blob: bbebe28326398d578a0dd5584e8c643c6e2c69e9 [file] [log] [blame]
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001/*
Ingo Molnar57c0c152009-09-21 12:20:38 +02002 * Performance events core code:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003 *
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8 *
Ingo Molnar57c0c152009-09-21 12:20:38 +02009 * For licensing details see kernel-base/COPYING
Ingo Molnarcdd6c482009-09-21 12:02:48 +020010 */
11
12#include <linux/fs.h>
13#include <linux/mm.h>
14#include <linux/cpu.h>
15#include <linux/smp.h>
16#include <linux/file.h>
17#include <linux/poll.h>
18#include <linux/sysfs.h>
19#include <linux/dcache.h>
20#include <linux/percpu.h>
21#include <linux/ptrace.h>
22#include <linux/vmstat.h>
Peter Zijlstra906010b2009-09-21 16:08:49 +020023#include <linux/vmalloc.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020024#include <linux/hardirq.h>
25#include <linux/rculist.h>
26#include <linux/uaccess.h>
27#include <linux/syscalls.h>
28#include <linux/anon_inodes.h>
29#include <linux/kernel_stat.h>
30#include <linux/perf_event.h>
Li Zefan6fb29152009-10-15 11:21:42 +080031#include <linux/ftrace_event.h>
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +020032#include <linux/hw_breakpoint.h>
Ingo Molnarcdd6c482009-09-21 12:02:48 +020033
34#include <asm/irq_regs.h>
35
36/*
37 * Each CPU has a list of per CPU events:
38 */
Xiao Guangrongaa5452d2009-12-09 11:28:13 +080039static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +020040
41int perf_max_events __read_mostly = 1;
42static int perf_reserved_percpu __read_mostly;
43static int perf_overcommit __read_mostly = 1;
44
45static atomic_t nr_events __read_mostly;
46static atomic_t nr_mmap_events __read_mostly;
47static atomic_t nr_comm_events __read_mostly;
48static atomic_t nr_task_events __read_mostly;
49
50/*
51 * perf event paranoia level:
52 * -1 - not paranoid at all
53 * 0 - disallow raw tracepoint access for unpriv
54 * 1 - disallow cpu events for unpriv
55 * 2 - disallow kernel profiling for unpriv
56 */
57int sysctl_perf_event_paranoid __read_mostly = 1;
58
59static inline bool perf_paranoid_tracepoint_raw(void)
60{
61 return sysctl_perf_event_paranoid > -1;
62}
63
64static inline bool perf_paranoid_cpu(void)
65{
66 return sysctl_perf_event_paranoid > 0;
67}
68
69static inline bool perf_paranoid_kernel(void)
70{
71 return sysctl_perf_event_paranoid > 1;
72}
73
74int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
75
76/*
77 * max perf event sample rate
78 */
79int sysctl_perf_event_sample_rate __read_mostly = 100000;
80
81static atomic64_t perf_event_id;
82
83/*
84 * Lock for (sysadmin-configurable) event reservations:
85 */
86static DEFINE_SPINLOCK(perf_resource_lock);
87
88/*
89 * Architecture provided APIs - weak aliases:
90 */
91extern __weak const struct pmu *hw_perf_event_init(struct perf_event *event)
92{
93 return NULL;
94}
95
96void __weak hw_perf_disable(void) { barrier(); }
97void __weak hw_perf_enable(void) { barrier(); }
98
99void __weak hw_perf_event_setup(int cpu) { barrier(); }
100void __weak hw_perf_event_setup_online(int cpu) { barrier(); }
101
102int __weak
103hw_perf_group_sched_in(struct perf_event *group_leader,
104 struct perf_cpu_context *cpuctx,
105 struct perf_event_context *ctx, int cpu)
106{
107 return 0;
108}
109
110void __weak perf_event_print_debug(void) { }
111
112static DEFINE_PER_CPU(int, perf_disable_count);
113
114void __perf_disable(void)
115{
116 __get_cpu_var(perf_disable_count)++;
117}
118
119bool __perf_enable(void)
120{
121 return !--__get_cpu_var(perf_disable_count);
122}
123
124void perf_disable(void)
125{
126 __perf_disable();
127 hw_perf_disable();
128}
129
130void perf_enable(void)
131{
132 if (__perf_enable())
133 hw_perf_enable();
134}
135
136static void get_ctx(struct perf_event_context *ctx)
137{
138 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
139}
140
141static void free_ctx(struct rcu_head *head)
142{
143 struct perf_event_context *ctx;
144
145 ctx = container_of(head, struct perf_event_context, rcu_head);
146 kfree(ctx);
147}
148
149static void put_ctx(struct perf_event_context *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 if (ctx->parent_ctx)
153 put_ctx(ctx->parent_ctx);
154 if (ctx->task)
155 put_task_struct(ctx->task);
156 call_rcu(&ctx->rcu_head, free_ctx);
157 }
158}
159
160static void unclone_ctx(struct perf_event_context *ctx)
161{
162 if (ctx->parent_ctx) {
163 put_ctx(ctx->parent_ctx);
164 ctx->parent_ctx = NULL;
165 }
166}
167
168/*
169 * If we inherit events we want to return the parent event id
170 * to userspace.
171 */
172static u64 primary_event_id(struct perf_event *event)
173{
174 u64 id = event->id;
175
176 if (event->parent)
177 id = event->parent->id;
178
179 return id;
180}
181
182/*
183 * Get the perf_event_context for a task and lock it.
184 * This has to cope with with the fact that until it is locked,
185 * the context could get moved to another task.
186 */
187static struct perf_event_context *
188perf_lock_task_context(struct task_struct *task, unsigned long *flags)
189{
190 struct perf_event_context *ctx;
191
192 rcu_read_lock();
193 retry:
194 ctx = rcu_dereference(task->perf_event_ctxp);
195 if (ctx) {
196 /*
197 * If this context is a clone of another, it might
198 * get swapped for another underneath us by
199 * perf_event_task_sched_out, though the
200 * rcu_read_lock() protects us from any context
201 * getting freed. Lock the context and check if it
202 * got swapped before we could get the lock, and retry
203 * if so. If we locked the right context, then it
204 * can't get swapped on us any more.
205 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100206 raw_spin_lock_irqsave(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200207 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100208 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200209 goto retry;
210 }
211
212 if (!atomic_inc_not_zero(&ctx->refcount)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100213 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200214 ctx = NULL;
215 }
216 }
217 rcu_read_unlock();
218 return ctx;
219}
220
221/*
222 * Get the context for a task and increment its pin_count so it
223 * can't get swapped to another task. This also increments its
224 * reference count so that the context can't get freed.
225 */
226static struct perf_event_context *perf_pin_task_context(struct task_struct *task)
227{
228 struct perf_event_context *ctx;
229 unsigned long flags;
230
231 ctx = perf_lock_task_context(task, &flags);
232 if (ctx) {
233 ++ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100234 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200235 }
236 return ctx;
237}
238
239static void perf_unpin_context(struct perf_event_context *ctx)
240{
241 unsigned long flags;
242
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100243 raw_spin_lock_irqsave(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200244 --ctx->pin_count;
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200246 put_ctx(ctx);
247}
248
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100249static inline u64 perf_clock(void)
250{
251 return cpu_clock(smp_processor_id());
252}
253
254/*
255 * Update the record of the current time in a context.
256 */
257static void update_context_time(struct perf_event_context *ctx)
258{
259 u64 now = perf_clock();
260
261 ctx->time += now - ctx->timestamp;
262 ctx->timestamp = now;
263}
264
265/*
266 * Update the total_time_enabled and total_time_running fields for a event.
267 */
268static void update_event_times(struct perf_event *event)
269{
270 struct perf_event_context *ctx = event->ctx;
271 u64 run_end;
272
273 if (event->state < PERF_EVENT_STATE_INACTIVE ||
274 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
275 return;
276
Peter Zijlstraacd1d7c2009-11-23 15:00:36 +0100277 if (ctx->is_active)
278 run_end = ctx->time;
279 else
280 run_end = event->tstamp_stopped;
281
282 event->total_time_enabled = run_end - event->tstamp_enabled;
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100283
284 if (event->state == PERF_EVENT_STATE_INACTIVE)
285 run_end = event->tstamp_stopped;
286 else
287 run_end = ctx->time;
288
289 event->total_time_running = run_end - event->tstamp_running;
290}
291
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100292static struct list_head *
293ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
294{
295 if (event->attr.pinned)
296 return &ctx->pinned_groups;
297 else
298 return &ctx->flexible_groups;
299}
300
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200301/*
302 * Add a event from the lists for its context.
303 * Must be called with ctx->mutex and ctx->lock held.
304 */
305static void
306list_add_event(struct perf_event *event, struct perf_event_context *ctx)
307{
308 struct perf_event *group_leader = event->group_leader;
309
310 /*
311 * Depending on whether it is a standalone or sibling event,
312 * add it straight to the context's event list, or to the group
313 * leader's sibling list:
314 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100315 if (group_leader == event) {
316 struct list_head *list;
317
318 list = ctx_group_list(event, ctx);
319 list_add_tail(&event->group_entry, list);
320 } else {
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200321 list_add_tail(&event->group_entry, &group_leader->sibling_list);
322 group_leader->nr_siblings++;
323 }
324
325 list_add_rcu(&event->event_entry, &ctx->event_list);
326 ctx->nr_events++;
327 if (event->attr.inherit_stat)
328 ctx->nr_stat++;
329}
330
331/*
332 * Remove a event from the lists for its context.
333 * Must be called with ctx->mutex and ctx->lock held.
334 */
335static void
336list_del_event(struct perf_event *event, struct perf_event_context *ctx)
337{
338 struct perf_event *sibling, *tmp;
339
340 if (list_empty(&event->group_entry))
341 return;
342 ctx->nr_events--;
343 if (event->attr.inherit_stat)
344 ctx->nr_stat--;
345
346 list_del_init(&event->group_entry);
347 list_del_rcu(&event->event_entry);
348
349 if (event->group_leader != event)
350 event->group_leader->nr_siblings--;
351
Peter Zijlstraf67218c2009-11-23 11:37:27 +0100352 update_event_times(event);
Stephane Eranianb2e74a22009-11-26 09:24:30 -0800353
354 /*
355 * If event was in error state, then keep it
356 * that way, otherwise bogus counts will be
357 * returned on read(). The only way to get out
358 * of error state is by explicit re-enabling
359 * of the event
360 */
361 if (event->state > PERF_EVENT_STATE_OFF)
362 event->state = PERF_EVENT_STATE_OFF;
Peter Zijlstra2e2af502009-11-23 11:37:25 +0100363
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200364 /*
365 * If this was a group event with sibling events then
366 * upgrade the siblings to singleton events by adding them
367 * to the context list directly:
368 */
369 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100370 struct list_head *list;
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200371
Frederic Weisbecker889ff012010-01-09 20:04:47 +0100372 list = ctx_group_list(event, ctx);
373 list_move_tail(&sibling->group_entry, list);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200374 sibling->group_leader = sibling;
375 }
376}
377
378static void
379event_sched_out(struct perf_event *event,
380 struct perf_cpu_context *cpuctx,
381 struct perf_event_context *ctx)
382{
383 if (event->state != PERF_EVENT_STATE_ACTIVE)
384 return;
385
386 event->state = PERF_EVENT_STATE_INACTIVE;
387 if (event->pending_disable) {
388 event->pending_disable = 0;
389 event->state = PERF_EVENT_STATE_OFF;
390 }
391 event->tstamp_stopped = ctx->time;
392 event->pmu->disable(event);
393 event->oncpu = -1;
394
395 if (!is_software_event(event))
396 cpuctx->active_oncpu--;
397 ctx->nr_active--;
398 if (event->attr.exclusive || !cpuctx->active_oncpu)
399 cpuctx->exclusive = 0;
400}
401
402static void
403group_sched_out(struct perf_event *group_event,
404 struct perf_cpu_context *cpuctx,
405 struct perf_event_context *ctx)
406{
407 struct perf_event *event;
408
409 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
410 return;
411
412 event_sched_out(group_event, cpuctx, ctx);
413
414 /*
415 * Schedule out siblings (if any):
416 */
417 list_for_each_entry(event, &group_event->sibling_list, group_entry)
418 event_sched_out(event, cpuctx, ctx);
419
420 if (group_event->attr.exclusive)
421 cpuctx->exclusive = 0;
422}
423
424/*
425 * Cross CPU call to remove a performance event
426 *
427 * We disable the event on the hardware level first. After that we
428 * remove it from the context list.
429 */
430static void __perf_event_remove_from_context(void *info)
431{
432 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
433 struct perf_event *event = info;
434 struct perf_event_context *ctx = event->ctx;
435
436 /*
437 * If this is a task context, we need to check whether it is
438 * the current task context of this cpu. If not it has been
439 * scheduled out before the smp call arrived.
440 */
441 if (ctx->task && cpuctx->task_ctx != ctx)
442 return;
443
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100444 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200445 /*
446 * Protect the list operation against NMI by disabling the
447 * events on a global level.
448 */
449 perf_disable();
450
451 event_sched_out(event, cpuctx, ctx);
452
453 list_del_event(event, ctx);
454
455 if (!ctx->task) {
456 /*
457 * Allow more per task events with respect to the
458 * reservation:
459 */
460 cpuctx->max_pertask =
461 min(perf_max_events - ctx->nr_events,
462 perf_max_events - perf_reserved_percpu);
463 }
464
465 perf_enable();
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100466 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200467}
468
469
470/*
471 * Remove the event from a task's (or a CPU's) list of events.
472 *
473 * Must be called with ctx->mutex held.
474 *
475 * CPU events are removed with a smp call. For task events we only
476 * call when the task is on a CPU.
477 *
478 * If event->ctx is a cloned context, callers must make sure that
479 * every task struct that event->ctx->task could possibly point to
480 * remains valid. This is OK when called from perf_release since
481 * that only calls us on the top-level context, which can't be a clone.
482 * When called from perf_event_exit_task, it's OK because the
483 * context has been detached from its task.
484 */
485static void perf_event_remove_from_context(struct perf_event *event)
486{
487 struct perf_event_context *ctx = event->ctx;
488 struct task_struct *task = ctx->task;
489
490 if (!task) {
491 /*
492 * Per cpu events are removed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200493 * the removal is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200494 */
495 smp_call_function_single(event->cpu,
496 __perf_event_remove_from_context,
497 event, 1);
498 return;
499 }
500
501retry:
502 task_oncpu_function_call(task, __perf_event_remove_from_context,
503 event);
504
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100505 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200506 /*
507 * If the context is active we need to retry the smp call.
508 */
509 if (ctx->nr_active && !list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100510 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200511 goto retry;
512 }
513
514 /*
515 * The lock prevents that this context is scheduled in so we
516 * can remove the event safely, if the call above did not
517 * succeed.
518 */
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +0100519 if (!list_empty(&event->group_entry))
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200520 list_del_event(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100521 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200522}
523
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200524/*
525 * Update total_time_enabled and total_time_running for all events in a group.
526 */
527static void update_group_times(struct perf_event *leader)
528{
529 struct perf_event *event;
530
531 update_event_times(leader);
532 list_for_each_entry(event, &leader->sibling_list, group_entry)
533 update_event_times(event);
534}
535
536/*
537 * Cross CPU call to disable a performance event
538 */
539static void __perf_event_disable(void *info)
540{
541 struct perf_event *event = info;
542 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
543 struct perf_event_context *ctx = event->ctx;
544
545 /*
546 * If this is a per-task event, need to check whether this
547 * event's task is the current task on this cpu.
548 */
549 if (ctx->task && cpuctx->task_ctx != ctx)
550 return;
551
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100552 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200553
554 /*
555 * If the event is on, turn it off.
556 * If it is in error state, leave it in error state.
557 */
558 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
559 update_context_time(ctx);
560 update_group_times(event);
561 if (event == event->group_leader)
562 group_sched_out(event, cpuctx, ctx);
563 else
564 event_sched_out(event, cpuctx, ctx);
565 event->state = PERF_EVENT_STATE_OFF;
566 }
567
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100568 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200569}
570
571/*
572 * Disable a event.
573 *
574 * If event->ctx is a cloned context, callers must make sure that
575 * every task struct that event->ctx->task could possibly point to
576 * remains valid. This condition is satisifed when called through
577 * perf_event_for_each_child or perf_event_for_each because they
578 * hold the top-level event's child_mutex, so any descendant that
579 * goes to exit will block in sync_child_event.
580 * When called from perf_pending_event it's OK because event->ctx
581 * is the current context on this CPU and preemption is disabled,
582 * hence we can't get into perf_event_task_sched_out for this context.
583 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100584void perf_event_disable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200585{
586 struct perf_event_context *ctx = event->ctx;
587 struct task_struct *task = ctx->task;
588
589 if (!task) {
590 /*
591 * Disable the event on the cpu that it's on
592 */
593 smp_call_function_single(event->cpu, __perf_event_disable,
594 event, 1);
595 return;
596 }
597
598 retry:
599 task_oncpu_function_call(task, __perf_event_disable, event);
600
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100601 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200602 /*
603 * If the event is still active, we need to retry the cross-call.
604 */
605 if (event->state == PERF_EVENT_STATE_ACTIVE) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100606 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200607 goto retry;
608 }
609
610 /*
611 * Since we have the lock this context can't be scheduled
612 * in, so we can change the state safely.
613 */
614 if (event->state == PERF_EVENT_STATE_INACTIVE) {
615 update_group_times(event);
616 event->state = PERF_EVENT_STATE_OFF;
617 }
618
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100619 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200620}
621
622static int
623event_sched_in(struct perf_event *event,
624 struct perf_cpu_context *cpuctx,
625 struct perf_event_context *ctx,
626 int cpu)
627{
628 if (event->state <= PERF_EVENT_STATE_OFF)
629 return 0;
630
631 event->state = PERF_EVENT_STATE_ACTIVE;
632 event->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
633 /*
634 * The new state must be visible before we turn it on in the hardware:
635 */
636 smp_wmb();
637
638 if (event->pmu->enable(event)) {
639 event->state = PERF_EVENT_STATE_INACTIVE;
640 event->oncpu = -1;
641 return -EAGAIN;
642 }
643
644 event->tstamp_running += ctx->time - event->tstamp_stopped;
645
646 if (!is_software_event(event))
647 cpuctx->active_oncpu++;
648 ctx->nr_active++;
649
650 if (event->attr.exclusive)
651 cpuctx->exclusive = 1;
652
653 return 0;
654}
655
656static int
657group_sched_in(struct perf_event *group_event,
658 struct perf_cpu_context *cpuctx,
659 struct perf_event_context *ctx,
660 int cpu)
661{
662 struct perf_event *event, *partial_group;
663 int ret;
664
665 if (group_event->state == PERF_EVENT_STATE_OFF)
666 return 0;
667
668 ret = hw_perf_group_sched_in(group_event, cpuctx, ctx, cpu);
669 if (ret)
670 return ret < 0 ? ret : 0;
671
672 if (event_sched_in(group_event, cpuctx, ctx, cpu))
673 return -EAGAIN;
674
675 /*
676 * Schedule in siblings as one group (if any):
677 */
678 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
679 if (event_sched_in(event, cpuctx, ctx, cpu)) {
680 partial_group = event;
681 goto group_error;
682 }
683 }
684
685 return 0;
686
687group_error:
688 /*
689 * Groups can be scheduled in as one unit only, so undo any
690 * partial group before returning:
691 */
692 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
693 if (event == partial_group)
694 break;
695 event_sched_out(event, cpuctx, ctx);
696 }
697 event_sched_out(group_event, cpuctx, ctx);
698
699 return -EAGAIN;
700}
701
702/*
703 * Return 1 for a group consisting entirely of software events,
704 * 0 if the group contains any hardware events.
705 */
706static int is_software_only_group(struct perf_event *leader)
707{
708 struct perf_event *event;
709
710 if (!is_software_event(leader))
711 return 0;
712
713 list_for_each_entry(event, &leader->sibling_list, group_entry)
714 if (!is_software_event(event))
715 return 0;
716
717 return 1;
718}
719
720/*
721 * Work out whether we can put this event group on the CPU now.
722 */
723static int group_can_go_on(struct perf_event *event,
724 struct perf_cpu_context *cpuctx,
725 int can_add_hw)
726{
727 /*
728 * Groups consisting entirely of software events can always go on.
729 */
730 if (is_software_only_group(event))
731 return 1;
732 /*
733 * If an exclusive group is already on, no other hardware
734 * events can go on.
735 */
736 if (cpuctx->exclusive)
737 return 0;
738 /*
739 * If this group is exclusive and there are already
740 * events on the CPU, it can't go on.
741 */
742 if (event->attr.exclusive && cpuctx->active_oncpu)
743 return 0;
744 /*
745 * Otherwise, try to add it if all previous groups were able
746 * to go on.
747 */
748 return can_add_hw;
749}
750
751static void add_event_to_ctx(struct perf_event *event,
752 struct perf_event_context *ctx)
753{
754 list_add_event(event, ctx);
755 event->tstamp_enabled = ctx->time;
756 event->tstamp_running = ctx->time;
757 event->tstamp_stopped = ctx->time;
758}
759
760/*
761 * Cross CPU call to install and enable a performance event
762 *
763 * Must be called with ctx->mutex held
764 */
765static void __perf_install_in_context(void *info)
766{
767 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
768 struct perf_event *event = info;
769 struct perf_event_context *ctx = event->ctx;
770 struct perf_event *leader = event->group_leader;
771 int cpu = smp_processor_id();
772 int err;
773
774 /*
775 * If this is a task context, we need to check whether it is
776 * the current task context of this cpu. If not it has been
777 * scheduled out before the smp call arrived.
778 * Or possibly this is the right context but it isn't
779 * on this cpu because it had no events.
780 */
781 if (ctx->task && cpuctx->task_ctx != ctx) {
782 if (cpuctx->task_ctx || ctx->task != current)
783 return;
784 cpuctx->task_ctx = ctx;
785 }
786
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100787 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200788 ctx->is_active = 1;
789 update_context_time(ctx);
790
791 /*
792 * Protect the list operation against NMI by disabling the
793 * events on a global level. NOP for non NMI based events.
794 */
795 perf_disable();
796
797 add_event_to_ctx(event, ctx);
798
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100799 if (event->cpu != -1 && event->cpu != smp_processor_id())
800 goto unlock;
801
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200802 /*
803 * Don't put the event on if it is disabled or if
804 * it is in a group and the group isn't on.
805 */
806 if (event->state != PERF_EVENT_STATE_INACTIVE ||
807 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
808 goto unlock;
809
810 /*
811 * An exclusive event can't go on if there are already active
812 * hardware events, and no hardware event can go on if there
813 * is already an exclusive event on.
814 */
815 if (!group_can_go_on(event, cpuctx, 1))
816 err = -EEXIST;
817 else
818 err = event_sched_in(event, cpuctx, ctx, cpu);
819
820 if (err) {
821 /*
822 * This event couldn't go on. If it is in a group
823 * then we have to pull the whole group off.
824 * If the event group is pinned then put it in error state.
825 */
826 if (leader != event)
827 group_sched_out(leader, cpuctx, ctx);
828 if (leader->attr.pinned) {
829 update_group_times(leader);
830 leader->state = PERF_EVENT_STATE_ERROR;
831 }
832 }
833
834 if (!err && !ctx->task && cpuctx->max_pertask)
835 cpuctx->max_pertask--;
836
837 unlock:
838 perf_enable();
839
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100840 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200841}
842
843/*
844 * Attach a performance event to a context
845 *
846 * First we add the event to the list with the hardware enable bit
847 * in event->hw_config cleared.
848 *
849 * If the event is attached to a task which is on a CPU we use a smp
850 * call to enable it in the task context. The task might have been
851 * scheduled away, but we check this in the smp call again.
852 *
853 * Must be called with ctx->mutex held.
854 */
855static void
856perf_install_in_context(struct perf_event_context *ctx,
857 struct perf_event *event,
858 int cpu)
859{
860 struct task_struct *task = ctx->task;
861
862 if (!task) {
863 /*
864 * Per cpu events are installed via an smp call and
André Goddard Rosaaf901ca2009-11-14 13:09:05 -0200865 * the install is always successful.
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200866 */
867 smp_call_function_single(cpu, __perf_install_in_context,
868 event, 1);
869 return;
870 }
871
872retry:
873 task_oncpu_function_call(task, __perf_install_in_context,
874 event);
875
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100876 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200877 /*
878 * we need to retry the smp call.
879 */
880 if (ctx->is_active && list_empty(&event->group_entry)) {
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100881 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200882 goto retry;
883 }
884
885 /*
886 * The lock prevents that this context is scheduled in so we
887 * can add the event safely, if it the call above did not
888 * succeed.
889 */
890 if (list_empty(&event->group_entry))
891 add_event_to_ctx(event, ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100892 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200893}
894
895/*
896 * Put a event into inactive state and update time fields.
897 * Enabling the leader of a group effectively enables all
898 * the group members that aren't explicitly disabled, so we
899 * have to update their ->tstamp_enabled also.
900 * Note: this works for group members as well as group leaders
901 * since the non-leader members' sibling_lists will be empty.
902 */
903static void __perf_event_mark_enabled(struct perf_event *event,
904 struct perf_event_context *ctx)
905{
906 struct perf_event *sub;
907
908 event->state = PERF_EVENT_STATE_INACTIVE;
909 event->tstamp_enabled = ctx->time - event->total_time_enabled;
910 list_for_each_entry(sub, &event->sibling_list, group_entry)
911 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
912 sub->tstamp_enabled =
913 ctx->time - sub->total_time_enabled;
914}
915
916/*
917 * Cross CPU call to enable a performance event
918 */
919static void __perf_event_enable(void *info)
920{
921 struct perf_event *event = info;
922 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
923 struct perf_event_context *ctx = event->ctx;
924 struct perf_event *leader = event->group_leader;
925 int err;
926
927 /*
928 * If this is a per-task event, need to check whether this
929 * event's task is the current task on this cpu.
930 */
931 if (ctx->task && cpuctx->task_ctx != ctx) {
932 if (cpuctx->task_ctx || ctx->task != current)
933 return;
934 cpuctx->task_ctx = ctx;
935 }
936
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100937 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200938 ctx->is_active = 1;
939 update_context_time(ctx);
940
941 if (event->state >= PERF_EVENT_STATE_INACTIVE)
942 goto unlock;
943 __perf_event_mark_enabled(event, ctx);
944
Peter Zijlstraf4c41762009-12-16 17:55:54 +0100945 if (event->cpu != -1 && event->cpu != smp_processor_id())
946 goto unlock;
947
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200948 /*
949 * If the event is in a group and isn't the group leader,
950 * then don't put it on unless the group is on.
951 */
952 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
953 goto unlock;
954
955 if (!group_can_go_on(event, cpuctx, 1)) {
956 err = -EEXIST;
957 } else {
958 perf_disable();
959 if (event == leader)
960 err = group_sched_in(event, cpuctx, ctx,
961 smp_processor_id());
962 else
963 err = event_sched_in(event, cpuctx, ctx,
964 smp_processor_id());
965 perf_enable();
966 }
967
968 if (err) {
969 /*
970 * If this event can't go on and it's part of a
971 * group, then the whole group has to come off.
972 */
973 if (leader != event)
974 group_sched_out(leader, cpuctx, ctx);
975 if (leader->attr.pinned) {
976 update_group_times(leader);
977 leader->state = PERF_EVENT_STATE_ERROR;
978 }
979 }
980
981 unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +0100982 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200983}
984
985/*
986 * Enable a event.
987 *
988 * If event->ctx is a cloned context, callers must make sure that
989 * every task struct that event->ctx->task could possibly point to
990 * remains valid. This condition is satisfied when called through
991 * perf_event_for_each_child or perf_event_for_each as described
992 * for perf_event_disable.
993 */
Frederic Weisbecker44234ad2009-12-09 09:25:48 +0100994void perf_event_enable(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +0200995{
996 struct perf_event_context *ctx = event->ctx;
997 struct task_struct *task = ctx->task;
998
999 if (!task) {
1000 /*
1001 * Enable the event on the cpu that it's on
1002 */
1003 smp_call_function_single(event->cpu, __perf_event_enable,
1004 event, 1);
1005 return;
1006 }
1007
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001008 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001009 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1010 goto out;
1011
1012 /*
1013 * If the event is in error state, clear that first.
1014 * That way, if we see the event in error state below, we
1015 * know that it has gone back into error state, as distinct
1016 * from the task having been scheduled away before the
1017 * cross-call arrived.
1018 */
1019 if (event->state == PERF_EVENT_STATE_ERROR)
1020 event->state = PERF_EVENT_STATE_OFF;
1021
1022 retry:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001023 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001024 task_oncpu_function_call(task, __perf_event_enable, event);
1025
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001026 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001027
1028 /*
1029 * If the context is active and the event is still off,
1030 * we need to retry the cross-call.
1031 */
1032 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1033 goto retry;
1034
1035 /*
1036 * Since we have the lock this context can't be scheduled
1037 * in, so we can change the state safely.
1038 */
1039 if (event->state == PERF_EVENT_STATE_OFF)
1040 __perf_event_mark_enabled(event, ctx);
1041
1042 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001043 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001044}
1045
1046static int perf_event_refresh(struct perf_event *event, int refresh)
1047{
1048 /*
1049 * not supported on inherited events
1050 */
1051 if (event->attr.inherit)
1052 return -EINVAL;
1053
1054 atomic_add(refresh, &event->event_limit);
1055 perf_event_enable(event);
1056
1057 return 0;
1058}
1059
1060void __perf_event_sched_out(struct perf_event_context *ctx,
1061 struct perf_cpu_context *cpuctx)
1062{
1063 struct perf_event *event;
1064
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001065 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001066 ctx->is_active = 0;
1067 if (likely(!ctx->nr_events))
1068 goto out;
1069 update_context_time(ctx);
1070
1071 perf_disable();
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001072 if (ctx->nr_active) {
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001073 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1074 group_sched_out(event, cpuctx, ctx);
1075
1076 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001077 group_sched_out(event, cpuctx, ctx);
Peter Zijlstra6c2bfcb2009-11-23 11:37:24 +01001078 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001079 perf_enable();
1080 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001081 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001082}
1083
1084/*
1085 * Test whether two contexts are equivalent, i.e. whether they
1086 * have both been cloned from the same version of the same context
1087 * and they both have the same number of enabled events.
1088 * If the number of enabled events is the same, then the set
1089 * of enabled events should be the same, because these are both
1090 * inherited contexts, therefore we can't access individual events
1091 * in them directly with an fd; we can only enable/disable all
1092 * events via prctl, or enable/disable all events in a family
1093 * via ioctl, which will have the same effect on both contexts.
1094 */
1095static int context_equiv(struct perf_event_context *ctx1,
1096 struct perf_event_context *ctx2)
1097{
1098 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1099 && ctx1->parent_gen == ctx2->parent_gen
1100 && !ctx1->pin_count && !ctx2->pin_count;
1101}
1102
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001103static void __perf_event_sync_stat(struct perf_event *event,
1104 struct perf_event *next_event)
1105{
1106 u64 value;
1107
1108 if (!event->attr.inherit_stat)
1109 return;
1110
1111 /*
1112 * Update the event value, we cannot use perf_event_read()
1113 * because we're in the middle of a context switch and have IRQs
1114 * disabled, which upsets smp_call_function_single(), however
1115 * we know the event must be on the current CPU, therefore we
1116 * don't need to use it.
1117 */
1118 switch (event->state) {
1119 case PERF_EVENT_STATE_ACTIVE:
Peter Zijlstra3dbebf12009-11-20 22:19:52 +01001120 event->pmu->read(event);
1121 /* fall-through */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001122
1123 case PERF_EVENT_STATE_INACTIVE:
1124 update_event_times(event);
1125 break;
1126
1127 default:
1128 break;
1129 }
1130
1131 /*
1132 * In order to keep per-task stats reliable we need to flip the event
1133 * values when we flip the contexts.
1134 */
1135 value = atomic64_read(&next_event->count);
1136 value = atomic64_xchg(&event->count, value);
1137 atomic64_set(&next_event->count, value);
1138
1139 swap(event->total_time_enabled, next_event->total_time_enabled);
1140 swap(event->total_time_running, next_event->total_time_running);
1141
1142 /*
1143 * Since we swizzled the values, update the user visible data too.
1144 */
1145 perf_event_update_userpage(event);
1146 perf_event_update_userpage(next_event);
1147}
1148
1149#define list_next_entry(pos, member) \
1150 list_entry(pos->member.next, typeof(*pos), member)
1151
1152static void perf_event_sync_stat(struct perf_event_context *ctx,
1153 struct perf_event_context *next_ctx)
1154{
1155 struct perf_event *event, *next_event;
1156
1157 if (!ctx->nr_stat)
1158 return;
1159
Peter Zijlstra02ffdbc2009-11-20 22:19:50 +01001160 update_context_time(ctx);
1161
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001162 event = list_first_entry(&ctx->event_list,
1163 struct perf_event, event_entry);
1164
1165 next_event = list_first_entry(&next_ctx->event_list,
1166 struct perf_event, event_entry);
1167
1168 while (&event->event_entry != &ctx->event_list &&
1169 &next_event->event_entry != &next_ctx->event_list) {
1170
1171 __perf_event_sync_stat(event, next_event);
1172
1173 event = list_next_entry(event, event_entry);
1174 next_event = list_next_entry(next_event, event_entry);
1175 }
1176}
1177
1178/*
1179 * Called from scheduler to remove the events of the current task,
1180 * with interrupts disabled.
1181 *
1182 * We stop each event and update the event value in event->count.
1183 *
1184 * This does not protect us against NMI, but disable()
1185 * sets the disabled bit in the control field of event _before_
1186 * accessing the event control register. If a NMI hits, then it will
1187 * not restart the event.
1188 */
1189void perf_event_task_sched_out(struct task_struct *task,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001190 struct task_struct *next)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001191{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001192 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001193 struct perf_event_context *ctx = task->perf_event_ctxp;
1194 struct perf_event_context *next_ctx;
1195 struct perf_event_context *parent;
1196 struct pt_regs *regs;
1197 int do_switch = 1;
1198
1199 regs = task_pt_regs(task);
1200 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, 1, regs, 0);
1201
1202 if (likely(!ctx || !cpuctx->task_ctx))
1203 return;
1204
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001205 rcu_read_lock();
1206 parent = rcu_dereference(ctx->parent_ctx);
1207 next_ctx = next->perf_event_ctxp;
1208 if (parent && next_ctx &&
1209 rcu_dereference(next_ctx->parent_ctx) == parent) {
1210 /*
1211 * Looks like the two contexts are clones, so we might be
1212 * able to optimize the context switch. We lock both
1213 * contexts and check that they are clones under the
1214 * lock (including re-checking that neither has been
1215 * uncloned in the meantime). It doesn't matter which
1216 * order we take the locks because no other cpu could
1217 * be trying to lock both of these tasks.
1218 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001219 raw_spin_lock(&ctx->lock);
1220 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001221 if (context_equiv(ctx, next_ctx)) {
1222 /*
1223 * XXX do we need a memory barrier of sorts
1224 * wrt to rcu_dereference() of perf_event_ctxp
1225 */
1226 task->perf_event_ctxp = next_ctx;
1227 next->perf_event_ctxp = ctx;
1228 ctx->task = next;
1229 next_ctx->task = task;
1230 do_switch = 0;
1231
1232 perf_event_sync_stat(ctx, next_ctx);
1233 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001234 raw_spin_unlock(&next_ctx->lock);
1235 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001236 }
1237 rcu_read_unlock();
1238
1239 if (do_switch) {
1240 __perf_event_sched_out(ctx, cpuctx);
1241 cpuctx->task_ctx = NULL;
1242 }
1243}
1244
1245/*
1246 * Called with IRQs disabled
1247 */
1248static void __perf_event_task_sched_out(struct perf_event_context *ctx)
1249{
1250 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1251
1252 if (!cpuctx->task_ctx)
1253 return;
1254
1255 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1256 return;
1257
1258 __perf_event_sched_out(ctx, cpuctx);
1259 cpuctx->task_ctx = NULL;
1260}
1261
1262/*
1263 * Called with IRQs disabled
1264 */
1265static void perf_event_cpu_sched_out(struct perf_cpu_context *cpuctx)
1266{
1267 __perf_event_sched_out(&cpuctx->ctx, cpuctx);
1268}
1269
1270static void
1271__perf_event_sched_in(struct perf_event_context *ctx,
Peter Zijlstra49f47432009-12-27 11:51:52 +01001272 struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001273{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001274 int cpu = smp_processor_id();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001275 struct perf_event *event;
1276 int can_add_hw = 1;
1277
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001278 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001279 ctx->is_active = 1;
1280 if (likely(!ctx->nr_events))
1281 goto out;
1282
1283 ctx->timestamp = perf_clock();
1284
1285 perf_disable();
1286
1287 /*
1288 * First go through the list and put on any pinned groups
1289 * in order to give them the best chance of going on.
1290 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001291 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1292 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001293 continue;
1294 if (event->cpu != -1 && event->cpu != cpu)
1295 continue;
1296
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001297 if (group_can_go_on(event, cpuctx, 1))
1298 group_sched_in(event, cpuctx, ctx, cpu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001299
1300 /*
1301 * If this pinned group hasn't been scheduled,
1302 * put it in error state.
1303 */
1304 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1305 update_group_times(event);
1306 event->state = PERF_EVENT_STATE_ERROR;
1307 }
1308 }
1309
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001310 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1311 /* Ignore events in OFF or ERROR state */
1312 if (event->state <= PERF_EVENT_STATE_OFF)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001313 continue;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001314 /*
1315 * Listen to the 'cpu' scheduling filter constraint
1316 * of events:
1317 */
1318 if (event->cpu != -1 && event->cpu != cpu)
1319 continue;
1320
Xiao Guangrong8c9ed8e2009-09-25 13:51:17 +08001321 if (group_can_go_on(event, cpuctx, can_add_hw))
1322 if (group_sched_in(event, cpuctx, ctx, cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001323 can_add_hw = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001324 }
1325 perf_enable();
1326 out:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001327 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001328}
1329
1330/*
1331 * Called from scheduler to add the events of the current task
1332 * with interrupts disabled.
1333 *
1334 * We restore the event value and then enable it.
1335 *
1336 * This does not protect us against NMI, but enable()
1337 * sets the enabled bit in the control field of event _before_
1338 * accessing the event control register. If a NMI hits, then it will
1339 * keep the event running.
1340 */
Peter Zijlstra49f47432009-12-27 11:51:52 +01001341void perf_event_task_sched_in(struct task_struct *task)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001342{
Peter Zijlstra49f47432009-12-27 11:51:52 +01001343 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001344 struct perf_event_context *ctx = task->perf_event_ctxp;
1345
1346 if (likely(!ctx))
1347 return;
1348 if (cpuctx->task_ctx == ctx)
1349 return;
Peter Zijlstra49f47432009-12-27 11:51:52 +01001350 __perf_event_sched_in(ctx, cpuctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001351 cpuctx->task_ctx = ctx;
1352}
1353
Peter Zijlstra49f47432009-12-27 11:51:52 +01001354static void perf_event_cpu_sched_in(struct perf_cpu_context *cpuctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001355{
1356 struct perf_event_context *ctx = &cpuctx->ctx;
1357
Peter Zijlstra49f47432009-12-27 11:51:52 +01001358 __perf_event_sched_in(ctx, cpuctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001359}
1360
1361#define MAX_INTERRUPTS (~0ULL)
1362
1363static void perf_log_throttle(struct perf_event *event, int enable);
1364
1365static void perf_adjust_period(struct perf_event *event, u64 events)
1366{
1367 struct hw_perf_event *hwc = &event->hw;
1368 u64 period, sample_period;
1369 s64 delta;
1370
1371 events *= hwc->sample_period;
1372 period = div64_u64(events, event->attr.sample_freq);
1373
1374 delta = (s64)(period - hwc->sample_period);
1375 delta = (delta + 7) / 8; /* low pass filter */
1376
1377 sample_period = hwc->sample_period + delta;
1378
1379 if (!sample_period)
1380 sample_period = 1;
1381
1382 hwc->sample_period = sample_period;
1383}
1384
1385static void perf_ctx_adjust_freq(struct perf_event_context *ctx)
1386{
1387 struct perf_event *event;
1388 struct hw_perf_event *hwc;
1389 u64 interrupts, freq;
1390
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001391 raw_spin_lock(&ctx->lock);
Paul Mackerras03541f82009-10-14 16:58:03 +11001392 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001393 if (event->state != PERF_EVENT_STATE_ACTIVE)
1394 continue;
1395
Peter Zijlstra5d27c232009-12-17 13:16:32 +01001396 if (event->cpu != -1 && event->cpu != smp_processor_id())
1397 continue;
1398
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001399 hwc = &event->hw;
1400
1401 interrupts = hwc->interrupts;
1402 hwc->interrupts = 0;
1403
1404 /*
1405 * unthrottle events on the tick
1406 */
1407 if (interrupts == MAX_INTERRUPTS) {
1408 perf_log_throttle(event, 1);
1409 event->pmu->unthrottle(event);
1410 interrupts = 2*sysctl_perf_event_sample_rate/HZ;
1411 }
1412
1413 if (!event->attr.freq || !event->attr.sample_freq)
1414 continue;
1415
1416 /*
1417 * if the specified freq < HZ then we need to skip ticks
1418 */
1419 if (event->attr.sample_freq < HZ) {
1420 freq = event->attr.sample_freq;
1421
1422 hwc->freq_count += freq;
1423 hwc->freq_interrupts += interrupts;
1424
1425 if (hwc->freq_count < HZ)
1426 continue;
1427
1428 interrupts = hwc->freq_interrupts;
1429 hwc->freq_interrupts = 0;
1430 hwc->freq_count -= HZ;
1431 } else
1432 freq = HZ;
1433
1434 perf_adjust_period(event, freq * interrupts);
1435
1436 /*
1437 * In order to avoid being stalled by an (accidental) huge
1438 * sample period, force reset the sample period if we didn't
1439 * get any events in this freq period.
1440 */
1441 if (!interrupts) {
1442 perf_disable();
1443 event->pmu->disable(event);
1444 atomic64_set(&hwc->period_left, 0);
1445 event->pmu->enable(event);
1446 perf_enable();
1447 }
1448 }
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001449 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001450}
1451
1452/*
1453 * Round-robin a context's events:
1454 */
1455static void rotate_ctx(struct perf_event_context *ctx)
1456{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001457 if (!ctx->nr_events)
1458 return;
1459
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001460 raw_spin_lock(&ctx->lock);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001461
Frederic Weisbeckere2864172010-01-09 21:05:28 +01001462 /* Rotate the first entry last of non-pinned groups */
1463 perf_disable();
1464
1465 list_rotate_left(&ctx->flexible_groups);
1466
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001467 perf_enable();
1468
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001469 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001470}
1471
Peter Zijlstra49f47432009-12-27 11:51:52 +01001472void perf_event_task_tick(struct task_struct *curr)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001473{
1474 struct perf_cpu_context *cpuctx;
1475 struct perf_event_context *ctx;
1476
1477 if (!atomic_read(&nr_events))
1478 return;
1479
Peter Zijlstra49f47432009-12-27 11:51:52 +01001480 cpuctx = &__get_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001481 ctx = curr->perf_event_ctxp;
1482
1483 perf_ctx_adjust_freq(&cpuctx->ctx);
1484 if (ctx)
1485 perf_ctx_adjust_freq(ctx);
1486
1487 perf_event_cpu_sched_out(cpuctx);
1488 if (ctx)
1489 __perf_event_task_sched_out(ctx);
1490
1491 rotate_ctx(&cpuctx->ctx);
1492 if (ctx)
1493 rotate_ctx(ctx);
1494
Peter Zijlstra49f47432009-12-27 11:51:52 +01001495 perf_event_cpu_sched_in(cpuctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001496 if (ctx)
Peter Zijlstra49f47432009-12-27 11:51:52 +01001497 perf_event_task_sched_in(curr);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001498}
1499
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001500static int event_enable_on_exec(struct perf_event *event,
1501 struct perf_event_context *ctx)
1502{
1503 if (!event->attr.enable_on_exec)
1504 return 0;
1505
1506 event->attr.enable_on_exec = 0;
1507 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1508 return 0;
1509
1510 __perf_event_mark_enabled(event, ctx);
1511
1512 return 1;
1513}
1514
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001515/*
1516 * Enable all of a task's events that have been marked enable-on-exec.
1517 * This expects task == current.
1518 */
1519static void perf_event_enable_on_exec(struct task_struct *task)
1520{
1521 struct perf_event_context *ctx;
1522 struct perf_event *event;
1523 unsigned long flags;
1524 int enabled = 0;
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001525 int ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001526
1527 local_irq_save(flags);
1528 ctx = task->perf_event_ctxp;
1529 if (!ctx || !ctx->nr_events)
1530 goto out;
1531
1532 __perf_event_task_sched_out(ctx);
1533
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001534 raw_spin_lock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001535
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001536 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1537 ret = event_enable_on_exec(event, ctx);
1538 if (ret)
1539 enabled = 1;
1540 }
1541
1542 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1543 ret = event_enable_on_exec(event, ctx);
1544 if (ret)
1545 enabled = 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001546 }
1547
1548 /*
1549 * Unclone this context if we enabled any event.
1550 */
1551 if (enabled)
1552 unclone_ctx(ctx);
1553
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001554 raw_spin_unlock(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001555
Peter Zijlstra49f47432009-12-27 11:51:52 +01001556 perf_event_task_sched_in(task);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001557 out:
1558 local_irq_restore(flags);
1559}
1560
1561/*
1562 * Cross CPU call to read the hardware event
1563 */
1564static void __perf_event_read(void *info)
1565{
1566 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
1567 struct perf_event *event = info;
1568 struct perf_event_context *ctx = event->ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001569
1570 /*
1571 * If this is a task context, we need to check whether it is
1572 * the current task context of this cpu. If not it has been
1573 * scheduled out before the smp call arrived. In that case
1574 * event->count would have been updated to a recent sample
1575 * when the event was scheduled out.
1576 */
1577 if (ctx->task && cpuctx->task_ctx != ctx)
1578 return;
1579
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001580 raw_spin_lock(&ctx->lock);
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001581 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001582 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001583 raw_spin_unlock(&ctx->lock);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001584
Peter Zijlstra58e5ad12009-11-20 22:19:53 +01001585 event->pmu->read(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001586}
1587
1588static u64 perf_event_read(struct perf_event *event)
1589{
1590 /*
1591 * If event is enabled and currently active on a CPU, update the
1592 * value in the event structure:
1593 */
1594 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1595 smp_call_function_single(event->oncpu,
1596 __perf_event_read, event, 1);
1597 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001598 struct perf_event_context *ctx = event->ctx;
1599 unsigned long flags;
1600
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001601 raw_spin_lock_irqsave(&ctx->lock, flags);
Peter Zijlstra2b8988c2009-11-20 22:19:54 +01001602 update_context_time(ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001603 update_event_times(event);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001604 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001605 }
1606
1607 return atomic64_read(&event->count);
1608}
1609
1610/*
1611 * Initialize the perf_event context in a task_struct:
1612 */
1613static void
1614__perf_event_init_context(struct perf_event_context *ctx,
1615 struct task_struct *task)
1616{
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001617 raw_spin_lock_init(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001618 mutex_init(&ctx->mutex);
Frederic Weisbecker889ff012010-01-09 20:04:47 +01001619 INIT_LIST_HEAD(&ctx->pinned_groups);
1620 INIT_LIST_HEAD(&ctx->flexible_groups);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001621 INIT_LIST_HEAD(&ctx->event_list);
1622 atomic_set(&ctx->refcount, 1);
1623 ctx->task = task;
1624}
1625
1626static struct perf_event_context *find_get_context(pid_t pid, int cpu)
1627{
1628 struct perf_event_context *ctx;
1629 struct perf_cpu_context *cpuctx;
1630 struct task_struct *task;
1631 unsigned long flags;
1632 int err;
1633
Peter Zijlstraf4c41762009-12-16 17:55:54 +01001634 if (pid == -1 && cpu != -1) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001635 /* Must be root to operate on a CPU event: */
1636 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
1637 return ERR_PTR(-EACCES);
1638
Paul Mackerras0f624e72009-12-15 19:40:32 +11001639 if (cpu < 0 || cpu >= nr_cpumask_bits)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001640 return ERR_PTR(-EINVAL);
1641
1642 /*
1643 * We could be clever and allow to attach a event to an
1644 * offline CPU and activate it when the CPU comes up, but
1645 * that's for later.
1646 */
Rusty Russellf6325e32009-12-17 11:43:08 -06001647 if (!cpu_online(cpu))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001648 return ERR_PTR(-ENODEV);
1649
1650 cpuctx = &per_cpu(perf_cpu_context, cpu);
1651 ctx = &cpuctx->ctx;
1652 get_ctx(ctx);
1653
1654 return ctx;
1655 }
1656
1657 rcu_read_lock();
1658 if (!pid)
1659 task = current;
1660 else
1661 task = find_task_by_vpid(pid);
1662 if (task)
1663 get_task_struct(task);
1664 rcu_read_unlock();
1665
1666 if (!task)
1667 return ERR_PTR(-ESRCH);
1668
1669 /*
1670 * Can't attach events to a dying task.
1671 */
1672 err = -ESRCH;
1673 if (task->flags & PF_EXITING)
1674 goto errout;
1675
1676 /* Reuse ptrace permission checks for now. */
1677 err = -EACCES;
1678 if (!ptrace_may_access(task, PTRACE_MODE_READ))
1679 goto errout;
1680
1681 retry:
1682 ctx = perf_lock_task_context(task, &flags);
1683 if (ctx) {
1684 unclone_ctx(ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01001685 raw_spin_unlock_irqrestore(&ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001686 }
1687
1688 if (!ctx) {
Xiao Guangrongaa5452d2009-12-09 11:28:13 +08001689 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001690 err = -ENOMEM;
1691 if (!ctx)
1692 goto errout;
1693 __perf_event_init_context(ctx, task);
1694 get_ctx(ctx);
1695 if (cmpxchg(&task->perf_event_ctxp, NULL, ctx)) {
1696 /*
1697 * We raced with some other task; use
1698 * the context they set.
1699 */
1700 kfree(ctx);
1701 goto retry;
1702 }
1703 get_task_struct(task);
1704 }
1705
1706 put_task_struct(task);
1707 return ctx;
1708
1709 errout:
1710 put_task_struct(task);
1711 return ERR_PTR(err);
1712}
1713
Li Zefan6fb29152009-10-15 11:21:42 +08001714static void perf_event_free_filter(struct perf_event *event);
1715
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001716static void free_event_rcu(struct rcu_head *head)
1717{
1718 struct perf_event *event;
1719
1720 event = container_of(head, struct perf_event, rcu_head);
1721 if (event->ns)
1722 put_pid_ns(event->ns);
Li Zefan6fb29152009-10-15 11:21:42 +08001723 perf_event_free_filter(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001724 kfree(event);
1725}
1726
1727static void perf_pending_sync(struct perf_event *event);
1728
1729static void free_event(struct perf_event *event)
1730{
1731 perf_pending_sync(event);
1732
1733 if (!event->parent) {
1734 atomic_dec(&nr_events);
1735 if (event->attr.mmap)
1736 atomic_dec(&nr_mmap_events);
1737 if (event->attr.comm)
1738 atomic_dec(&nr_comm_events);
1739 if (event->attr.task)
1740 atomic_dec(&nr_task_events);
1741 }
1742
1743 if (event->output) {
1744 fput(event->output->filp);
1745 event->output = NULL;
1746 }
1747
1748 if (event->destroy)
1749 event->destroy(event);
1750
1751 put_ctx(event->ctx);
1752 call_rcu(&event->rcu_head, free_event_rcu);
1753}
1754
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001755int perf_event_release_kernel(struct perf_event *event)
1756{
1757 struct perf_event_context *ctx = event->ctx;
1758
1759 WARN_ON_ONCE(ctx->parent_ctx);
1760 mutex_lock(&ctx->mutex);
1761 perf_event_remove_from_context(event);
1762 mutex_unlock(&ctx->mutex);
1763
1764 mutex_lock(&event->owner->perf_event_mutex);
1765 list_del_init(&event->owner_entry);
1766 mutex_unlock(&event->owner->perf_event_mutex);
1767 put_task_struct(event->owner);
1768
1769 free_event(event);
1770
1771 return 0;
1772}
1773EXPORT_SYMBOL_GPL(perf_event_release_kernel);
1774
Peter Zijlstraa66a3052009-11-23 11:37:23 +01001775/*
1776 * Called when the last reference to the file is gone.
1777 */
1778static int perf_release(struct inode *inode, struct file *file)
1779{
1780 struct perf_event *event = file->private_data;
1781
1782 file->private_data = NULL;
1783
1784 return perf_event_release_kernel(event);
1785}
1786
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001787static int perf_event_read_size(struct perf_event *event)
1788{
1789 int entry = sizeof(u64); /* value */
1790 int size = 0;
1791 int nr = 1;
1792
1793 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1794 size += sizeof(u64);
1795
1796 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1797 size += sizeof(u64);
1798
1799 if (event->attr.read_format & PERF_FORMAT_ID)
1800 entry += sizeof(u64);
1801
1802 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1803 nr += event->group_leader->nr_siblings;
1804 size += sizeof(u64);
1805 }
1806
1807 size += entry * nr;
1808
1809 return size;
1810}
1811
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001812u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001813{
1814 struct perf_event *child;
1815 u64 total = 0;
1816
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001817 *enabled = 0;
1818 *running = 0;
1819
Peter Zijlstra6f105812009-11-20 22:19:56 +01001820 mutex_lock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001821 total += perf_event_read(event);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001822 *enabled += event->total_time_enabled +
1823 atomic64_read(&event->child_total_time_enabled);
1824 *running += event->total_time_running +
1825 atomic64_read(&event->child_total_time_running);
1826
1827 list_for_each_entry(child, &event->child_list, child_list) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001828 total += perf_event_read(child);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001829 *enabled += child->total_time_enabled;
1830 *running += child->total_time_running;
1831 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001832 mutex_unlock(&event->child_mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001833
1834 return total;
1835}
Arjan van de Venfb0459d2009-09-25 12:25:56 +02001836EXPORT_SYMBOL_GPL(perf_event_read_value);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001837
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001838static int perf_event_read_group(struct perf_event *event,
1839 u64 read_format, char __user *buf)
1840{
1841 struct perf_event *leader = event->group_leader, *sub;
Peter Zijlstra6f105812009-11-20 22:19:56 +01001842 int n = 0, size = 0, ret = -EFAULT;
1843 struct perf_event_context *ctx = leader->ctx;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001844 u64 values[5];
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001845 u64 count, enabled, running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001846
Peter Zijlstra6f105812009-11-20 22:19:56 +01001847 mutex_lock(&ctx->mutex);
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001848 count = perf_event_read_value(leader, &enabled, &running);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001849
1850 values[n++] = 1 + leader->nr_siblings;
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001851 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1852 values[n++] = enabled;
1853 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1854 values[n++] = running;
Peter Zijlstraabf48682009-11-20 22:19:49 +01001855 values[n++] = count;
1856 if (read_format & PERF_FORMAT_ID)
1857 values[n++] = primary_event_id(leader);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001858
1859 size = n * sizeof(u64);
1860
1861 if (copy_to_user(buf, values, size))
Peter Zijlstra6f105812009-11-20 22:19:56 +01001862 goto unlock;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001863
Peter Zijlstra6f105812009-11-20 22:19:56 +01001864 ret = size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001865
1866 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
Peter Zijlstraabf48682009-11-20 22:19:49 +01001867 n = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001868
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001869 values[n++] = perf_event_read_value(sub, &enabled, &running);
Peter Zijlstraabf48682009-11-20 22:19:49 +01001870 if (read_format & PERF_FORMAT_ID)
1871 values[n++] = primary_event_id(sub);
1872
1873 size = n * sizeof(u64);
1874
Stephane Eranian184d3da2009-11-23 21:40:49 -08001875 if (copy_to_user(buf + ret, values, size)) {
Peter Zijlstra6f105812009-11-20 22:19:56 +01001876 ret = -EFAULT;
1877 goto unlock;
1878 }
Peter Zijlstraabf48682009-11-20 22:19:49 +01001879
1880 ret += size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001881 }
Peter Zijlstra6f105812009-11-20 22:19:56 +01001882unlock:
1883 mutex_unlock(&ctx->mutex);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001884
Peter Zijlstraabf48682009-11-20 22:19:49 +01001885 return ret;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001886}
1887
1888static int perf_event_read_one(struct perf_event *event,
1889 u64 read_format, char __user *buf)
1890{
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001891 u64 enabled, running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001892 u64 values[4];
1893 int n = 0;
1894
Peter Zijlstra59ed446f2009-11-20 22:19:55 +01001895 values[n++] = perf_event_read_value(event, &enabled, &running);
1896 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1897 values[n++] = enabled;
1898 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1899 values[n++] = running;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001900 if (read_format & PERF_FORMAT_ID)
1901 values[n++] = primary_event_id(event);
1902
1903 if (copy_to_user(buf, values, n * sizeof(u64)))
1904 return -EFAULT;
1905
1906 return n * sizeof(u64);
1907}
1908
1909/*
1910 * Read the performance event - simple non blocking version for now
1911 */
1912static ssize_t
1913perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
1914{
1915 u64 read_format = event->attr.read_format;
1916 int ret;
1917
1918 /*
1919 * Return end-of-file for a read on a event that is in
1920 * error state (i.e. because it was pinned but it couldn't be
1921 * scheduled on to the CPU at some point).
1922 */
1923 if (event->state == PERF_EVENT_STATE_ERROR)
1924 return 0;
1925
1926 if (count < perf_event_read_size(event))
1927 return -ENOSPC;
1928
1929 WARN_ON_ONCE(event->ctx->parent_ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001930 if (read_format & PERF_FORMAT_GROUP)
1931 ret = perf_event_read_group(event, read_format, buf);
1932 else
1933 ret = perf_event_read_one(event, read_format, buf);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02001934
1935 return ret;
1936}
1937
1938static ssize_t
1939perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
1940{
1941 struct perf_event *event = file->private_data;
1942
1943 return perf_read_hw(event, buf, count);
1944}
1945
1946static unsigned int perf_poll(struct file *file, poll_table *wait)
1947{
1948 struct perf_event *event = file->private_data;
1949 struct perf_mmap_data *data;
1950 unsigned int events = POLL_HUP;
1951
1952 rcu_read_lock();
1953 data = rcu_dereference(event->data);
1954 if (data)
1955 events = atomic_xchg(&data->poll, 0);
1956 rcu_read_unlock();
1957
1958 poll_wait(file, &event->waitq, wait);
1959
1960 return events;
1961}
1962
1963static void perf_event_reset(struct perf_event *event)
1964{
1965 (void)perf_event_read(event);
1966 atomic64_set(&event->count, 0);
1967 perf_event_update_userpage(event);
1968}
1969
1970/*
1971 * Holding the top-level event's child_mutex means that any
1972 * descendant process that has inherited this event will block
1973 * in sync_child_event if it goes to exit, thus satisfying the
1974 * task existence requirements of perf_event_enable/disable.
1975 */
1976static void perf_event_for_each_child(struct perf_event *event,
1977 void (*func)(struct perf_event *))
1978{
1979 struct perf_event *child;
1980
1981 WARN_ON_ONCE(event->ctx->parent_ctx);
1982 mutex_lock(&event->child_mutex);
1983 func(event);
1984 list_for_each_entry(child, &event->child_list, child_list)
1985 func(child);
1986 mutex_unlock(&event->child_mutex);
1987}
1988
1989static void perf_event_for_each(struct perf_event *event,
1990 void (*func)(struct perf_event *))
1991{
1992 struct perf_event_context *ctx = event->ctx;
1993 struct perf_event *sibling;
1994
1995 WARN_ON_ONCE(ctx->parent_ctx);
1996 mutex_lock(&ctx->mutex);
1997 event = event->group_leader;
1998
1999 perf_event_for_each_child(event, func);
2000 func(event);
2001 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2002 perf_event_for_each_child(event, func);
2003 mutex_unlock(&ctx->mutex);
2004}
2005
2006static int perf_event_period(struct perf_event *event, u64 __user *arg)
2007{
2008 struct perf_event_context *ctx = event->ctx;
2009 unsigned long size;
2010 int ret = 0;
2011 u64 value;
2012
2013 if (!event->attr.sample_period)
2014 return -EINVAL;
2015
2016 size = copy_from_user(&value, arg, sizeof(value));
2017 if (size != sizeof(value))
2018 return -EFAULT;
2019
2020 if (!value)
2021 return -EINVAL;
2022
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002023 raw_spin_lock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002024 if (event->attr.freq) {
2025 if (value > sysctl_perf_event_sample_rate) {
2026 ret = -EINVAL;
2027 goto unlock;
2028 }
2029
2030 event->attr.sample_freq = value;
2031 } else {
2032 event->attr.sample_period = value;
2033 event->hw.sample_period = value;
2034 }
2035unlock:
Thomas Gleixnere625cce2009-11-17 18:02:06 +01002036 raw_spin_unlock_irq(&ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002037
2038 return ret;
2039}
2040
Li Zefan6fb29152009-10-15 11:21:42 +08002041static int perf_event_set_output(struct perf_event *event, int output_fd);
2042static int perf_event_set_filter(struct perf_event *event, void __user *arg);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002043
2044static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2045{
2046 struct perf_event *event = file->private_data;
2047 void (*func)(struct perf_event *);
2048 u32 flags = arg;
2049
2050 switch (cmd) {
2051 case PERF_EVENT_IOC_ENABLE:
2052 func = perf_event_enable;
2053 break;
2054 case PERF_EVENT_IOC_DISABLE:
2055 func = perf_event_disable;
2056 break;
2057 case PERF_EVENT_IOC_RESET:
2058 func = perf_event_reset;
2059 break;
2060
2061 case PERF_EVENT_IOC_REFRESH:
2062 return perf_event_refresh(event, arg);
2063
2064 case PERF_EVENT_IOC_PERIOD:
2065 return perf_event_period(event, (u64 __user *)arg);
2066
2067 case PERF_EVENT_IOC_SET_OUTPUT:
2068 return perf_event_set_output(event, arg);
2069
Li Zefan6fb29152009-10-15 11:21:42 +08002070 case PERF_EVENT_IOC_SET_FILTER:
2071 return perf_event_set_filter(event, (void __user *)arg);
2072
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002073 default:
2074 return -ENOTTY;
2075 }
2076
2077 if (flags & PERF_IOC_FLAG_GROUP)
2078 perf_event_for_each(event, func);
2079 else
2080 perf_event_for_each_child(event, func);
2081
2082 return 0;
2083}
2084
2085int perf_event_task_enable(void)
2086{
2087 struct perf_event *event;
2088
2089 mutex_lock(&current->perf_event_mutex);
2090 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2091 perf_event_for_each_child(event, perf_event_enable);
2092 mutex_unlock(&current->perf_event_mutex);
2093
2094 return 0;
2095}
2096
2097int perf_event_task_disable(void)
2098{
2099 struct perf_event *event;
2100
2101 mutex_lock(&current->perf_event_mutex);
2102 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2103 perf_event_for_each_child(event, perf_event_disable);
2104 mutex_unlock(&current->perf_event_mutex);
2105
2106 return 0;
2107}
2108
2109#ifndef PERF_EVENT_INDEX_OFFSET
2110# define PERF_EVENT_INDEX_OFFSET 0
2111#endif
2112
2113static int perf_event_index(struct perf_event *event)
2114{
2115 if (event->state != PERF_EVENT_STATE_ACTIVE)
2116 return 0;
2117
2118 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2119}
2120
2121/*
2122 * Callers need to ensure there can be no nesting of this function, otherwise
2123 * the seqlock logic goes bad. We can not serialize this because the arch
2124 * code calls this from NMI context.
2125 */
2126void perf_event_update_userpage(struct perf_event *event)
2127{
2128 struct perf_event_mmap_page *userpg;
2129 struct perf_mmap_data *data;
2130
2131 rcu_read_lock();
2132 data = rcu_dereference(event->data);
2133 if (!data)
2134 goto unlock;
2135
2136 userpg = data->user_page;
2137
2138 /*
2139 * Disable preemption so as to not let the corresponding user-space
2140 * spin too long if we get preempted.
2141 */
2142 preempt_disable();
2143 ++userpg->lock;
2144 barrier();
2145 userpg->index = perf_event_index(event);
2146 userpg->offset = atomic64_read(&event->count);
2147 if (event->state == PERF_EVENT_STATE_ACTIVE)
2148 userpg->offset -= atomic64_read(&event->hw.prev_count);
2149
2150 userpg->time_enabled = event->total_time_enabled +
2151 atomic64_read(&event->child_total_time_enabled);
2152
2153 userpg->time_running = event->total_time_running +
2154 atomic64_read(&event->child_total_time_running);
2155
2156 barrier();
2157 ++userpg->lock;
2158 preempt_enable();
2159unlock:
2160 rcu_read_unlock();
2161}
2162
Peter Zijlstra906010b2009-09-21 16:08:49 +02002163static unsigned long perf_data_size(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002164{
Peter Zijlstra906010b2009-09-21 16:08:49 +02002165 return data->nr_pages << (PAGE_SHIFT + data->data_order);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002166}
2167
Peter Zijlstra906010b2009-09-21 16:08:49 +02002168#ifndef CONFIG_PERF_USE_VMALLOC
2169
2170/*
2171 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2172 */
2173
2174static struct page *
2175perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2176{
2177 if (pgoff > data->nr_pages)
2178 return NULL;
2179
2180 if (pgoff == 0)
2181 return virt_to_page(data->user_page);
2182
2183 return virt_to_page(data->data_pages[pgoff - 1]);
2184}
2185
2186static struct perf_mmap_data *
2187perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002188{
2189 struct perf_mmap_data *data;
2190 unsigned long size;
2191 int i;
2192
2193 WARN_ON(atomic_read(&event->mmap_count));
2194
2195 size = sizeof(struct perf_mmap_data);
2196 size += nr_pages * sizeof(void *);
2197
2198 data = kzalloc(size, GFP_KERNEL);
2199 if (!data)
2200 goto fail;
2201
2202 data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
2203 if (!data->user_page)
2204 goto fail_user_page;
2205
2206 for (i = 0; i < nr_pages; i++) {
2207 data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
2208 if (!data->data_pages[i])
2209 goto fail_data_pages;
2210 }
2211
Peter Zijlstra906010b2009-09-21 16:08:49 +02002212 data->data_order = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002213 data->nr_pages = nr_pages;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002214
Peter Zijlstra906010b2009-09-21 16:08:49 +02002215 return data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002216
2217fail_data_pages:
2218 for (i--; i >= 0; i--)
2219 free_page((unsigned long)data->data_pages[i]);
2220
2221 free_page((unsigned long)data->user_page);
2222
2223fail_user_page:
2224 kfree(data);
2225
2226fail:
Peter Zijlstra906010b2009-09-21 16:08:49 +02002227 return NULL;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002228}
2229
2230static void perf_mmap_free_page(unsigned long addr)
2231{
2232 struct page *page = virt_to_page((void *)addr);
2233
2234 page->mapping = NULL;
2235 __free_page(page);
2236}
2237
Peter Zijlstra906010b2009-09-21 16:08:49 +02002238static void perf_mmap_data_free(struct perf_mmap_data *data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002239{
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002240 int i;
2241
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002242 perf_mmap_free_page((unsigned long)data->user_page);
2243 for (i = 0; i < data->nr_pages; i++)
2244 perf_mmap_free_page((unsigned long)data->data_pages[i]);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002245 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002246}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002247
Peter Zijlstra906010b2009-09-21 16:08:49 +02002248#else
2249
2250/*
2251 * Back perf_mmap() with vmalloc memory.
2252 *
2253 * Required for architectures that have d-cache aliasing issues.
2254 */
2255
2256static struct page *
2257perf_mmap_to_page(struct perf_mmap_data *data, unsigned long pgoff)
2258{
2259 if (pgoff > (1UL << data->data_order))
2260 return NULL;
2261
2262 return vmalloc_to_page((void *)data->user_page + pgoff * PAGE_SIZE);
2263}
2264
2265static void perf_mmap_unmark_page(void *addr)
2266{
2267 struct page *page = vmalloc_to_page(addr);
2268
2269 page->mapping = NULL;
2270}
2271
2272static void perf_mmap_data_free_work(struct work_struct *work)
2273{
2274 struct perf_mmap_data *data;
2275 void *base;
2276 int i, nr;
2277
2278 data = container_of(work, struct perf_mmap_data, work);
2279 nr = 1 << data->data_order;
2280
2281 base = data->user_page;
2282 for (i = 0; i < nr + 1; i++)
2283 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2284
2285 vfree(base);
Kristian Høgsbergec70ccd2009-12-01 15:05:01 -05002286 kfree(data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002287}
2288
2289static void perf_mmap_data_free(struct perf_mmap_data *data)
2290{
2291 schedule_work(&data->work);
2292}
2293
2294static struct perf_mmap_data *
2295perf_mmap_data_alloc(struct perf_event *event, int nr_pages)
2296{
2297 struct perf_mmap_data *data;
2298 unsigned long size;
2299 void *all_buf;
2300
2301 WARN_ON(atomic_read(&event->mmap_count));
2302
2303 size = sizeof(struct perf_mmap_data);
2304 size += sizeof(void *);
2305
2306 data = kzalloc(size, GFP_KERNEL);
2307 if (!data)
2308 goto fail;
2309
2310 INIT_WORK(&data->work, perf_mmap_data_free_work);
2311
2312 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2313 if (!all_buf)
2314 goto fail_all_buf;
2315
2316 data->user_page = all_buf;
2317 data->data_pages[0] = all_buf + PAGE_SIZE;
2318 data->data_order = ilog2(nr_pages);
2319 data->nr_pages = 1;
2320
2321 return data;
2322
2323fail_all_buf:
2324 kfree(data);
2325
2326fail:
2327 return NULL;
2328}
2329
2330#endif
2331
2332static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2333{
2334 struct perf_event *event = vma->vm_file->private_data;
2335 struct perf_mmap_data *data;
2336 int ret = VM_FAULT_SIGBUS;
2337
2338 if (vmf->flags & FAULT_FLAG_MKWRITE) {
2339 if (vmf->pgoff == 0)
2340 ret = 0;
2341 return ret;
2342 }
2343
2344 rcu_read_lock();
2345 data = rcu_dereference(event->data);
2346 if (!data)
2347 goto unlock;
2348
2349 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
2350 goto unlock;
2351
2352 vmf->page = perf_mmap_to_page(data, vmf->pgoff);
2353 if (!vmf->page)
2354 goto unlock;
2355
2356 get_page(vmf->page);
2357 vmf->page->mapping = vma->vm_file->f_mapping;
2358 vmf->page->index = vmf->pgoff;
2359
2360 ret = 0;
2361unlock:
2362 rcu_read_unlock();
2363
2364 return ret;
2365}
2366
2367static void
2368perf_mmap_data_init(struct perf_event *event, struct perf_mmap_data *data)
2369{
2370 long max_size = perf_data_size(data);
2371
2372 atomic_set(&data->lock, -1);
2373
2374 if (event->attr.watermark) {
2375 data->watermark = min_t(long, max_size,
2376 event->attr.wakeup_watermark);
2377 }
2378
2379 if (!data->watermark)
Stephane Eranian8904b182009-11-20 22:19:57 +01002380 data->watermark = max_size / 2;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002381
2382
2383 rcu_assign_pointer(event->data, data);
2384}
2385
2386static void perf_mmap_data_free_rcu(struct rcu_head *rcu_head)
2387{
2388 struct perf_mmap_data *data;
2389
2390 data = container_of(rcu_head, struct perf_mmap_data, rcu_head);
2391 perf_mmap_data_free(data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002392}
2393
Peter Zijlstra906010b2009-09-21 16:08:49 +02002394static void perf_mmap_data_release(struct perf_event *event)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002395{
2396 struct perf_mmap_data *data = event->data;
2397
2398 WARN_ON(atomic_read(&event->mmap_count));
2399
2400 rcu_assign_pointer(event->data, NULL);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002401 call_rcu(&data->rcu_head, perf_mmap_data_free_rcu);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002402}
2403
2404static void perf_mmap_open(struct vm_area_struct *vma)
2405{
2406 struct perf_event *event = vma->vm_file->private_data;
2407
2408 atomic_inc(&event->mmap_count);
2409}
2410
2411static void perf_mmap_close(struct vm_area_struct *vma)
2412{
2413 struct perf_event *event = vma->vm_file->private_data;
2414
2415 WARN_ON_ONCE(event->ctx->parent_ctx);
2416 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002417 unsigned long size = perf_data_size(event->data);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002418 struct user_struct *user = current_user();
2419
Peter Zijlstra906010b2009-09-21 16:08:49 +02002420 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002421 vma->vm_mm->locked_vm -= event->data->nr_locked;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002422 perf_mmap_data_release(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002423 mutex_unlock(&event->mmap_mutex);
2424 }
2425}
2426
Alexey Dobriyanf0f37e22009-09-27 22:29:37 +04002427static const struct vm_operations_struct perf_mmap_vmops = {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002428 .open = perf_mmap_open,
2429 .close = perf_mmap_close,
2430 .fault = perf_mmap_fault,
2431 .page_mkwrite = perf_mmap_fault,
2432};
2433
2434static int perf_mmap(struct file *file, struct vm_area_struct *vma)
2435{
2436 struct perf_event *event = file->private_data;
2437 unsigned long user_locked, user_lock_limit;
2438 struct user_struct *user = current_user();
2439 unsigned long locked, lock_limit;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002440 struct perf_mmap_data *data;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002441 unsigned long vma_size;
2442 unsigned long nr_pages;
2443 long user_extra, extra;
2444 int ret = 0;
2445
2446 if (!(vma->vm_flags & VM_SHARED))
2447 return -EINVAL;
2448
2449 vma_size = vma->vm_end - vma->vm_start;
2450 nr_pages = (vma_size / PAGE_SIZE) - 1;
2451
2452 /*
2453 * If we have data pages ensure they're a power-of-two number, so we
2454 * can do bitmasks instead of modulo.
2455 */
2456 if (nr_pages != 0 && !is_power_of_2(nr_pages))
2457 return -EINVAL;
2458
2459 if (vma_size != PAGE_SIZE * (1 + nr_pages))
2460 return -EINVAL;
2461
2462 if (vma->vm_pgoff != 0)
2463 return -EINVAL;
2464
2465 WARN_ON_ONCE(event->ctx->parent_ctx);
2466 mutex_lock(&event->mmap_mutex);
2467 if (event->output) {
2468 ret = -EINVAL;
2469 goto unlock;
2470 }
2471
2472 if (atomic_inc_not_zero(&event->mmap_count)) {
2473 if (nr_pages != event->data->nr_pages)
2474 ret = -EINVAL;
2475 goto unlock;
2476 }
2477
2478 user_extra = nr_pages + 1;
2479 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
2480
2481 /*
2482 * Increase the limit linearly with more CPUs:
2483 */
2484 user_lock_limit *= num_online_cpus();
2485
2486 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
2487
2488 extra = 0;
2489 if (user_locked > user_lock_limit)
2490 extra = user_locked - user_lock_limit;
2491
2492 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2493 lock_limit >>= PAGE_SHIFT;
2494 locked = vma->vm_mm->locked_vm + extra;
2495
2496 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
2497 !capable(CAP_IPC_LOCK)) {
2498 ret = -EPERM;
2499 goto unlock;
2500 }
2501
2502 WARN_ON(event->data);
Peter Zijlstra906010b2009-09-21 16:08:49 +02002503
2504 data = perf_mmap_data_alloc(event, nr_pages);
2505 ret = -ENOMEM;
2506 if (!data)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002507 goto unlock;
2508
Peter Zijlstra906010b2009-09-21 16:08:49 +02002509 ret = 0;
2510 perf_mmap_data_init(event, data);
2511
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002512 atomic_set(&event->mmap_count, 1);
2513 atomic_long_add(user_extra, &user->locked_vm);
2514 vma->vm_mm->locked_vm += extra;
2515 event->data->nr_locked = extra;
2516 if (vma->vm_flags & VM_WRITE)
2517 event->data->writable = 1;
2518
2519unlock:
2520 mutex_unlock(&event->mmap_mutex);
2521
2522 vma->vm_flags |= VM_RESERVED;
2523 vma->vm_ops = &perf_mmap_vmops;
2524
2525 return ret;
2526}
2527
2528static int perf_fasync(int fd, struct file *filp, int on)
2529{
2530 struct inode *inode = filp->f_path.dentry->d_inode;
2531 struct perf_event *event = filp->private_data;
2532 int retval;
2533
2534 mutex_lock(&inode->i_mutex);
2535 retval = fasync_helper(fd, filp, on, &event->fasync);
2536 mutex_unlock(&inode->i_mutex);
2537
2538 if (retval < 0)
2539 return retval;
2540
2541 return 0;
2542}
2543
2544static const struct file_operations perf_fops = {
2545 .release = perf_release,
2546 .read = perf_read,
2547 .poll = perf_poll,
2548 .unlocked_ioctl = perf_ioctl,
2549 .compat_ioctl = perf_ioctl,
2550 .mmap = perf_mmap,
2551 .fasync = perf_fasync,
2552};
2553
2554/*
2555 * Perf event wakeup
2556 *
2557 * If there's data, ensure we set the poll() state and publish everything
2558 * to user-space before waking everybody up.
2559 */
2560
2561void perf_event_wakeup(struct perf_event *event)
2562{
2563 wake_up_all(&event->waitq);
2564
2565 if (event->pending_kill) {
2566 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
2567 event->pending_kill = 0;
2568 }
2569}
2570
2571/*
2572 * Pending wakeups
2573 *
2574 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2575 *
2576 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2577 * single linked list and use cmpxchg() to add entries lockless.
2578 */
2579
2580static void perf_pending_event(struct perf_pending_entry *entry)
2581{
2582 struct perf_event *event = container_of(entry,
2583 struct perf_event, pending);
2584
2585 if (event->pending_disable) {
2586 event->pending_disable = 0;
2587 __perf_event_disable(event);
2588 }
2589
2590 if (event->pending_wakeup) {
2591 event->pending_wakeup = 0;
2592 perf_event_wakeup(event);
2593 }
2594}
2595
2596#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2597
2598static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
2599 PENDING_TAIL,
2600};
2601
2602static void perf_pending_queue(struct perf_pending_entry *entry,
2603 void (*func)(struct perf_pending_entry *))
2604{
2605 struct perf_pending_entry **head;
2606
2607 if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
2608 return;
2609
2610 entry->func = func;
2611
2612 head = &get_cpu_var(perf_pending_head);
2613
2614 do {
2615 entry->next = *head;
2616 } while (cmpxchg(head, entry->next, entry) != entry->next);
2617
2618 set_perf_event_pending();
2619
2620 put_cpu_var(perf_pending_head);
2621}
2622
2623static int __perf_pending_run(void)
2624{
2625 struct perf_pending_entry *list;
2626 int nr = 0;
2627
2628 list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
2629 while (list != PENDING_TAIL) {
2630 void (*func)(struct perf_pending_entry *);
2631 struct perf_pending_entry *entry = list;
2632
2633 list = list->next;
2634
2635 func = entry->func;
2636 entry->next = NULL;
2637 /*
2638 * Ensure we observe the unqueue before we issue the wakeup,
2639 * so that we won't be waiting forever.
2640 * -- see perf_not_pending().
2641 */
2642 smp_wmb();
2643
2644 func(entry);
2645 nr++;
2646 }
2647
2648 return nr;
2649}
2650
2651static inline int perf_not_pending(struct perf_event *event)
2652{
2653 /*
2654 * If we flush on whatever cpu we run, there is a chance we don't
2655 * need to wait.
2656 */
2657 get_cpu();
2658 __perf_pending_run();
2659 put_cpu();
2660
2661 /*
2662 * Ensure we see the proper queue state before going to sleep
2663 * so that we do not miss the wakeup. -- see perf_pending_handle()
2664 */
2665 smp_rmb();
2666 return event->pending.next == NULL;
2667}
2668
2669static void perf_pending_sync(struct perf_event *event)
2670{
2671 wait_event(event->waitq, perf_not_pending(event));
2672}
2673
2674void perf_event_do_pending(void)
2675{
2676 __perf_pending_run();
2677}
2678
2679/*
2680 * Callchain support -- arch specific
2681 */
2682
2683__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2684{
2685 return NULL;
2686}
2687
2688/*
2689 * Output
2690 */
2691static bool perf_output_space(struct perf_mmap_data *data, unsigned long tail,
2692 unsigned long offset, unsigned long head)
2693{
2694 unsigned long mask;
2695
2696 if (!data->writable)
2697 return true;
2698
Peter Zijlstra906010b2009-09-21 16:08:49 +02002699 mask = perf_data_size(data) - 1;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002700
2701 offset = (offset - tail) & mask;
2702 head = (head - tail) & mask;
2703
2704 if ((int)(head - offset) < 0)
2705 return false;
2706
2707 return true;
2708}
2709
2710static void perf_output_wakeup(struct perf_output_handle *handle)
2711{
2712 atomic_set(&handle->data->poll, POLL_IN);
2713
2714 if (handle->nmi) {
2715 handle->event->pending_wakeup = 1;
2716 perf_pending_queue(&handle->event->pending,
2717 perf_pending_event);
2718 } else
2719 perf_event_wakeup(handle->event);
2720}
2721
2722/*
2723 * Curious locking construct.
2724 *
2725 * We need to ensure a later event_id doesn't publish a head when a former
2726 * event_id isn't done writing. However since we need to deal with NMIs we
2727 * cannot fully serialize things.
2728 *
2729 * What we do is serialize between CPUs so we only have to deal with NMI
2730 * nesting on a single CPU.
2731 *
2732 * We only publish the head (and generate a wakeup) when the outer-most
2733 * event_id completes.
2734 */
2735static void perf_output_lock(struct perf_output_handle *handle)
2736{
2737 struct perf_mmap_data *data = handle->data;
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002738 int cur, cpu = get_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002739
2740 handle->locked = 0;
2741
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002742 for (;;) {
2743 cur = atomic_cmpxchg(&data->lock, -1, cpu);
2744 if (cur == -1) {
2745 handle->locked = 1;
2746 break;
2747 }
2748 if (cur == cpu)
2749 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002750
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002751 cpu_relax();
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002752 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002753}
2754
2755static void perf_output_unlock(struct perf_output_handle *handle)
2756{
2757 struct perf_mmap_data *data = handle->data;
2758 unsigned long head;
2759 int cpu;
2760
2761 data->done_head = data->head;
2762
2763 if (!handle->locked)
2764 goto out;
2765
2766again:
2767 /*
2768 * The xchg implies a full barrier that ensures all writes are done
2769 * before we publish the new head, matched by a rmb() in userspace when
2770 * reading this position.
2771 */
2772 while ((head = atomic_long_xchg(&data->done_head, 0)))
2773 data->user_page->data_head = head;
2774
2775 /*
2776 * NMI can happen here, which means we can miss a done_head update.
2777 */
2778
2779 cpu = atomic_xchg(&data->lock, -1);
2780 WARN_ON_ONCE(cpu != smp_processor_id());
2781
2782 /*
2783 * Therefore we have to validate we did not indeed do so.
2784 */
2785 if (unlikely(atomic_long_read(&data->done_head))) {
2786 /*
2787 * Since we had it locked, we can lock it again.
2788 */
2789 while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
2790 cpu_relax();
2791
2792 goto again;
2793 }
2794
2795 if (atomic_xchg(&data->wakeup, 0))
2796 perf_output_wakeup(handle);
2797out:
Peter Zijlstra559fdc32009-11-16 12:45:14 +01002798 put_cpu();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002799}
2800
2801void perf_output_copy(struct perf_output_handle *handle,
2802 const void *buf, unsigned int len)
2803{
2804 unsigned int pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002805 unsigned long offset;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002806 unsigned int size;
2807 void **pages;
2808
2809 offset = handle->offset;
2810 pages_mask = handle->data->nr_pages - 1;
2811 pages = handle->data->data_pages;
2812
2813 do {
Peter Zijlstra906010b2009-09-21 16:08:49 +02002814 unsigned long page_offset;
2815 unsigned long page_size;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002816 int nr;
2817
2818 nr = (offset >> PAGE_SHIFT) & pages_mask;
Peter Zijlstra906010b2009-09-21 16:08:49 +02002819 page_size = 1UL << (handle->data->data_order + PAGE_SHIFT);
2820 page_offset = offset & (page_size - 1);
2821 size = min_t(unsigned int, page_size - page_offset, len);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02002822
2823 memcpy(pages[nr] + page_offset, buf, size);
2824
2825 len -= size;
2826 buf += size;
2827 offset += size;
2828 } while (len);
2829
2830 handle->offset = offset;
2831
2832 /*
2833 * Check we didn't copy past our reservation window, taking the
2834 * possible unsigned int wrap into account.
2835 */
2836 WARN_ON_ONCE(((long)(handle->head - handle->offset)) < 0);
2837}
2838
2839int perf_output_begin(struct perf_output_handle *handle,
2840 struct perf_event *event, unsigned int size,
2841 int nmi, int sample)
2842{
2843 struct perf_event *output_event;
2844 struct perf_mmap_data *data;
2845 unsigned long tail, offset, head;
2846 int have_lost;
2847 struct {
2848 struct perf_event_header header;
2849 u64 id;
2850 u64 lost;
2851 } lost_event;
2852
2853 rcu_read_lock();
2854 /*
2855 * For inherited events we send all the output towards the parent.
2856 */
2857 if (event->parent)
2858 event = event->parent;
2859
2860 output_event = rcu_dereference(event->output);
2861 if (output_event)
2862 event = output_event;
2863
2864 data = rcu_dereference(event->data);
2865 if (!data)
2866 goto out;
2867
2868 handle->data = data;
2869 handle->event = event;
2870 handle->nmi = nmi;
2871 handle->sample = sample;
2872
2873 if (!data->nr_pages)
2874 goto fail;
2875
2876 have_lost = atomic_read(&data->lost);
2877 if (have_lost)
2878 size += sizeof(lost_event);
2879
2880 perf_output_lock(handle);
2881
2882 do {
2883 /*
2884 * Userspace could choose to issue a mb() before updating the
2885 * tail pointer. So that all reads will be completed before the
2886 * write is issued.
2887 */
2888 tail = ACCESS_ONCE(data->user_page->data_tail);
2889 smp_rmb();
2890 offset = head = atomic_long_read(&data->head);
2891 head += size;
2892 if (unlikely(!perf_output_space(data, tail, offset, head)))
2893 goto fail;
2894 } while (atomic_long_cmpxchg(&data->head, offset, head) != offset);
2895
2896 handle->offset = offset;
2897 handle->head = head;
2898
2899 if (head - tail > data->watermark)
2900 atomic_set(&data->wakeup, 1);
2901
2902 if (have_lost) {
2903 lost_event.header.type = PERF_RECORD_LOST;
2904 lost_event.header.misc = 0;
2905 lost_event.header.size = sizeof(lost_event);
2906 lost_event.id = event->id;
2907 lost_event.lost = atomic_xchg(&data->lost, 0);
2908
2909 perf_output_put(handle, lost_event);
2910 }
2911
2912 return 0;
2913
2914fail:
2915 atomic_inc(&data->lost);
2916 perf_output_unlock(handle);
2917out:
2918 rcu_read_unlock();
2919
2920 return -ENOSPC;
2921}
2922
2923void perf_output_end(struct perf_output_handle *handle)
2924{
2925 struct perf_event *event = handle->event;
2926 struct perf_mmap_data *data = handle->data;
2927
2928 int wakeup_events = event->attr.wakeup_events;
2929
2930 if (handle->sample && wakeup_events) {
2931 int events = atomic_inc_return(&data->events);
2932 if (events >= wakeup_events) {
2933 atomic_sub(wakeup_events, &data->events);
2934 atomic_set(&data->wakeup, 1);
2935 }
2936 }
2937
2938 perf_output_unlock(handle);
2939 rcu_read_unlock();
2940}
2941
2942static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
2943{
2944 /*
2945 * only top level events have the pid namespace they were created in
2946 */
2947 if (event->parent)
2948 event = event->parent;
2949
2950 return task_tgid_nr_ns(p, event->ns);
2951}
2952
2953static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
2954{
2955 /*
2956 * only top level events have the pid namespace they were created in
2957 */
2958 if (event->parent)
2959 event = event->parent;
2960
2961 return task_pid_nr_ns(p, event->ns);
2962}
2963
2964static void perf_output_read_one(struct perf_output_handle *handle,
2965 struct perf_event *event)
2966{
2967 u64 read_format = event->attr.read_format;
2968 u64 values[4];
2969 int n = 0;
2970
2971 values[n++] = atomic64_read(&event->count);
2972 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2973 values[n++] = event->total_time_enabled +
2974 atomic64_read(&event->child_total_time_enabled);
2975 }
2976 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2977 values[n++] = event->total_time_running +
2978 atomic64_read(&event->child_total_time_running);
2979 }
2980 if (read_format & PERF_FORMAT_ID)
2981 values[n++] = primary_event_id(event);
2982
2983 perf_output_copy(handle, values, n * sizeof(u64));
2984}
2985
2986/*
2987 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
2988 */
2989static void perf_output_read_group(struct perf_output_handle *handle,
2990 struct perf_event *event)
2991{
2992 struct perf_event *leader = event->group_leader, *sub;
2993 u64 read_format = event->attr.read_format;
2994 u64 values[5];
2995 int n = 0;
2996
2997 values[n++] = 1 + leader->nr_siblings;
2998
2999 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3000 values[n++] = leader->total_time_enabled;
3001
3002 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3003 values[n++] = leader->total_time_running;
3004
3005 if (leader != event)
3006 leader->pmu->read(leader);
3007
3008 values[n++] = atomic64_read(&leader->count);
3009 if (read_format & PERF_FORMAT_ID)
3010 values[n++] = primary_event_id(leader);
3011
3012 perf_output_copy(handle, values, n * sizeof(u64));
3013
3014 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3015 n = 0;
3016
3017 if (sub != event)
3018 sub->pmu->read(sub);
3019
3020 values[n++] = atomic64_read(&sub->count);
3021 if (read_format & PERF_FORMAT_ID)
3022 values[n++] = primary_event_id(sub);
3023
3024 perf_output_copy(handle, values, n * sizeof(u64));
3025 }
3026}
3027
3028static void perf_output_read(struct perf_output_handle *handle,
3029 struct perf_event *event)
3030{
3031 if (event->attr.read_format & PERF_FORMAT_GROUP)
3032 perf_output_read_group(handle, event);
3033 else
3034 perf_output_read_one(handle, event);
3035}
3036
3037void perf_output_sample(struct perf_output_handle *handle,
3038 struct perf_event_header *header,
3039 struct perf_sample_data *data,
3040 struct perf_event *event)
3041{
3042 u64 sample_type = data->type;
3043
3044 perf_output_put(handle, *header);
3045
3046 if (sample_type & PERF_SAMPLE_IP)
3047 perf_output_put(handle, data->ip);
3048
3049 if (sample_type & PERF_SAMPLE_TID)
3050 perf_output_put(handle, data->tid_entry);
3051
3052 if (sample_type & PERF_SAMPLE_TIME)
3053 perf_output_put(handle, data->time);
3054
3055 if (sample_type & PERF_SAMPLE_ADDR)
3056 perf_output_put(handle, data->addr);
3057
3058 if (sample_type & PERF_SAMPLE_ID)
3059 perf_output_put(handle, data->id);
3060
3061 if (sample_type & PERF_SAMPLE_STREAM_ID)
3062 perf_output_put(handle, data->stream_id);
3063
3064 if (sample_type & PERF_SAMPLE_CPU)
3065 perf_output_put(handle, data->cpu_entry);
3066
3067 if (sample_type & PERF_SAMPLE_PERIOD)
3068 perf_output_put(handle, data->period);
3069
3070 if (sample_type & PERF_SAMPLE_READ)
3071 perf_output_read(handle, event);
3072
3073 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3074 if (data->callchain) {
3075 int size = 1;
3076
3077 if (data->callchain)
3078 size += data->callchain->nr;
3079
3080 size *= sizeof(u64);
3081
3082 perf_output_copy(handle, data->callchain, size);
3083 } else {
3084 u64 nr = 0;
3085 perf_output_put(handle, nr);
3086 }
3087 }
3088
3089 if (sample_type & PERF_SAMPLE_RAW) {
3090 if (data->raw) {
3091 perf_output_put(handle, data->raw->size);
3092 perf_output_copy(handle, data->raw->data,
3093 data->raw->size);
3094 } else {
3095 struct {
3096 u32 size;
3097 u32 data;
3098 } raw = {
3099 .size = sizeof(u32),
3100 .data = 0,
3101 };
3102 perf_output_put(handle, raw);
3103 }
3104 }
3105}
3106
3107void perf_prepare_sample(struct perf_event_header *header,
3108 struct perf_sample_data *data,
3109 struct perf_event *event,
3110 struct pt_regs *regs)
3111{
3112 u64 sample_type = event->attr.sample_type;
3113
3114 data->type = sample_type;
3115
3116 header->type = PERF_RECORD_SAMPLE;
3117 header->size = sizeof(*header);
3118
3119 header->misc = 0;
3120 header->misc |= perf_misc_flags(regs);
3121
3122 if (sample_type & PERF_SAMPLE_IP) {
3123 data->ip = perf_instruction_pointer(regs);
3124
3125 header->size += sizeof(data->ip);
3126 }
3127
3128 if (sample_type & PERF_SAMPLE_TID) {
3129 /* namespace issues */
3130 data->tid_entry.pid = perf_event_pid(event, current);
3131 data->tid_entry.tid = perf_event_tid(event, current);
3132
3133 header->size += sizeof(data->tid_entry);
3134 }
3135
3136 if (sample_type & PERF_SAMPLE_TIME) {
3137 data->time = perf_clock();
3138
3139 header->size += sizeof(data->time);
3140 }
3141
3142 if (sample_type & PERF_SAMPLE_ADDR)
3143 header->size += sizeof(data->addr);
3144
3145 if (sample_type & PERF_SAMPLE_ID) {
3146 data->id = primary_event_id(event);
3147
3148 header->size += sizeof(data->id);
3149 }
3150
3151 if (sample_type & PERF_SAMPLE_STREAM_ID) {
3152 data->stream_id = event->id;
3153
3154 header->size += sizeof(data->stream_id);
3155 }
3156
3157 if (sample_type & PERF_SAMPLE_CPU) {
3158 data->cpu_entry.cpu = raw_smp_processor_id();
3159 data->cpu_entry.reserved = 0;
3160
3161 header->size += sizeof(data->cpu_entry);
3162 }
3163
3164 if (sample_type & PERF_SAMPLE_PERIOD)
3165 header->size += sizeof(data->period);
3166
3167 if (sample_type & PERF_SAMPLE_READ)
3168 header->size += perf_event_read_size(event);
3169
3170 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3171 int size = 1;
3172
3173 data->callchain = perf_callchain(regs);
3174
3175 if (data->callchain)
3176 size += data->callchain->nr;
3177
3178 header->size += size * sizeof(u64);
3179 }
3180
3181 if (sample_type & PERF_SAMPLE_RAW) {
3182 int size = sizeof(u32);
3183
3184 if (data->raw)
3185 size += data->raw->size;
3186 else
3187 size += sizeof(u32);
3188
3189 WARN_ON_ONCE(size & (sizeof(u64)-1));
3190 header->size += size;
3191 }
3192}
3193
3194static void perf_event_output(struct perf_event *event, int nmi,
3195 struct perf_sample_data *data,
3196 struct pt_regs *regs)
3197{
3198 struct perf_output_handle handle;
3199 struct perf_event_header header;
3200
3201 perf_prepare_sample(&header, data, event, regs);
3202
3203 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3204 return;
3205
3206 perf_output_sample(&handle, &header, data, event);
3207
3208 perf_output_end(&handle);
3209}
3210
3211/*
3212 * read event_id
3213 */
3214
3215struct perf_read_event {
3216 struct perf_event_header header;
3217
3218 u32 pid;
3219 u32 tid;
3220};
3221
3222static void
3223perf_event_read_event(struct perf_event *event,
3224 struct task_struct *task)
3225{
3226 struct perf_output_handle handle;
3227 struct perf_read_event read_event = {
3228 .header = {
3229 .type = PERF_RECORD_READ,
3230 .misc = 0,
3231 .size = sizeof(read_event) + perf_event_read_size(event),
3232 },
3233 .pid = perf_event_pid(event, task),
3234 .tid = perf_event_tid(event, task),
3235 };
3236 int ret;
3237
3238 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3239 if (ret)
3240 return;
3241
3242 perf_output_put(&handle, read_event);
3243 perf_output_read(&handle, event);
3244
3245 perf_output_end(&handle);
3246}
3247
3248/*
3249 * task tracking -- fork/exit
3250 *
3251 * enabled by: attr.comm | attr.mmap | attr.task
3252 */
3253
3254struct perf_task_event {
3255 struct task_struct *task;
3256 struct perf_event_context *task_ctx;
3257
3258 struct {
3259 struct perf_event_header header;
3260
3261 u32 pid;
3262 u32 ppid;
3263 u32 tid;
3264 u32 ptid;
3265 u64 time;
3266 } event_id;
3267};
3268
3269static void perf_event_task_output(struct perf_event *event,
3270 struct perf_task_event *task_event)
3271{
3272 struct perf_output_handle handle;
3273 int size;
3274 struct task_struct *task = task_event->task;
3275 int ret;
3276
3277 size = task_event->event_id.header.size;
3278 ret = perf_output_begin(&handle, event, size, 0, 0);
3279
3280 if (ret)
3281 return;
3282
3283 task_event->event_id.pid = perf_event_pid(event, task);
3284 task_event->event_id.ppid = perf_event_pid(event, current);
3285
3286 task_event->event_id.tid = perf_event_tid(event, task);
3287 task_event->event_id.ptid = perf_event_tid(event, current);
3288
3289 task_event->event_id.time = perf_clock();
3290
3291 perf_output_put(&handle, task_event->event_id);
3292
3293 perf_output_end(&handle);
3294}
3295
3296static int perf_event_task_match(struct perf_event *event)
3297{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003298 if (event->cpu != -1 && event->cpu != smp_processor_id())
3299 return 0;
3300
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003301 if (event->attr.comm || event->attr.mmap || event->attr.task)
3302 return 1;
3303
3304 return 0;
3305}
3306
3307static void perf_event_task_ctx(struct perf_event_context *ctx,
3308 struct perf_task_event *task_event)
3309{
3310 struct perf_event *event;
3311
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003312 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3313 if (perf_event_task_match(event))
3314 perf_event_task_output(event, task_event);
3315 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003316}
3317
3318static void perf_event_task_event(struct perf_task_event *task_event)
3319{
3320 struct perf_cpu_context *cpuctx;
3321 struct perf_event_context *ctx = task_event->task_ctx;
3322
Peter Zijlstrad6ff86c2009-11-20 22:19:46 +01003323 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003324 cpuctx = &get_cpu_var(perf_cpu_context);
3325 perf_event_task_ctx(&cpuctx->ctx, task_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003326 if (!ctx)
3327 ctx = rcu_dereference(task_event->task->perf_event_ctxp);
3328 if (ctx)
3329 perf_event_task_ctx(ctx, task_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003330 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003331 rcu_read_unlock();
3332}
3333
3334static void perf_event_task(struct task_struct *task,
3335 struct perf_event_context *task_ctx,
3336 int new)
3337{
3338 struct perf_task_event task_event;
3339
3340 if (!atomic_read(&nr_comm_events) &&
3341 !atomic_read(&nr_mmap_events) &&
3342 !atomic_read(&nr_task_events))
3343 return;
3344
3345 task_event = (struct perf_task_event){
3346 .task = task,
3347 .task_ctx = task_ctx,
3348 .event_id = {
3349 .header = {
3350 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3351 .misc = 0,
3352 .size = sizeof(task_event.event_id),
3353 },
3354 /* .pid */
3355 /* .ppid */
3356 /* .tid */
3357 /* .ptid */
3358 },
3359 };
3360
3361 perf_event_task_event(&task_event);
3362}
3363
3364void perf_event_fork(struct task_struct *task)
3365{
3366 perf_event_task(task, NULL, 1);
3367}
3368
3369/*
3370 * comm tracking
3371 */
3372
3373struct perf_comm_event {
3374 struct task_struct *task;
3375 char *comm;
3376 int comm_size;
3377
3378 struct {
3379 struct perf_event_header header;
3380
3381 u32 pid;
3382 u32 tid;
3383 } event_id;
3384};
3385
3386static void perf_event_comm_output(struct perf_event *event,
3387 struct perf_comm_event *comm_event)
3388{
3389 struct perf_output_handle handle;
3390 int size = comm_event->event_id.header.size;
3391 int ret = perf_output_begin(&handle, event, size, 0, 0);
3392
3393 if (ret)
3394 return;
3395
3396 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
3397 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
3398
3399 perf_output_put(&handle, comm_event->event_id);
3400 perf_output_copy(&handle, comm_event->comm,
3401 comm_event->comm_size);
3402 perf_output_end(&handle);
3403}
3404
3405static int perf_event_comm_match(struct perf_event *event)
3406{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003407 if (event->cpu != -1 && event->cpu != smp_processor_id())
3408 return 0;
3409
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003410 if (event->attr.comm)
3411 return 1;
3412
3413 return 0;
3414}
3415
3416static void perf_event_comm_ctx(struct perf_event_context *ctx,
3417 struct perf_comm_event *comm_event)
3418{
3419 struct perf_event *event;
3420
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003421 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3422 if (perf_event_comm_match(event))
3423 perf_event_comm_output(event, comm_event);
3424 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003425}
3426
3427static void perf_event_comm_event(struct perf_comm_event *comm_event)
3428{
3429 struct perf_cpu_context *cpuctx;
3430 struct perf_event_context *ctx;
3431 unsigned int size;
3432 char comm[TASK_COMM_LEN];
3433
3434 memset(comm, 0, sizeof(comm));
Márton Németh96b02d72009-11-21 23:10:15 +01003435 strlcpy(comm, comm_event->task->comm, sizeof(comm));
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003436 size = ALIGN(strlen(comm)+1, sizeof(u64));
3437
3438 comm_event->comm = comm;
3439 comm_event->comm_size = size;
3440
3441 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
3442
Peter Zijlstraf6595f32009-11-20 22:19:47 +01003443 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003444 cpuctx = &get_cpu_var(perf_cpu_context);
3445 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003446 ctx = rcu_dereference(current->perf_event_ctxp);
3447 if (ctx)
3448 perf_event_comm_ctx(ctx, comm_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003449 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003450 rcu_read_unlock();
3451}
3452
3453void perf_event_comm(struct task_struct *task)
3454{
3455 struct perf_comm_event comm_event;
3456
3457 if (task->perf_event_ctxp)
3458 perf_event_enable_on_exec(task);
3459
3460 if (!atomic_read(&nr_comm_events))
3461 return;
3462
3463 comm_event = (struct perf_comm_event){
3464 .task = task,
3465 /* .comm */
3466 /* .comm_size */
3467 .event_id = {
3468 .header = {
3469 .type = PERF_RECORD_COMM,
3470 .misc = 0,
3471 /* .size */
3472 },
3473 /* .pid */
3474 /* .tid */
3475 },
3476 };
3477
3478 perf_event_comm_event(&comm_event);
3479}
3480
3481/*
3482 * mmap tracking
3483 */
3484
3485struct perf_mmap_event {
3486 struct vm_area_struct *vma;
3487
3488 const char *file_name;
3489 int file_size;
3490
3491 struct {
3492 struct perf_event_header header;
3493
3494 u32 pid;
3495 u32 tid;
3496 u64 start;
3497 u64 len;
3498 u64 pgoff;
3499 } event_id;
3500};
3501
3502static void perf_event_mmap_output(struct perf_event *event,
3503 struct perf_mmap_event *mmap_event)
3504{
3505 struct perf_output_handle handle;
3506 int size = mmap_event->event_id.header.size;
3507 int ret = perf_output_begin(&handle, event, size, 0, 0);
3508
3509 if (ret)
3510 return;
3511
3512 mmap_event->event_id.pid = perf_event_pid(event, current);
3513 mmap_event->event_id.tid = perf_event_tid(event, current);
3514
3515 perf_output_put(&handle, mmap_event->event_id);
3516 perf_output_copy(&handle, mmap_event->file_name,
3517 mmap_event->file_size);
3518 perf_output_end(&handle);
3519}
3520
3521static int perf_event_mmap_match(struct perf_event *event,
3522 struct perf_mmap_event *mmap_event)
3523{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003524 if (event->cpu != -1 && event->cpu != smp_processor_id())
3525 return 0;
3526
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003527 if (event->attr.mmap)
3528 return 1;
3529
3530 return 0;
3531}
3532
3533static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3534 struct perf_mmap_event *mmap_event)
3535{
3536 struct perf_event *event;
3537
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003538 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3539 if (perf_event_mmap_match(event, mmap_event))
3540 perf_event_mmap_output(event, mmap_event);
3541 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003542}
3543
3544static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
3545{
3546 struct perf_cpu_context *cpuctx;
3547 struct perf_event_context *ctx;
3548 struct vm_area_struct *vma = mmap_event->vma;
3549 struct file *file = vma->vm_file;
3550 unsigned int size;
3551 char tmp[16];
3552 char *buf = NULL;
3553 const char *name;
3554
3555 memset(tmp, 0, sizeof(tmp));
3556
3557 if (file) {
3558 /*
3559 * d_path works from the end of the buffer backwards, so we
3560 * need to add enough zero bytes after the string to handle
3561 * the 64bit alignment we do later.
3562 */
3563 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
3564 if (!buf) {
3565 name = strncpy(tmp, "//enomem", sizeof(tmp));
3566 goto got_name;
3567 }
3568 name = d_path(&file->f_path, buf, PATH_MAX);
3569 if (IS_ERR(name)) {
3570 name = strncpy(tmp, "//toolong", sizeof(tmp));
3571 goto got_name;
3572 }
3573 } else {
3574 if (arch_vma_name(mmap_event->vma)) {
3575 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
3576 sizeof(tmp));
3577 goto got_name;
3578 }
3579
3580 if (!vma->vm_mm) {
3581 name = strncpy(tmp, "[vdso]", sizeof(tmp));
3582 goto got_name;
3583 }
3584
3585 name = strncpy(tmp, "//anon", sizeof(tmp));
3586 goto got_name;
3587 }
3588
3589got_name:
3590 size = ALIGN(strlen(name)+1, sizeof(u64));
3591
3592 mmap_event->file_name = name;
3593 mmap_event->file_size = size;
3594
3595 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
3596
Peter Zijlstraf6d9dd22009-11-20 22:19:48 +01003597 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003598 cpuctx = &get_cpu_var(perf_cpu_context);
3599 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003600 ctx = rcu_dereference(current->perf_event_ctxp);
3601 if (ctx)
3602 perf_event_mmap_ctx(ctx, mmap_event);
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003603 put_cpu_var(perf_cpu_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003604 rcu_read_unlock();
3605
3606 kfree(buf);
3607}
3608
3609void __perf_event_mmap(struct vm_area_struct *vma)
3610{
3611 struct perf_mmap_event mmap_event;
3612
3613 if (!atomic_read(&nr_mmap_events))
3614 return;
3615
3616 mmap_event = (struct perf_mmap_event){
3617 .vma = vma,
3618 /* .file_name */
3619 /* .file_size */
3620 .event_id = {
3621 .header = {
3622 .type = PERF_RECORD_MMAP,
3623 .misc = 0,
3624 /* .size */
3625 },
3626 /* .pid */
3627 /* .tid */
3628 .start = vma->vm_start,
3629 .len = vma->vm_end - vma->vm_start,
3630 .pgoff = vma->vm_pgoff,
3631 },
3632 };
3633
3634 perf_event_mmap_event(&mmap_event);
3635}
3636
3637/*
3638 * IRQ throttle logging
3639 */
3640
3641static void perf_log_throttle(struct perf_event *event, int enable)
3642{
3643 struct perf_output_handle handle;
3644 int ret;
3645
3646 struct {
3647 struct perf_event_header header;
3648 u64 time;
3649 u64 id;
3650 u64 stream_id;
3651 } throttle_event = {
3652 .header = {
3653 .type = PERF_RECORD_THROTTLE,
3654 .misc = 0,
3655 .size = sizeof(throttle_event),
3656 },
3657 .time = perf_clock(),
3658 .id = primary_event_id(event),
3659 .stream_id = event->id,
3660 };
3661
3662 if (enable)
3663 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
3664
3665 ret = perf_output_begin(&handle, event, sizeof(throttle_event), 1, 0);
3666 if (ret)
3667 return;
3668
3669 perf_output_put(&handle, throttle_event);
3670 perf_output_end(&handle);
3671}
3672
3673/*
3674 * Generic event overflow handling, sampling.
3675 */
3676
3677static int __perf_event_overflow(struct perf_event *event, int nmi,
3678 int throttle, struct perf_sample_data *data,
3679 struct pt_regs *regs)
3680{
3681 int events = atomic_read(&event->event_limit);
3682 struct hw_perf_event *hwc = &event->hw;
3683 int ret = 0;
3684
3685 throttle = (throttle && event->pmu->unthrottle != NULL);
3686
3687 if (!throttle) {
3688 hwc->interrupts++;
3689 } else {
3690 if (hwc->interrupts != MAX_INTERRUPTS) {
3691 hwc->interrupts++;
3692 if (HZ * hwc->interrupts >
3693 (u64)sysctl_perf_event_sample_rate) {
3694 hwc->interrupts = MAX_INTERRUPTS;
3695 perf_log_throttle(event, 0);
3696 ret = 1;
3697 }
3698 } else {
3699 /*
3700 * Keep re-disabling events even though on the previous
3701 * pass we disabled it - just in case we raced with a
3702 * sched-in and the event got enabled again:
3703 */
3704 ret = 1;
3705 }
3706 }
3707
3708 if (event->attr.freq) {
3709 u64 now = perf_clock();
3710 s64 delta = now - hwc->freq_stamp;
3711
3712 hwc->freq_stamp = now;
3713
3714 if (delta > 0 && delta < TICK_NSEC)
3715 perf_adjust_period(event, NSEC_PER_SEC / (int)delta);
3716 }
3717
3718 /*
3719 * XXX event_limit might not quite work as expected on inherited
3720 * events
3721 */
3722
3723 event->pending_kill = POLL_IN;
3724 if (events && atomic_dec_and_test(&event->event_limit)) {
3725 ret = 1;
3726 event->pending_kill = POLL_HUP;
3727 if (nmi) {
3728 event->pending_disable = 1;
3729 perf_pending_queue(&event->pending,
3730 perf_pending_event);
3731 } else
3732 perf_event_disable(event);
3733 }
3734
Peter Zijlstra453f19e2009-11-20 22:19:43 +01003735 if (event->overflow_handler)
3736 event->overflow_handler(event, nmi, data, regs);
3737 else
3738 perf_event_output(event, nmi, data, regs);
3739
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003740 return ret;
3741}
3742
3743int perf_event_overflow(struct perf_event *event, int nmi,
3744 struct perf_sample_data *data,
3745 struct pt_regs *regs)
3746{
3747 return __perf_event_overflow(event, nmi, 1, data, regs);
3748}
3749
3750/*
3751 * Generic software event infrastructure
3752 */
3753
3754/*
3755 * We directly increment event->count and keep a second value in
3756 * event->hw.period_left to count intervals. This period event
3757 * is kept in the range [-sample_period, 0] so that we can use the
3758 * sign as trigger.
3759 */
3760
3761static u64 perf_swevent_set_period(struct perf_event *event)
3762{
3763 struct hw_perf_event *hwc = &event->hw;
3764 u64 period = hwc->last_period;
3765 u64 nr, offset;
3766 s64 old, val;
3767
3768 hwc->last_period = hwc->sample_period;
3769
3770again:
3771 old = val = atomic64_read(&hwc->period_left);
3772 if (val < 0)
3773 return 0;
3774
3775 nr = div64_u64(period + val, period);
3776 offset = nr * period;
3777 val -= offset;
3778 if (atomic64_cmpxchg(&hwc->period_left, old, val) != old)
3779 goto again;
3780
3781 return nr;
3782}
3783
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003784static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003785 int nmi, struct perf_sample_data *data,
3786 struct pt_regs *regs)
3787{
3788 struct hw_perf_event *hwc = &event->hw;
3789 int throttle = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003790
3791 data->period = event->hw.last_period;
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003792 if (!overflow)
3793 overflow = perf_swevent_set_period(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003794
3795 if (hwc->interrupts == MAX_INTERRUPTS)
3796 return;
3797
3798 for (; overflow; overflow--) {
3799 if (__perf_event_overflow(event, nmi, throttle,
3800 data, regs)) {
3801 /*
3802 * We inhibit the overflow from happening when
3803 * hwc->interrupts == MAX_INTERRUPTS.
3804 */
3805 break;
3806 }
3807 throttle = 1;
3808 }
3809}
3810
3811static void perf_swevent_unthrottle(struct perf_event *event)
3812{
3813 /*
3814 * Nothing to do, we already reset hwc->interrupts.
3815 */
3816}
3817
3818static void perf_swevent_add(struct perf_event *event, u64 nr,
3819 int nmi, struct perf_sample_data *data,
3820 struct pt_regs *regs)
3821{
3822 struct hw_perf_event *hwc = &event->hw;
3823
3824 atomic64_add(nr, &event->count);
3825
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003826 if (!regs)
3827 return;
3828
Peter Zijlstra0cff7842009-11-20 22:19:44 +01003829 if (!hwc->sample_period)
3830 return;
3831
3832 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
3833 return perf_swevent_overflow(event, 1, nmi, data, regs);
3834
3835 if (atomic64_add_negative(nr, &hwc->period_left))
3836 return;
3837
3838 perf_swevent_overflow(event, 0, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003839}
3840
3841static int perf_swevent_is_counting(struct perf_event *event)
3842{
3843 /*
3844 * The event is active, we're good!
3845 */
3846 if (event->state == PERF_EVENT_STATE_ACTIVE)
3847 return 1;
3848
3849 /*
3850 * The event is off/error, not counting.
3851 */
3852 if (event->state != PERF_EVENT_STATE_INACTIVE)
3853 return 0;
3854
3855 /*
3856 * The event is inactive, if the context is active
3857 * we're part of a group that didn't make it on the 'pmu',
3858 * not counting.
3859 */
3860 if (event->ctx->is_active)
3861 return 0;
3862
3863 /*
3864 * We're inactive and the context is too, this means the
3865 * task is scheduled out, we're counting events that happen
3866 * to us, like migration events.
3867 */
3868 return 1;
3869}
3870
Li Zefan6fb29152009-10-15 11:21:42 +08003871static int perf_tp_event_match(struct perf_event *event,
3872 struct perf_sample_data *data);
3873
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003874static int perf_exclude_event(struct perf_event *event,
3875 struct pt_regs *regs)
3876{
3877 if (regs) {
3878 if (event->attr.exclude_user && user_mode(regs))
3879 return 1;
3880
3881 if (event->attr.exclude_kernel && !user_mode(regs))
3882 return 1;
3883 }
3884
3885 return 0;
3886}
3887
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003888static int perf_swevent_match(struct perf_event *event,
3889 enum perf_type_id type,
Li Zefan6fb29152009-10-15 11:21:42 +08003890 u32 event_id,
3891 struct perf_sample_data *data,
3892 struct pt_regs *regs)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003893{
Peter Zijlstra5d27c232009-12-17 13:16:32 +01003894 if (event->cpu != -1 && event->cpu != smp_processor_id())
3895 return 0;
3896
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003897 if (!perf_swevent_is_counting(event))
3898 return 0;
3899
3900 if (event->attr.type != type)
3901 return 0;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003902
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003903 if (event->attr.config != event_id)
3904 return 0;
3905
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01003906 if (perf_exclude_event(event, regs))
3907 return 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003908
Li Zefan6fb29152009-10-15 11:21:42 +08003909 if (event->attr.type == PERF_TYPE_TRACEPOINT &&
3910 !perf_tp_event_match(event, data))
3911 return 0;
3912
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003913 return 1;
3914}
3915
3916static void perf_swevent_ctx_event(struct perf_event_context *ctx,
3917 enum perf_type_id type,
3918 u32 event_id, u64 nr, int nmi,
3919 struct perf_sample_data *data,
3920 struct pt_regs *regs)
3921{
3922 struct perf_event *event;
3923
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
Li Zefan6fb29152009-10-15 11:21:42 +08003925 if (perf_swevent_match(event, type, event_id, data, regs))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003926 perf_swevent_add(event, nr, nmi, data, regs);
3927 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003928}
3929
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003930int perf_swevent_get_recursion_context(void)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003931{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003932 struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
3933 int rctx;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003934
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003935 if (in_nmi())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003936 rctx = 3;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003937 else if (in_irq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003938 rctx = 2;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003939 else if (in_softirq())
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003940 rctx = 1;
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003941 else
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003942 rctx = 0;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003943
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003944 if (cpuctx->recursion[rctx]) {
3945 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003946 return -1;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003947 }
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003948
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003949 cpuctx->recursion[rctx]++;
3950 barrier();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003951
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003952 return rctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003953}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003954EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003955
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003956void perf_swevent_put_recursion_context(int rctx)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003957{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003958 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
3959 barrier();
Frederic Weisbeckerfe612672009-11-24 20:38:22 +01003960 cpuctx->recursion[rctx]--;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003961 put_cpu_var(perf_cpu_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003962}
Ingo Molnar645e8cc2009-11-22 12:20:19 +01003963EXPORT_SYMBOL_GPL(perf_swevent_put_recursion_context);
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003964
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003965static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
3966 u64 nr, int nmi,
3967 struct perf_sample_data *data,
3968 struct pt_regs *regs)
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003969{
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003970 struct perf_cpu_context *cpuctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003971 struct perf_event_context *ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003972
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003973 cpuctx = &__get_cpu_var(perf_cpu_context);
Peter Zijlstra81520182009-11-20 22:19:45 +01003974 rcu_read_lock();
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003975 perf_swevent_ctx_event(&cpuctx->ctx, type, event_id,
3976 nr, nmi, data, regs);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003977 /*
3978 * doesn't really matter which of the child contexts the
3979 * events ends up in.
3980 */
3981 ctx = rcu_dereference(current->perf_event_ctxp);
3982 if (ctx)
3983 perf_swevent_ctx_event(ctx, type, event_id, nr, nmi, data, regs);
3984 rcu_read_unlock();
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01003985}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003986
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003987void __perf_sw_event(u32 event_id, u64 nr, int nmi,
3988 struct pt_regs *regs, u64 addr)
3989{
Ingo Molnara4234bf2009-11-23 10:57:59 +01003990 struct perf_sample_data data;
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01003991 int rctx;
3992
3993 rctx = perf_swevent_get_recursion_context();
3994 if (rctx < 0)
3995 return;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02003996
Ingo Molnara4234bf2009-11-23 10:57:59 +01003997 data.addr = addr;
3998 data.raw = NULL;
3999
4000 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004001
4002 perf_swevent_put_recursion_context(rctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004003}
4004
4005static void perf_swevent_read(struct perf_event *event)
4006{
4007}
4008
4009static int perf_swevent_enable(struct perf_event *event)
4010{
4011 struct hw_perf_event *hwc = &event->hw;
4012
4013 if (hwc->sample_period) {
4014 hwc->last_period = hwc->sample_period;
4015 perf_swevent_set_period(event);
4016 }
4017 return 0;
4018}
4019
4020static void perf_swevent_disable(struct perf_event *event)
4021{
4022}
4023
4024static const struct pmu perf_ops_generic = {
4025 .enable = perf_swevent_enable,
4026 .disable = perf_swevent_disable,
4027 .read = perf_swevent_read,
4028 .unthrottle = perf_swevent_unthrottle,
4029};
4030
4031/*
4032 * hrtimer based swevent callback
4033 */
4034
4035static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
4036{
4037 enum hrtimer_restart ret = HRTIMER_RESTART;
4038 struct perf_sample_data data;
4039 struct pt_regs *regs;
4040 struct perf_event *event;
4041 u64 period;
4042
4043 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
4044 event->pmu->read(event);
4045
4046 data.addr = 0;
Xiao Guangrong21140f42009-12-10 14:00:51 +08004047 data.raw = NULL;
Xiao Guangrong59d069e2009-12-01 17:30:08 +08004048 data.period = event->hw.last_period;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004049 regs = get_irq_regs();
4050 /*
4051 * In case we exclude kernel IPs or are somehow not in interrupt
4052 * context, provide the next best thing, the user IP.
4053 */
4054 if ((event->attr.exclude_kernel || !regs) &&
4055 !event->attr.exclude_user)
4056 regs = task_pt_regs(current);
4057
4058 if (regs) {
Soeren Sandmann54f44072009-10-22 18:34:08 +02004059 if (!(event->attr.exclude_idle && current->pid == 0))
4060 if (perf_event_overflow(event, 0, &data, regs))
4061 ret = HRTIMER_NORESTART;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004062 }
4063
4064 period = max_t(u64, 10000, event->hw.sample_period);
4065 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
4066
4067 return ret;
4068}
4069
Soeren Sandmann721a6692009-09-15 14:33:08 +02004070static void perf_swevent_start_hrtimer(struct perf_event *event)
4071{
4072 struct hw_perf_event *hwc = &event->hw;
4073
4074 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4075 hwc->hrtimer.function = perf_swevent_hrtimer;
4076 if (hwc->sample_period) {
4077 u64 period;
4078
4079 if (hwc->remaining) {
4080 if (hwc->remaining < 0)
4081 period = 10000;
4082 else
4083 period = hwc->remaining;
4084 hwc->remaining = 0;
4085 } else {
4086 period = max_t(u64, 10000, hwc->sample_period);
4087 }
4088 __hrtimer_start_range_ns(&hwc->hrtimer,
4089 ns_to_ktime(period), 0,
4090 HRTIMER_MODE_REL, 0);
4091 }
4092}
4093
4094static void perf_swevent_cancel_hrtimer(struct perf_event *event)
4095{
4096 struct hw_perf_event *hwc = &event->hw;
4097
4098 if (hwc->sample_period) {
4099 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
4100 hwc->remaining = ktime_to_ns(remaining);
4101
4102 hrtimer_cancel(&hwc->hrtimer);
4103 }
4104}
4105
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004106/*
4107 * Software event: cpu wall time clock
4108 */
4109
4110static void cpu_clock_perf_event_update(struct perf_event *event)
4111{
4112 int cpu = raw_smp_processor_id();
4113 s64 prev;
4114 u64 now;
4115
4116 now = cpu_clock(cpu);
Xiao Guangrongec89a06f2009-12-09 11:30:36 +08004117 prev = atomic64_xchg(&event->hw.prev_count, now);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004118 atomic64_add(now - prev, &event->count);
4119}
4120
4121static int cpu_clock_perf_event_enable(struct perf_event *event)
4122{
4123 struct hw_perf_event *hwc = &event->hw;
4124 int cpu = raw_smp_processor_id();
4125
4126 atomic64_set(&hwc->prev_count, cpu_clock(cpu));
Soeren Sandmann721a6692009-09-15 14:33:08 +02004127 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004128
4129 return 0;
4130}
4131
4132static void cpu_clock_perf_event_disable(struct perf_event *event)
4133{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004134 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004135 cpu_clock_perf_event_update(event);
4136}
4137
4138static void cpu_clock_perf_event_read(struct perf_event *event)
4139{
4140 cpu_clock_perf_event_update(event);
4141}
4142
4143static const struct pmu perf_ops_cpu_clock = {
4144 .enable = cpu_clock_perf_event_enable,
4145 .disable = cpu_clock_perf_event_disable,
4146 .read = cpu_clock_perf_event_read,
4147};
4148
4149/*
4150 * Software event: task time clock
4151 */
4152
4153static void task_clock_perf_event_update(struct perf_event *event, u64 now)
4154{
4155 u64 prev;
4156 s64 delta;
4157
4158 prev = atomic64_xchg(&event->hw.prev_count, now);
4159 delta = now - prev;
4160 atomic64_add(delta, &event->count);
4161}
4162
4163static int task_clock_perf_event_enable(struct perf_event *event)
4164{
4165 struct hw_perf_event *hwc = &event->hw;
4166 u64 now;
4167
4168 now = event->ctx->time;
4169
4170 atomic64_set(&hwc->prev_count, now);
Soeren Sandmann721a6692009-09-15 14:33:08 +02004171
4172 perf_swevent_start_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004173
4174 return 0;
4175}
4176
4177static void task_clock_perf_event_disable(struct perf_event *event)
4178{
Soeren Sandmann721a6692009-09-15 14:33:08 +02004179 perf_swevent_cancel_hrtimer(event);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004180 task_clock_perf_event_update(event, event->ctx->time);
4181
4182}
4183
4184static void task_clock_perf_event_read(struct perf_event *event)
4185{
4186 u64 time;
4187
4188 if (!in_nmi()) {
4189 update_context_time(event->ctx);
4190 time = event->ctx->time;
4191 } else {
4192 u64 now = perf_clock();
4193 u64 delta = now - event->ctx->timestamp;
4194 time = event->ctx->time + delta;
4195 }
4196
4197 task_clock_perf_event_update(event, time);
4198}
4199
4200static const struct pmu perf_ops_task_clock = {
4201 .enable = task_clock_perf_event_enable,
4202 .disable = task_clock_perf_event_disable,
4203 .read = task_clock_perf_event_read,
4204};
4205
Li Zefan07b139c2009-12-21 14:27:35 +08004206#ifdef CONFIG_EVENT_TRACING
Li Zefan6fb29152009-10-15 11:21:42 +08004207
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004208void perf_tp_event(int event_id, u64 addr, u64 count, void *record,
4209 int entry_size)
4210{
4211 struct perf_raw_record raw = {
4212 .size = entry_size,
4213 .data = record,
4214 };
4215
4216 struct perf_sample_data data = {
4217 .addr = addr,
4218 .raw = &raw,
4219 };
4220
4221 struct pt_regs *regs = get_irq_regs();
4222
4223 if (!regs)
4224 regs = task_pt_regs(current);
4225
Frederic Weisbeckerce71b9d2009-11-22 05:26:55 +01004226 /* Trace events already protected against recursion */
Peter Zijlstra4ed7c922009-11-23 11:37:29 +01004227 do_perf_sw_event(PERF_TYPE_TRACEPOINT, event_id, count, 1,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004228 &data, regs);
4229}
4230EXPORT_SYMBOL_GPL(perf_tp_event);
4231
Li Zefan6fb29152009-10-15 11:21:42 +08004232static int perf_tp_event_match(struct perf_event *event,
4233 struct perf_sample_data *data)
4234{
4235 void *record = data->raw->data;
4236
4237 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4238 return 1;
4239 return 0;
4240}
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004241
4242static void tp_perf_event_destroy(struct perf_event *event)
4243{
4244 ftrace_profile_disable(event->attr.config);
4245}
4246
4247static const struct pmu *tp_perf_event_init(struct perf_event *event)
4248{
4249 /*
4250 * Raw tracepoint data is a severe data leak, only allow root to
4251 * have these.
4252 */
4253 if ((event->attr.sample_type & PERF_SAMPLE_RAW) &&
4254 perf_paranoid_tracepoint_raw() &&
4255 !capable(CAP_SYS_ADMIN))
4256 return ERR_PTR(-EPERM);
4257
4258 if (ftrace_profile_enable(event->attr.config))
4259 return NULL;
4260
4261 event->destroy = tp_perf_event_destroy;
4262
4263 return &perf_ops_generic;
4264}
Li Zefan6fb29152009-10-15 11:21:42 +08004265
4266static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4267{
4268 char *filter_str;
4269 int ret;
4270
4271 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4272 return -EINVAL;
4273
4274 filter_str = strndup_user(arg, PAGE_SIZE);
4275 if (IS_ERR(filter_str))
4276 return PTR_ERR(filter_str);
4277
4278 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4279
4280 kfree(filter_str);
4281 return ret;
4282}
4283
4284static void perf_event_free_filter(struct perf_event *event)
4285{
4286 ftrace_profile_free_filter(event);
4287}
4288
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004289#else
Li Zefan6fb29152009-10-15 11:21:42 +08004290
4291static int perf_tp_event_match(struct perf_event *event,
4292 struct perf_sample_data *data)
4293{
4294 return 1;
4295}
4296
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004297static const struct pmu *tp_perf_event_init(struct perf_event *event)
4298{
4299 return NULL;
4300}
Li Zefan6fb29152009-10-15 11:21:42 +08004301
4302static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4303{
4304 return -ENOENT;
4305}
4306
4307static void perf_event_free_filter(struct perf_event *event)
4308{
4309}
4310
Li Zefan07b139c2009-12-21 14:27:35 +08004311#endif /* CONFIG_EVENT_TRACING */
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004312
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004313#ifdef CONFIG_HAVE_HW_BREAKPOINT
4314static void bp_perf_event_destroy(struct perf_event *event)
4315{
4316 release_bp_slot(event);
4317}
4318
4319static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4320{
4321 int err;
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004322
4323 err = register_perf_hw_breakpoint(bp);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004324 if (err)
4325 return ERR_PTR(err);
4326
4327 bp->destroy = bp_perf_event_destroy;
4328
4329 return &perf_ops_bp;
4330}
4331
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004332void perf_bp_event(struct perf_event *bp, void *data)
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004333{
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004334 struct perf_sample_data sample;
4335 struct pt_regs *regs = data;
4336
Xiao Guangrong5e855db2009-12-10 17:08:54 +08004337 sample.raw = NULL;
Frederic Weisbeckerf5ffe022009-11-23 15:42:34 +01004338 sample.addr = bp->attr.bp_addr;
4339
4340 if (!perf_exclude_event(bp, regs))
4341 perf_swevent_add(bp, 1, 1, &sample, regs);
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004342}
4343#else
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004344static const struct pmu *bp_perf_event_init(struct perf_event *bp)
4345{
4346 return NULL;
4347}
4348
4349void perf_bp_event(struct perf_event *bp, void *regs)
4350{
4351}
4352#endif
4353
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004354atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4355
4356static void sw_perf_event_destroy(struct perf_event *event)
4357{
4358 u64 event_id = event->attr.config;
4359
4360 WARN_ON(event->parent);
4361
4362 atomic_dec(&perf_swevent_enabled[event_id]);
4363}
4364
4365static const struct pmu *sw_perf_event_init(struct perf_event *event)
4366{
4367 const struct pmu *pmu = NULL;
4368 u64 event_id = event->attr.config;
4369
4370 /*
4371 * Software events (currently) can't in general distinguish
4372 * between user, kernel and hypervisor events.
4373 * However, context switches and cpu migrations are considered
4374 * to be kernel events, and page faults are never hypervisor
4375 * events.
4376 */
4377 switch (event_id) {
4378 case PERF_COUNT_SW_CPU_CLOCK:
4379 pmu = &perf_ops_cpu_clock;
4380
4381 break;
4382 case PERF_COUNT_SW_TASK_CLOCK:
4383 /*
4384 * If the user instantiates this as a per-cpu event,
4385 * use the cpu_clock event instead.
4386 */
4387 if (event->ctx->task)
4388 pmu = &perf_ops_task_clock;
4389 else
4390 pmu = &perf_ops_cpu_clock;
4391
4392 break;
4393 case PERF_COUNT_SW_PAGE_FAULTS:
4394 case PERF_COUNT_SW_PAGE_FAULTS_MIN:
4395 case PERF_COUNT_SW_PAGE_FAULTS_MAJ:
4396 case PERF_COUNT_SW_CONTEXT_SWITCHES:
4397 case PERF_COUNT_SW_CPU_MIGRATIONS:
Anton Blanchardf7d79862009-10-18 01:09:29 +00004398 case PERF_COUNT_SW_ALIGNMENT_FAULTS:
4399 case PERF_COUNT_SW_EMULATION_FAULTS:
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004400 if (!event->parent) {
4401 atomic_inc(&perf_swevent_enabled[event_id]);
4402 event->destroy = sw_perf_event_destroy;
4403 }
4404 pmu = &perf_ops_generic;
4405 break;
4406 }
4407
4408 return pmu;
4409}
4410
4411/*
4412 * Allocate and initialize a event structure
4413 */
4414static struct perf_event *
4415perf_event_alloc(struct perf_event_attr *attr,
4416 int cpu,
4417 struct perf_event_context *ctx,
4418 struct perf_event *group_leader,
4419 struct perf_event *parent_event,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004420 perf_overflow_handler_t overflow_handler,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004421 gfp_t gfpflags)
4422{
4423 const struct pmu *pmu;
4424 struct perf_event *event;
4425 struct hw_perf_event *hwc;
4426 long err;
4427
4428 event = kzalloc(sizeof(*event), gfpflags);
4429 if (!event)
4430 return ERR_PTR(-ENOMEM);
4431
4432 /*
4433 * Single events are their own group leaders, with an
4434 * empty sibling list:
4435 */
4436 if (!group_leader)
4437 group_leader = event;
4438
4439 mutex_init(&event->child_mutex);
4440 INIT_LIST_HEAD(&event->child_list);
4441
4442 INIT_LIST_HEAD(&event->group_entry);
4443 INIT_LIST_HEAD(&event->event_entry);
4444 INIT_LIST_HEAD(&event->sibling_list);
4445 init_waitqueue_head(&event->waitq);
4446
4447 mutex_init(&event->mmap_mutex);
4448
4449 event->cpu = cpu;
4450 event->attr = *attr;
4451 event->group_leader = group_leader;
4452 event->pmu = NULL;
4453 event->ctx = ctx;
4454 event->oncpu = -1;
4455
4456 event->parent = parent_event;
4457
4458 event->ns = get_pid_ns(current->nsproxy->pid_ns);
4459 event->id = atomic64_inc_return(&perf_event_id);
4460
4461 event->state = PERF_EVENT_STATE_INACTIVE;
4462
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004463 if (!overflow_handler && parent_event)
4464 overflow_handler = parent_event->overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004465
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004466 event->overflow_handler = overflow_handler;
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004467
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004468 if (attr->disabled)
4469 event->state = PERF_EVENT_STATE_OFF;
4470
4471 pmu = NULL;
4472
4473 hwc = &event->hw;
4474 hwc->sample_period = attr->sample_period;
4475 if (attr->freq && attr->sample_freq)
4476 hwc->sample_period = 1;
4477 hwc->last_period = hwc->sample_period;
4478
4479 atomic64_set(&hwc->period_left, hwc->sample_period);
4480
4481 /*
4482 * we currently do not support PERF_FORMAT_GROUP on inherited events
4483 */
4484 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
4485 goto done;
4486
4487 switch (attr->type) {
4488 case PERF_TYPE_RAW:
4489 case PERF_TYPE_HARDWARE:
4490 case PERF_TYPE_HW_CACHE:
4491 pmu = hw_perf_event_init(event);
4492 break;
4493
4494 case PERF_TYPE_SOFTWARE:
4495 pmu = sw_perf_event_init(event);
4496 break;
4497
4498 case PERF_TYPE_TRACEPOINT:
4499 pmu = tp_perf_event_init(event);
4500 break;
4501
Frederic Weisbecker24f1e32c2009-09-09 19:22:48 +02004502 case PERF_TYPE_BREAKPOINT:
4503 pmu = bp_perf_event_init(event);
4504 break;
4505
4506
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004507 default:
4508 break;
4509 }
4510done:
4511 err = 0;
4512 if (!pmu)
4513 err = -EINVAL;
4514 else if (IS_ERR(pmu))
4515 err = PTR_ERR(pmu);
4516
4517 if (err) {
4518 if (event->ns)
4519 put_pid_ns(event->ns);
4520 kfree(event);
4521 return ERR_PTR(err);
4522 }
4523
4524 event->pmu = pmu;
4525
4526 if (!event->parent) {
4527 atomic_inc(&nr_events);
4528 if (event->attr.mmap)
4529 atomic_inc(&nr_mmap_events);
4530 if (event->attr.comm)
4531 atomic_inc(&nr_comm_events);
4532 if (event->attr.task)
4533 atomic_inc(&nr_task_events);
4534 }
4535
4536 return event;
4537}
4538
4539static int perf_copy_attr(struct perf_event_attr __user *uattr,
4540 struct perf_event_attr *attr)
4541{
4542 u32 size;
4543 int ret;
4544
4545 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
4546 return -EFAULT;
4547
4548 /*
4549 * zero the full structure, so that a short copy will be nice.
4550 */
4551 memset(attr, 0, sizeof(*attr));
4552
4553 ret = get_user(size, &uattr->size);
4554 if (ret)
4555 return ret;
4556
4557 if (size > PAGE_SIZE) /* silly large */
4558 goto err_size;
4559
4560 if (!size) /* abi compat */
4561 size = PERF_ATTR_SIZE_VER0;
4562
4563 if (size < PERF_ATTR_SIZE_VER0)
4564 goto err_size;
4565
4566 /*
4567 * If we're handed a bigger struct than we know of,
4568 * ensure all the unknown bits are 0 - i.e. new
4569 * user-space does not rely on any kernel feature
4570 * extensions we dont know about yet.
4571 */
4572 if (size > sizeof(*attr)) {
4573 unsigned char __user *addr;
4574 unsigned char __user *end;
4575 unsigned char val;
4576
4577 addr = (void __user *)uattr + sizeof(*attr);
4578 end = (void __user *)uattr + size;
4579
4580 for (; addr < end; addr++) {
4581 ret = get_user(val, addr);
4582 if (ret)
4583 return ret;
4584 if (val)
4585 goto err_size;
4586 }
4587 size = sizeof(*attr);
4588 }
4589
4590 ret = copy_from_user(attr, uattr, size);
4591 if (ret)
4592 return -EFAULT;
4593
4594 /*
4595 * If the type exists, the corresponding creation will verify
4596 * the attr->config.
4597 */
4598 if (attr->type >= PERF_TYPE_MAX)
4599 return -EINVAL;
4600
Peter Zijlstraf13c12c2009-12-15 19:43:11 +01004601 if (attr->__reserved_1 || attr->__reserved_2)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004602 return -EINVAL;
4603
4604 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
4605 return -EINVAL;
4606
4607 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
4608 return -EINVAL;
4609
4610out:
4611 return ret;
4612
4613err_size:
4614 put_user(sizeof(*attr), &uattr->size);
4615 ret = -E2BIG;
4616 goto out;
4617}
4618
Li Zefan6fb29152009-10-15 11:21:42 +08004619static int perf_event_set_output(struct perf_event *event, int output_fd)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004620{
4621 struct perf_event *output_event = NULL;
4622 struct file *output_file = NULL;
4623 struct perf_event *old_output;
4624 int fput_needed = 0;
4625 int ret = -EINVAL;
4626
4627 if (!output_fd)
4628 goto set;
4629
4630 output_file = fget_light(output_fd, &fput_needed);
4631 if (!output_file)
4632 return -EBADF;
4633
4634 if (output_file->f_op != &perf_fops)
4635 goto out;
4636
4637 output_event = output_file->private_data;
4638
4639 /* Don't chain output fds */
4640 if (output_event->output)
4641 goto out;
4642
4643 /* Don't set an output fd when we already have an output channel */
4644 if (event->data)
4645 goto out;
4646
4647 atomic_long_inc(&output_file->f_count);
4648
4649set:
4650 mutex_lock(&event->mmap_mutex);
4651 old_output = event->output;
4652 rcu_assign_pointer(event->output, output_event);
4653 mutex_unlock(&event->mmap_mutex);
4654
4655 if (old_output) {
4656 /*
4657 * we need to make sure no existing perf_output_*()
4658 * is still referencing this event.
4659 */
4660 synchronize_rcu();
4661 fput(old_output->filp);
4662 }
4663
4664 ret = 0;
4665out:
4666 fput_light(output_file, fput_needed);
4667 return ret;
4668}
4669
4670/**
4671 * sys_perf_event_open - open a performance event, associate it to a task/cpu
4672 *
4673 * @attr_uptr: event_id type attributes for monitoring/sampling
4674 * @pid: target pid
4675 * @cpu: target cpu
4676 * @group_fd: group leader event fd
4677 */
4678SYSCALL_DEFINE5(perf_event_open,
4679 struct perf_event_attr __user *, attr_uptr,
4680 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
4681{
4682 struct perf_event *event, *group_leader;
4683 struct perf_event_attr attr;
4684 struct perf_event_context *ctx;
4685 struct file *event_file = NULL;
4686 struct file *group_file = NULL;
4687 int fput_needed = 0;
4688 int fput_needed2 = 0;
4689 int err;
4690
4691 /* for future expandability... */
4692 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
4693 return -EINVAL;
4694
4695 err = perf_copy_attr(attr_uptr, &attr);
4696 if (err)
4697 return err;
4698
4699 if (!attr.exclude_kernel) {
4700 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
4701 return -EACCES;
4702 }
4703
4704 if (attr.freq) {
4705 if (attr.sample_freq > sysctl_perf_event_sample_rate)
4706 return -EINVAL;
4707 }
4708
4709 /*
4710 * Get the target context (task or percpu):
4711 */
4712 ctx = find_get_context(pid, cpu);
4713 if (IS_ERR(ctx))
4714 return PTR_ERR(ctx);
4715
4716 /*
4717 * Look up the group leader (we will attach this event to it):
4718 */
4719 group_leader = NULL;
4720 if (group_fd != -1 && !(flags & PERF_FLAG_FD_NO_GROUP)) {
4721 err = -EINVAL;
4722 group_file = fget_light(group_fd, &fput_needed);
4723 if (!group_file)
4724 goto err_put_context;
4725 if (group_file->f_op != &perf_fops)
4726 goto err_put_context;
4727
4728 group_leader = group_file->private_data;
4729 /*
4730 * Do not allow a recursive hierarchy (this new sibling
4731 * becoming part of another group-sibling):
4732 */
4733 if (group_leader->group_leader != group_leader)
4734 goto err_put_context;
4735 /*
4736 * Do not allow to attach to a group in a different
4737 * task or CPU context:
4738 */
4739 if (group_leader->ctx != ctx)
4740 goto err_put_context;
4741 /*
4742 * Only a group leader can be exclusive or pinned
4743 */
4744 if (attr.exclusive || attr.pinned)
4745 goto err_put_context;
4746 }
4747
4748 event = perf_event_alloc(&attr, cpu, ctx, group_leader,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004749 NULL, NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004750 err = PTR_ERR(event);
4751 if (IS_ERR(event))
4752 goto err_put_context;
4753
Roland Dreier628ff7c2009-12-18 09:41:24 -08004754 err = anon_inode_getfd("[perf_event]", &perf_fops, event, O_RDWR);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004755 if (err < 0)
4756 goto err_free_put_context;
4757
4758 event_file = fget_light(err, &fput_needed2);
4759 if (!event_file)
4760 goto err_free_put_context;
4761
4762 if (flags & PERF_FLAG_FD_OUTPUT) {
4763 err = perf_event_set_output(event, group_fd);
4764 if (err)
4765 goto err_fput_free_put_context;
4766 }
4767
4768 event->filp = event_file;
4769 WARN_ON_ONCE(ctx->parent_ctx);
4770 mutex_lock(&ctx->mutex);
4771 perf_install_in_context(ctx, event, cpu);
4772 ++ctx->generation;
4773 mutex_unlock(&ctx->mutex);
4774
4775 event->owner = current;
4776 get_task_struct(current);
4777 mutex_lock(&current->perf_event_mutex);
4778 list_add_tail(&event->owner_entry, &current->perf_event_list);
4779 mutex_unlock(&current->perf_event_mutex);
4780
4781err_fput_free_put_context:
4782 fput_light(event_file, fput_needed2);
4783
4784err_free_put_context:
4785 if (err < 0)
4786 kfree(event);
4787
4788err_put_context:
4789 if (err < 0)
4790 put_ctx(ctx);
4791
4792 fput_light(group_file, fput_needed);
4793
4794 return err;
4795}
4796
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004797/**
4798 * perf_event_create_kernel_counter
4799 *
4800 * @attr: attributes of the counter to create
4801 * @cpu: cpu in which the counter is bound
4802 * @pid: task to profile
4803 */
4804struct perf_event *
4805perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004806 pid_t pid,
4807 perf_overflow_handler_t overflow_handler)
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004808{
4809 struct perf_event *event;
4810 struct perf_event_context *ctx;
4811 int err;
4812
4813 /*
4814 * Get the target context (task or percpu):
4815 */
4816
4817 ctx = find_get_context(pid, cpu);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004818 if (IS_ERR(ctx)) {
4819 err = PTR_ERR(ctx);
4820 goto err_exit;
4821 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004822
4823 event = perf_event_alloc(attr, cpu, ctx, NULL,
Frederic Weisbeckerb326e952009-12-05 09:44:31 +01004824 NULL, overflow_handler, GFP_KERNEL);
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004825 if (IS_ERR(event)) {
4826 err = PTR_ERR(event);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004827 goto err_put_context;
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004828 }
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004829
4830 event->filp = NULL;
4831 WARN_ON_ONCE(ctx->parent_ctx);
4832 mutex_lock(&ctx->mutex);
4833 perf_install_in_context(ctx, event, cpu);
4834 ++ctx->generation;
4835 mutex_unlock(&ctx->mutex);
4836
4837 event->owner = current;
4838 get_task_struct(current);
4839 mutex_lock(&current->perf_event_mutex);
4840 list_add_tail(&event->owner_entry, &current->perf_event_list);
4841 mutex_unlock(&current->perf_event_mutex);
4842
4843 return event;
4844
Frederic Weisbeckerc6567f62009-11-26 05:35:41 +01004845 err_put_context:
4846 put_ctx(ctx);
4847 err_exit:
4848 return ERR_PTR(err);
Arjan van de Venfb0459d2009-09-25 12:25:56 +02004849}
4850EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
4851
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004852/*
4853 * inherit a event from parent task to child task:
4854 */
4855static struct perf_event *
4856inherit_event(struct perf_event *parent_event,
4857 struct task_struct *parent,
4858 struct perf_event_context *parent_ctx,
4859 struct task_struct *child,
4860 struct perf_event *group_leader,
4861 struct perf_event_context *child_ctx)
4862{
4863 struct perf_event *child_event;
4864
4865 /*
4866 * Instead of creating recursive hierarchies of events,
4867 * we link inherited events back to the original parent,
4868 * which has a filp for sure, which we use as the reference
4869 * count:
4870 */
4871 if (parent_event->parent)
4872 parent_event = parent_event->parent;
4873
4874 child_event = perf_event_alloc(&parent_event->attr,
4875 parent_event->cpu, child_ctx,
4876 group_leader, parent_event,
Frederic Weisbecker97eaf532009-10-18 15:33:50 +02004877 NULL, GFP_KERNEL);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004878 if (IS_ERR(child_event))
4879 return child_event;
4880 get_ctx(child_ctx);
4881
4882 /*
4883 * Make the child state follow the state of the parent event,
4884 * not its attr.disabled bit. We hold the parent's mutex,
4885 * so we won't race with perf_event_{en, dis}able_family.
4886 */
4887 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
4888 child_event->state = PERF_EVENT_STATE_INACTIVE;
4889 else
4890 child_event->state = PERF_EVENT_STATE_OFF;
4891
4892 if (parent_event->attr.freq)
4893 child_event->hw.sample_period = parent_event->hw.sample_period;
4894
Peter Zijlstra453f19e2009-11-20 22:19:43 +01004895 child_event->overflow_handler = parent_event->overflow_handler;
4896
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004897 /*
4898 * Link it up in the child's context:
4899 */
4900 add_event_to_ctx(child_event, child_ctx);
4901
4902 /*
4903 * Get a reference to the parent filp - we will fput it
4904 * when the child event exits. This is safe to do because
4905 * we are in the parent and we know that the filp still
4906 * exists and has a nonzero count:
4907 */
4908 atomic_long_inc(&parent_event->filp->f_count);
4909
4910 /*
4911 * Link this into the parent event's child list
4912 */
4913 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4914 mutex_lock(&parent_event->child_mutex);
4915 list_add_tail(&child_event->child_list, &parent_event->child_list);
4916 mutex_unlock(&parent_event->child_mutex);
4917
4918 return child_event;
4919}
4920
4921static int inherit_group(struct perf_event *parent_event,
4922 struct task_struct *parent,
4923 struct perf_event_context *parent_ctx,
4924 struct task_struct *child,
4925 struct perf_event_context *child_ctx)
4926{
4927 struct perf_event *leader;
4928 struct perf_event *sub;
4929 struct perf_event *child_ctr;
4930
4931 leader = inherit_event(parent_event, parent, parent_ctx,
4932 child, NULL, child_ctx);
4933 if (IS_ERR(leader))
4934 return PTR_ERR(leader);
4935 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
4936 child_ctr = inherit_event(sub, parent, parent_ctx,
4937 child, leader, child_ctx);
4938 if (IS_ERR(child_ctr))
4939 return PTR_ERR(child_ctr);
4940 }
4941 return 0;
4942}
4943
4944static void sync_child_event(struct perf_event *child_event,
4945 struct task_struct *child)
4946{
4947 struct perf_event *parent_event = child_event->parent;
4948 u64 child_val;
4949
4950 if (child_event->attr.inherit_stat)
4951 perf_event_read_event(child_event, child);
4952
4953 child_val = atomic64_read(&child_event->count);
4954
4955 /*
4956 * Add back the child's count to the parent's count:
4957 */
4958 atomic64_add(child_val, &parent_event->count);
4959 atomic64_add(child_event->total_time_enabled,
4960 &parent_event->child_total_time_enabled);
4961 atomic64_add(child_event->total_time_running,
4962 &parent_event->child_total_time_running);
4963
4964 /*
4965 * Remove this event from the parent's list
4966 */
4967 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
4968 mutex_lock(&parent_event->child_mutex);
4969 list_del_init(&child_event->child_list);
4970 mutex_unlock(&parent_event->child_mutex);
4971
4972 /*
4973 * Release the parent event, if this was the last
4974 * reference to it.
4975 */
4976 fput(parent_event->filp);
4977}
4978
4979static void
4980__perf_event_exit_task(struct perf_event *child_event,
4981 struct perf_event_context *child_ctx,
4982 struct task_struct *child)
4983{
4984 struct perf_event *parent_event;
4985
Ingo Molnarcdd6c482009-09-21 12:02:48 +02004986 perf_event_remove_from_context(child_event);
4987
4988 parent_event = child_event->parent;
4989 /*
4990 * It can happen that parent exits first, and has events
4991 * that are still around due to the child reference. These
4992 * events need to be zapped - but otherwise linger.
4993 */
4994 if (parent_event) {
4995 sync_child_event(child_event, child);
4996 free_event(child_event);
4997 }
4998}
4999
5000/*
5001 * When a child task exits, feed back event values to parent events.
5002 */
5003void perf_event_exit_task(struct task_struct *child)
5004{
5005 struct perf_event *child_event, *tmp;
5006 struct perf_event_context *child_ctx;
5007 unsigned long flags;
5008
5009 if (likely(!child->perf_event_ctxp)) {
5010 perf_event_task(child, NULL, 0);
5011 return;
5012 }
5013
5014 local_irq_save(flags);
5015 /*
5016 * We can't reschedule here because interrupts are disabled,
5017 * and either child is current or it is a task that can't be
5018 * scheduled, so we are now safe from rescheduling changing
5019 * our context.
5020 */
5021 child_ctx = child->perf_event_ctxp;
5022 __perf_event_task_sched_out(child_ctx);
5023
5024 /*
5025 * Take the context lock here so that if find_get_context is
5026 * reading child->perf_event_ctxp, we wait until it has
5027 * incremented the context's refcount before we do put_ctx below.
5028 */
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005029 raw_spin_lock(&child_ctx->lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005030 child->perf_event_ctxp = NULL;
5031 /*
5032 * If this context is a clone; unclone it so it can't get
5033 * swapped to another process while we're removing all
5034 * the events from it.
5035 */
5036 unclone_ctx(child_ctx);
Peter Zijlstra5e942bb2009-11-23 11:37:26 +01005037 update_context_time(child_ctx);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005038 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005039
5040 /*
5041 * Report the task dead after unscheduling the events so that we
5042 * won't get any samples after PERF_RECORD_EXIT. We can however still
5043 * get a few PERF_RECORD_READ events.
5044 */
5045 perf_event_task(child, child_ctx, 0);
5046
5047 /*
5048 * We can recurse on the same lock type through:
5049 *
5050 * __perf_event_exit_task()
5051 * sync_child_event()
5052 * fput(parent_event->filp)
5053 * perf_release()
5054 * mutex_lock(&ctx->mutex)
5055 *
5056 * But since its the parent context it won't be the same instance.
5057 */
5058 mutex_lock_nested(&child_ctx->mutex, SINGLE_DEPTH_NESTING);
5059
5060again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005061 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
5062 group_entry)
5063 __perf_event_exit_task(child_event, child_ctx, child);
5064
5065 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005066 group_entry)
5067 __perf_event_exit_task(child_event, child_ctx, child);
5068
5069 /*
5070 * If the last event was a group event, it will have appended all
5071 * its siblings to the list, but we obtained 'tmp' before that which
5072 * will still point to the list head terminating the iteration.
5073 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005074 if (!list_empty(&child_ctx->pinned_groups) ||
5075 !list_empty(&child_ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005076 goto again;
5077
5078 mutex_unlock(&child_ctx->mutex);
5079
5080 put_ctx(child_ctx);
5081}
5082
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005083static void perf_free_event(struct perf_event *event,
5084 struct perf_event_context *ctx)
5085{
5086 struct perf_event *parent = event->parent;
5087
5088 if (WARN_ON_ONCE(!parent))
5089 return;
5090
5091 mutex_lock(&parent->child_mutex);
5092 list_del_init(&event->child_list);
5093 mutex_unlock(&parent->child_mutex);
5094
5095 fput(parent->filp);
5096
5097 list_del_event(event, ctx);
5098 free_event(event);
5099}
5100
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005101/*
5102 * free an unexposed, unused context as created by inheritance by
5103 * init_task below, used by fork() in case of fail.
5104 */
5105void perf_event_free_task(struct task_struct *task)
5106{
5107 struct perf_event_context *ctx = task->perf_event_ctxp;
5108 struct perf_event *event, *tmp;
5109
5110 if (!ctx)
5111 return;
5112
5113 mutex_lock(&ctx->mutex);
5114again:
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005115 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5116 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005117
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005118 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
5119 group_entry)
5120 perf_free_event(event, ctx);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005121
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005122 if (!list_empty(&ctx->pinned_groups) ||
5123 !list_empty(&ctx->flexible_groups))
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005124 goto again;
5125
5126 mutex_unlock(&ctx->mutex);
5127
5128 put_ctx(ctx);
5129}
5130
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005131static int
5132inherit_task_group(struct perf_event *event, struct task_struct *parent,
5133 struct perf_event_context *parent_ctx,
5134 struct task_struct *child,
5135 int *inherited_all)
5136{
5137 int ret;
5138 struct perf_event_context *child_ctx = child->perf_event_ctxp;
5139
5140 if (!event->attr.inherit) {
5141 *inherited_all = 0;
5142 return 0;
5143 }
5144
5145 if (!child_ctx) {
5146 /*
5147 * This is executed from the parent task context, so
5148 * inherit events that have been marked for cloning.
5149 * First allocate and initialize a context for the
5150 * child.
5151 */
5152
5153 child_ctx = kzalloc(sizeof(struct perf_event_context),
5154 GFP_KERNEL);
5155 if (!child_ctx)
5156 return -ENOMEM;
5157
5158 __perf_event_init_context(child_ctx, child);
5159 child->perf_event_ctxp = child_ctx;
5160 get_task_struct(child);
5161 }
5162
5163 ret = inherit_group(event, parent, parent_ctx,
5164 child, child_ctx);
5165
5166 if (ret)
5167 *inherited_all = 0;
5168
5169 return ret;
5170}
5171
5172
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005173/*
5174 * Initialize the perf_event context in task_struct
5175 */
5176int perf_event_init_task(struct task_struct *child)
5177{
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005178 struct perf_event_context *child_ctx, *parent_ctx;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005179 struct perf_event_context *cloned_ctx;
5180 struct perf_event *event;
5181 struct task_struct *parent = current;
5182 int inherited_all = 1;
5183 int ret = 0;
5184
5185 child->perf_event_ctxp = NULL;
5186
5187 mutex_init(&child->perf_event_mutex);
5188 INIT_LIST_HEAD(&child->perf_event_list);
5189
5190 if (likely(!parent->perf_event_ctxp))
5191 return 0;
5192
5193 /*
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005194 * If the parent's context is a clone, pin it so it won't get
5195 * swapped under us.
5196 */
5197 parent_ctx = perf_pin_task_context(parent);
5198
5199 /*
5200 * No need to check if parent_ctx != NULL here; since we saw
5201 * it non-NULL earlier, the only reason for it to become NULL
5202 * is if we exit, and since we're currently in the middle of
5203 * a fork we can't be exiting at the same time.
5204 */
5205
5206 /*
5207 * Lock the parent list. No need to lock the child - not PID
5208 * hashed yet and not running, so nobody can access it.
5209 */
5210 mutex_lock(&parent_ctx->mutex);
5211
5212 /*
5213 * We dont have to disable NMIs - we are only looking at
5214 * the list, not manipulating it:
5215 */
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005216 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
5217 ret = inherit_task_group(event, parent, parent_ctx, child,
5218 &inherited_all);
5219 if (ret)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005220 break;
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005221 }
5222
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005223 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
5224 ret = inherit_task_group(event, parent, parent_ctx, child,
5225 &inherited_all);
5226 if (ret)
5227 break;
5228 }
5229
5230 child_ctx = child->perf_event_ctxp;
5231
Peter Zijlstra05cbaa22009-12-30 16:00:35 +01005232 if (child_ctx && inherited_all) {
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005233 /*
5234 * Mark the child context as a clone of the parent
5235 * context, or of whatever the parent is a clone of.
5236 * Note that if the parent is a clone, it could get
5237 * uncloned at any point, but that doesn't matter
5238 * because the list of events and the generation
5239 * count can't have changed since we took the mutex.
5240 */
5241 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
5242 if (cloned_ctx) {
5243 child_ctx->parent_ctx = cloned_ctx;
5244 child_ctx->parent_gen = parent_ctx->parent_gen;
5245 } else {
5246 child_ctx->parent_ctx = parent_ctx;
5247 child_ctx->parent_gen = parent_ctx->generation;
5248 }
5249 get_ctx(child_ctx->parent_ctx);
5250 }
5251
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005252 mutex_unlock(&parent_ctx->mutex);
5253
5254 perf_unpin_context(parent_ctx);
5255
5256 return ret;
5257}
5258
5259static void __cpuinit perf_event_init_cpu(int cpu)
5260{
5261 struct perf_cpu_context *cpuctx;
5262
5263 cpuctx = &per_cpu(perf_cpu_context, cpu);
5264 __perf_event_init_context(&cpuctx->ctx, NULL);
5265
5266 spin_lock(&perf_resource_lock);
5267 cpuctx->max_pertask = perf_max_events - perf_reserved_percpu;
5268 spin_unlock(&perf_resource_lock);
5269
5270 hw_perf_event_setup(cpu);
5271}
5272
5273#ifdef CONFIG_HOTPLUG_CPU
5274static void __perf_event_exit_cpu(void *info)
5275{
5276 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
5277 struct perf_event_context *ctx = &cpuctx->ctx;
5278 struct perf_event *event, *tmp;
5279
Frederic Weisbecker889ff012010-01-09 20:04:47 +01005280 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
5281 __perf_event_remove_from_context(event);
5282 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005283 __perf_event_remove_from_context(event);
5284}
5285static void perf_event_exit_cpu(int cpu)
5286{
5287 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
5288 struct perf_event_context *ctx = &cpuctx->ctx;
5289
5290 mutex_lock(&ctx->mutex);
5291 smp_call_function_single(cpu, __perf_event_exit_cpu, NULL, 1);
5292 mutex_unlock(&ctx->mutex);
5293}
5294#else
5295static inline void perf_event_exit_cpu(int cpu) { }
5296#endif
5297
5298static int __cpuinit
5299perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
5300{
5301 unsigned int cpu = (long)hcpu;
5302
5303 switch (action) {
5304
5305 case CPU_UP_PREPARE:
5306 case CPU_UP_PREPARE_FROZEN:
5307 perf_event_init_cpu(cpu);
5308 break;
5309
5310 case CPU_ONLINE:
5311 case CPU_ONLINE_FROZEN:
5312 hw_perf_event_setup_online(cpu);
5313 break;
5314
5315 case CPU_DOWN_PREPARE:
5316 case CPU_DOWN_PREPARE_FROZEN:
5317 perf_event_exit_cpu(cpu);
5318 break;
5319
5320 default:
5321 break;
5322 }
5323
5324 return NOTIFY_OK;
5325}
5326
5327/*
5328 * This has to have a higher priority than migration_notifier in sched.c.
5329 */
5330static struct notifier_block __cpuinitdata perf_cpu_nb = {
5331 .notifier_call = perf_cpu_notify,
5332 .priority = 20,
5333};
5334
5335void __init perf_event_init(void)
5336{
5337 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
5338 (void *)(long)smp_processor_id());
5339 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_ONLINE,
5340 (void *)(long)smp_processor_id());
5341 register_cpu_notifier(&perf_cpu_nb);
5342}
5343
5344static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
5345{
5346 return sprintf(buf, "%d\n", perf_reserved_percpu);
5347}
5348
5349static ssize_t
5350perf_set_reserve_percpu(struct sysdev_class *class,
5351 const char *buf,
5352 size_t count)
5353{
5354 struct perf_cpu_context *cpuctx;
5355 unsigned long val;
5356 int err, cpu, mpt;
5357
5358 err = strict_strtoul(buf, 10, &val);
5359 if (err)
5360 return err;
5361 if (val > perf_max_events)
5362 return -EINVAL;
5363
5364 spin_lock(&perf_resource_lock);
5365 perf_reserved_percpu = val;
5366 for_each_online_cpu(cpu) {
5367 cpuctx = &per_cpu(perf_cpu_context, cpu);
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005368 raw_spin_lock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005369 mpt = min(perf_max_events - cpuctx->ctx.nr_events,
5370 perf_max_events - perf_reserved_percpu);
5371 cpuctx->max_pertask = mpt;
Thomas Gleixnere625cce2009-11-17 18:02:06 +01005372 raw_spin_unlock_irq(&cpuctx->ctx.lock);
Ingo Molnarcdd6c482009-09-21 12:02:48 +02005373 }
5374 spin_unlock(&perf_resource_lock);
5375
5376 return count;
5377}
5378
5379static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
5380{
5381 return sprintf(buf, "%d\n", perf_overcommit);
5382}
5383
5384static ssize_t
5385perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
5386{
5387 unsigned long val;
5388 int err;
5389
5390 err = strict_strtoul(buf, 10, &val);
5391 if (err)
5392 return err;
5393 if (val > 1)
5394 return -EINVAL;
5395
5396 spin_lock(&perf_resource_lock);
5397 perf_overcommit = val;
5398 spin_unlock(&perf_resource_lock);
5399
5400 return count;
5401}
5402
5403static SYSDEV_CLASS_ATTR(
5404 reserve_percpu,
5405 0644,
5406 perf_show_reserve_percpu,
5407 perf_set_reserve_percpu
5408 );
5409
5410static SYSDEV_CLASS_ATTR(
5411 overcommit,
5412 0644,
5413 perf_show_overcommit,
5414 perf_set_overcommit
5415 );
5416
5417static struct attribute *perfclass_attrs[] = {
5418 &attr_reserve_percpu.attr,
5419 &attr_overcommit.attr,
5420 NULL
5421};
5422
5423static struct attribute_group perfclass_attr_group = {
5424 .attrs = perfclass_attrs,
5425 .name = "perf_events",
5426};
5427
5428static int __init perf_event_sysfs_init(void)
5429{
5430 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
5431 &perfclass_attr_group);
5432}
5433device_initcall(perf_event_sysfs_init);