blob: 3080f84bf7b76f8f68274d84c5af15d705afc625 [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
11 * Copyright (c) 2002 Vojtech Pavlik
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
Linus Torvalds1da177e2005-04-16 15:20:36 -070021#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
27#include <linux/kallsyms.h>
Andi Kleen312df5f2005-05-16 21:53:28 -070028#include <linux/acpi.h>
Andi Kleen8d916402005-05-31 14:39:26 -070029#ifdef CONFIG_ACPI
Andi Kleen312df5f2005-05-16 21:53:28 -070030#include <acpi/achware.h> /* for PM timer frequency */
Andi Kleen8d916402005-05-31 14:39:26 -070031#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -070032#include <asm/8253pit.h>
33#include <asm/pgtable.h>
34#include <asm/vsyscall.h>
35#include <asm/timex.h>
36#include <asm/proto.h>
37#include <asm/hpet.h>
38#include <asm/sections.h>
39#include <linux/cpufreq.h>
40#include <linux/hpet.h>
41#ifdef CONFIG_X86_LOCAL_APIC
42#include <asm/apic.h>
43#endif
44
Linus Torvalds1da177e2005-04-16 15:20:36 -070045#ifdef CONFIG_CPU_FREQ
46static void cpufreq_delayed_get(void);
47#endif
48extern void i8254_timer_resume(void);
49extern int using_apic_timer;
50
Andi Kleene8b91772006-02-26 04:18:49 +010051static char *time_init_gtod(void);
52
Linus Torvalds1da177e2005-04-16 15:20:36 -070053DEFINE_SPINLOCK(rtc_lock);
54DEFINE_SPINLOCK(i8253_lock);
55
Andi Kleen73dea472006-02-03 21:50:50 +010056int nohpet __initdata = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -070057static int notsc __initdata = 0;
58
59#undef HPET_HACK_ENABLE_DANGEROUS
60
61unsigned int cpu_khz; /* TSC clocks / usec, not used here */
62static unsigned long hpet_period; /* fsecs / HPET clock */
63unsigned long hpet_tick; /* HPET clocks / interrupt */
Chris McDermott33042a92006-02-11 17:55:50 -080064int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
Linus Torvalds1da177e2005-04-16 15:20:36 -070065unsigned long vxtime_hz = PIT_TICK_RATE;
66int report_lost_ticks; /* command line option */
67unsigned long long monotonic_base;
68
69struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
70
71volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
72unsigned long __wall_jiffies __section_wall_jiffies = INITIAL_JIFFIES;
73struct timespec __xtime __section_xtime;
74struct timezone __sys_tz __section_sys_tz;
75
Linus Torvalds1da177e2005-04-16 15:20:36 -070076/*
77 * do_gettimeoffset() returns microseconds since last timer interrupt was
78 * triggered by hardware. A memory read of HPET is slower than a register read
79 * of TSC, but much more reliable. It's also synchronized to the timer
80 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
81 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
82 * This is not a problem, because jiffies hasn't updated either. They are bound
83 * together by xtime_lock.
84 */
85
86static inline unsigned int do_gettimeoffset_tsc(void)
87{
88 unsigned long t;
89 unsigned long x;
Andi Kleenc818a182006-01-11 22:45:24 +010090 t = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -070091 if (t < vxtime.last_tsc) t = vxtime.last_tsc; /* hack */
92 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> 32;
93 return x;
94}
95
96static inline unsigned int do_gettimeoffset_hpet(void)
97{
john stultza3a00752005-06-23 00:08:36 -070098 /* cap counter read to one tick to avoid inconsistencies */
99 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
100 return (min(counter,hpet_tick) * vxtime.quot) >> 32;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700101}
102
103unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
104
105/*
106 * This version of gettimeofday() has microsecond resolution and better than
107 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
108 * MHz) HPET timer.
109 */
110
111void do_gettimeofday(struct timeval *tv)
112{
113 unsigned long seq, t;
114 unsigned int sec, usec;
115
116 do {
117 seq = read_seqbegin(&xtime_lock);
118
119 sec = xtime.tv_sec;
120 usec = xtime.tv_nsec / 1000;
121
122 /* i386 does some correction here to keep the clock
123 monotonous even when ntpd is fixing drift.
124 But they didn't work for me, there is a non monotonic
125 clock anyways with ntp.
126 I dropped all corrections now until a real solution can
127 be found. Note when you fix it here you need to do the same
128 in arch/x86_64/kernel/vsyscall.c and export all needed
129 variables in vmlinux.lds. -AK */
130
131 t = (jiffies - wall_jiffies) * (1000000L / HZ) +
132 do_gettimeoffset();
133 usec += t;
134
135 } while (read_seqretry(&xtime_lock, seq));
136
137 tv->tv_sec = sec + usec / 1000000;
138 tv->tv_usec = usec % 1000000;
139}
140
141EXPORT_SYMBOL(do_gettimeofday);
142
143/*
144 * settimeofday() first undoes the correction that gettimeofday would do
145 * on the time, and then saves it. This is ugly, but has been like this for
146 * ages already.
147 */
148
149int do_settimeofday(struct timespec *tv)
150{
151 time_t wtm_sec, sec = tv->tv_sec;
152 long wtm_nsec, nsec = tv->tv_nsec;
153
154 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
155 return -EINVAL;
156
157 write_seqlock_irq(&xtime_lock);
158
159 nsec -= do_gettimeoffset() * 1000 +
160 (jiffies - wall_jiffies) * (NSEC_PER_SEC/HZ);
161
162 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
163 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
164
165 set_normalized_timespec(&xtime, sec, nsec);
166 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
167
john stultzb149ee22005-09-06 15:17:46 -0700168 ntp_clear();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700169
170 write_sequnlock_irq(&xtime_lock);
171 clock_was_set();
172 return 0;
173}
174
175EXPORT_SYMBOL(do_settimeofday);
176
177unsigned long profile_pc(struct pt_regs *regs)
178{
179 unsigned long pc = instruction_pointer(regs);
180
181 /* Assume the lock function has either no stack frame or only a single word.
182 This checks if the address on the stack looks like a kernel text address.
183 There is a small window for false hits, but in that case the tick
184 is just accounted to the spinlock function.
185 Better would be to write these functions in assembler again
186 and check exactly. */
187 if (in_lock_functions(pc)) {
188 char *v = *(char **)regs->rsp;
189 if ((v >= _stext && v <= _etext) ||
190 (v >= _sinittext && v <= _einittext) ||
191 (v >= (char *)MODULES_VADDR && v <= (char *)MODULES_END))
192 return (unsigned long)v;
193 return ((unsigned long *)regs->rsp)[1];
194 }
195 return pc;
196}
197EXPORT_SYMBOL(profile_pc);
198
199/*
200 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
201 * ms after the second nowtime has started, because when nowtime is written
202 * into the registers of the CMOS clock, it will jump to the next second
203 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
204 * sheet for details.
205 */
206
207static void set_rtc_mmss(unsigned long nowtime)
208{
209 int real_seconds, real_minutes, cmos_minutes;
210 unsigned char control, freq_select;
211
212/*
213 * IRQs are disabled when we're called from the timer interrupt,
214 * no need for spin_lock_irqsave()
215 */
216
217 spin_lock(&rtc_lock);
218
219/*
220 * Tell the clock it's being set and stop it.
221 */
222
223 control = CMOS_READ(RTC_CONTROL);
224 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
225
226 freq_select = CMOS_READ(RTC_FREQ_SELECT);
227 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
228
229 cmos_minutes = CMOS_READ(RTC_MINUTES);
230 BCD_TO_BIN(cmos_minutes);
231
232/*
233 * since we're only adjusting minutes and seconds, don't interfere with hour
234 * overflow. This avoids messing with unknown time zones but requires your RTC
235 * not to be off by more than 15 minutes. Since we're calling it only when
236 * our clock is externally synchronized using NTP, this shouldn't be a problem.
237 */
238
239 real_seconds = nowtime % 60;
240 real_minutes = nowtime / 60;
241 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
242 real_minutes += 30; /* correct for half hour time zone */
243 real_minutes %= 60;
244
245#if 0
246 /* AMD 8111 is a really bad time keeper and hits this regularly.
247 It probably was an attempt to avoid screwing up DST, but ignore
248 that for now. */
249 if (abs(real_minutes - cmos_minutes) >= 30) {
250 printk(KERN_WARNING "time.c: can't update CMOS clock "
251 "from %d to %d\n", cmos_minutes, real_minutes);
252 } else
253#endif
254
255 {
Andi Kleen0b913172006-01-11 22:45:33 +0100256 BIN_TO_BCD(real_seconds);
257 BIN_TO_BCD(real_minutes);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700258 CMOS_WRITE(real_seconds, RTC_SECONDS);
259 CMOS_WRITE(real_minutes, RTC_MINUTES);
260 }
261
262/*
263 * The following flags have to be released exactly in this order, otherwise the
264 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
265 * not reset the oscillator and will not update precisely 500 ms later. You
266 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
267 * believes data sheets anyway ... -- Markus Kuhn
268 */
269
270 CMOS_WRITE(control, RTC_CONTROL);
271 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
272
273 spin_unlock(&rtc_lock);
274}
275
276
277/* monotonic_clock(): returns # of nanoseconds passed since time_init()
278 * Note: This function is required to return accurate
279 * time even in the absence of multiple timer ticks.
280 */
281unsigned long long monotonic_clock(void)
282{
283 unsigned long seq;
284 u32 last_offset, this_offset, offset;
285 unsigned long long base;
286
287 if (vxtime.mode == VXTIME_HPET) {
288 do {
289 seq = read_seqbegin(&xtime_lock);
290
291 last_offset = vxtime.last;
292 base = monotonic_base;
john stultza3a00752005-06-23 00:08:36 -0700293 this_offset = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700294 } while (read_seqretry(&xtime_lock, seq));
295 offset = (this_offset - last_offset);
296 offset *=(NSEC_PER_SEC/HZ)/hpet_tick;
297 return base + offset;
Andi Kleen0b913172006-01-11 22:45:33 +0100298 } else {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700299 do {
300 seq = read_seqbegin(&xtime_lock);
301
302 last_offset = vxtime.last_tsc;
303 base = monotonic_base;
304 } while (read_seqretry(&xtime_lock, seq));
Andi Kleenc818a182006-01-11 22:45:24 +0100305 this_offset = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700306 offset = (this_offset - last_offset)*1000/cpu_khz;
307 return base + offset;
308 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700309}
310EXPORT_SYMBOL(monotonic_clock);
311
312static noinline void handle_lost_ticks(int lost, struct pt_regs *regs)
313{
314 static long lost_count;
315 static int warned;
316
317 if (report_lost_ticks) {
318 printk(KERN_WARNING "time.c: Lost %d timer "
319 "tick(s)! ", lost);
320 print_symbol("rip %s)\n", regs->rip);
321 }
322
323 if (lost_count == 1000 && !warned) {
324 printk(KERN_WARNING
325 "warning: many lost ticks.\n"
326 KERN_WARNING "Your time source seems to be instable or "
327 "some driver is hogging interupts\n");
328 print_symbol("rip %s\n", regs->rip);
329 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
330 printk(KERN_WARNING "Falling back to HPET\n");
Chris McDermott33042a92006-02-11 17:55:50 -0800331 if (hpet_use_timer)
332 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
333 else
334 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700335 vxtime.mode = VXTIME_HPET;
336 do_gettimeoffset = do_gettimeoffset_hpet;
337 }
338 /* else should fall back to PIT, but code missing. */
339 warned = 1;
340 } else
341 lost_count++;
342
343#ifdef CONFIG_CPU_FREQ
344 /* In some cases the CPU can change frequency without us noticing
345 (like going into thermal throttle)
346 Give cpufreq a change to catch up. */
347 if ((lost_count+1) % 25 == 0) {
348 cpufreq_delayed_get();
349 }
350#endif
351}
352
Andi Kleen73dea472006-02-03 21:50:50 +0100353void main_timer_handler(struct pt_regs *regs)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700354{
355 static unsigned long rtc_update = 0;
356 unsigned long tsc;
357 int delay, offset = 0, lost = 0;
358
359/*
360 * Here we are in the timer irq handler. We have irqs locally disabled (so we
361 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
362 * on the other CPU, so we need a lock. We also need to lock the vsyscall
363 * variables, because both do_timer() and us change them -arca+vojtech
364 */
365
366 write_seqlock(&xtime_lock);
367
john stultza3a00752005-06-23 00:08:36 -0700368 if (vxtime.hpet_address)
369 offset = hpet_readl(HPET_COUNTER);
370
371 if (hpet_use_timer) {
372 /* if we're using the hpet timer functionality,
373 * we can more accurately know the counter value
374 * when the timer interrupt occured.
375 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700376 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
377 delay = hpet_readl(HPET_COUNTER) - offset;
378 } else {
379 spin_lock(&i8253_lock);
380 outb_p(0x00, 0x43);
381 delay = inb_p(0x40);
382 delay |= inb(0x40) << 8;
383 spin_unlock(&i8253_lock);
384 delay = LATCH - 1 - delay;
385 }
386
Andi Kleenc818a182006-01-11 22:45:24 +0100387 tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700388
389 if (vxtime.mode == VXTIME_HPET) {
390 if (offset - vxtime.last > hpet_tick) {
391 lost = (offset - vxtime.last) / hpet_tick - 1;
392 }
393
394 monotonic_base +=
395 (offset - vxtime.last)*(NSEC_PER_SEC/HZ) / hpet_tick;
396
397 vxtime.last = offset;
Andi Kleen312df5f2005-05-16 21:53:28 -0700398#ifdef CONFIG_X86_PM_TIMER
399 } else if (vxtime.mode == VXTIME_PMTMR) {
400 lost = pmtimer_mark_offset();
401#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700402 } else {
403 offset = (((tsc - vxtime.last_tsc) *
404 vxtime.tsc_quot) >> 32) - (USEC_PER_SEC / HZ);
405
406 if (offset < 0)
407 offset = 0;
408
409 if (offset > (USEC_PER_SEC / HZ)) {
410 lost = offset / (USEC_PER_SEC / HZ);
411 offset %= (USEC_PER_SEC / HZ);
412 }
413
414 monotonic_base += (tsc - vxtime.last_tsc)*1000000/cpu_khz ;
415
416 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
417
418 if ((((tsc - vxtime.last_tsc) *
419 vxtime.tsc_quot) >> 32) < offset)
420 vxtime.last_tsc = tsc -
421 (((long) offset << 32) / vxtime.tsc_quot) - 1;
422 }
423
424 if (lost > 0) {
425 handle_lost_ticks(lost, regs);
426 jiffies += lost;
427 }
428
429/*
430 * Do the timer stuff.
431 */
432
433 do_timer(regs);
434#ifndef CONFIG_SMP
435 update_process_times(user_mode(regs));
436#endif
437
438/*
439 * In the SMP case we use the local APIC timer interrupt to do the profiling,
440 * except when we simulate SMP mode on a uniprocessor system, in that case we
441 * have to call the local interrupt handler.
442 */
443
444#ifndef CONFIG_X86_LOCAL_APIC
445 profile_tick(CPU_PROFILING, regs);
446#else
447 if (!using_apic_timer)
448 smp_local_timer_interrupt(regs);
449#endif
450
451/*
452 * If we have an externally synchronized Linux clock, then update CMOS clock
453 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
454 * closest to exactly 500 ms before the next second. If the update fails, we
455 * don't care, as it'll be updated on the next turn, and the problem (time way
456 * off) isn't likely to go away much sooner anyway.
457 */
458
john stultzb149ee22005-09-06 15:17:46 -0700459 if (ntp_synced() && xtime.tv_sec > rtc_update &&
Linus Torvalds1da177e2005-04-16 15:20:36 -0700460 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
461 set_rtc_mmss(xtime.tv_sec);
462 rtc_update = xtime.tv_sec + 660;
463 }
464
465 write_sequnlock(&xtime_lock);
Andi Kleen73dea472006-02-03 21:50:50 +0100466}
Linus Torvalds1da177e2005-04-16 15:20:36 -0700467
Andi Kleen73dea472006-02-03 21:50:50 +0100468static irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
469{
470 if (apic_runs_main_timer > 1)
471 return IRQ_HANDLED;
472 main_timer_handler(regs);
Venkatesh Pallipadid25bf7e2006-01-11 22:44:24 +0100473#ifdef CONFIG_X86_LOCAL_APIC
474 if (using_apic_timer)
475 smp_send_timer_broadcast_ipi();
476#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700477 return IRQ_HANDLED;
478}
479
480static unsigned int cyc2ns_scale;
481#define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
482
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800483static inline void set_cyc2ns_scale(unsigned long cpu_khz)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700484{
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800485 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700486}
487
488static inline unsigned long long cycles_2_ns(unsigned long long cyc)
489{
490 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
491}
492
493unsigned long long sched_clock(void)
494{
495 unsigned long a = 0;
496
497#if 0
498 /* Don't do a HPET read here. Using TSC always is much faster
499 and HPET may not be mapped yet when the scheduler first runs.
500 Disadvantage is a small drift between CPUs in some configurations,
501 but that should be tolerable. */
502 if (__vxtime.mode == VXTIME_HPET)
503 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> 32;
504#endif
505
506 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
507 which means it is not completely exact and may not be monotonous between
508 CPUs. But the errors should be too small to matter for scheduling
509 purposes. */
510
511 rdtscll(a);
512 return cycles_2_ns(a);
513}
514
Andi Kleenbdf2b1c2006-01-11 22:46:39 +0100515static unsigned long get_cmos_time(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700516{
Jan Beulich5329e13d2006-01-11 22:46:42 +0100517 unsigned int timeout = 1000000, year, mon, day, hour, min, sec;
518 unsigned char uip = 0, this = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700519 unsigned long flags;
520
521/*
522 * The Linux interpretation of the CMOS clock register contents: When the
523 * Update-In-Progress (UIP) flag goes from 1 to 0, the RTC registers show the
524 * second which has precisely just started. Waiting for this can take up to 1
525 * second, we timeout approximately after 2.4 seconds on a machine with
526 * standard 8.3 MHz ISA bus.
527 */
528
529 spin_lock_irqsave(&rtc_lock, flags);
530
Jan Beulich5329e13d2006-01-11 22:46:42 +0100531 while (timeout && (!uip || this)) {
532 uip |= this;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700533 this = CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP;
534 timeout--;
535 }
536
Andi Kleen0b913172006-01-11 22:45:33 +0100537 /*
538 * Here we are safe to assume the registers won't change for a whole
539 * second, so we just go ahead and read them.
540 */
541 sec = CMOS_READ(RTC_SECONDS);
542 min = CMOS_READ(RTC_MINUTES);
543 hour = CMOS_READ(RTC_HOURS);
544 day = CMOS_READ(RTC_DAY_OF_MONTH);
545 mon = CMOS_READ(RTC_MONTH);
546 year = CMOS_READ(RTC_YEAR);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700547
548 spin_unlock_irqrestore(&rtc_lock, flags);
549
Andi Kleen0b913172006-01-11 22:45:33 +0100550 /*
551 * We know that x86-64 always uses BCD format, no need to check the
552 * config register.
553 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700554
Andi Kleen0b913172006-01-11 22:45:33 +0100555 BCD_TO_BIN(sec);
556 BCD_TO_BIN(min);
557 BCD_TO_BIN(hour);
558 BCD_TO_BIN(day);
559 BCD_TO_BIN(mon);
560 BCD_TO_BIN(year);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700561
Andi Kleen0b913172006-01-11 22:45:33 +0100562 /*
563 * x86-64 systems only exists since 2002.
564 * This will work up to Dec 31, 2100
565 */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700566 year += 2000;
567
568 return mktime(year, mon, day, hour, min, sec);
569}
570
571#ifdef CONFIG_CPU_FREQ
572
573/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
574 changes.
575
576 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
577 not that important because current Opteron setups do not support
578 scaling on SMP anyroads.
579
580 Should fix up last_tsc too. Currently gettimeofday in the
581 first tick after the change will be slightly wrong. */
582
583#include <linux/workqueue.h>
584
585static unsigned int cpufreq_delayed_issched = 0;
586static unsigned int cpufreq_init = 0;
587static struct work_struct cpufreq_delayed_get_work;
588
589static void handle_cpufreq_delayed_get(void *v)
590{
591 unsigned int cpu;
592 for_each_online_cpu(cpu) {
593 cpufreq_get(cpu);
594 }
595 cpufreq_delayed_issched = 0;
596}
597
598/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
599 * to verify the CPU frequency the timing core thinks the CPU is running
600 * at is still correct.
601 */
602static void cpufreq_delayed_get(void)
603{
604 static int warned;
605 if (cpufreq_init && !cpufreq_delayed_issched) {
606 cpufreq_delayed_issched = 1;
607 if (!warned) {
608 warned = 1;
609 printk(KERN_DEBUG "Losing some ticks... checking if CPU frequency changed.\n");
610 }
611 schedule_work(&cpufreq_delayed_get_work);
612 }
613}
614
615static unsigned int ref_freq = 0;
616static unsigned long loops_per_jiffy_ref = 0;
617
618static unsigned long cpu_khz_ref = 0;
619
620static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
621 void *data)
622{
623 struct cpufreq_freqs *freq = data;
624 unsigned long *lpj, dummy;
625
Andi Kleenc29601e2005-04-16 15:25:05 -0700626 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
627 return 0;
628
Linus Torvalds1da177e2005-04-16 15:20:36 -0700629 lpj = &dummy;
630 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
631#ifdef CONFIG_SMP
632 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
633#else
634 lpj = &boot_cpu_data.loops_per_jiffy;
635#endif
636
Linus Torvalds1da177e2005-04-16 15:20:36 -0700637 if (!ref_freq) {
638 ref_freq = freq->old;
639 loops_per_jiffy_ref = *lpj;
640 cpu_khz_ref = cpu_khz;
641 }
642 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
643 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
644 (val == CPUFREQ_RESUMECHANGE)) {
645 *lpj =
646 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
647
648 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
649 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
650 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
651 }
652
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800653 set_cyc2ns_scale(cpu_khz_ref);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700654
655 return 0;
656}
657
658static struct notifier_block time_cpufreq_notifier_block = {
659 .notifier_call = time_cpufreq_notifier
660};
661
662static int __init cpufreq_tsc(void)
663{
664 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
665 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
666 CPUFREQ_TRANSITION_NOTIFIER))
667 cpufreq_init = 1;
668 return 0;
669}
670
671core_initcall(cpufreq_tsc);
672
673#endif
674
675/*
676 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
677 * it to the HPET timer of known frequency.
678 */
679
680#define TICK_COUNT 100000000
681
682static unsigned int __init hpet_calibrate_tsc(void)
683{
684 int tsc_start, hpet_start;
685 int tsc_now, hpet_now;
686 unsigned long flags;
687
688 local_irq_save(flags);
689 local_irq_disable();
690
691 hpet_start = hpet_readl(HPET_COUNTER);
692 rdtscl(tsc_start);
693
694 do {
695 local_irq_disable();
696 hpet_now = hpet_readl(HPET_COUNTER);
Andi Kleenc818a182006-01-11 22:45:24 +0100697 tsc_now = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700698 local_irq_restore(flags);
699 } while ((tsc_now - tsc_start) < TICK_COUNT &&
700 (hpet_now - hpet_start) < TICK_COUNT);
701
702 return (tsc_now - tsc_start) * 1000000000L
703 / ((hpet_now - hpet_start) * hpet_period / 1000);
704}
705
706
707/*
708 * pit_calibrate_tsc() uses the speaker output (channel 2) of
709 * the PIT. This is better than using the timer interrupt output,
710 * because we can read the value of the speaker with just one inb(),
711 * where we need three i/o operations for the interrupt channel.
712 * We count how many ticks the TSC does in 50 ms.
713 */
714
715static unsigned int __init pit_calibrate_tsc(void)
716{
717 unsigned long start, end;
718 unsigned long flags;
719
720 spin_lock_irqsave(&i8253_lock, flags);
721
722 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
723
724 outb(0xb0, 0x43);
725 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
726 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
Andi Kleenc818a182006-01-11 22:45:24 +0100727 start = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700728 while ((inb(0x61) & 0x20) == 0);
Andi Kleenc818a182006-01-11 22:45:24 +0100729 end = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700730
731 spin_unlock_irqrestore(&i8253_lock, flags);
732
733 return (end - start) / 50;
734}
735
736#ifdef CONFIG_HPET
737static __init int late_hpet_init(void)
738{
739 struct hpet_data hd;
740 unsigned int ntimer;
741
742 if (!vxtime.hpet_address)
Andi Kleen0b913172006-01-11 22:45:33 +0100743 return -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700744
745 memset(&hd, 0, sizeof (hd));
746
747 ntimer = hpet_readl(HPET_ID);
748 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
749 ntimer++;
750
751 /*
752 * Register with driver.
753 * Timer0 and Timer1 is used by platform.
754 */
755 hd.hd_phys_address = vxtime.hpet_address;
Al Virodd42b152006-02-01 07:30:33 -0500756 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700757 hd.hd_nirqs = ntimer;
758 hd.hd_flags = HPET_DATA_PLATFORM;
759 hpet_reserve_timer(&hd, 0);
760#ifdef CONFIG_HPET_EMULATE_RTC
761 hpet_reserve_timer(&hd, 1);
762#endif
763 hd.hd_irq[0] = HPET_LEGACY_8254;
764 hd.hd_irq[1] = HPET_LEGACY_RTC;
765 if (ntimer > 2) {
766 struct hpet *hpet;
767 struct hpet_timer *timer;
768 int i;
769
770 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
771
772 for (i = 2, timer = &hpet->hpet_timers[2]; i < ntimer;
773 timer++, i++)
774 hd.hd_irq[i] = (timer->hpet_config &
775 Tn_INT_ROUTE_CNF_MASK) >>
776 Tn_INT_ROUTE_CNF_SHIFT;
777
778 }
779
780 hpet_alloc(&hd);
781 return 0;
782}
783fs_initcall(late_hpet_init);
784#endif
785
786static int hpet_timer_stop_set_go(unsigned long tick)
787{
788 unsigned int cfg;
789
790/*
791 * Stop the timers and reset the main counter.
792 */
793
794 cfg = hpet_readl(HPET_CFG);
795 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
796 hpet_writel(cfg, HPET_CFG);
797 hpet_writel(0, HPET_COUNTER);
798 hpet_writel(0, HPET_COUNTER + 4);
799
800/*
801 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
802 * and period also hpet_tick.
803 */
john stultza3a00752005-06-23 00:08:36 -0700804 if (hpet_use_timer) {
805 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
Linus Torvalds1da177e2005-04-16 15:20:36 -0700806 HPET_TN_32BIT, HPET_T0_CFG);
john stultza3a00752005-06-23 00:08:36 -0700807 hpet_writel(hpet_tick, HPET_T0_CMP);
808 hpet_writel(hpet_tick, HPET_T0_CMP); /* AK: why twice? */
809 cfg |= HPET_CFG_LEGACY;
810 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700811/*
812 * Go!
813 */
814
john stultza3a00752005-06-23 00:08:36 -0700815 cfg |= HPET_CFG_ENABLE;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700816 hpet_writel(cfg, HPET_CFG);
817
818 return 0;
819}
820
821static int hpet_init(void)
822{
823 unsigned int id;
824
825 if (!vxtime.hpet_address)
826 return -1;
827 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
828 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
829
830/*
831 * Read the period, compute tick and quotient.
832 */
833
834 id = hpet_readl(HPET_ID);
835
john stultza3a00752005-06-23 00:08:36 -0700836 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
Linus Torvalds1da177e2005-04-16 15:20:36 -0700837 return -1;
838
839 hpet_period = hpet_readl(HPET_PERIOD);
840 if (hpet_period < 100000 || hpet_period > 100000000)
841 return -1;
842
843 hpet_tick = (1000000000L * (USEC_PER_SEC / HZ) + hpet_period / 2) /
844 hpet_period;
845
john stultza3a00752005-06-23 00:08:36 -0700846 hpet_use_timer = (id & HPET_ID_LEGSUP);
847
Linus Torvalds1da177e2005-04-16 15:20:36 -0700848 return hpet_timer_stop_set_go(hpet_tick);
849}
850
851static int hpet_reenable(void)
852{
853 return hpet_timer_stop_set_go(hpet_tick);
854}
855
Andi Kleen73dea472006-02-03 21:50:50 +0100856#define PIT_MODE 0x43
857#define PIT_CH0 0x40
858
859static void __init __pit_init(int val, u8 mode)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700860{
861 unsigned long flags;
862
863 spin_lock_irqsave(&i8253_lock, flags);
Andi Kleen73dea472006-02-03 21:50:50 +0100864 outb_p(mode, PIT_MODE);
865 outb_p(val & 0xff, PIT_CH0); /* LSB */
866 outb_p(val >> 8, PIT_CH0); /* MSB */
Linus Torvalds1da177e2005-04-16 15:20:36 -0700867 spin_unlock_irqrestore(&i8253_lock, flags);
868}
869
Andi Kleen73dea472006-02-03 21:50:50 +0100870void __init pit_init(void)
871{
872 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
873}
874
875void __init pit_stop_interrupt(void)
876{
877 __pit_init(0, 0x30); /* mode 0 */
878}
879
880void __init stop_timer_interrupt(void)
881{
882 char *name;
883 if (vxtime.hpet_address) {
884 name = "HPET";
885 hpet_timer_stop_set_go(0);
886 } else {
887 name = "PIT";
888 pit_stop_interrupt();
889 }
890 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
891}
892
Linus Torvalds1da177e2005-04-16 15:20:36 -0700893int __init time_setup(char *str)
894{
895 report_lost_ticks = 1;
896 return 1;
897}
898
899static struct irqaction irq0 = {
900 timer_interrupt, SA_INTERRUPT, CPU_MASK_NONE, "timer", NULL, NULL
901};
902
Linus Torvalds1da177e2005-04-16 15:20:36 -0700903void __init time_init(void)
904{
905 char *timename;
Andi Kleene8b91772006-02-26 04:18:49 +0100906 char *gtod;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700907
908#ifdef HPET_HACK_ENABLE_DANGEROUS
909 if (!vxtime.hpet_address) {
910 printk(KERN_WARNING "time.c: WARNING: Enabling HPET base "
911 "manually!\n");
912 outl(0x800038a0, 0xcf8);
913 outl(0xff000001, 0xcfc);
914 outl(0x800038a0, 0xcf8);
915 vxtime.hpet_address = inl(0xcfc) & 0xfffffffe;
916 printk(KERN_WARNING "time.c: WARNING: Enabled HPET "
917 "at %#lx.\n", vxtime.hpet_address);
918 }
919#endif
920 if (nohpet)
921 vxtime.hpet_address = 0;
922
923 xtime.tv_sec = get_cmos_time();
924 xtime.tv_nsec = 0;
925
926 set_normalized_timespec(&wall_to_monotonic,
927 -xtime.tv_sec, -xtime.tv_nsec);
928
john stultza3a00752005-06-23 00:08:36 -0700929 if (!hpet_init())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700930 vxtime_hz = (1000000000000000L + hpet_period / 2) /
931 hpet_period;
Andi Kleen68e18892005-12-12 22:17:07 -0800932 else
933 vxtime.hpet_address = 0;
john stultza3a00752005-06-23 00:08:36 -0700934
935 if (hpet_use_timer) {
Linus Torvalds1da177e2005-04-16 15:20:36 -0700936 cpu_khz = hpet_calibrate_tsc();
937 timename = "HPET";
Andi Kleen312df5f2005-05-16 21:53:28 -0700938#ifdef CONFIG_X86_PM_TIMER
john stultzfd495472005-12-12 22:17:13 -0800939 } else if (pmtmr_ioport && !vxtime.hpet_address) {
Andi Kleen312df5f2005-05-16 21:53:28 -0700940 vxtime_hz = PM_TIMER_FREQUENCY;
941 timename = "PM";
942 pit_init();
943 cpu_khz = pit_calibrate_tsc();
944#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -0700945 } else {
946 pit_init();
947 cpu_khz = pit_calibrate_tsc();
948 timename = "PIT";
949 }
950
Andi Kleene8b91772006-02-26 04:18:49 +0100951 vxtime.mode = VXTIME_TSC;
952 gtod = time_init_gtod();
953
954 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
955 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, gtod);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700956 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
957 cpu_khz / 1000, cpu_khz % 1000);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700958 vxtime.quot = (1000000L << 32) / vxtime_hz;
959 vxtime.tsc_quot = (1000L << 32) / cpu_khz;
Andi Kleenc818a182006-01-11 22:45:24 +0100960 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -0700961 setup_irq(0, &irq0);
962
Mathieu Desnoyersdacb16b2005-10-30 14:59:25 -0800963 set_cyc2ns_scale(cpu_khz);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700964}
965
Andi Kleena8ab26f2005-04-16 15:25:19 -0700966/*
Andi Kleen312df5f2005-05-16 21:53:28 -0700967 * Make an educated guess if the TSC is trustworthy and synchronized
968 * over all CPUs.
969 */
Shaohua Li396bd502006-02-03 21:51:20 +0100970__cpuinit int unsynchronized_tsc(void)
Andi Kleen312df5f2005-05-16 21:53:28 -0700971{
972#ifdef CONFIG_SMP
973 if (oem_force_hpet_timer())
974 return 1;
975 /* Intel systems are normally all synchronized. Exceptions
976 are handled in the OEM check above. */
977 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
978 return 0;
Andi Kleen312df5f2005-05-16 21:53:28 -0700979#endif
980 /* Assume multi socket systems are not synchronized */
Andi Kleen737c5c32006-01-11 22:45:15 +0100981 return num_present_cpus() > 1;
Andi Kleen312df5f2005-05-16 21:53:28 -0700982}
983
984/*
Andi Kleene8b91772006-02-26 04:18:49 +0100985 * Decide what mode gettimeofday should use.
Andi Kleena8ab26f2005-04-16 15:25:19 -0700986 */
Andi Kleene8b91772006-02-26 04:18:49 +0100987__init static char *time_init_gtod(void)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700988{
989 char *timetype;
990
Andi Kleen312df5f2005-05-16 21:53:28 -0700991 if (unsynchronized_tsc())
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992 notsc = 1;
993 if (vxtime.hpet_address && notsc) {
john stultza3a00752005-06-23 00:08:36 -0700994 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
Chris McDermott33042a92006-02-11 17:55:50 -0800995 if (hpet_use_timer)
996 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
997 else
998 vxtime.last = hpet_readl(HPET_COUNTER);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700999 vxtime.mode = VXTIME_HPET;
1000 do_gettimeoffset = do_gettimeoffset_hpet;
Andi Kleen312df5f2005-05-16 21:53:28 -07001001#ifdef CONFIG_X86_PM_TIMER
1002 /* Using PM for gettimeofday is quite slow, but we have no other
1003 choice because the TSC is too unreliable on some systems. */
1004 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
1005 timetype = "PM";
1006 do_gettimeoffset = do_gettimeoffset_pm;
1007 vxtime.mode = VXTIME_PMTMR;
1008 sysctl_vsyscall = 0;
1009 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
1010#endif
Linus Torvalds1da177e2005-04-16 15:20:36 -07001011 } else {
john stultza3a00752005-06-23 00:08:36 -07001012 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
Linus Torvalds1da177e2005-04-16 15:20:36 -07001013 vxtime.mode = VXTIME_TSC;
1014 }
Andi Kleene8b91772006-02-26 04:18:49 +01001015 return timetype;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001016}
1017
1018__setup("report_lost_ticks", time_setup);
1019
1020static long clock_cmos_diff;
1021static unsigned long sleep_start;
1022
Andi Kleen0b913172006-01-11 22:45:33 +01001023/*
1024 * sysfs support for the timer.
1025 */
1026
Pavel Machek0b9c33a2005-04-16 15:25:31 -07001027static int timer_suspend(struct sys_device *dev, pm_message_t state)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001028{
1029 /*
1030 * Estimate time zone so that set_time can update the clock
1031 */
1032 long cmos_time = get_cmos_time();
1033
1034 clock_cmos_diff = -cmos_time;
1035 clock_cmos_diff += get_seconds();
1036 sleep_start = cmos_time;
1037 return 0;
1038}
1039
1040static int timer_resume(struct sys_device *dev)
1041{
1042 unsigned long flags;
1043 unsigned long sec;
1044 unsigned long ctime = get_cmos_time();
1045 unsigned long sleep_length = (ctime - sleep_start) * HZ;
1046
1047 if (vxtime.hpet_address)
1048 hpet_reenable();
1049 else
1050 i8254_timer_resume();
1051
1052 sec = ctime + clock_cmos_diff;
1053 write_seqlock_irqsave(&xtime_lock,flags);
1054 xtime.tv_sec = sec;
1055 xtime.tv_nsec = 0;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001056 if (vxtime.mode == VXTIME_HPET) {
1057 if (hpet_use_timer)
1058 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1059 else
1060 vxtime.last = hpet_readl(HPET_COUNTER);
1061#ifdef CONFIG_X86_PM_TIMER
1062 } else if (vxtime.mode == VXTIME_PMTMR) {
1063 pmtimer_resume();
1064#endif
1065 } else
1066 vxtime.last_tsc = get_cycles_sync();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067 write_sequnlock_irqrestore(&xtime_lock,flags);
1068 jiffies += sleep_length;
1069 wall_jiffies += sleep_length;
Shaohua Li0dd2ea92006-02-03 21:50:56 +01001070 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
Ingo Molnar8446f1d2005-09-06 15:16:27 -07001071 touch_softlockup_watchdog();
Linus Torvalds1da177e2005-04-16 15:20:36 -07001072 return 0;
1073}
1074
1075static struct sysdev_class timer_sysclass = {
1076 .resume = timer_resume,
1077 .suspend = timer_suspend,
1078 set_kset_name("timer"),
1079};
1080
Linus Torvalds1da177e2005-04-16 15:20:36 -07001081/* XXX this driverfs stuff should probably go elsewhere later -john */
1082static struct sys_device device_timer = {
1083 .id = 0,
1084 .cls = &timer_sysclass,
1085};
1086
1087static int time_init_device(void)
1088{
1089 int error = sysdev_class_register(&timer_sysclass);
1090 if (!error)
1091 error = sysdev_register(&device_timer);
1092 return error;
1093}
1094
1095device_initcall(time_init_device);
1096
1097#ifdef CONFIG_HPET_EMULATE_RTC
1098/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1099 * is enabled, we support RTC interrupt functionality in software.
1100 * RTC has 3 kinds of interrupts:
1101 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1102 * is updated
1103 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1104 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1105 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1106 * (1) and (2) above are implemented using polling at a frequency of
1107 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1108 * overhead. (DEFAULT_RTC_INT_FREQ)
1109 * For (3), we use interrupts at 64Hz or user specified periodic
1110 * frequency, whichever is higher.
1111 */
1112#include <linux/rtc.h>
1113
Linus Torvalds1da177e2005-04-16 15:20:36 -07001114#define DEFAULT_RTC_INT_FREQ 64
1115#define RTC_NUM_INTS 1
1116
1117static unsigned long UIE_on;
1118static unsigned long prev_update_sec;
1119
1120static unsigned long AIE_on;
1121static struct rtc_time alarm_time;
1122
1123static unsigned long PIE_on;
1124static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1125static unsigned long PIE_count;
1126
1127static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001128static unsigned int hpet_t1_cmp; /* cached comparator register */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001129
1130int is_hpet_enabled(void)
1131{
1132 return vxtime.hpet_address != 0;
1133}
1134
1135/*
1136 * Timer 1 for RTC, we do not use periodic interrupt feature,
1137 * even if HPET supports periodic interrupts on Timer 1.
1138 * The reason being, to set up a periodic interrupt in HPET, we need to
1139 * stop the main counter. And if we do that everytime someone diables/enables
1140 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1141 * So, for the time being, simulate the periodic interrupt in software.
1142 *
1143 * hpet_rtc_timer_init() is called for the first time and during subsequent
1144 * interuppts reinit happens through hpet_rtc_timer_reinit().
1145 */
1146int hpet_rtc_timer_init(void)
1147{
1148 unsigned int cfg, cnt;
1149 unsigned long flags;
1150
1151 if (!is_hpet_enabled())
1152 return 0;
1153 /*
1154 * Set the counter 1 and enable the interrupts.
1155 */
1156 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1157 hpet_rtc_int_freq = PIE_freq;
1158 else
1159 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1160
1161 local_irq_save(flags);
1162 cnt = hpet_readl(HPET_COUNTER);
1163 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1164 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001165 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001166 local_irq_restore(flags);
1167
1168 cfg = hpet_readl(HPET_T1_CFG);
Clemens Ladisch5f819942005-10-30 15:03:36 -08001169 cfg &= ~HPET_TN_PERIODIC;
1170 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001171 hpet_writel(cfg, HPET_T1_CFG);
1172
1173 return 1;
1174}
1175
1176static void hpet_rtc_timer_reinit(void)
1177{
1178 unsigned int cfg, cnt;
1179
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001180 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1181 cfg = hpet_readl(HPET_T1_CFG);
1182 cfg &= ~HPET_TN_ENABLE;
1183 hpet_writel(cfg, HPET_T1_CFG);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001184 return;
Clemens Ladischf00c96f2005-10-30 15:03:35 -08001185 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001186
1187 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1188 hpet_rtc_int_freq = PIE_freq;
1189 else
1190 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1191
1192 /* It is more accurate to use the comparator value than current count.*/
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001193 cnt = hpet_t1_cmp;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001194 cnt += hpet_tick*HZ/hpet_rtc_int_freq;
1195 hpet_writel(cnt, HPET_T1_CMP);
Clemens Ladisch7811fb82005-10-30 15:03:36 -08001196 hpet_t1_cmp = cnt;
Linus Torvalds1da177e2005-04-16 15:20:36 -07001197}
1198
1199/*
1200 * The functions below are called from rtc driver.
1201 * Return 0 if HPET is not being used.
1202 * Otherwise do the necessary changes and return 1.
1203 */
1204int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1205{
1206 if (!is_hpet_enabled())
1207 return 0;
1208
1209 if (bit_mask & RTC_UIE)
1210 UIE_on = 0;
1211 if (bit_mask & RTC_PIE)
1212 PIE_on = 0;
1213 if (bit_mask & RTC_AIE)
1214 AIE_on = 0;
1215
1216 return 1;
1217}
1218
1219int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1220{
1221 int timer_init_reqd = 0;
1222
1223 if (!is_hpet_enabled())
1224 return 0;
1225
1226 if (!(PIE_on | AIE_on | UIE_on))
1227 timer_init_reqd = 1;
1228
1229 if (bit_mask & RTC_UIE) {
1230 UIE_on = 1;
1231 }
1232 if (bit_mask & RTC_PIE) {
1233 PIE_on = 1;
1234 PIE_count = 0;
1235 }
1236 if (bit_mask & RTC_AIE) {
1237 AIE_on = 1;
1238 }
1239
1240 if (timer_init_reqd)
1241 hpet_rtc_timer_init();
1242
1243 return 1;
1244}
1245
1246int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1247{
1248 if (!is_hpet_enabled())
1249 return 0;
1250
1251 alarm_time.tm_hour = hrs;
1252 alarm_time.tm_min = min;
1253 alarm_time.tm_sec = sec;
1254
1255 return 1;
1256}
1257
1258int hpet_set_periodic_freq(unsigned long freq)
1259{
1260 if (!is_hpet_enabled())
1261 return 0;
1262
1263 PIE_freq = freq;
1264 PIE_count = 0;
1265
1266 return 1;
1267}
1268
1269int hpet_rtc_dropped_irq(void)
1270{
1271 if (!is_hpet_enabled())
1272 return 0;
1273
1274 return 1;
1275}
1276
1277irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1278{
1279 struct rtc_time curr_time;
1280 unsigned long rtc_int_flag = 0;
1281 int call_rtc_interrupt = 0;
1282
1283 hpet_rtc_timer_reinit();
1284
1285 if (UIE_on | AIE_on) {
1286 rtc_get_rtc_time(&curr_time);
1287 }
1288 if (UIE_on) {
1289 if (curr_time.tm_sec != prev_update_sec) {
1290 /* Set update int info, call real rtc int routine */
1291 call_rtc_interrupt = 1;
1292 rtc_int_flag = RTC_UF;
1293 prev_update_sec = curr_time.tm_sec;
1294 }
1295 }
1296 if (PIE_on) {
1297 PIE_count++;
1298 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1299 /* Set periodic int info, call real rtc int routine */
1300 call_rtc_interrupt = 1;
1301 rtc_int_flag |= RTC_PF;
1302 PIE_count = 0;
1303 }
1304 }
1305 if (AIE_on) {
1306 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1307 (curr_time.tm_min == alarm_time.tm_min) &&
1308 (curr_time.tm_hour == alarm_time.tm_hour)) {
1309 /* Set alarm int info, call real rtc int routine */
1310 call_rtc_interrupt = 1;
1311 rtc_int_flag |= RTC_AF;
1312 }
1313 }
1314 if (call_rtc_interrupt) {
1315 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1316 rtc_interrupt(rtc_int_flag, dev_id, regs);
1317 }
1318 return IRQ_HANDLED;
1319}
1320#endif
1321
Linus Torvalds1da177e2005-04-16 15:20:36 -07001322static int __init nohpet_setup(char *s)
1323{
1324 nohpet = 1;
1325 return 0;
1326}
1327
1328__setup("nohpet", nohpet_setup);
1329
Andi Kleen7fd67842006-02-16 23:42:07 +01001330int __init notsc_setup(char *s)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001331{
1332 notsc = 1;
1333 return 0;
1334}
1335
1336__setup("notsc", notsc_setup);