CONFIG_PPC_ISERIES
Stephen Rothwell501b6d22006-11-21 15:10:20 +1100640 if (firmware_has_feature(FW_FEATURE_ISERIES))
641 get_lppaca()->int_dword.fields.decr_int = 0;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000642#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700643
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000644 while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu)))
645 >= tb_ticks_per_jiffy) {
646 /* Update last_jiffy */
647 per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy;
648 /* Handle RTCL overflow on 601 */
649 if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000)
650 per_cpu(last_jiffy, cpu) -= 1000000000;
651
Linus Torvalds1da177e2005-04-16 15:20:36 -0700652 /*
653 * We cannot disable the decrementer, so in the period
654 * between this cpu's being marked offline in cpu_online_map
655 * and calling stop-self, it is taking timer interrupts.
656 * Avoid calling into the scheduler rebalancing code if this
657 * is the case.
658 */
659 if (!cpu_is_offline(cpu))
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100660 account_process_time(regs);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000661
Linus Torvalds1da177e2005-04-16 15:20:36 -0700662 /*
663 * No need to check whether cpu is offline here; boot_cpuid
664 * should have been fixed up by now.
665 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000666 if (cpu != boot_cpuid)
667 continue;
668
669 write_seqlock(&xtime_lock);
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500670 tb_next_jiffy = tb_last_jiffy + tb_ticks_per_jiffy;
671 if (per_cpu(last_jiffy, cpu) >= tb_next_jiffy) {
672 tb_last_jiffy = tb_next_jiffy;
Atsushi Nemoto3171a032006-09-29 02:00:32 -0700673 do_timer(1);
Nathan Lynch5db9fa92006-08-22 20:36:05 -0500674 timer_recalc_offset(tb_last_jiffy);
675 timer_check_rtc();
676 }
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000677 write_sequnlock(&xtime_lock);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700678 }
679
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000680 next_dec = tb_ticks_per_jiffy - ticks;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700681 set_dec(next_dec);
682
683#ifdef CONFIG_PPC_ISERIES
Stephen Rothwell501b6d22006-11-21 15:10:20 +1100684 if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
Olaf Hering35a84c22006-10-07 22:08:26 +1000685 process_hvlpevents();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686#endif
687
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000688#ifdef CONFIG_PPC64
Stephen Rothwell8d15a3e2005-08-03 14:40:16 +1000689 /* collect purr register values often, for accurate calculations */
Stephen Rothwell1ababe12005-08-03 14:35:25 +1000690 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700691 struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
692 cu->current_tb = mfspr(SPRN_PURR);
693 }
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000694#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700695
696 irq_exit();
David Howells7d12e782006-10-05 14:55:46 +0100697 set_irq_regs(old_regs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698}
699
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000700void wakeup_decrementer(void)
701{
Paul Mackerras092b8f32006-02-20 10:38:56 +1100702 unsigned long ticks;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000703
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000704 /*
Paul Mackerras092b8f32006-02-20 10:38:56 +1100705 * The timebase gets saved on sleep and restored on wakeup,
706 * so all we need to do is to reset the decrementer.
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000707 */
Paul Mackerras092b8f32006-02-20 10:38:56 +1100708 ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
709 if (ticks < tb_ticks_per_jiffy)
710 ticks = tb_ticks_per_jiffy - ticks;
711 else
712 ticks = 1;
713 set_dec(ticks);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000714}
715
Paul Mackerrasa5b518e2005-10-22 14:55:23 +1000716#ifdef CONFIG_SMP
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000717void __init smp_space_timers(unsigned int max_cpus)
718{
719 int i;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000720 u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000721
Paul Mackerrascbe62e22005-11-10 14:28:03 +1100722 /* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
723 previous_tb -= tb_ticks_per_jiffy;
will schmidte147ec82007-05-11 23:34:16 +1000724
KAMEZAWA Hiroyuki0e551952006-03-28 14:50:51 -0800725 for_each_possible_cpu(i) {
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100726 if (i == boot_cpuid)
727 continue;
will schmidte147ec82007-05-11 23:34:16 +1000728 per_cpu(last_jiffy, i) = previous_tb;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000729 }
730}
731#endif
732
Linus Torvalds1da177e2005-04-16 15:20:36 -0700733/*
734 * Scheduler clock - returns current time in nanosec units.
735 *
736 * Note: mulhdu(a, b) (multiply high double unsigned) returns
737 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
738 * are 64-bit unsigned numbers.
739 */
740unsigned long long sched_clock(void)
741{
Paul Mackerras96c44502005-10-23 17:14:56 +1000742 if (__USE_RTC())
743 return get_rtc();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744 return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift;
745}
746
747int do_settimeofday(struct timespec *tv)
748{
749 time_t wtm_sec, new_sec = tv->tv_sec;
750 long wtm_nsec, new_nsec = tv->tv_nsec;
751 unsigned long flags;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100752 u64 new_xsec;
753 unsigned long tb_delta;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700754
755 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
756 return -EINVAL;
757
758 write_seqlock_irqsave(&xtime_lock, flags);
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000759
760 /*
761 * Updating the RTC is not the job of this code. If the time is
762 * stepped under NTP, the RTC will be updated after STA_UNSYNC
763 * is cleared. Tools like clock/hwclock either copy the RTC
Linus Torvalds1da177e2005-04-16 15:20:36 -0700764 * to the system time, in which case there is no point in writing
765 * to the RTC again, or write to the RTC but then they don't call
766 * settimeofday to perform this operation.
767 */
768#ifdef CONFIG_PPC_ISERIES
Stephen Rothwell501b6d22006-11-21 15:10:20 +1100769 if (firmware_has_feature(FW_FEATURE_ISERIES) && first_settimeofday) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700770 iSeries_tb_recal();
771 first_settimeofday = 0;
772 }
773#endif
Paul Mackerras092b8f32006-02-20 10:38:56 +1100774
Paul Mackerras0a45d442006-03-15 13:47:15 +1100775 /* Make userspace gettimeofday spin until we're done. */
776 ++vdso_data->tb_update_count;
777 smp_mb();
778
Paul Mackerras092b8f32006-02-20 10:38:56 +1100779 /*
780 * Subtract off the number of nanoseconds since the
781 * beginning of the last tick.
Paul Mackerras092b8f32006-02-20 10:38:56 +1100782 */
Paul Mackerraseb36c282006-08-30 16:13:16 +1000783 tb_delta = tb_ticks_since(tb_last_jiffy);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100784 tb_delta = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); /* in xsec */
785 new_nsec -= SCALE_XSEC(tb_delta, 1000000000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700786
787 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
788 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
789
790 set_normalized_timespec(&xtime, new_sec, new_nsec);
791 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
792
793 /* In case of a large backwards jump in time with NTP, we want the
794 * clock to be updated as soon as the PLL is again in lock.
795 */
796 last_rtc_update = new_sec - 658;
797
john stultzb149ee22005-09-06 15:17:46 -0700798 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700799
Paul Mackerras092b8f32006-02-20 10:38:56 +1100800 new_xsec = xtime.tv_nsec;
801 if (new_xsec != 0) {
802 new_xsec *= XSEC_PER_SEC;
Paul Mackerras5f6b5b92005-10-30 22:55:52 +1100803 do_div(new_xsec, NSEC_PER_SEC);
804 }
Paul Mackerras092b8f32006-02-20 10:38:56 +1100805 new_xsec += (u64)xtime.tv_sec * XSEC_PER_SEC;
Paul Mackerras96c44502005-10-23 17:14:56 +1000806 update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700807
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100808 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
809 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700810
811 write_sequnlock_irqrestore(&xtime_lock, flags);
812 clock_was_set();
813 return 0;
814}
815
816EXPORT_SYMBOL(do_settimeofday);
817
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000818static int __init get_freq(char *name, int cells, unsigned long *val)
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000819{
820 struct device_node *cpu;
Jeremy Kerra7f67bd2006-07-12 15:35:54 +1000821 const unsigned int *fp;
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000822 int found = 0;
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000823
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000824 /* The cpu node should have timebase and clock frequency properties */
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000825 cpu = of_find_node_by_type(NULL, "cpu");
826
Olaf Heringd8a81882006-02-04 10:34:56 +0100827 if (cpu) {
Stephen Rothwelle2eb6392007-04-03 22:26:41 +1000828 fp = of_get_property(cpu, name, NULL);
Olaf Heringd8a81882006-02-04 10:34:56 +0100829 if (fp) {
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000830 found = 1;
Paul Mackerrasa4dc7ff2006-09-19 14:06:27 +1000831 *val = of_read_ulong(fp, cells);
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000832 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000833
834 of_node_put(cpu);
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000835 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000836
837 return found;
838}
839
840void __init generic_calibrate_decr(void)
841{
842 ppc_tb_freq = DEFAULT_TB_FREQ; /* hardcoded default */
843
844 if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
845 !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
846
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000847 printk(KERN_ERR "WARNING: Estimating decrementer frequency "
848 "(not found)\n");
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000849 }
Anton Blanchard0bb474a42006-06-20 18:47:26 +1000850
851 ppc_proc_freq = DEFAULT_PROC_FREQ; /* hardcoded default */
852
853 if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
854 !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
855
856 printk(KERN_ERR "WARNING: Estimating processor frequency "
857 "(not found)\n");
858 }
859
Kumar Gala0fd6f712005-10-25 23:02:59 -0500860#ifdef CONFIG_BOOKE
861 /* Set the time base to zero */
862 mtspr(SPRN_TBWL, 0);
863 mtspr(SPRN_TBWU, 0);
864
865 /* Clear any pending timer interrupts */
866 mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
867
868 /* Enable decrementer interrupt */
869 mtspr(SPRN_TCR, TCR_DIE);
870#endif
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000871}
Arnd Bergmann10f7e7c2005-06-23 09:43:07 +1000872
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000873unsigned long get_boot_time(void)
874{
875 struct rtc_time tm;
876
877 if (ppc_md.get_boot_time)
878 return ppc_md.get_boot_time();
879 if (!ppc_md.get_rtc_time)
880 return 0;
881 ppc_md.get_rtc_time(&tm);
882 return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
883 tm.tm_hour, tm.tm_min, tm.tm_sec);
884}
885
886/* This function is only called on the boot processor */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700887void __init time_init(void)
888{
Linus Torvalds1da177e2005-04-16 15:20:36 -0700889 unsigned long flags;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000890 unsigned long tm = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700891 struct div_result res;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100892 u64 scale, x;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000893 unsigned shift;
894
895 if (ppc_md.time_init != NULL)
896 timezone_offset = ppc_md.time_init();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700897
Paul Mackerras96c44502005-10-23 17:14:56 +1000898 if (__USE_RTC()) {
899 /* 601 processor: dec counts down by 128 every 128ns */
900 ppc_tb_freq = 1000000000;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000901 tb_last_jiffy = get_rtcl();
Paul Mackerras96c44502005-10-23 17:14:56 +1000902 } else {
903 /* Normal PowerPC with timebase register */
904 ppc_md.calibrate_decr();
Olof Johansson224ad802006-04-12 15:20:27 -0500905 printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
Paul Mackerras96c44502005-10-23 17:14:56 +1000906 ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
Olof Johansson224ad802006-04-12 15:20:27 -0500907 printk(KERN_DEBUG "time_init: processor frequency = %lu.%.6lu MHz\n",
Paul Mackerras96c44502005-10-23 17:14:56 +1000908 ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
Paul Mackerraseb36c282006-08-30 16:13:16 +1000909 tb_last_jiffy = get_tb();
Paul Mackerras96c44502005-10-23 17:14:56 +1000910 }
Paul Mackerras374e99d2005-10-20 21:04:51 +1000911
912 tb_ticks_per_jiffy = ppc_tb_freq / HZ;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100913 tb_ticks_per_sec = ppc_tb_freq;
Paul Mackerras374e99d2005-10-20 21:04:51 +1000914 tb_ticks_per_usec = ppc_tb_freq / 1000000;
915 tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
Paul Mackerrasc6622f62006-02-24 10:06:59 +1100916 calc_cputime_factors();
Paul Mackerras092b8f32006-02-20 10:38:56 +1100917
918 /*
919 * Calculate the length of each tick in ns. It will not be
920 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
921 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
922 * rounded up.
923 */
924 x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
925 do_div(x, ppc_tb_freq);
926 tick_nsec = x;
927 last_tick_len = x << TICKLEN_SCALE;
928
929 /*
930 * Compute ticklen_to_xs, which is a factor which gets multiplied
931 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
932 * It is computed as:
933 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
934 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
Paul Mackerras0a45d442006-03-15 13:47:15 +1100935 * which turns out to be N = 51 - SHIFT_HZ.
936 * This gives the result as a 0.64 fixed-point fraction.
937 * That value is reduced by an offset amounting to 1 xsec per
938 * 2^31 timebase ticks to avoid problems with time going backwards
939 * by 1 xsec when we do timer_recalc_offset due to losing the
940 * fractional xsec. That offset is equal to ppc_tb_freq/2^51
941 * since there are 2^20 xsec in a second.
Paul Mackerras092b8f32006-02-20 10:38:56 +1100942 */
Paul Mackerras0a45d442006-03-15 13:47:15 +1100943 div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
944 tb_ticks_per_jiffy << SHIFT_HZ, &res);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100945 div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
946 ticklen_to_xs = res.result_low;
947
948 /* Compute tb_to_xs from tick_nsec */
949 tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
Paul Mackerras374e99d2005-10-20 21:04:51 +1000950
Linus Torvalds1da177e2005-04-16 15:20:36 -0700951 /*
952 * Compute scale factor for sched_clock.
953 * The calibrate_decr() function has set tb_ticks_per_sec,
954 * which is the timebase frequency.
955 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
956 * the 128-bit result as a 64.64 fixed-point number.
957 * We then shift that number right until it is less than 1.0,
958 * giving us the scale factor and shift count to use in
959 * sched_clock().
960 */
961 div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
962 scale = res.result_low;
963 for (shift = 0; res.result_high != 0; ++shift) {
964 scale = (scale >> 1) | (res.result_high << 63);
965 res.result_high >>= 1;
966 }
967 tb_to_ns_scale = scale;
968 tb_to_ns_shift = shift;
969
Olof Johansson4bd174f2006-04-18 11:25:53 -0500970 tm = get_boot_time();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700971
972 write_seqlock_irqsave(&xtime_lock, flags);
Paul Mackerras092b8f32006-02-20 10:38:56 +1100973
974 /* If platform provided a timezone (pmac), we correct the time */
975 if (timezone_offset) {
976 sys_tz.tz_minuteswest = -timezone_offset / 60;
977 sys_tz.tz_dsttime = 0;
978 tm -= timezone_offset;
979 }
980
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000981 xtime.tv_sec = tm;
982 xtime.tv_nsec = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700983 do_gtod.varp = &do_gtod.vars[0];
984 do_gtod.var_idx = 0;
Paul Mackerras96c44502005-10-23 17:14:56 +1000985 do_gtod.varp->tb_orig_stamp = tb_last_jiffy;
Paul Mackerraseb36c282006-08-30 16:13:16 +1000986 __get_cpu_var(last_jiffy) = tb_last_jiffy;
Paul Mackerrasf2783c12005-10-20 09:23:26 +1000987 do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700988 do_gtod.tb_ticks_per_sec = tb_ticks_per_sec;
989 do_gtod.varp->tb_to_xs = tb_to_xs;
990 do_gtod.tb_to_us = tb_to_us;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100991
992 vdso_data->tb_orig_stamp = tb_last_jiffy;
993 vdso_data->tb_update_count = 0;
994 vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
Paul Mackerras092b8f32006-02-20 10:38:56 +1100995 vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
Benjamin Herrenschmidta7f290d2005-11-11 21:15:21 +1100996 vdso_data->tb_to_xs = tb_to_xs;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700997
998 time_freq = 0;
999
Linus Torvalds1da177e2005-04-16 15:20:36 -07001000 last_rtc_update = xtime.tv_sec;
1001 set_normalized_timespec(&wall_to_monotonic,
1002 -xtime.tv_sec, -xtime.tv_nsec);
1003 write_sequnlock_irqrestore(&xtime_lock, flags);
1004
1005 /* Not exact, but the timer interrupt takes care of this */
1006 set_dec(tb_ticks_per_jiffy);
1007}
1008
Linus Torvalds1da177e2005-04-16 15:20:36 -07001009
Linus Torvalds1da177e2005-04-16 15:20:36 -07001010#define FEBRUARY 2
1011#define STARTOFTIME 1970
1012#define SECDAY 86400L
1013#define SECYR (SECDAY * 365)
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001014#define leapyear(year) ((year) % 4 == 0 && \
1015 ((year) % 100 != 0 || (year) % 400 == 0))
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016#define days_in_year(a) (leapyear(a) ? 366 : 365)
1017#define days_in_month(a) (month_days[(a) - 1])
1018
1019static int month_days[12] = {
1020 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
1021};
1022
1023/*
1024 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
1025 */
1026void GregorianDay(struct rtc_time * tm)
1027{
1028 int leapsToDate;
1029 int lastYear;
1030 int day;
1031 int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
1032
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001033 lastYear = tm->tm_year - 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001034
1035 /*
1036 * Number of leap corrections to apply up to end of last year
1037 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001038 leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001039
1040 /*
1041 * This year is a leap year if it is divisible by 4 except when it is
1042 * divisible by 100 unless it is divisible by 400
1043 *
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001044 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
Linus Torvalds1da177e2005-04-16 15:20:36 -07001045 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001046 day = tm->tm_mon > 2 && leapyear(tm->tm_year);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001047
1048 day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
1049 tm->tm_mday;
1050
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001051 tm->tm_wday = day % 7;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001052}
1053
1054void to_tm(int tim, struct rtc_time * tm)
1055{
1056 register int i;
1057 register long hms, day;
1058
1059 day = tim / SECDAY;
1060 hms = tim % SECDAY;
1061
1062 /* Hours, minutes, seconds are easy */
1063 tm->tm_hour = hms / 3600;
1064 tm->tm_min = (hms % 3600) / 60;
1065 tm->tm_sec = (hms % 3600) % 60;
1066
1067 /* Number of years in days */
1068 for (i = STARTOFTIME; day >= days_in_year(i); i++)
1069 day -= days_in_year(i);
1070 tm->tm_year = i;
1071
1072 /* Number of months in days left */
1073 if (leapyear(tm->tm_year))
1074 days_in_month(FEBRUARY) = 29;
1075 for (i = 1; day >= days_in_month(i); i++)
1076 day -= days_in_month(i);
1077 days_in_month(FEBRUARY) = 28;
1078 tm->tm_mon = i;
1079
1080 /* Days are what is left over (+1) from all that. */
1081 tm->tm_mday = day + 1;
1082
1083 /*
1084 * Determine the day of week
1085 */
1086 GregorianDay(tm);
1087}
1088
1089/* Auxiliary function to compute scaling factors */
1090/* Actually the choice of a timebase running at 1/4 the of the bus
1091 * frequency giving resolution of a few tens of nanoseconds is quite nice.
1092 * It makes this computation very precise (27-28 bits typically) which
1093 * is optimistic considering the stability of most processor clock
1094 * oscillators and the precision with which the timebase frequency
1095 * is measured but does not harm.
1096 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001097unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
1098{
Linus Torvalds1da177e2005-04-16 15:20:36 -07001099 unsigned mlt=0, tmp, err;
1100 /* No concern for performance, it's done once: use a stupid
1101 * but safe and compact method to find the multiplier.
1102 */
1103
1104 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001105 if (mulhwu(inscale, mlt|tmp) < outscale)
1106 mlt |= tmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001107 }
1108
1109 /* We might still be off by 1 for the best approximation.
1110 * A side effect of this is that if outscale is too large
1111 * the returned value will be zero.
1112 * Many corner cases have been checked and seem to work,
1113 * some might have been forgotten in the test however.
1114 */
1115
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001116 err = inscale * (mlt+1);
1117 if (err <= inscale/2)
1118 mlt++;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001119 return mlt;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001120}
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121
1122/*
1123 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1124 * result.
1125 */
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001126void div128_by_32(u64 dividend_high, u64 dividend_low,
1127 unsigned divisor, struct div_result *dr)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001128{
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001129 unsigned long a, b, c, d;
1130 unsigned long w, x, y, z;
1131 u64 ra, rb, rc;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001132
1133 a = dividend_high >> 32;
1134 b = dividend_high & 0xffffffff;
1135 c = dividend_low >> 32;
1136 d = dividend_low & 0xffffffff;
1137
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001138 w = a / divisor;
1139 ra = ((u64)(a - (w * divisor)) << 32) + b;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001140
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001141 rb = ((u64) do_div(ra, divisor) << 32) + c;
1142 x = ra;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001143
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001144 rc = ((u64) do_div(rb, divisor) << 32) + d;
1145 y = rb;
1146
1147 do_div(rc, divisor);
1148 z = rc;
Paul Mackerrasf2783c12005-10-20 09:23:26 +10001149
1150 dr->result_high = ((u64)w << 32) + x;
1151 dr->result_low = ((u64)y << 32) + z;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001152
1153}