Mike Frysinger | 7db7917 | 2011-05-06 11:47:52 -0400 | [diff] [blame] | 1 | /* |
| 2 | * Blackfin performance counters |
| 3 | * |
| 4 | * Copyright 2011 Analog Devices Inc. |
| 5 | * |
| 6 | * Ripped from SuperH version: |
| 7 | * |
| 8 | * Copyright (C) 2009 Paul Mundt |
| 9 | * |
| 10 | * Heavily based on the x86 and PowerPC implementations. |
| 11 | * |
| 12 | * x86: |
| 13 | * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de> |
| 14 | * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar |
| 15 | * Copyright (C) 2009 Jaswinder Singh Rajput |
| 16 | * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter |
| 17 | * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> |
| 18 | * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com> |
| 19 | * |
| 20 | * ppc: |
| 21 | * Copyright 2008-2009 Paul Mackerras, IBM Corporation. |
| 22 | * |
| 23 | * Licensed under the GPL-2 or later. |
| 24 | */ |
| 25 | |
| 26 | #include <linux/kernel.h> |
Paul Gortmaker | 8dc7a9c | 2011-08-09 11:05:22 -0400 | [diff] [blame] | 27 | #include <linux/export.h> |
Mike Frysinger | 7db7917 | 2011-05-06 11:47:52 -0400 | [diff] [blame] | 28 | #include <linux/init.h> |
| 29 | #include <linux/perf_event.h> |
| 30 | #include <asm/bfin_pfmon.h> |
| 31 | |
| 32 | /* |
| 33 | * We have two counters, and each counter can support an event type. |
| 34 | * The 'o' is PFCNTx=1 and 's' is PFCNTx=0 |
| 35 | * |
| 36 | * 0x04 o pc invariant branches |
| 37 | * 0x06 o mispredicted branches |
| 38 | * 0x09 o predicted branches taken |
| 39 | * 0x0B o EXCPT insn |
| 40 | * 0x0C o CSYNC/SSYNC insn |
| 41 | * 0x0D o Insns committed |
| 42 | * 0x0E o Interrupts taken |
| 43 | * 0x0F o Misaligned address exceptions |
| 44 | * 0x80 o Code memory fetches stalled due to DMA |
| 45 | * 0x83 o 64bit insn fetches delivered |
| 46 | * 0x9A o data cache fills (bank a) |
| 47 | * 0x9B o data cache fills (bank b) |
| 48 | * 0x9C o data cache lines evicted (bank a) |
| 49 | * 0x9D o data cache lines evicted (bank b) |
| 50 | * 0x9E o data cache high priority fills |
| 51 | * 0x9F o data cache low priority fills |
| 52 | * 0x00 s loop 0 iterations |
| 53 | * 0x01 s loop 1 iterations |
| 54 | * 0x0A s CSYNC/SSYNC stalls |
| 55 | * 0x10 s DAG read/after write hazards |
| 56 | * 0x13 s RAW data hazards |
| 57 | * 0x81 s code TAG stalls |
| 58 | * 0x82 s code fill stalls |
| 59 | * 0x90 s processor to memory stalls |
| 60 | * 0x91 s data memory stalls not hidden by 0x90 |
| 61 | * 0x92 s data store buffer full stalls |
| 62 | * 0x93 s data memory write buffer full stalls due to high->low priority |
| 63 | * 0x95 s data memory fill buffer stalls |
| 64 | * 0x96 s data TAG collision stalls |
| 65 | * 0x97 s data collision stalls |
| 66 | * 0x98 s data stalls |
| 67 | * 0x99 s data stalls sent to processor |
| 68 | */ |
| 69 | |
| 70 | static const int event_map[] = { |
| 71 | /* use CYCLES cpu register */ |
| 72 | [PERF_COUNT_HW_CPU_CYCLES] = -1, |
| 73 | [PERF_COUNT_HW_INSTRUCTIONS] = 0x0D, |
| 74 | [PERF_COUNT_HW_CACHE_REFERENCES] = -1, |
| 75 | [PERF_COUNT_HW_CACHE_MISSES] = 0x83, |
| 76 | [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = 0x09, |
| 77 | [PERF_COUNT_HW_BRANCH_MISSES] = 0x06, |
| 78 | [PERF_COUNT_HW_BUS_CYCLES] = -1, |
| 79 | }; |
| 80 | |
| 81 | #define C(x) PERF_COUNT_HW_CACHE_##x |
| 82 | |
| 83 | static const int cache_events[PERF_COUNT_HW_CACHE_MAX] |
| 84 | [PERF_COUNT_HW_CACHE_OP_MAX] |
| 85 | [PERF_COUNT_HW_CACHE_RESULT_MAX] = |
| 86 | { |
| 87 | [C(L1D)] = { /* Data bank A */ |
| 88 | [C(OP_READ)] = { |
| 89 | [C(RESULT_ACCESS)] = 0, |
| 90 | [C(RESULT_MISS) ] = 0x9A, |
| 91 | }, |
| 92 | [C(OP_WRITE)] = { |
| 93 | [C(RESULT_ACCESS)] = 0, |
| 94 | [C(RESULT_MISS) ] = 0, |
| 95 | }, |
| 96 | [C(OP_PREFETCH)] = { |
| 97 | [C(RESULT_ACCESS)] = 0, |
| 98 | [C(RESULT_MISS) ] = 0, |
| 99 | }, |
| 100 | }, |
| 101 | |
| 102 | [C(L1I)] = { |
| 103 | [C(OP_READ)] = { |
| 104 | [C(RESULT_ACCESS)] = 0, |
| 105 | [C(RESULT_MISS) ] = 0x83, |
| 106 | }, |
| 107 | [C(OP_WRITE)] = { |
| 108 | [C(RESULT_ACCESS)] = -1, |
| 109 | [C(RESULT_MISS) ] = -1, |
| 110 | }, |
| 111 | [C(OP_PREFETCH)] = { |
| 112 | [C(RESULT_ACCESS)] = 0, |
| 113 | [C(RESULT_MISS) ] = 0, |
| 114 | }, |
| 115 | }, |
| 116 | |
| 117 | [C(LL)] = { |
| 118 | [C(OP_READ)] = { |
| 119 | [C(RESULT_ACCESS)] = -1, |
| 120 | [C(RESULT_MISS) ] = -1, |
| 121 | }, |
| 122 | [C(OP_WRITE)] = { |
| 123 | [C(RESULT_ACCESS)] = -1, |
| 124 | [C(RESULT_MISS) ] = -1, |
| 125 | }, |
| 126 | [C(OP_PREFETCH)] = { |
| 127 | [C(RESULT_ACCESS)] = -1, |
| 128 | [C(RESULT_MISS) ] = -1, |
| 129 | }, |
| 130 | }, |
| 131 | |
| 132 | [C(DTLB)] = { |
| 133 | [C(OP_READ)] = { |
| 134 | [C(RESULT_ACCESS)] = -1, |
| 135 | [C(RESULT_MISS) ] = -1, |
| 136 | }, |
| 137 | [C(OP_WRITE)] = { |
| 138 | [C(RESULT_ACCESS)] = -1, |
| 139 | [C(RESULT_MISS) ] = -1, |
| 140 | }, |
| 141 | [C(OP_PREFETCH)] = { |
| 142 | [C(RESULT_ACCESS)] = -1, |
| 143 | [C(RESULT_MISS) ] = -1, |
| 144 | }, |
| 145 | }, |
| 146 | |
| 147 | [C(ITLB)] = { |
| 148 | [C(OP_READ)] = { |
| 149 | [C(RESULT_ACCESS)] = -1, |
| 150 | [C(RESULT_MISS) ] = -1, |
| 151 | }, |
| 152 | [C(OP_WRITE)] = { |
| 153 | [C(RESULT_ACCESS)] = -1, |
| 154 | [C(RESULT_MISS) ] = -1, |
| 155 | }, |
| 156 | [C(OP_PREFETCH)] = { |
| 157 | [C(RESULT_ACCESS)] = -1, |
| 158 | [C(RESULT_MISS) ] = -1, |
| 159 | }, |
| 160 | }, |
| 161 | |
| 162 | [C(BPU)] = { |
| 163 | [C(OP_READ)] = { |
| 164 | [C(RESULT_ACCESS)] = -1, |
| 165 | [C(RESULT_MISS) ] = -1, |
| 166 | }, |
| 167 | [C(OP_WRITE)] = { |
| 168 | [C(RESULT_ACCESS)] = -1, |
| 169 | [C(RESULT_MISS) ] = -1, |
| 170 | }, |
| 171 | [C(OP_PREFETCH)] = { |
| 172 | [C(RESULT_ACCESS)] = -1, |
| 173 | [C(RESULT_MISS) ] = -1, |
| 174 | }, |
| 175 | }, |
| 176 | }; |
| 177 | |
| 178 | const char *perf_pmu_name(void) |
| 179 | { |
| 180 | return "bfin"; |
| 181 | } |
| 182 | EXPORT_SYMBOL(perf_pmu_name); |
| 183 | |
| 184 | int perf_num_counters(void) |
| 185 | { |
| 186 | return ARRAY_SIZE(event_map); |
| 187 | } |
| 188 | EXPORT_SYMBOL(perf_num_counters); |
| 189 | |
| 190 | static u64 bfin_pfmon_read(int idx) |
| 191 | { |
| 192 | return bfin_read32(PFCNTR0 + (idx * 4)); |
| 193 | } |
| 194 | |
| 195 | static void bfin_pfmon_disable(struct hw_perf_event *hwc, int idx) |
| 196 | { |
| 197 | bfin_write_PFCTL(bfin_read_PFCTL() & ~PFCEN(idx, PFCEN_MASK)); |
| 198 | } |
| 199 | |
| 200 | static void bfin_pfmon_enable(struct hw_perf_event *hwc, int idx) |
| 201 | { |
| 202 | u32 val, mask; |
| 203 | |
| 204 | val = PFPWR; |
| 205 | if (idx) { |
| 206 | mask = ~(PFCNT1 | PFMON1 | PFCEN1 | PEMUSW1); |
| 207 | /* The packed config is for event0, so shift it to event1 slots */ |
| 208 | val |= (hwc->config << (PFMON1_P - PFMON0_P)); |
| 209 | val |= (hwc->config & PFCNT0) << (PFCNT1_P - PFCNT0_P); |
| 210 | bfin_write_PFCNTR1(0); |
| 211 | } else { |
| 212 | mask = ~(PFCNT0 | PFMON0 | PFCEN0 | PEMUSW0); |
| 213 | val |= hwc->config; |
| 214 | bfin_write_PFCNTR0(0); |
| 215 | } |
| 216 | |
| 217 | bfin_write_PFCTL((bfin_read_PFCTL() & mask) | val); |
| 218 | } |
| 219 | |
| 220 | static void bfin_pfmon_disable_all(void) |
| 221 | { |
| 222 | bfin_write_PFCTL(bfin_read_PFCTL() & ~PFPWR); |
| 223 | } |
| 224 | |
| 225 | static void bfin_pfmon_enable_all(void) |
| 226 | { |
| 227 | bfin_write_PFCTL(bfin_read_PFCTL() | PFPWR); |
| 228 | } |
| 229 | |
| 230 | struct cpu_hw_events { |
| 231 | struct perf_event *events[MAX_HWEVENTS]; |
| 232 | unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)]; |
| 233 | }; |
| 234 | DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events); |
| 235 | |
| 236 | static int hw_perf_cache_event(int config, int *evp) |
| 237 | { |
| 238 | unsigned long type, op, result; |
| 239 | int ev; |
| 240 | |
| 241 | /* unpack config */ |
| 242 | type = config & 0xff; |
| 243 | op = (config >> 8) & 0xff; |
| 244 | result = (config >> 16) & 0xff; |
| 245 | |
| 246 | if (type >= PERF_COUNT_HW_CACHE_MAX || |
| 247 | op >= PERF_COUNT_HW_CACHE_OP_MAX || |
| 248 | result >= PERF_COUNT_HW_CACHE_RESULT_MAX) |
| 249 | return -EINVAL; |
| 250 | |
| 251 | ev = cache_events[type][op][result]; |
| 252 | if (ev == 0) |
| 253 | return -EOPNOTSUPP; |
| 254 | if (ev == -1) |
| 255 | return -EINVAL; |
| 256 | *evp = ev; |
| 257 | return 0; |
| 258 | } |
| 259 | |
| 260 | static void bfin_perf_event_update(struct perf_event *event, |
| 261 | struct hw_perf_event *hwc, int idx) |
| 262 | { |
| 263 | u64 prev_raw_count, new_raw_count; |
| 264 | s64 delta; |
| 265 | int shift = 0; |
| 266 | |
| 267 | /* |
| 268 | * Depending on the counter configuration, they may or may not |
| 269 | * be chained, in which case the previous counter value can be |
| 270 | * updated underneath us if the lower-half overflows. |
| 271 | * |
| 272 | * Our tactic to handle this is to first atomically read and |
| 273 | * exchange a new raw count - then add that new-prev delta |
| 274 | * count to the generic counter atomically. |
| 275 | * |
| 276 | * As there is no interrupt associated with the overflow events, |
| 277 | * this is the simplest approach for maintaining consistency. |
| 278 | */ |
| 279 | again: |
| 280 | prev_raw_count = local64_read(&hwc->prev_count); |
| 281 | new_raw_count = bfin_pfmon_read(idx); |
| 282 | |
| 283 | if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, |
| 284 | new_raw_count) != prev_raw_count) |
| 285 | goto again; |
| 286 | |
| 287 | /* |
| 288 | * Now we have the new raw value and have updated the prev |
| 289 | * timestamp already. We can now calculate the elapsed delta |
| 290 | * (counter-)time and add that to the generic counter. |
| 291 | * |
| 292 | * Careful, not all hw sign-extends above the physical width |
| 293 | * of the count. |
| 294 | */ |
| 295 | delta = (new_raw_count << shift) - (prev_raw_count << shift); |
| 296 | delta >>= shift; |
| 297 | |
| 298 | local64_add(delta, &event->count); |
| 299 | } |
| 300 | |
| 301 | static void bfin_pmu_stop(struct perf_event *event, int flags) |
| 302 | { |
| 303 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 304 | struct hw_perf_event *hwc = &event->hw; |
| 305 | int idx = hwc->idx; |
| 306 | |
| 307 | if (!(event->hw.state & PERF_HES_STOPPED)) { |
| 308 | bfin_pfmon_disable(hwc, idx); |
| 309 | cpuc->events[idx] = NULL; |
| 310 | event->hw.state |= PERF_HES_STOPPED; |
| 311 | } |
| 312 | |
| 313 | if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) { |
| 314 | bfin_perf_event_update(event, &event->hw, idx); |
| 315 | event->hw.state |= PERF_HES_UPTODATE; |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | static void bfin_pmu_start(struct perf_event *event, int flags) |
| 320 | { |
| 321 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 322 | struct hw_perf_event *hwc = &event->hw; |
| 323 | int idx = hwc->idx; |
| 324 | |
| 325 | if (WARN_ON_ONCE(idx == -1)) |
| 326 | return; |
| 327 | |
| 328 | if (flags & PERF_EF_RELOAD) |
| 329 | WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE)); |
| 330 | |
| 331 | cpuc->events[idx] = event; |
| 332 | event->hw.state = 0; |
| 333 | bfin_pfmon_enable(hwc, idx); |
| 334 | } |
| 335 | |
| 336 | static void bfin_pmu_del(struct perf_event *event, int flags) |
| 337 | { |
| 338 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 339 | |
| 340 | bfin_pmu_stop(event, PERF_EF_UPDATE); |
| 341 | __clear_bit(event->hw.idx, cpuc->used_mask); |
| 342 | |
| 343 | perf_event_update_userpage(event); |
| 344 | } |
| 345 | |
| 346 | static int bfin_pmu_add(struct perf_event *event, int flags) |
| 347 | { |
| 348 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 349 | struct hw_perf_event *hwc = &event->hw; |
| 350 | int idx = hwc->idx; |
| 351 | int ret = -EAGAIN; |
| 352 | |
| 353 | perf_pmu_disable(event->pmu); |
| 354 | |
| 355 | if (__test_and_set_bit(idx, cpuc->used_mask)) { |
| 356 | idx = find_first_zero_bit(cpuc->used_mask, MAX_HWEVENTS); |
| 357 | if (idx == MAX_HWEVENTS) |
| 358 | goto out; |
| 359 | |
| 360 | __set_bit(idx, cpuc->used_mask); |
| 361 | hwc->idx = idx; |
| 362 | } |
| 363 | |
| 364 | bfin_pfmon_disable(hwc, idx); |
| 365 | |
| 366 | event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED; |
| 367 | if (flags & PERF_EF_START) |
| 368 | bfin_pmu_start(event, PERF_EF_RELOAD); |
| 369 | |
| 370 | perf_event_update_userpage(event); |
| 371 | ret = 0; |
| 372 | out: |
| 373 | perf_pmu_enable(event->pmu); |
| 374 | return ret; |
| 375 | } |
| 376 | |
| 377 | static void bfin_pmu_read(struct perf_event *event) |
| 378 | { |
| 379 | bfin_perf_event_update(event, &event->hw, event->hw.idx); |
| 380 | } |
| 381 | |
| 382 | static int bfin_pmu_event_init(struct perf_event *event) |
| 383 | { |
| 384 | struct perf_event_attr *attr = &event->attr; |
| 385 | struct hw_perf_event *hwc = &event->hw; |
| 386 | int config = -1; |
| 387 | int ret; |
| 388 | |
| 389 | if (attr->exclude_hv || attr->exclude_idle) |
| 390 | return -EPERM; |
| 391 | |
| 392 | /* |
| 393 | * All of the on-chip counters are "limited", in that they have |
| 394 | * no interrupts, and are therefore unable to do sampling without |
| 395 | * further work and timer assistance. |
| 396 | */ |
| 397 | if (hwc->sample_period) |
| 398 | return -EINVAL; |
| 399 | |
| 400 | ret = 0; |
| 401 | switch (attr->type) { |
| 402 | case PERF_TYPE_RAW: |
| 403 | config = PFMON(0, attr->config & PFMON_MASK) | |
| 404 | PFCNT(0, !(attr->config & 0x100)); |
| 405 | break; |
| 406 | case PERF_TYPE_HW_CACHE: |
| 407 | ret = hw_perf_cache_event(attr->config, &config); |
| 408 | break; |
| 409 | case PERF_TYPE_HARDWARE: |
| 410 | if (attr->config >= ARRAY_SIZE(event_map)) |
| 411 | return -EINVAL; |
| 412 | |
| 413 | config = event_map[attr->config]; |
| 414 | break; |
| 415 | } |
| 416 | |
| 417 | if (config == -1) |
| 418 | return -EINVAL; |
| 419 | |
| 420 | if (!attr->exclude_kernel) |
| 421 | config |= PFCEN(0, PFCEN_ENABLE_SUPV); |
| 422 | if (!attr->exclude_user) |
| 423 | config |= PFCEN(0, PFCEN_ENABLE_USER); |
| 424 | |
| 425 | hwc->config |= config; |
| 426 | |
| 427 | return ret; |
| 428 | } |
| 429 | |
| 430 | static void bfin_pmu_enable(struct pmu *pmu) |
| 431 | { |
| 432 | struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events); |
| 433 | struct perf_event *event; |
| 434 | struct hw_perf_event *hwc; |
| 435 | int i; |
| 436 | |
| 437 | for (i = 0; i < MAX_HWEVENTS; ++i) { |
| 438 | event = cpuc->events[i]; |
| 439 | if (!event) |
| 440 | continue; |
| 441 | hwc = &event->hw; |
| 442 | bfin_pfmon_enable(hwc, hwc->idx); |
| 443 | } |
| 444 | |
| 445 | bfin_pfmon_enable_all(); |
| 446 | } |
| 447 | |
| 448 | static void bfin_pmu_disable(struct pmu *pmu) |
| 449 | { |
| 450 | bfin_pfmon_disable_all(); |
| 451 | } |
| 452 | |
| 453 | static struct pmu pmu = { |
| 454 | .pmu_enable = bfin_pmu_enable, |
| 455 | .pmu_disable = bfin_pmu_disable, |
| 456 | .event_init = bfin_pmu_event_init, |
| 457 | .add = bfin_pmu_add, |
| 458 | .del = bfin_pmu_del, |
| 459 | .start = bfin_pmu_start, |
| 460 | .stop = bfin_pmu_stop, |
| 461 | .read = bfin_pmu_read, |
| 462 | }; |
| 463 | |
| 464 | static void bfin_pmu_setup(int cpu) |
| 465 | { |
| 466 | struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu); |
| 467 | |
| 468 | memset(cpuhw, 0, sizeof(struct cpu_hw_events)); |
| 469 | } |
| 470 | |
| 471 | static int __cpuinit |
| 472 | bfin_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu) |
| 473 | { |
| 474 | unsigned int cpu = (long)hcpu; |
| 475 | |
| 476 | switch (action & ~CPU_TASKS_FROZEN) { |
| 477 | case CPU_UP_PREPARE: |
| 478 | bfin_write_PFCTL(0); |
| 479 | bfin_pmu_setup(cpu); |
| 480 | break; |
| 481 | |
| 482 | default: |
| 483 | break; |
| 484 | } |
| 485 | |
| 486 | return NOTIFY_OK; |
| 487 | } |
| 488 | |
| 489 | static int __init bfin_pmu_init(void) |
| 490 | { |
| 491 | int ret; |
| 492 | |
| 493 | ret = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW); |
| 494 | if (!ret) |
| 495 | perf_cpu_notifier(bfin_pmu_notifier); |
| 496 | |
| 497 | return ret; |
| 498 | } |
| 499 | early_initcall(bfin_pmu_init); |