| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * lib/kernel_lock.c | 
 | 3 |  * | 
 | 4 |  * This is the traditional BKL - big kernel lock. Largely | 
 | 5 |  * relegated to obsolescense, but used by various less | 
 | 6 |  * important (or lazy) subsystems. | 
 | 7 |  */ | 
 | 8 | #include <linux/smp_lock.h> | 
 | 9 | #include <linux/module.h> | 
 | 10 | #include <linux/kallsyms.h> | 
 | 11 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 12 | #ifdef CONFIG_PREEMPT_BKL | 
 | 13 | /* | 
 | 14 |  * The 'big kernel semaphore' | 
 | 15 |  * | 
 | 16 |  * This mutex is taken and released recursively by lock_kernel() | 
| Andreas Mohr | d6e05ed | 2006-06-26 18:35:02 +0200 | [diff] [blame] | 17 |  * and unlock_kernel().  It is transparently dropped and reacquired | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 18 |  * over schedule().  It is used to protect legacy code that hasn't | 
 | 19 |  * been migrated to a proper locking design yet. | 
 | 20 |  * | 
 | 21 |  * Note: code locked by this semaphore will only be serialized against | 
 | 22 |  * other code using the same locking facility. The code guarantees that | 
 | 23 |  * the task remains on the same CPU. | 
 | 24 |  * | 
 | 25 |  * Don't use in new code. | 
 | 26 |  */ | 
 | 27 | static DECLARE_MUTEX(kernel_sem); | 
 | 28 |  | 
 | 29 | /* | 
 | 30 |  * Re-acquire the kernel semaphore. | 
 | 31 |  * | 
 | 32 |  * This function is called with preemption off. | 
 | 33 |  * | 
 | 34 |  * We are executing in schedule() so the code must be extremely careful | 
 | 35 |  * about recursion, both due to the down() and due to the enabling of | 
 | 36 |  * preemption. schedule() will re-check the preemption flag after | 
 | 37 |  * reacquiring the semaphore. | 
 | 38 |  */ | 
 | 39 | int __lockfunc __reacquire_kernel_lock(void) | 
 | 40 | { | 
 | 41 | 	struct task_struct *task = current; | 
 | 42 | 	int saved_lock_depth = task->lock_depth; | 
 | 43 |  | 
 | 44 | 	BUG_ON(saved_lock_depth < 0); | 
 | 45 |  | 
 | 46 | 	task->lock_depth = -1; | 
 | 47 | 	preempt_enable_no_resched(); | 
 | 48 |  | 
 | 49 | 	down(&kernel_sem); | 
 | 50 |  | 
 | 51 | 	preempt_disable(); | 
 | 52 | 	task->lock_depth = saved_lock_depth; | 
 | 53 |  | 
 | 54 | 	return 0; | 
 | 55 | } | 
 | 56 |  | 
 | 57 | void __lockfunc __release_kernel_lock(void) | 
 | 58 | { | 
 | 59 | 	up(&kernel_sem); | 
 | 60 | } | 
 | 61 |  | 
 | 62 | /* | 
 | 63 |  * Getting the big kernel semaphore. | 
 | 64 |  */ | 
 | 65 | void __lockfunc lock_kernel(void) | 
 | 66 | { | 
 | 67 | 	struct task_struct *task = current; | 
 | 68 | 	int depth = task->lock_depth + 1; | 
 | 69 |  | 
 | 70 | 	if (likely(!depth)) | 
 | 71 | 		/* | 
 | 72 | 		 * No recursion worries - we set up lock_depth _after_ | 
 | 73 | 		 */ | 
 | 74 | 		down(&kernel_sem); | 
 | 75 |  | 
 | 76 | 	task->lock_depth = depth; | 
 | 77 | } | 
 | 78 |  | 
 | 79 | void __lockfunc unlock_kernel(void) | 
 | 80 | { | 
 | 81 | 	struct task_struct *task = current; | 
 | 82 |  | 
 | 83 | 	BUG_ON(task->lock_depth < 0); | 
 | 84 |  | 
 | 85 | 	if (likely(--task->lock_depth < 0)) | 
 | 86 | 		up(&kernel_sem); | 
 | 87 | } | 
 | 88 |  | 
 | 89 | #else | 
 | 90 |  | 
 | 91 | /* | 
 | 92 |  * The 'big kernel lock' | 
 | 93 |  * | 
 | 94 |  * This spinlock is taken and released recursively by lock_kernel() | 
| Andreas Mohr | d6e05ed | 2006-06-26 18:35:02 +0200 | [diff] [blame] | 95 |  * and unlock_kernel().  It is transparently dropped and reacquired | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 96 |  * over schedule().  It is used to protect legacy code that hasn't | 
 | 97 |  * been migrated to a proper locking design yet. | 
 | 98 |  * | 
 | 99 |  * Don't use in new code. | 
 | 100 |  */ | 
 | 101 | static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kernel_flag); | 
 | 102 |  | 
 | 103 |  | 
 | 104 | /* | 
 | 105 |  * Acquire/release the underlying lock from the scheduler. | 
 | 106 |  * | 
 | 107 |  * This is called with preemption disabled, and should | 
 | 108 |  * return an error value if it cannot get the lock and | 
 | 109 |  * TIF_NEED_RESCHED gets set. | 
 | 110 |  * | 
 | 111 |  * If it successfully gets the lock, it should increment | 
 | 112 |  * the preemption count like any spinlock does. | 
 | 113 |  * | 
 | 114 |  * (This works on UP too - _raw_spin_trylock will never | 
 | 115 |  * return false in that case) | 
 | 116 |  */ | 
 | 117 | int __lockfunc __reacquire_kernel_lock(void) | 
 | 118 | { | 
 | 119 | 	while (!_raw_spin_trylock(&kernel_flag)) { | 
 | 120 | 		if (test_thread_flag(TIF_NEED_RESCHED)) | 
 | 121 | 			return -EAGAIN; | 
 | 122 | 		cpu_relax(); | 
 | 123 | 	} | 
 | 124 | 	preempt_disable(); | 
 | 125 | 	return 0; | 
 | 126 | } | 
 | 127 |  | 
 | 128 | void __lockfunc __release_kernel_lock(void) | 
 | 129 | { | 
 | 130 | 	_raw_spin_unlock(&kernel_flag); | 
 | 131 | 	preempt_enable_no_resched(); | 
 | 132 | } | 
 | 133 |  | 
 | 134 | /* | 
 | 135 |  * These are the BKL spinlocks - we try to be polite about preemption.  | 
 | 136 |  * If SMP is not on (ie UP preemption), this all goes away because the | 
 | 137 |  * _raw_spin_trylock() will always succeed. | 
 | 138 |  */ | 
 | 139 | #ifdef CONFIG_PREEMPT | 
 | 140 | static inline void __lock_kernel(void) | 
 | 141 | { | 
 | 142 | 	preempt_disable(); | 
 | 143 | 	if (unlikely(!_raw_spin_trylock(&kernel_flag))) { | 
 | 144 | 		/* | 
 | 145 | 		 * If preemption was disabled even before this | 
 | 146 | 		 * was called, there's nothing we can be polite | 
 | 147 | 		 * about - just spin. | 
 | 148 | 		 */ | 
 | 149 | 		if (preempt_count() > 1) { | 
 | 150 | 			_raw_spin_lock(&kernel_flag); | 
 | 151 | 			return; | 
 | 152 | 		} | 
 | 153 |  | 
 | 154 | 		/* | 
 | 155 | 		 * Otherwise, let's wait for the kernel lock | 
 | 156 | 		 * with preemption enabled.. | 
 | 157 | 		 */ | 
 | 158 | 		do { | 
 | 159 | 			preempt_enable(); | 
 | 160 | 			while (spin_is_locked(&kernel_flag)) | 
 | 161 | 				cpu_relax(); | 
 | 162 | 			preempt_disable(); | 
 | 163 | 		} while (!_raw_spin_trylock(&kernel_flag)); | 
 | 164 | 	} | 
 | 165 | } | 
 | 166 |  | 
 | 167 | #else | 
 | 168 |  | 
 | 169 | /* | 
 | 170 |  * Non-preemption case - just get the spinlock | 
 | 171 |  */ | 
 | 172 | static inline void __lock_kernel(void) | 
 | 173 | { | 
 | 174 | 	_raw_spin_lock(&kernel_flag); | 
 | 175 | } | 
 | 176 | #endif | 
 | 177 |  | 
 | 178 | static inline void __unlock_kernel(void) | 
 | 179 | { | 
| Ingo Molnar | 8a25d5d | 2006-07-03 00:24:54 -0700 | [diff] [blame] | 180 | 	/* | 
 | 181 | 	 * the BKL is not covered by lockdep, so we open-code the | 
 | 182 | 	 * unlocking sequence (and thus avoid the dep-chain ops): | 
 | 183 | 	 */ | 
 | 184 | 	_raw_spin_unlock(&kernel_flag); | 
 | 185 | 	preempt_enable(); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 186 | } | 
 | 187 |  | 
 | 188 | /* | 
 | 189 |  * Getting the big kernel lock. | 
 | 190 |  * | 
 | 191 |  * This cannot happen asynchronously, so we only need to | 
 | 192 |  * worry about other CPU's. | 
 | 193 |  */ | 
 | 194 | void __lockfunc lock_kernel(void) | 
 | 195 | { | 
 | 196 | 	int depth = current->lock_depth+1; | 
 | 197 | 	if (likely(!depth)) | 
 | 198 | 		__lock_kernel(); | 
 | 199 | 	current->lock_depth = depth; | 
 | 200 | } | 
 | 201 |  | 
 | 202 | void __lockfunc unlock_kernel(void) | 
 | 203 | { | 
 | 204 | 	BUG_ON(current->lock_depth < 0); | 
 | 205 | 	if (likely(--current->lock_depth < 0)) | 
 | 206 | 		__unlock_kernel(); | 
 | 207 | } | 
 | 208 |  | 
 | 209 | #endif | 
 | 210 |  | 
 | 211 | EXPORT_SYMBOL(lock_kernel); | 
 | 212 | EXPORT_SYMBOL(unlock_kernel); | 
 | 213 |  |