blob: 65b268d39782b8be87a6962776ddb0fe461b5bd4 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/net/sunrpc/xdr.c
3 *
4 * Generic XDR support.
5 *
6 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
7 */
8
9#include <linux/types.h>
10#include <linux/socket.h>
11#include <linux/string.h>
12#include <linux/kernel.h>
13#include <linux/pagemap.h>
14#include <linux/errno.h>
15#include <linux/in.h>
16#include <linux/net.h>
17#include <net/sock.h>
18#include <linux/sunrpc/xdr.h>
19#include <linux/sunrpc/msg_prot.h>
20
21/*
22 * XDR functions for basic NFS types
23 */
24u32 *
25xdr_encode_netobj(u32 *p, const struct xdr_netobj *obj)
26{
27 unsigned int quadlen = XDR_QUADLEN(obj->len);
28
29 p[quadlen] = 0; /* zero trailing bytes */
30 *p++ = htonl(obj->len);
31 memcpy(p, obj->data, obj->len);
32 return p + XDR_QUADLEN(obj->len);
33}
34
35u32 *
36xdr_decode_netobj(u32 *p, struct xdr_netobj *obj)
37{
38 unsigned int len;
39
40 if ((len = ntohl(*p++)) > XDR_MAX_NETOBJ)
41 return NULL;
42 obj->len = len;
43 obj->data = (u8 *) p;
44 return p + XDR_QUADLEN(len);
45}
46
47/**
48 * xdr_encode_opaque_fixed - Encode fixed length opaque data
Pavel Pisa4dc3b162005-05-01 08:59:25 -070049 * @p: pointer to current position in XDR buffer.
50 * @ptr: pointer to data to encode (or NULL)
51 * @nbytes: size of data.
Linus Torvalds1da177e2005-04-16 15:20:36 -070052 *
53 * Copy the array of data of length nbytes at ptr to the XDR buffer
54 * at position p, then align to the next 32-bit boundary by padding
55 * with zero bytes (see RFC1832).
56 * Note: if ptr is NULL, only the padding is performed.
57 *
58 * Returns the updated current XDR buffer position
59 *
60 */
61u32 *xdr_encode_opaque_fixed(u32 *p, const void *ptr, unsigned int nbytes)
62{
63 if (likely(nbytes != 0)) {
64 unsigned int quadlen = XDR_QUADLEN(nbytes);
65 unsigned int padding = (quadlen << 2) - nbytes;
66
67 if (ptr != NULL)
68 memcpy(p, ptr, nbytes);
69 if (padding != 0)
70 memset((char *)p + nbytes, 0, padding);
71 p += quadlen;
72 }
73 return p;
74}
75EXPORT_SYMBOL(xdr_encode_opaque_fixed);
76
77/**
78 * xdr_encode_opaque - Encode variable length opaque data
Pavel Pisa4dc3b162005-05-01 08:59:25 -070079 * @p: pointer to current position in XDR buffer.
80 * @ptr: pointer to data to encode (or NULL)
81 * @nbytes: size of data.
Linus Torvalds1da177e2005-04-16 15:20:36 -070082 *
83 * Returns the updated current XDR buffer position
84 */
85u32 *xdr_encode_opaque(u32 *p, const void *ptr, unsigned int nbytes)
86{
87 *p++ = htonl(nbytes);
88 return xdr_encode_opaque_fixed(p, ptr, nbytes);
89}
90EXPORT_SYMBOL(xdr_encode_opaque);
91
92u32 *
93xdr_encode_string(u32 *p, const char *string)
94{
95 return xdr_encode_array(p, string, strlen(string));
96}
97
98u32 *
99xdr_decode_string(u32 *p, char **sp, int *lenp, int maxlen)
100{
101 unsigned int len;
102 char *string;
103
104 if ((len = ntohl(*p++)) > maxlen)
105 return NULL;
106 if (lenp)
107 *lenp = len;
108 if ((len % 4) != 0) {
109 string = (char *) p;
110 } else {
111 string = (char *) (p - 1);
112 memmove(string, p, len);
113 }
114 string[len] = '\0';
115 *sp = string;
116 return p + XDR_QUADLEN(len);
117}
118
119u32 *
120xdr_decode_string_inplace(u32 *p, char **sp, int *lenp, int maxlen)
121{
122 unsigned int len;
123
124 if ((len = ntohl(*p++)) > maxlen)
125 return NULL;
126 *lenp = len;
127 *sp = (char *) p;
128 return p + XDR_QUADLEN(len);
129}
130
131void
132xdr_encode_pages(struct xdr_buf *xdr, struct page **pages, unsigned int base,
133 unsigned int len)
134{
135 struct kvec *tail = xdr->tail;
136 u32 *p;
137
138 xdr->pages = pages;
139 xdr->page_base = base;
140 xdr->page_len = len;
141
142 p = (u32 *)xdr->head[0].iov_base + XDR_QUADLEN(xdr->head[0].iov_len);
143 tail->iov_base = p;
144 tail->iov_len = 0;
145
146 if (len & 3) {
147 unsigned int pad = 4 - (len & 3);
148
149 *p = 0;
150 tail->iov_base = (char *)p + (len & 3);
151 tail->iov_len = pad;
152 len += pad;
153 }
154 xdr->buflen += len;
155 xdr->len += len;
156}
157
158void
159xdr_inline_pages(struct xdr_buf *xdr, unsigned int offset,
160 struct page **pages, unsigned int base, unsigned int len)
161{
162 struct kvec *head = xdr->head;
163 struct kvec *tail = xdr->tail;
164 char *buf = (char *)head->iov_base;
165 unsigned int buflen = head->iov_len;
166
167 head->iov_len = offset;
168
169 xdr->pages = pages;
170 xdr->page_base = base;
171 xdr->page_len = len;
172
173 tail->iov_base = buf + offset;
174 tail->iov_len = buflen - offset;
175
176 xdr->buflen += len;
177}
178
Olaf Kirche053d1a2005-06-22 17:16:24 +0000179int
Linus Torvalds1da177e2005-04-16 15:20:36 -0700180xdr_partial_copy_from_skb(struct xdr_buf *xdr, unsigned int base,
181 skb_reader_t *desc,
182 skb_read_actor_t copy_actor)
183{
184 struct page **ppage = xdr->pages;
185 unsigned int len, pglen = xdr->page_len;
186 int ret;
187
188 len = xdr->head[0].iov_len;
189 if (base < len) {
190 len -= base;
191 ret = copy_actor(desc, (char *)xdr->head[0].iov_base + base, len);
192 if (ret != len || !desc->count)
Olaf Kirche053d1a2005-06-22 17:16:24 +0000193 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700194 base = 0;
195 } else
196 base -= len;
197
198 if (pglen == 0)
199 goto copy_tail;
200 if (base >= pglen) {
201 base -= pglen;
202 goto copy_tail;
203 }
204 if (base || xdr->page_base) {
205 pglen -= base;
206 base += xdr->page_base;
207 ppage += base >> PAGE_CACHE_SHIFT;
208 base &= ~PAGE_CACHE_MASK;
209 }
210 do {
211 char *kaddr;
212
Olaf Kirche053d1a2005-06-22 17:16:24 +0000213 /* ACL likes to be lazy in allocating pages - ACLs
214 * are small by default but can get huge. */
215 if (unlikely(*ppage == NULL)) {
216 *ppage = alloc_page(GFP_ATOMIC);
217 if (unlikely(*ppage == NULL))
218 return -ENOMEM;
219 }
220
Linus Torvalds1da177e2005-04-16 15:20:36 -0700221 len = PAGE_CACHE_SIZE;
222 kaddr = kmap_atomic(*ppage, KM_SKB_SUNRPC_DATA);
223 if (base) {
224 len -= base;
225 if (pglen < len)
226 len = pglen;
227 ret = copy_actor(desc, kaddr + base, len);
228 base = 0;
229 } else {
230 if (pglen < len)
231 len = pglen;
232 ret = copy_actor(desc, kaddr, len);
233 }
234 flush_dcache_page(*ppage);
235 kunmap_atomic(kaddr, KM_SKB_SUNRPC_DATA);
236 if (ret != len || !desc->count)
Olaf Kirche053d1a2005-06-22 17:16:24 +0000237 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700238 ppage++;
239 } while ((pglen -= len) != 0);
240copy_tail:
241 len = xdr->tail[0].iov_len;
242 if (base < len)
243 copy_actor(desc, (char *)xdr->tail[0].iov_base + base, len - base);
Olaf Kirche053d1a2005-06-22 17:16:24 +0000244
245 return 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700246}
247
248
249int
250xdr_sendpages(struct socket *sock, struct sockaddr *addr, int addrlen,
251 struct xdr_buf *xdr, unsigned int base, int msgflags)
252{
253 struct page **ppage = xdr->pages;
254 unsigned int len, pglen = xdr->page_len;
255 int err, ret = 0;
256 ssize_t (*sendpage)(struct socket *, struct page *, int, size_t, int);
257
258 len = xdr->head[0].iov_len;
259 if (base < len || (addr != NULL && base == 0)) {
260 struct kvec iov = {
261 .iov_base = xdr->head[0].iov_base + base,
262 .iov_len = len - base,
263 };
264 struct msghdr msg = {
265 .msg_name = addr,
266 .msg_namelen = addrlen,
267 .msg_flags = msgflags,
268 };
269 if (xdr->len > len)
270 msg.msg_flags |= MSG_MORE;
271
272 if (iov.iov_len != 0)
273 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
274 else
275 err = kernel_sendmsg(sock, &msg, NULL, 0, 0);
276 if (ret == 0)
277 ret = err;
278 else if (err > 0)
279 ret += err;
280 if (err != iov.iov_len)
281 goto out;
282 base = 0;
283 } else
284 base -= len;
285
286 if (pglen == 0)
287 goto copy_tail;
288 if (base >= pglen) {
289 base -= pglen;
290 goto copy_tail;
291 }
292 if (base || xdr->page_base) {
293 pglen -= base;
294 base += xdr->page_base;
295 ppage += base >> PAGE_CACHE_SHIFT;
296 base &= ~PAGE_CACHE_MASK;
297 }
298
299 sendpage = sock->ops->sendpage ? : sock_no_sendpage;
300 do {
301 int flags = msgflags;
302
303 len = PAGE_CACHE_SIZE;
304 if (base)
305 len -= base;
306 if (pglen < len)
307 len = pglen;
308
309 if (pglen != len || xdr->tail[0].iov_len != 0)
310 flags |= MSG_MORE;
311
312 /* Hmm... We might be dealing with highmem pages */
313 if (PageHighMem(*ppage))
314 sendpage = sock_no_sendpage;
315 err = sendpage(sock, *ppage, base, len, flags);
316 if (ret == 0)
317 ret = err;
318 else if (err > 0)
319 ret += err;
320 if (err != len)
321 goto out;
322 base = 0;
323 ppage++;
324 } while ((pglen -= len) != 0);
325copy_tail:
326 len = xdr->tail[0].iov_len;
327 if (base < len) {
328 struct kvec iov = {
329 .iov_base = xdr->tail[0].iov_base + base,
330 .iov_len = len - base,
331 };
332 struct msghdr msg = {
333 .msg_flags = msgflags,
334 };
335 err = kernel_sendmsg(sock, &msg, &iov, 1, iov.iov_len);
336 if (ret == 0)
337 ret = err;
338 else if (err > 0)
339 ret += err;
340 }
341out:
342 return ret;
343}
344
345
346/*
347 * Helper routines for doing 'memmove' like operations on a struct xdr_buf
348 *
349 * _shift_data_right_pages
350 * @pages: vector of pages containing both the source and dest memory area.
351 * @pgto_base: page vector address of destination
352 * @pgfrom_base: page vector address of source
353 * @len: number of bytes to copy
354 *
355 * Note: the addresses pgto_base and pgfrom_base are both calculated in
356 * the same way:
357 * if a memory area starts at byte 'base' in page 'pages[i]',
358 * then its address is given as (i << PAGE_CACHE_SHIFT) + base
359 * Also note: pgfrom_base must be < pgto_base, but the memory areas
360 * they point to may overlap.
361 */
362static void
363_shift_data_right_pages(struct page **pages, size_t pgto_base,
364 size_t pgfrom_base, size_t len)
365{
366 struct page **pgfrom, **pgto;
367 char *vfrom, *vto;
368 size_t copy;
369
370 BUG_ON(pgto_base <= pgfrom_base);
371
372 pgto_base += len;
373 pgfrom_base += len;
374
375 pgto = pages + (pgto_base >> PAGE_CACHE_SHIFT);
376 pgfrom = pages + (pgfrom_base >> PAGE_CACHE_SHIFT);
377
378 pgto_base &= ~PAGE_CACHE_MASK;
379 pgfrom_base &= ~PAGE_CACHE_MASK;
380
381 do {
382 /* Are any pointers crossing a page boundary? */
383 if (pgto_base == 0) {
384 flush_dcache_page(*pgto);
385 pgto_base = PAGE_CACHE_SIZE;
386 pgto--;
387 }
388 if (pgfrom_base == 0) {
389 pgfrom_base = PAGE_CACHE_SIZE;
390 pgfrom--;
391 }
392
393 copy = len;
394 if (copy > pgto_base)
395 copy = pgto_base;
396 if (copy > pgfrom_base)
397 copy = pgfrom_base;
398 pgto_base -= copy;
399 pgfrom_base -= copy;
400
401 vto = kmap_atomic(*pgto, KM_USER0);
402 vfrom = kmap_atomic(*pgfrom, KM_USER1);
403 memmove(vto + pgto_base, vfrom + pgfrom_base, copy);
404 kunmap_atomic(vfrom, KM_USER1);
405 kunmap_atomic(vto, KM_USER0);
406
407 } while ((len -= copy) != 0);
408 flush_dcache_page(*pgto);
409}
410
411/*
412 * _copy_to_pages
413 * @pages: array of pages
414 * @pgbase: page vector address of destination
415 * @p: pointer to source data
416 * @len: length
417 *
418 * Copies data from an arbitrary memory location into an array of pages
419 * The copy is assumed to be non-overlapping.
420 */
421static void
422_copy_to_pages(struct page **pages, size_t pgbase, const char *p, size_t len)
423{
424 struct page **pgto;
425 char *vto;
426 size_t copy;
427
428 pgto = pages + (pgbase >> PAGE_CACHE_SHIFT);
429 pgbase &= ~PAGE_CACHE_MASK;
430
431 do {
432 copy = PAGE_CACHE_SIZE - pgbase;
433 if (copy > len)
434 copy = len;
435
436 vto = kmap_atomic(*pgto, KM_USER0);
437 memcpy(vto + pgbase, p, copy);
438 kunmap_atomic(vto, KM_USER0);
439
440 pgbase += copy;
441 if (pgbase == PAGE_CACHE_SIZE) {
442 flush_dcache_page(*pgto);
443 pgbase = 0;
444 pgto++;
445 }
446 p += copy;
447
448 } while ((len -= copy) != 0);
449 flush_dcache_page(*pgto);
450}
451
452/*
453 * _copy_from_pages
454 * @p: pointer to destination
455 * @pages: array of pages
456 * @pgbase: offset of source data
457 * @len: length
458 *
459 * Copies data into an arbitrary memory location from an array of pages
460 * The copy is assumed to be non-overlapping.
461 */
462static void
463_copy_from_pages(char *p, struct page **pages, size_t pgbase, size_t len)
464{
465 struct page **pgfrom;
466 char *vfrom;
467 size_t copy;
468
469 pgfrom = pages + (pgbase >> PAGE_CACHE_SHIFT);
470 pgbase &= ~PAGE_CACHE_MASK;
471
472 do {
473 copy = PAGE_CACHE_SIZE - pgbase;
474 if (copy > len)
475 copy = len;
476
477 vfrom = kmap_atomic(*pgfrom, KM_USER0);
478 memcpy(p, vfrom + pgbase, copy);
479 kunmap_atomic(vfrom, KM_USER0);
480
481 pgbase += copy;
482 if (pgbase == PAGE_CACHE_SIZE) {
483 pgbase = 0;
484 pgfrom++;
485 }
486 p += copy;
487
488 } while ((len -= copy) != 0);
489}
490
491/*
492 * xdr_shrink_bufhead
493 * @buf: xdr_buf
494 * @len: bytes to remove from buf->head[0]
495 *
496 * Shrinks XDR buffer's header kvec buf->head[0] by
497 * 'len' bytes. The extra data is not lost, but is instead
498 * moved into the inlined pages and/or the tail.
499 */
500static void
501xdr_shrink_bufhead(struct xdr_buf *buf, size_t len)
502{
503 struct kvec *head, *tail;
504 size_t copy, offs;
505 unsigned int pglen = buf->page_len;
506
507 tail = buf->tail;
508 head = buf->head;
509 BUG_ON (len > head->iov_len);
510
511 /* Shift the tail first */
512 if (tail->iov_len != 0) {
513 if (tail->iov_len > len) {
514 copy = tail->iov_len - len;
515 memmove((char *)tail->iov_base + len,
516 tail->iov_base, copy);
517 }
518 /* Copy from the inlined pages into the tail */
519 copy = len;
520 if (copy > pglen)
521 copy = pglen;
522 offs = len - copy;
523 if (offs >= tail->iov_len)
524 copy = 0;
525 else if (copy > tail->iov_len - offs)
526 copy = tail->iov_len - offs;
527 if (copy != 0)
528 _copy_from_pages((char *)tail->iov_base + offs,
529 buf->pages,
530 buf->page_base + pglen + offs - len,
531 copy);
532 /* Do we also need to copy data from the head into the tail ? */
533 if (len > pglen) {
534 offs = copy = len - pglen;
535 if (copy > tail->iov_len)
536 copy = tail->iov_len;
537 memcpy(tail->iov_base,
538 (char *)head->iov_base +
539 head->iov_len - offs,
540 copy);
541 }
542 }
543 /* Now handle pages */
544 if (pglen != 0) {
545 if (pglen > len)
546 _shift_data_right_pages(buf->pages,
547 buf->page_base + len,
548 buf->page_base,
549 pglen - len);
550 copy = len;
551 if (len > pglen)
552 copy = pglen;
553 _copy_to_pages(buf->pages, buf->page_base,
554 (char *)head->iov_base + head->iov_len - len,
555 copy);
556 }
557 head->iov_len -= len;
558 buf->buflen -= len;
559 /* Have we truncated the message? */
560 if (buf->len > buf->buflen)
561 buf->len = buf->buflen;
562}
563
564/*
565 * xdr_shrink_pagelen
566 * @buf: xdr_buf
567 * @len: bytes to remove from buf->pages
568 *
569 * Shrinks XDR buffer's page array buf->pages by
570 * 'len' bytes. The extra data is not lost, but is instead
571 * moved into the tail.
572 */
573static void
574xdr_shrink_pagelen(struct xdr_buf *buf, size_t len)
575{
576 struct kvec *tail;
577 size_t copy;
578 char *p;
579 unsigned int pglen = buf->page_len;
580
581 tail = buf->tail;
582 BUG_ON (len > pglen);
583
584 /* Shift the tail first */
585 if (tail->iov_len != 0) {
586 p = (char *)tail->iov_base + len;
587 if (tail->iov_len > len) {
588 copy = tail->iov_len - len;
589 memmove(p, tail->iov_base, copy);
590 } else
591 buf->buflen -= len;
592 /* Copy from the inlined pages into the tail */
593 copy = len;
594 if (copy > tail->iov_len)
595 copy = tail->iov_len;
596 _copy_from_pages((char *)tail->iov_base,
597 buf->pages, buf->page_base + pglen - len,
598 copy);
599 }
600 buf->page_len -= len;
601 buf->buflen -= len;
602 /* Have we truncated the message? */
603 if (buf->len > buf->buflen)
604 buf->len = buf->buflen;
605}
606
607void
608xdr_shift_buf(struct xdr_buf *buf, size_t len)
609{
610 xdr_shrink_bufhead(buf, len);
611}
612
613/**
614 * xdr_init_encode - Initialize a struct xdr_stream for sending data.
615 * @xdr: pointer to xdr_stream struct
616 * @buf: pointer to XDR buffer in which to encode data
617 * @p: current pointer inside XDR buffer
618 *
619 * Note: at the moment the RPC client only passes the length of our
620 * scratch buffer in the xdr_buf's header kvec. Previously this
621 * meant we needed to call xdr_adjust_iovec() after encoding the
622 * data. With the new scheme, the xdr_stream manages the details
623 * of the buffer length, and takes care of adjusting the kvec
624 * length for us.
625 */
626void xdr_init_encode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
627{
628 struct kvec *iov = buf->head;
Trond Myklebust334ccfd2005-06-22 17:16:19 +0000629 int scratch_len = buf->buflen - buf->page_len - buf->tail[0].iov_len;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630
Trond Myklebust334ccfd2005-06-22 17:16:19 +0000631 BUG_ON(scratch_len < 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700632 xdr->buf = buf;
633 xdr->iov = iov;
Trond Myklebust334ccfd2005-06-22 17:16:19 +0000634 xdr->p = (uint32_t *)((char *)iov->iov_base + iov->iov_len);
635 xdr->end = (uint32_t *)((char *)iov->iov_base + scratch_len);
636 BUG_ON(iov->iov_len > scratch_len);
637
638 if (p != xdr->p && p != NULL) {
639 size_t len;
640
641 BUG_ON(p < xdr->p || p > xdr->end);
642 len = (char *)p - (char *)xdr->p;
643 xdr->p = p;
644 buf->len += len;
645 iov->iov_len += len;
646 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700647}
648EXPORT_SYMBOL(xdr_init_encode);
649
650/**
651 * xdr_reserve_space - Reserve buffer space for sending
652 * @xdr: pointer to xdr_stream
653 * @nbytes: number of bytes to reserve
654 *
655 * Checks that we have enough buffer space to encode 'nbytes' more
656 * bytes of data. If so, update the total xdr_buf length, and
657 * adjust the length of the current kvec.
658 */
659uint32_t * xdr_reserve_space(struct xdr_stream *xdr, size_t nbytes)
660{
661 uint32_t *p = xdr->p;
662 uint32_t *q;
663
664 /* align nbytes on the next 32-bit boundary */
665 nbytes += 3;
666 nbytes &= ~3;
667 q = p + (nbytes >> 2);
668 if (unlikely(q > xdr->end || q < p))
669 return NULL;
670 xdr->p = q;
671 xdr->iov->iov_len += nbytes;
672 xdr->buf->len += nbytes;
673 return p;
674}
675EXPORT_SYMBOL(xdr_reserve_space);
676
677/**
678 * xdr_write_pages - Insert a list of pages into an XDR buffer for sending
679 * @xdr: pointer to xdr_stream
680 * @pages: list of pages
681 * @base: offset of first byte
682 * @len: length of data in bytes
683 *
684 */
685void xdr_write_pages(struct xdr_stream *xdr, struct page **pages, unsigned int base,
686 unsigned int len)
687{
688 struct xdr_buf *buf = xdr->buf;
689 struct kvec *iov = buf->tail;
690 buf->pages = pages;
691 buf->page_base = base;
692 buf->page_len = len;
693
694 iov->iov_base = (char *)xdr->p;
695 iov->iov_len = 0;
696 xdr->iov = iov;
697
698 if (len & 3) {
699 unsigned int pad = 4 - (len & 3);
700
701 BUG_ON(xdr->p >= xdr->end);
702 iov->iov_base = (char *)xdr->p + (len & 3);
703 iov->iov_len += pad;
704 len += pad;
705 *xdr->p++ = 0;
706 }
707 buf->buflen += len;
708 buf->len += len;
709}
710EXPORT_SYMBOL(xdr_write_pages);
711
712/**
713 * xdr_init_decode - Initialize an xdr_stream for decoding data.
714 * @xdr: pointer to xdr_stream struct
715 * @buf: pointer to XDR buffer from which to decode data
716 * @p: current pointer inside XDR buffer
717 */
718void xdr_init_decode(struct xdr_stream *xdr, struct xdr_buf *buf, uint32_t *p)
719{
720 struct kvec *iov = buf->head;
721 unsigned int len = iov->iov_len;
722
723 if (len > buf->len)
724 len = buf->len;
725 xdr->buf = buf;
726 xdr->iov = iov;
727 xdr->p = p;
728 xdr->end = (uint32_t *)((char *)iov->iov_base + len);
729}
730EXPORT_SYMBOL(xdr_init_decode);
731
732/**
733 * xdr_inline_decode - Retrieve non-page XDR data to decode
734 * @xdr: pointer to xdr_stream struct
735 * @nbytes: number of bytes of data to decode
736 *
737 * Check if the input buffer is long enough to enable us to decode
738 * 'nbytes' more bytes of data starting at the current position.
739 * If so return the current pointer, then update the current
740 * pointer position.
741 */
742uint32_t * xdr_inline_decode(struct xdr_stream *xdr, size_t nbytes)
743{
744 uint32_t *p = xdr->p;
745 uint32_t *q = p + XDR_QUADLEN(nbytes);
746
747 if (unlikely(q > xdr->end || q < p))
748 return NULL;
749 xdr->p = q;
750 return p;
751}
752EXPORT_SYMBOL(xdr_inline_decode);
753
754/**
755 * xdr_read_pages - Ensure page-based XDR data to decode is aligned at current pointer position
756 * @xdr: pointer to xdr_stream struct
757 * @len: number of bytes of page data
758 *
759 * Moves data beyond the current pointer position from the XDR head[] buffer
760 * into the page list. Any data that lies beyond current position + "len"
761 * bytes is moved into the XDR tail[]. The current pointer is then
762 * repositioned at the beginning of the XDR tail.
763 */
764void xdr_read_pages(struct xdr_stream *xdr, unsigned int len)
765{
766 struct xdr_buf *buf = xdr->buf;
767 struct kvec *iov;
768 ssize_t shift;
769 unsigned int end;
770 int padding;
771
772 /* Realign pages to current pointer position */
773 iov = buf->head;
774 shift = iov->iov_len + (char *)iov->iov_base - (char *)xdr->p;
775 if (shift > 0)
776 xdr_shrink_bufhead(buf, shift);
777
778 /* Truncate page data and move it into the tail */
779 if (buf->page_len > len)
780 xdr_shrink_pagelen(buf, buf->page_len - len);
781 padding = (XDR_QUADLEN(len) << 2) - len;
782 xdr->iov = iov = buf->tail;
783 /* Compute remaining message length. */
784 end = iov->iov_len;
785 shift = buf->buflen - buf->len;
786 if (shift < end)
787 end -= shift;
788 else if (shift > 0)
789 end = 0;
790 /*
791 * Position current pointer at beginning of tail, and
792 * set remaining message length.
793 */
794 xdr->p = (uint32_t *)((char *)iov->iov_base + padding);
795 xdr->end = (uint32_t *)((char *)iov->iov_base + end);
796}
797EXPORT_SYMBOL(xdr_read_pages);
798
799static struct kvec empty_iov = {.iov_base = NULL, .iov_len = 0};
800
801void
802xdr_buf_from_iov(struct kvec *iov, struct xdr_buf *buf)
803{
804 buf->head[0] = *iov;
805 buf->tail[0] = empty_iov;
806 buf->page_len = 0;
807 buf->buflen = buf->len = iov->iov_len;
808}
809
810/* Sets subiov to the intersection of iov with the buffer of length len
811 * starting base bytes after iov. Indicates empty intersection by setting
812 * length of subiov to zero. Decrements len by length of subiov, sets base
813 * to zero (or decrements it by length of iov if subiov is empty). */
814static void
815iov_subsegment(struct kvec *iov, struct kvec *subiov, int *base, int *len)
816{
817 if (*base > iov->iov_len) {
818 subiov->iov_base = NULL;
819 subiov->iov_len = 0;
820 *base -= iov->iov_len;
821 } else {
822 subiov->iov_base = iov->iov_base + *base;
823 subiov->iov_len = min(*len, (int)iov->iov_len - *base);
824 *base = 0;
825 }
826 *len -= subiov->iov_len;
827}
828
829/* Sets subbuf to the portion of buf of length len beginning base bytes
830 * from the start of buf. Returns -1 if base of length are out of bounds. */
831int
832xdr_buf_subsegment(struct xdr_buf *buf, struct xdr_buf *subbuf,
833 int base, int len)
834{
835 int i;
836
837 subbuf->buflen = subbuf->len = len;
838 iov_subsegment(buf->head, subbuf->head, &base, &len);
839
840 if (base < buf->page_len) {
841 i = (base + buf->page_base) >> PAGE_CACHE_SHIFT;
842 subbuf->pages = &buf->pages[i];
843 subbuf->page_base = (base + buf->page_base) & ~PAGE_CACHE_MASK;
844 subbuf->page_len = min((int)buf->page_len - base, len);
845 len -= subbuf->page_len;
846 base = 0;
847 } else {
848 base -= buf->page_len;
849 subbuf->page_len = 0;
850 }
851
852 iov_subsegment(buf->tail, subbuf->tail, &base, &len);
853 if (base || len)
854 return -1;
855 return 0;
856}
857
858/* obj is assumed to point to allocated memory of size at least len: */
859int
860read_bytes_from_xdr_buf(struct xdr_buf *buf, int base, void *obj, int len)
861{
862 struct xdr_buf subbuf;
863 int this_len;
864 int status;
865
866 status = xdr_buf_subsegment(buf, &subbuf, base, len);
867 if (status)
868 goto out;
869 this_len = min(len, (int)subbuf.head[0].iov_len);
870 memcpy(obj, subbuf.head[0].iov_base, this_len);
871 len -= this_len;
872 obj += this_len;
873 this_len = min(len, (int)subbuf.page_len);
874 if (this_len)
875 _copy_from_pages(obj, subbuf.pages, subbuf.page_base, this_len);
876 len -= this_len;
877 obj += this_len;
878 this_len = min(len, (int)subbuf.tail[0].iov_len);
879 memcpy(obj, subbuf.tail[0].iov_base, this_len);
880out:
881 return status;
882}
883
884static int
885read_u32_from_xdr_buf(struct xdr_buf *buf, int base, u32 *obj)
886{
887 u32 raw;
888 int status;
889
890 status = read_bytes_from_xdr_buf(buf, base, &raw, sizeof(*obj));
891 if (status)
892 return status;
893 *obj = ntohl(raw);
894 return 0;
895}
896
897/* If the netobj starting offset bytes from the start of xdr_buf is contained
898 * entirely in the head or the tail, set object to point to it; otherwise
899 * try to find space for it at the end of the tail, copy it there, and
900 * set obj to point to it. */
901int
902xdr_buf_read_netobj(struct xdr_buf *buf, struct xdr_netobj *obj, int offset)
903{
904 u32 tail_offset = buf->head[0].iov_len + buf->page_len;
905 u32 obj_end_offset;
906
907 if (read_u32_from_xdr_buf(buf, offset, &obj->len))
908 goto out;
909 obj_end_offset = offset + 4 + obj->len;
910
911 if (obj_end_offset <= buf->head[0].iov_len) {
912 /* The obj is contained entirely in the head: */
913 obj->data = buf->head[0].iov_base + offset + 4;
914 } else if (offset + 4 >= tail_offset) {
915 if (obj_end_offset - tail_offset
916 > buf->tail[0].iov_len)
917 goto out;
918 /* The obj is contained entirely in the tail: */
919 obj->data = buf->tail[0].iov_base
920 + offset - tail_offset + 4;
921 } else {
922 /* use end of tail as storage for obj:
923 * (We don't copy to the beginning because then we'd have
924 * to worry about doing a potentially overlapping copy.
925 * This assumes the object is at most half the length of the
926 * tail.) */
927 if (obj->len > buf->tail[0].iov_len)
928 goto out;
929 obj->data = buf->tail[0].iov_base + buf->tail[0].iov_len -
930 obj->len;
931 if (read_bytes_from_xdr_buf(buf, offset + 4,
932 obj->data, obj->len))
933 goto out;
934
935 }
936 return 0;
937out:
938 return -1;
939}