| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* calibrate.c: default delay calibration | 
|  | 2 | * | 
|  | 3 | * Excised from init/main.c | 
|  | 4 | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | 5 | */ | 
|  | 6 |  | 
|  | 7 | #include <linux/sched.h> | 
|  | 8 | #include <linux/delay.h> | 
|  | 9 | #include <linux/init.h> | 
|  | 10 |  | 
| Venkatesh Pallipadi | 8a9e1b0 | 2005-06-23 00:08:13 -0700 | [diff] [blame] | 11 | #include <asm/timex.h> | 
|  | 12 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 13 | static unsigned long preset_lpj; | 
|  | 14 | static int __init lpj_setup(char *str) | 
|  | 15 | { | 
|  | 16 | preset_lpj = simple_strtoul(str,NULL,0); | 
|  | 17 | return 1; | 
|  | 18 | } | 
|  | 19 |  | 
|  | 20 | __setup("lpj=", lpj_setup); | 
|  | 21 |  | 
| Venkatesh Pallipadi | 8a9e1b0 | 2005-06-23 00:08:13 -0700 | [diff] [blame] | 22 | #ifdef ARCH_HAS_READ_CURRENT_TIMER | 
|  | 23 |  | 
|  | 24 | /* This routine uses the read_current_timer() routine and gets the | 
|  | 25 | * loops per jiffy directly, instead of guessing it using delay(). | 
|  | 26 | * Also, this code tries to handle non-maskable asynchronous events | 
|  | 27 | * (like SMIs) | 
|  | 28 | */ | 
|  | 29 | #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100)) | 
|  | 30 | #define MAX_DIRECT_CALIBRATION_RETRIES		5 | 
|  | 31 |  | 
|  | 32 | static unsigned long __devinit calibrate_delay_direct(void) | 
|  | 33 | { | 
|  | 34 | unsigned long pre_start, start, post_start; | 
|  | 35 | unsigned long pre_end, end, post_end; | 
|  | 36 | unsigned long start_jiffies; | 
|  | 37 | unsigned long tsc_rate_min, tsc_rate_max; | 
|  | 38 | unsigned long good_tsc_sum = 0; | 
|  | 39 | unsigned long good_tsc_count = 0; | 
|  | 40 | int i; | 
|  | 41 |  | 
|  | 42 | if (read_current_timer(&pre_start) < 0 ) | 
|  | 43 | return 0; | 
|  | 44 |  | 
|  | 45 | /* | 
|  | 46 | * A simple loop like | 
|  | 47 | *	while ( jiffies < start_jiffies+1) | 
|  | 48 | *		start = read_current_timer(); | 
|  | 49 | * will not do. As we don't really know whether jiffy switch | 
|  | 50 | * happened first or timer_value was read first. And some asynchronous | 
|  | 51 | * event can happen between these two events introducing errors in lpj. | 
|  | 52 | * | 
|  | 53 | * So, we do | 
|  | 54 | * 1. pre_start <- When we are sure that jiffy switch hasn't happened | 
|  | 55 | * 2. check jiffy switch | 
|  | 56 | * 3. start <- timer value before or after jiffy switch | 
|  | 57 | * 4. post_start <- When we are sure that jiffy switch has happened | 
|  | 58 | * | 
|  | 59 | * Note, we don't know anything about order of 2 and 3. | 
|  | 60 | * Now, by looking at post_start and pre_start difference, we can | 
|  | 61 | * check whether any asynchronous event happened or not | 
|  | 62 | */ | 
|  | 63 |  | 
|  | 64 | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { | 
|  | 65 | pre_start = 0; | 
|  | 66 | read_current_timer(&start); | 
|  | 67 | start_jiffies = jiffies; | 
|  | 68 | while (jiffies <= (start_jiffies + 1)) { | 
|  | 69 | pre_start = start; | 
|  | 70 | read_current_timer(&start); | 
|  | 71 | } | 
|  | 72 | read_current_timer(&post_start); | 
|  | 73 |  | 
|  | 74 | pre_end = 0; | 
|  | 75 | end = post_start; | 
|  | 76 | while (jiffies <= | 
|  | 77 | (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) { | 
|  | 78 | pre_end = end; | 
|  | 79 | read_current_timer(&end); | 
|  | 80 | } | 
|  | 81 | read_current_timer(&post_end); | 
|  | 82 |  | 
|  | 83 | tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS; | 
|  | 84 | tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS; | 
|  | 85 |  | 
|  | 86 | /* | 
|  | 87 | * If the upper limit and lower limit of the tsc_rate is | 
|  | 88 | * >= 12.5% apart, redo calibration. | 
|  | 89 | */ | 
|  | 90 | if (pre_start != 0 && pre_end != 0 && | 
|  | 91 | (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) { | 
|  | 92 | good_tsc_count++; | 
|  | 93 | good_tsc_sum += tsc_rate_max; | 
|  | 94 | } | 
|  | 95 | } | 
|  | 96 |  | 
|  | 97 | if (good_tsc_count) | 
|  | 98 | return (good_tsc_sum/good_tsc_count); | 
|  | 99 |  | 
|  | 100 | printk(KERN_WARNING "calibrate_delay_direct() failed to get a good " | 
|  | 101 | "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n"); | 
|  | 102 | return 0; | 
|  | 103 | } | 
|  | 104 | #else | 
|  | 105 | static unsigned long __devinit calibrate_delay_direct(void) {return 0;} | 
|  | 106 | #endif | 
|  | 107 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 108 | /* | 
|  | 109 | * This is the number of bits of precision for the loops_per_jiffy.  Each | 
|  | 110 | * bit takes on average 1.5/HZ seconds.  This (like the original) is a little | 
|  | 111 | * better than 1% | 
|  | 112 | */ | 
|  | 113 | #define LPS_PREC 8 | 
|  | 114 |  | 
|  | 115 | void __devinit calibrate_delay(void) | 
|  | 116 | { | 
|  | 117 | unsigned long ticks, loopbit; | 
|  | 118 | int lps_precision = LPS_PREC; | 
|  | 119 |  | 
|  | 120 | if (preset_lpj) { | 
|  | 121 | loops_per_jiffy = preset_lpj; | 
|  | 122 | printk("Calibrating delay loop (skipped)... " | 
|  | 123 | "%lu.%02lu BogoMIPS preset\n", | 
|  | 124 | loops_per_jiffy/(500000/HZ), | 
|  | 125 | (loops_per_jiffy/(5000/HZ)) % 100); | 
| Venkatesh Pallipadi | 8a9e1b0 | 2005-06-23 00:08:13 -0700 | [diff] [blame] | 126 | } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) { | 
|  | 127 | printk("Calibrating delay using timer specific routine.. "); | 
|  | 128 | printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", | 
|  | 129 | loops_per_jiffy/(500000/HZ), | 
|  | 130 | (loops_per_jiffy/(5000/HZ)) % 100, | 
|  | 131 | loops_per_jiffy); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 132 | } else { | 
|  | 133 | loops_per_jiffy = (1<<12); | 
|  | 134 |  | 
|  | 135 | printk(KERN_DEBUG "Calibrating delay loop... "); | 
|  | 136 | while ((loops_per_jiffy <<= 1) != 0) { | 
|  | 137 | /* wait for "start of" clock tick */ | 
|  | 138 | ticks = jiffies; | 
|  | 139 | while (ticks == jiffies) | 
|  | 140 | /* nothing */; | 
|  | 141 | /* Go .. */ | 
|  | 142 | ticks = jiffies; | 
|  | 143 | __delay(loops_per_jiffy); | 
|  | 144 | ticks = jiffies - ticks; | 
|  | 145 | if (ticks) | 
|  | 146 | break; | 
|  | 147 | } | 
|  | 148 |  | 
|  | 149 | /* | 
|  | 150 | * Do a binary approximation to get loops_per_jiffy set to | 
|  | 151 | * equal one clock (up to lps_precision bits) | 
|  | 152 | */ | 
|  | 153 | loops_per_jiffy >>= 1; | 
|  | 154 | loopbit = loops_per_jiffy; | 
|  | 155 | while (lps_precision-- && (loopbit >>= 1)) { | 
|  | 156 | loops_per_jiffy |= loopbit; | 
|  | 157 | ticks = jiffies; | 
|  | 158 | while (ticks == jiffies) | 
|  | 159 | /* nothing */; | 
|  | 160 | ticks = jiffies; | 
|  | 161 | __delay(loops_per_jiffy); | 
|  | 162 | if (jiffies != ticks)	/* longer than 1 tick */ | 
|  | 163 | loops_per_jiffy &= ~loopbit; | 
|  | 164 | } | 
|  | 165 |  | 
|  | 166 | /* Round the value and print it */ | 
|  | 167 | printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", | 
|  | 168 | loops_per_jiffy/(500000/HZ), | 
|  | 169 | (loops_per_jiffy/(5000/HZ)) % 100, | 
|  | 170 | loops_per_jiffy); | 
|  | 171 | } | 
|  | 172 |  | 
|  | 173 | } |