| Dmitry Kasatkin | cdec9cb | 2011-08-31 14:05:16 +0300 | [diff] [blame] | 1 | /* mpihelp-mul.c  -  MPI helper functions | 
 | 2 |  * Copyright (C) 1994, 1996, 1998, 1999, | 
 | 3 |  *               2000 Free Software Foundation, Inc. | 
 | 4 |  * | 
 | 5 |  * This file is part of GnuPG. | 
 | 6 |  * | 
 | 7 |  * GnuPG is free software; you can redistribute it and/or modify | 
 | 8 |  * it under the terms of the GNU General Public License as published by | 
 | 9 |  * the Free Software Foundation; either version 2 of the License, or | 
 | 10 |  * (at your option) any later version. | 
 | 11 |  * | 
 | 12 |  * GnuPG is distributed in the hope that it will be useful, | 
 | 13 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 14 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 15 |  * GNU General Public License for more details. | 
 | 16 |  * | 
 | 17 |  * You should have received a copy of the GNU General Public License | 
 | 18 |  * along with this program; if not, write to the Free Software | 
 | 19 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA | 
 | 20 |  * | 
 | 21 |  * Note: This code is heavily based on the GNU MP Library. | 
 | 22 |  *	 Actually it's the same code with only minor changes in the | 
 | 23 |  *	 way the data is stored; this is to support the abstraction | 
 | 24 |  *	 of an optional secure memory allocation which may be used | 
 | 25 |  *	 to avoid revealing of sensitive data due to paging etc. | 
 | 26 |  *	 The GNU MP Library itself is published under the LGPL; | 
 | 27 |  *	 however I decided to publish this code under the plain GPL. | 
 | 28 |  */ | 
 | 29 |  | 
 | 30 | #include <linux/string.h> | 
 | 31 | #include "mpi-internal.h" | 
 | 32 | #include "longlong.h" | 
 | 33 |  | 
 | 34 | #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\ | 
 | 35 | 	do {							\ | 
 | 36 | 		if ((size) < KARATSUBA_THRESHOLD)		\ | 
 | 37 | 			mul_n_basecase(prodp, up, vp, size);	\ | 
 | 38 | 		else						\ | 
 | 39 | 			mul_n(prodp, up, vp, size, tspace);	\ | 
 | 40 | 	} while (0); | 
 | 41 |  | 
 | 42 | #define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\ | 
 | 43 | 	do {							\ | 
 | 44 | 		if ((size) < KARATSUBA_THRESHOLD)		\ | 
 | 45 | 			mpih_sqr_n_basecase(prodp, up, size);	\ | 
 | 46 | 		else						\ | 
 | 47 | 			mpih_sqr_n(prodp, up, size, tspace);	\ | 
 | 48 | 	} while (0); | 
 | 49 |  | 
 | 50 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), | 
 | 51 |  * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are | 
 | 52 |  * always stored.  Return the most significant limb. | 
 | 53 |  * | 
 | 54 |  * Argument constraints: | 
 | 55 |  * 1. PRODP != UP and PRODP != VP, i.e. the destination | 
 | 56 |  *    must be distinct from the multiplier and the multiplicand. | 
 | 57 |  * | 
 | 58 |  * | 
 | 59 |  * Handle simple cases with traditional multiplication. | 
 | 60 |  * | 
 | 61 |  * This is the most critical code of multiplication.  All multiplies rely | 
 | 62 |  * on this, both small and huge.  Small ones arrive here immediately.  Huge | 
 | 63 |  * ones arrive here as this is the base case for Karatsuba's recursive | 
 | 64 |  * algorithm below. | 
 | 65 |  */ | 
 | 66 |  | 
 | 67 | static mpi_limb_t | 
 | 68 | mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) | 
 | 69 | { | 
 | 70 | 	mpi_size_t i; | 
 | 71 | 	mpi_limb_t cy; | 
 | 72 | 	mpi_limb_t v_limb; | 
 | 73 |  | 
 | 74 | 	/* Multiply by the first limb in V separately, as the result can be | 
 | 75 | 	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
 | 76 | 	v_limb = vp[0]; | 
 | 77 | 	if (v_limb <= 1) { | 
 | 78 | 		if (v_limb == 1) | 
 | 79 | 			MPN_COPY(prodp, up, size); | 
 | 80 | 		else | 
 | 81 | 			MPN_ZERO(prodp, size); | 
 | 82 | 		cy = 0; | 
 | 83 | 	} else | 
 | 84 | 		cy = mpihelp_mul_1(prodp, up, size, v_limb); | 
 | 85 |  | 
 | 86 | 	prodp[size] = cy; | 
 | 87 | 	prodp++; | 
 | 88 |  | 
 | 89 | 	/* For each iteration in the outer loop, multiply one limb from | 
 | 90 | 	 * U with one limb from V, and add it to PROD.  */ | 
 | 91 | 	for (i = 1; i < size; i++) { | 
 | 92 | 		v_limb = vp[i]; | 
 | 93 | 		if (v_limb <= 1) { | 
 | 94 | 			cy = 0; | 
 | 95 | 			if (v_limb == 1) | 
 | 96 | 				cy = mpihelp_add_n(prodp, prodp, up, size); | 
 | 97 | 		} else | 
 | 98 | 			cy = mpihelp_addmul_1(prodp, up, size, v_limb); | 
 | 99 |  | 
 | 100 | 		prodp[size] = cy; | 
 | 101 | 		prodp++; | 
 | 102 | 	} | 
 | 103 |  | 
 | 104 | 	return cy; | 
 | 105 | } | 
 | 106 |  | 
 | 107 | static void | 
 | 108 | mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, | 
 | 109 | 		mpi_size_t size, mpi_ptr_t tspace) | 
 | 110 | { | 
 | 111 | 	if (size & 1) { | 
 | 112 | 		/* The size is odd, and the code below doesn't handle that. | 
 | 113 | 		 * Multiply the least significant (size - 1) limbs with a recursive | 
 | 114 | 		 * call, and handle the most significant limb of S1 and S2 | 
 | 115 | 		 * separately. | 
 | 116 | 		 * A slightly faster way to do this would be to make the Karatsuba | 
 | 117 | 		 * code below behave as if the size were even, and let it check for | 
 | 118 | 		 * odd size in the end.  I.e., in essence move this code to the end. | 
 | 119 | 		 * Doing so would save us a recursive call, and potentially make the | 
 | 120 | 		 * stack grow a lot less. | 
 | 121 | 		 */ | 
 | 122 | 		mpi_size_t esize = size - 1;	/* even size */ | 
 | 123 | 		mpi_limb_t cy_limb; | 
 | 124 |  | 
 | 125 | 		MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace); | 
 | 126 | 		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]); | 
 | 127 | 		prodp[esize + esize] = cy_limb; | 
 | 128 | 		cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]); | 
 | 129 | 		prodp[esize + size] = cy_limb; | 
 | 130 | 	} else { | 
 | 131 | 		/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. | 
 | 132 | 		 * | 
 | 133 | 		 * Split U in two pieces, U1 and U0, such that | 
 | 134 | 		 * U = U0 + U1*(B**n), | 
 | 135 | 		 * and V in V1 and V0, such that | 
 | 136 | 		 * V = V0 + V1*(B**n). | 
 | 137 | 		 * | 
 | 138 | 		 * UV is then computed recursively using the identity | 
 | 139 | 		 * | 
 | 140 | 		 *        2n   n          n                     n | 
 | 141 | 		 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V | 
 | 142 | 		 *                1 1        1  0   0  1              0 0 | 
 | 143 | 		 * | 
 | 144 | 		 * Where B = 2**BITS_PER_MP_LIMB. | 
 | 145 | 		 */ | 
 | 146 | 		mpi_size_t hsize = size >> 1; | 
 | 147 | 		mpi_limb_t cy; | 
 | 148 | 		int negflg; | 
 | 149 |  | 
 | 150 | 		/* Product H.      ________________  ________________ | 
 | 151 | 		 *                |_____U1 x V1____||____U0 x V0_____| | 
 | 152 | 		 * Put result in upper part of PROD and pass low part of TSPACE | 
 | 153 | 		 * as new TSPACE. | 
 | 154 | 		 */ | 
 | 155 | 		MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, | 
 | 156 | 				  tspace); | 
 | 157 |  | 
 | 158 | 		/* Product M.      ________________ | 
 | 159 | 		 *                |_(U1-U0)(V0-V1)_| | 
 | 160 | 		 */ | 
 | 161 | 		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) { | 
 | 162 | 			mpihelp_sub_n(prodp, up + hsize, up, hsize); | 
 | 163 | 			negflg = 0; | 
 | 164 | 		} else { | 
 | 165 | 			mpihelp_sub_n(prodp, up, up + hsize, hsize); | 
 | 166 | 			negflg = 1; | 
 | 167 | 		} | 
 | 168 | 		if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) { | 
 | 169 | 			mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize); | 
 | 170 | 			negflg ^= 1; | 
 | 171 | 		} else { | 
 | 172 | 			mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize); | 
 | 173 | 			/* No change of NEGFLG.  */ | 
 | 174 | 		} | 
 | 175 | 		/* Read temporary operands from low part of PROD. | 
 | 176 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 177 | 		 * as new TSPACE. | 
 | 178 | 		 */ | 
 | 179 | 		MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, | 
 | 180 | 				  tspace + size); | 
 | 181 |  | 
 | 182 | 		/* Add/copy product H. */ | 
 | 183 | 		MPN_COPY(prodp + hsize, prodp + size, hsize); | 
 | 184 | 		cy = mpihelp_add_n(prodp + size, prodp + size, | 
 | 185 | 				   prodp + size + hsize, hsize); | 
 | 186 |  | 
 | 187 | 		/* Add product M (if NEGFLG M is a negative number) */ | 
 | 188 | 		if (negflg) | 
 | 189 | 			cy -= | 
 | 190 | 			    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, | 
 | 191 | 					  size); | 
 | 192 | 		else | 
 | 193 | 			cy += | 
 | 194 | 			    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, | 
 | 195 | 					  size); | 
 | 196 |  | 
 | 197 | 		/* Product L.      ________________  ________________ | 
 | 198 | 		 *                |________________||____U0 x V0_____| | 
 | 199 | 		 * Read temporary operands from low part of PROD. | 
 | 200 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 201 | 		 * as new TSPACE. | 
 | 202 | 		 */ | 
 | 203 | 		MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); | 
 | 204 |  | 
 | 205 | 		/* Add/copy Product L (twice) */ | 
 | 206 |  | 
 | 207 | 		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); | 
 | 208 | 		if (cy) | 
 | 209 | 			mpihelp_add_1(prodp + hsize + size, | 
 | 210 | 				      prodp + hsize + size, hsize, cy); | 
 | 211 |  | 
 | 212 | 		MPN_COPY(prodp, tspace, hsize); | 
 | 213 | 		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, | 
 | 214 | 				   hsize); | 
 | 215 | 		if (cy) | 
 | 216 | 			mpihelp_add_1(prodp + size, prodp + size, size, 1); | 
 | 217 | 	} | 
 | 218 | } | 
 | 219 |  | 
 | 220 | void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size) | 
 | 221 | { | 
 | 222 | 	mpi_size_t i; | 
 | 223 | 	mpi_limb_t cy_limb; | 
 | 224 | 	mpi_limb_t v_limb; | 
 | 225 |  | 
 | 226 | 	/* Multiply by the first limb in V separately, as the result can be | 
 | 227 | 	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
 | 228 | 	v_limb = up[0]; | 
 | 229 | 	if (v_limb <= 1) { | 
 | 230 | 		if (v_limb == 1) | 
 | 231 | 			MPN_COPY(prodp, up, size); | 
 | 232 | 		else | 
 | 233 | 			MPN_ZERO(prodp, size); | 
 | 234 | 		cy_limb = 0; | 
 | 235 | 	} else | 
 | 236 | 		cy_limb = mpihelp_mul_1(prodp, up, size, v_limb); | 
 | 237 |  | 
 | 238 | 	prodp[size] = cy_limb; | 
 | 239 | 	prodp++; | 
 | 240 |  | 
 | 241 | 	/* For each iteration in the outer loop, multiply one limb from | 
 | 242 | 	 * U with one limb from V, and add it to PROD.  */ | 
 | 243 | 	for (i = 1; i < size; i++) { | 
 | 244 | 		v_limb = up[i]; | 
 | 245 | 		if (v_limb <= 1) { | 
 | 246 | 			cy_limb = 0; | 
 | 247 | 			if (v_limb == 1) | 
 | 248 | 				cy_limb = mpihelp_add_n(prodp, prodp, up, size); | 
 | 249 | 		} else | 
 | 250 | 			cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); | 
 | 251 |  | 
 | 252 | 		prodp[size] = cy_limb; | 
 | 253 | 		prodp++; | 
 | 254 | 	} | 
 | 255 | } | 
 | 256 |  | 
 | 257 | void | 
 | 258 | mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) | 
 | 259 | { | 
 | 260 | 	if (size & 1) { | 
 | 261 | 		/* The size is odd, and the code below doesn't handle that. | 
 | 262 | 		 * Multiply the least significant (size - 1) limbs with a recursive | 
 | 263 | 		 * call, and handle the most significant limb of S1 and S2 | 
 | 264 | 		 * separately. | 
 | 265 | 		 * A slightly faster way to do this would be to make the Karatsuba | 
 | 266 | 		 * code below behave as if the size were even, and let it check for | 
 | 267 | 		 * odd size in the end.  I.e., in essence move this code to the end. | 
 | 268 | 		 * Doing so would save us a recursive call, and potentially make the | 
 | 269 | 		 * stack grow a lot less. | 
 | 270 | 		 */ | 
 | 271 | 		mpi_size_t esize = size - 1;	/* even size */ | 
 | 272 | 		mpi_limb_t cy_limb; | 
 | 273 |  | 
 | 274 | 		MPN_SQR_N_RECURSE(prodp, up, esize, tspace); | 
 | 275 | 		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]); | 
 | 276 | 		prodp[esize + esize] = cy_limb; | 
 | 277 | 		cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]); | 
 | 278 |  | 
 | 279 | 		prodp[esize + size] = cy_limb; | 
 | 280 | 	} else { | 
 | 281 | 		mpi_size_t hsize = size >> 1; | 
 | 282 | 		mpi_limb_t cy; | 
 | 283 |  | 
 | 284 | 		/* Product H.      ________________  ________________ | 
 | 285 | 		 *                |_____U1 x U1____||____U0 x U0_____| | 
 | 286 | 		 * Put result in upper part of PROD and pass low part of TSPACE | 
 | 287 | 		 * as new TSPACE. | 
 | 288 | 		 */ | 
 | 289 | 		MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); | 
 | 290 |  | 
 | 291 | 		/* Product M.      ________________ | 
 | 292 | 		 *                |_(U1-U0)(U0-U1)_| | 
 | 293 | 		 */ | 
 | 294 | 		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) | 
 | 295 | 			mpihelp_sub_n(prodp, up + hsize, up, hsize); | 
 | 296 | 		else | 
 | 297 | 			mpihelp_sub_n(prodp, up, up + hsize, hsize); | 
 | 298 |  | 
 | 299 | 		/* Read temporary operands from low part of PROD. | 
 | 300 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 301 | 		 * as new TSPACE.  */ | 
 | 302 | 		MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); | 
 | 303 |  | 
 | 304 | 		/* Add/copy product H  */ | 
 | 305 | 		MPN_COPY(prodp + hsize, prodp + size, hsize); | 
 | 306 | 		cy = mpihelp_add_n(prodp + size, prodp + size, | 
 | 307 | 				   prodp + size + hsize, hsize); | 
 | 308 |  | 
 | 309 | 		/* Add product M (if NEGFLG M is a negative number).  */ | 
 | 310 | 		cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size); | 
 | 311 |  | 
 | 312 | 		/* Product L.      ________________  ________________ | 
 | 313 | 		 *                |________________||____U0 x U0_____| | 
 | 314 | 		 * Read temporary operands from low part of PROD. | 
 | 315 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 316 | 		 * as new TSPACE.  */ | 
 | 317 | 		MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size); | 
 | 318 |  | 
 | 319 | 		/* Add/copy Product L (twice).  */ | 
 | 320 | 		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); | 
 | 321 | 		if (cy) | 
 | 322 | 			mpihelp_add_1(prodp + hsize + size, | 
 | 323 | 				      prodp + hsize + size, hsize, cy); | 
 | 324 |  | 
 | 325 | 		MPN_COPY(prodp, tspace, hsize); | 
 | 326 | 		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, | 
 | 327 | 				   hsize); | 
 | 328 | 		if (cy) | 
 | 329 | 			mpihelp_add_1(prodp + size, prodp + size, size, 1); | 
 | 330 | 	} | 
 | 331 | } | 
 | 332 |  | 
| Dmitry Kasatkin | cdec9cb | 2011-08-31 14:05:16 +0300 | [diff] [blame] | 333 | int | 
 | 334 | mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, | 
 | 335 | 			   mpi_ptr_t up, mpi_size_t usize, | 
 | 336 | 			   mpi_ptr_t vp, mpi_size_t vsize, | 
 | 337 | 			   struct karatsuba_ctx *ctx) | 
 | 338 | { | 
 | 339 | 	mpi_limb_t cy; | 
 | 340 |  | 
 | 341 | 	if (!ctx->tspace || ctx->tspace_size < vsize) { | 
 | 342 | 		if (ctx->tspace) | 
 | 343 | 			mpi_free_limb_space(ctx->tspace); | 
 | 344 | 		ctx->tspace = mpi_alloc_limb_space(2 * vsize); | 
 | 345 | 		if (!ctx->tspace) | 
 | 346 | 			return -ENOMEM; | 
 | 347 | 		ctx->tspace_size = vsize; | 
 | 348 | 	} | 
 | 349 |  | 
 | 350 | 	MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace); | 
 | 351 |  | 
 | 352 | 	prodp += vsize; | 
 | 353 | 	up += vsize; | 
 | 354 | 	usize -= vsize; | 
 | 355 | 	if (usize >= vsize) { | 
 | 356 | 		if (!ctx->tp || ctx->tp_size < vsize) { | 
 | 357 | 			if (ctx->tp) | 
 | 358 | 				mpi_free_limb_space(ctx->tp); | 
 | 359 | 			ctx->tp = mpi_alloc_limb_space(2 * vsize); | 
 | 360 | 			if (!ctx->tp) { | 
 | 361 | 				if (ctx->tspace) | 
 | 362 | 					mpi_free_limb_space(ctx->tspace); | 
 | 363 | 				ctx->tspace = NULL; | 
 | 364 | 				return -ENOMEM; | 
 | 365 | 			} | 
 | 366 | 			ctx->tp_size = vsize; | 
 | 367 | 		} | 
 | 368 |  | 
 | 369 | 		do { | 
 | 370 | 			MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace); | 
 | 371 | 			cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize); | 
 | 372 | 			mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize, | 
 | 373 | 				      cy); | 
 | 374 | 			prodp += vsize; | 
 | 375 | 			up += vsize; | 
 | 376 | 			usize -= vsize; | 
 | 377 | 		} while (usize >= vsize); | 
 | 378 | 	} | 
 | 379 |  | 
 | 380 | 	if (usize) { | 
 | 381 | 		if (usize < KARATSUBA_THRESHOLD) { | 
 | 382 | 			mpi_limb_t tmp; | 
 | 383 | 			if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp) | 
 | 384 | 			    < 0) | 
 | 385 | 				return -ENOMEM; | 
 | 386 | 		} else { | 
 | 387 | 			if (!ctx->next) { | 
 | 388 | 				ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL); | 
 | 389 | 				if (!ctx->next) | 
 | 390 | 					return -ENOMEM; | 
 | 391 | 			} | 
 | 392 | 			if (mpihelp_mul_karatsuba_case(ctx->tspace, | 
 | 393 | 						       vp, vsize, | 
 | 394 | 						       up, usize, | 
 | 395 | 						       ctx->next) < 0) | 
 | 396 | 				return -ENOMEM; | 
 | 397 | 		} | 
 | 398 |  | 
 | 399 | 		cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize); | 
 | 400 | 		mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy); | 
 | 401 | 	} | 
 | 402 |  | 
 | 403 | 	return 0; | 
 | 404 | } | 
 | 405 |  | 
 | 406 | void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx) | 
 | 407 | { | 
 | 408 | 	struct karatsuba_ctx *ctx2; | 
 | 409 |  | 
 | 410 | 	if (ctx->tp) | 
 | 411 | 		mpi_free_limb_space(ctx->tp); | 
 | 412 | 	if (ctx->tspace) | 
 | 413 | 		mpi_free_limb_space(ctx->tspace); | 
 | 414 | 	for (ctx = ctx->next; ctx; ctx = ctx2) { | 
 | 415 | 		ctx2 = ctx->next; | 
 | 416 | 		if (ctx->tp) | 
 | 417 | 			mpi_free_limb_space(ctx->tp); | 
 | 418 | 		if (ctx->tspace) | 
 | 419 | 			mpi_free_limb_space(ctx->tspace); | 
 | 420 | 		kfree(ctx); | 
 | 421 | 	} | 
 | 422 | } | 
 | 423 |  | 
 | 424 | /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) | 
 | 425 |  * and v (pointed to by VP, with VSIZE limbs), and store the result at | 
 | 426 |  * PRODP.  USIZE + VSIZE limbs are always stored, but if the input | 
 | 427 |  * operands are normalized.  Return the most significant limb of the | 
 | 428 |  * result. | 
 | 429 |  * | 
 | 430 |  * NOTE: The space pointed to by PRODP is overwritten before finished | 
 | 431 |  * with U and V, so overlap is an error. | 
 | 432 |  * | 
 | 433 |  * Argument constraints: | 
 | 434 |  * 1. USIZE >= VSIZE. | 
 | 435 |  * 2. PRODP != UP and PRODP != VP, i.e. the destination | 
 | 436 |  *    must be distinct from the multiplier and the multiplicand. | 
 | 437 |  */ | 
 | 438 |  | 
 | 439 | int | 
 | 440 | mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, | 
 | 441 | 	    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result) | 
 | 442 | { | 
 | 443 | 	mpi_ptr_t prod_endp = prodp + usize + vsize - 1; | 
 | 444 | 	mpi_limb_t cy; | 
 | 445 | 	struct karatsuba_ctx ctx; | 
 | 446 |  | 
 | 447 | 	if (vsize < KARATSUBA_THRESHOLD) { | 
 | 448 | 		mpi_size_t i; | 
 | 449 | 		mpi_limb_t v_limb; | 
 | 450 |  | 
 | 451 | 		if (!vsize) { | 
 | 452 | 			*_result = 0; | 
 | 453 | 			return 0; | 
 | 454 | 		} | 
 | 455 |  | 
 | 456 | 		/* Multiply by the first limb in V separately, as the result can be | 
 | 457 | 		 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
 | 458 | 		v_limb = vp[0]; | 
 | 459 | 		if (v_limb <= 1) { | 
 | 460 | 			if (v_limb == 1) | 
 | 461 | 				MPN_COPY(prodp, up, usize); | 
 | 462 | 			else | 
 | 463 | 				MPN_ZERO(prodp, usize); | 
 | 464 | 			cy = 0; | 
 | 465 | 		} else | 
 | 466 | 			cy = mpihelp_mul_1(prodp, up, usize, v_limb); | 
 | 467 |  | 
 | 468 | 		prodp[usize] = cy; | 
 | 469 | 		prodp++; | 
 | 470 |  | 
 | 471 | 		/* For each iteration in the outer loop, multiply one limb from | 
 | 472 | 		 * U with one limb from V, and add it to PROD.  */ | 
 | 473 | 		for (i = 1; i < vsize; i++) { | 
 | 474 | 			v_limb = vp[i]; | 
 | 475 | 			if (v_limb <= 1) { | 
 | 476 | 				cy = 0; | 
 | 477 | 				if (v_limb == 1) | 
 | 478 | 					cy = mpihelp_add_n(prodp, prodp, up, | 
 | 479 | 							   usize); | 
 | 480 | 			} else | 
 | 481 | 				cy = mpihelp_addmul_1(prodp, up, usize, v_limb); | 
 | 482 |  | 
 | 483 | 			prodp[usize] = cy; | 
 | 484 | 			prodp++; | 
 | 485 | 		} | 
 | 486 |  | 
 | 487 | 		*_result = cy; | 
 | 488 | 		return 0; | 
 | 489 | 	} | 
 | 490 |  | 
 | 491 | 	memset(&ctx, 0, sizeof ctx); | 
 | 492 | 	if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0) | 
 | 493 | 		return -ENOMEM; | 
 | 494 | 	mpihelp_release_karatsuba_ctx(&ctx); | 
 | 495 | 	*_result = *prod_endp; | 
 | 496 | 	return 0; | 
 | 497 | } |