blob: 1422765d4b86b950243179b228520be2779a768c [file] [log] [blame]
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02001/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
Peter Zijlstra21805082007-08-25 18:41:53 +020018 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020021 */
22
Arjan van de Ven97455122008-01-25 21:08:34 +010023#include <linux/latencytop.h>
Christian Ehrhardt1983a922009-11-30 12:16:47 +010024#include <linux/sched.h>
Sisir Koppaka3436ae12011-03-26 18:22:55 +053025#include <linux/cpumask.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020026#include <linux/slab.h>
27#include <linux/profile.h>
28#include <linux/interrupt.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020029#include <linux/mempolicy.h>
Mel Gormane14808b2012-11-19 10:59:15 +000030#include <linux/migrate.h>
Peter Zijlstracbee9f82012-10-25 14:16:43 +020031#include <linux/task_work.h>
Peter Zijlstra029632f2011-10-25 10:00:11 +020032
33#include <trace/events/sched.h>
34
35#include "sched.h"
Arjan van de Ven97455122008-01-25 21:08:34 +010036
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020037/*
Peter Zijlstra21805082007-08-25 18:41:53 +020038 * Targeted preemption latency for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090039 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020040 *
Peter Zijlstra21805082007-08-25 18:41:53 +020041 * NOTE: this latency value is not the same as the concept of
Ingo Molnard274a4c2007-10-15 17:00:14 +020042 * 'timeslice length' - timeslices in CFS are of variable length
43 * and have no persistent notion like in traditional, time-slice
44 * based scheduling concepts.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020045 *
Ingo Molnard274a4c2007-10-15 17:00:14 +020046 * (to see the precise effective timeslice length of your workload,
47 * run vmstat and monitor the context-switches (cs) field)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020048 */
Mike Galbraith21406922010-03-11 17:17:15 +010049unsigned int sysctl_sched_latency = 6000000ULL;
50unsigned int normalized_sysctl_sched_latency = 6000000ULL;
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020051
52/*
Christian Ehrhardt1983a922009-11-30 12:16:47 +010053 * The initial- and re-scaling of tunables is configurable
54 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
55 *
56 * Options are:
57 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
58 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
59 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
60 */
61enum sched_tunable_scaling sysctl_sched_tunable_scaling
62 = SCHED_TUNABLESCALING_LOG;
63
64/*
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010065 * Minimal preemption granularity for CPU-bound tasks:
Takuya Yoshikawa864616e2010-10-14 16:09:13 +090066 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010067 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020068unsigned int sysctl_sched_min_granularity = 750000ULL;
69unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010070
71/*
72 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
73 */
Ingo Molnar0bf377b2010-09-12 08:14:52 +020074static unsigned int sched_nr_latency = 8;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +010075
76/*
Mike Galbraith2bba22c2009-09-09 15:41:37 +020077 * After fork, child runs first. If set to 0 (default) then
Ingo Molnar2bd8e6d2007-10-15 17:00:02 +020078 * parent will (try to) run first.
79 */
Mike Galbraith2bba22c2009-09-09 15:41:37 +020080unsigned int sysctl_sched_child_runs_first __read_mostly;
Peter Zijlstra21805082007-08-25 18:41:53 +020081
82/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020083 * SCHED_OTHER wake-up granularity.
Mike Galbraith172e0822009-09-09 15:41:37 +020084 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020085 *
86 * This option delays the preemption effects of decoupled workloads
87 * and reduces their over-scheduling. Synchronous workloads will still
88 * have immediate wakeup/sleep latencies.
89 */
Mike Galbraith172e0822009-09-09 15:41:37 +020090unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +010091unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +020092
Ingo Molnarda84d962007-10-15 17:00:18 +020093const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
94
Paul Turnera7a4f8a2010-11-15 15:47:06 -080095/*
96 * The exponential sliding window over which load is averaged for shares
97 * distribution.
98 * (default: 10msec)
99 */
100unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
101
Paul Turnerec12cb72011-07-21 09:43:30 -0700102#ifdef CONFIG_CFS_BANDWIDTH
103/*
104 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
105 * each time a cfs_rq requests quota.
106 *
107 * Note: in the case that the slice exceeds the runtime remaining (either due
108 * to consumption or the quota being specified to be smaller than the slice)
109 * we will always only issue the remaining available time.
110 *
111 * default: 5 msec, units: microseconds
112 */
113unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
114#endif
115
Paul Gortmaker85276322013-04-19 15:10:50 -0400116static inline void update_load_add(struct load_weight *lw, unsigned long inc)
117{
118 lw->weight += inc;
119 lw->inv_weight = 0;
120}
121
122static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
123{
124 lw->weight -= dec;
125 lw->inv_weight = 0;
126}
127
128static inline void update_load_set(struct load_weight *lw, unsigned long w)
129{
130 lw->weight = w;
131 lw->inv_weight = 0;
132}
133
Peter Zijlstra029632f2011-10-25 10:00:11 +0200134/*
135 * Increase the granularity value when there are more CPUs,
136 * because with more CPUs the 'effective latency' as visible
137 * to users decreases. But the relationship is not linear,
138 * so pick a second-best guess by going with the log2 of the
139 * number of CPUs.
140 *
141 * This idea comes from the SD scheduler of Con Kolivas:
142 */
143static int get_update_sysctl_factor(void)
144{
145 unsigned int cpus = min_t(int, num_online_cpus(), 8);
146 unsigned int factor;
147
148 switch (sysctl_sched_tunable_scaling) {
149 case SCHED_TUNABLESCALING_NONE:
150 factor = 1;
151 break;
152 case SCHED_TUNABLESCALING_LINEAR:
153 factor = cpus;
154 break;
155 case SCHED_TUNABLESCALING_LOG:
156 default:
157 factor = 1 + ilog2(cpus);
158 break;
159 }
160
161 return factor;
162}
163
164static void update_sysctl(void)
165{
166 unsigned int factor = get_update_sysctl_factor();
167
168#define SET_SYSCTL(name) \
169 (sysctl_##name = (factor) * normalized_sysctl_##name)
170 SET_SYSCTL(sched_min_granularity);
171 SET_SYSCTL(sched_latency);
172 SET_SYSCTL(sched_wakeup_granularity);
173#undef SET_SYSCTL
174}
175
176void sched_init_granularity(void)
177{
178 update_sysctl();
179}
180
181#if BITS_PER_LONG == 32
182# define WMULT_CONST (~0UL)
183#else
184# define WMULT_CONST (1UL << 32)
185#endif
186
187#define WMULT_SHIFT 32
188
189/*
190 * Shift right and round:
191 */
192#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
193
194/*
195 * delta *= weight / lw
196 */
197static unsigned long
198calc_delta_mine(unsigned long delta_exec, unsigned long weight,
199 struct load_weight *lw)
200{
201 u64 tmp;
202
203 /*
204 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
205 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
206 * 2^SCHED_LOAD_RESOLUTION.
207 */
208 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
209 tmp = (u64)delta_exec * scale_load_down(weight);
210 else
211 tmp = (u64)delta_exec;
212
213 if (!lw->inv_weight) {
214 unsigned long w = scale_load_down(lw->weight);
215
216 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
217 lw->inv_weight = 1;
218 else if (unlikely(!w))
219 lw->inv_weight = WMULT_CONST;
220 else
221 lw->inv_weight = WMULT_CONST / w;
222 }
223
224 /*
225 * Check whether we'd overflow the 64-bit multiplication:
226 */
227 if (unlikely(tmp > WMULT_CONST))
228 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
229 WMULT_SHIFT/2);
230 else
231 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
232
233 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
234}
235
236
237const struct sched_class fair_sched_class;
Peter Zijlstraa4c2f002008-10-17 19:27:03 +0200238
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200239/**************************************************************
240 * CFS operations on generic schedulable entities:
241 */
242
243#ifdef CONFIG_FAIR_GROUP_SCHED
244
245/* cpu runqueue to which this cfs_rq is attached */
246static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247{
248 return cfs_rq->rq;
249}
250
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200251/* An entity is a task if it doesn't "own" a runqueue */
252#define entity_is_task(se) (!se->my_q)
253
Peter Zijlstra8f488942009-07-24 12:25:30 +0200254static inline struct task_struct *task_of(struct sched_entity *se)
255{
256#ifdef CONFIG_SCHED_DEBUG
257 WARN_ON_ONCE(!entity_is_task(se));
258#endif
259 return container_of(se, struct task_struct, se);
260}
261
Peter Zijlstrab7581492008-04-19 19:45:00 +0200262/* Walk up scheduling entities hierarchy */
263#define for_each_sched_entity(se) \
264 for (; se; se = se->parent)
265
266static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
267{
268 return p->se.cfs_rq;
269}
270
271/* runqueue on which this entity is (to be) queued */
272static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
273{
274 return se->cfs_rq;
275}
276
277/* runqueue "owned" by this group */
278static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
279{
280 return grp->my_q;
281}
282
Paul Turneraff3e492012-10-04 13:18:30 +0200283static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
284 int force_update);
Paul Turner9ee474f2012-10-04 13:18:30 +0200285
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800286static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287{
288 if (!cfs_rq->on_list) {
Paul Turner67e86252010-11-15 15:47:05 -0800289 /*
290 * Ensure we either appear before our parent (if already
291 * enqueued) or force our parent to appear after us when it is
292 * enqueued. The fact that we always enqueue bottom-up
293 * reduces this to two cases.
294 */
295 if (cfs_rq->tg->parent &&
296 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
297 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800298 &rq_of(cfs_rq)->leaf_cfs_rq_list);
Paul Turner67e86252010-11-15 15:47:05 -0800299 } else {
300 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
301 &rq_of(cfs_rq)->leaf_cfs_rq_list);
302 }
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800303
304 cfs_rq->on_list = 1;
Paul Turner9ee474f2012-10-04 13:18:30 +0200305 /* We should have no load, but we need to update last_decay. */
Paul Turneraff3e492012-10-04 13:18:30 +0200306 update_cfs_rq_blocked_load(cfs_rq, 0);
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800307 }
308}
309
310static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311{
312 if (cfs_rq->on_list) {
313 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
314 cfs_rq->on_list = 0;
315 }
316}
317
Peter Zijlstrab7581492008-04-19 19:45:00 +0200318/* Iterate thr' all leaf cfs_rq's on a runqueue */
319#define for_each_leaf_cfs_rq(rq, cfs_rq) \
320 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
321
322/* Do the two (enqueued) entities belong to the same group ? */
323static inline int
324is_same_group(struct sched_entity *se, struct sched_entity *pse)
325{
326 if (se->cfs_rq == pse->cfs_rq)
327 return 1;
328
329 return 0;
330}
331
332static inline struct sched_entity *parent_entity(struct sched_entity *se)
333{
334 return se->parent;
335}
336
Peter Zijlstra464b7522008-10-24 11:06:15 +0200337/* return depth at which a sched entity is present in the hierarchy */
338static inline int depth_se(struct sched_entity *se)
339{
340 int depth = 0;
341
342 for_each_sched_entity(se)
343 depth++;
344
345 return depth;
346}
347
348static void
349find_matching_se(struct sched_entity **se, struct sched_entity **pse)
350{
351 int se_depth, pse_depth;
352
353 /*
354 * preemption test can be made between sibling entities who are in the
355 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
356 * both tasks until we find their ancestors who are siblings of common
357 * parent.
358 */
359
360 /* First walk up until both entities are at same depth */
361 se_depth = depth_se(*se);
362 pse_depth = depth_se(*pse);
363
364 while (se_depth > pse_depth) {
365 se_depth--;
366 *se = parent_entity(*se);
367 }
368
369 while (pse_depth > se_depth) {
370 pse_depth--;
371 *pse = parent_entity(*pse);
372 }
373
374 while (!is_same_group(*se, *pse)) {
375 *se = parent_entity(*se);
376 *pse = parent_entity(*pse);
377 }
378}
379
Peter Zijlstra8f488942009-07-24 12:25:30 +0200380#else /* !CONFIG_FAIR_GROUP_SCHED */
381
382static inline struct task_struct *task_of(struct sched_entity *se)
383{
384 return container_of(se, struct task_struct, se);
385}
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200386
387static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
388{
389 return container_of(cfs_rq, struct rq, cfs);
390}
391
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200392#define entity_is_task(se) 1
393
Peter Zijlstrab7581492008-04-19 19:45:00 +0200394#define for_each_sched_entity(se) \
395 for (; se; se = NULL)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200396
Peter Zijlstrab7581492008-04-19 19:45:00 +0200397static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200398{
Peter Zijlstrab7581492008-04-19 19:45:00 +0200399 return &task_rq(p)->cfs;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200400}
401
Peter Zijlstrab7581492008-04-19 19:45:00 +0200402static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
403{
404 struct task_struct *p = task_of(se);
405 struct rq *rq = task_rq(p);
406
407 return &rq->cfs;
408}
409
410/* runqueue "owned" by this group */
411static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
412{
413 return NULL;
414}
415
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -0800416static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
417{
418}
419
420static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
421{
422}
423
Peter Zijlstrab7581492008-04-19 19:45:00 +0200424#define for_each_leaf_cfs_rq(rq, cfs_rq) \
425 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
426
427static inline int
428is_same_group(struct sched_entity *se, struct sched_entity *pse)
429{
430 return 1;
431}
432
433static inline struct sched_entity *parent_entity(struct sched_entity *se)
434{
435 return NULL;
436}
437
Peter Zijlstra464b7522008-10-24 11:06:15 +0200438static inline void
439find_matching_se(struct sched_entity **se, struct sched_entity **pse)
440{
441}
442
Peter Zijlstrab7581492008-04-19 19:45:00 +0200443#endif /* CONFIG_FAIR_GROUP_SCHED */
444
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -0700445static __always_inline
446void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200447
448/**************************************************************
449 * Scheduling class tree data structure manipulation methods:
450 */
451
Andrei Epure1bf08232013-03-12 21:12:24 +0200452static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
Peter Zijlstra02e04312007-10-15 17:00:07 +0200453{
Andrei Epure1bf08232013-03-12 21:12:24 +0200454 s64 delta = (s64)(vruntime - max_vruntime);
Peter Zijlstra368059a2007-10-15 17:00:11 +0200455 if (delta > 0)
Andrei Epure1bf08232013-03-12 21:12:24 +0200456 max_vruntime = vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200457
Andrei Epure1bf08232013-03-12 21:12:24 +0200458 return max_vruntime;
Peter Zijlstra02e04312007-10-15 17:00:07 +0200459}
460
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200461static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
Peter Zijlstrab0ffd242007-10-15 17:00:12 +0200462{
463 s64 delta = (s64)(vruntime - min_vruntime);
464 if (delta < 0)
465 min_vruntime = vruntime;
466
467 return min_vruntime;
468}
469
Fabio Checconi54fdc582009-07-16 12:32:27 +0200470static inline int entity_before(struct sched_entity *a,
471 struct sched_entity *b)
472{
473 return (s64)(a->vruntime - b->vruntime) < 0;
474}
475
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200476static void update_min_vruntime(struct cfs_rq *cfs_rq)
477{
478 u64 vruntime = cfs_rq->min_vruntime;
479
480 if (cfs_rq->curr)
481 vruntime = cfs_rq->curr->vruntime;
482
483 if (cfs_rq->rb_leftmost) {
484 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
485 struct sched_entity,
486 run_node);
487
Peter Zijlstrae17036d2009-01-15 14:53:39 +0100488 if (!cfs_rq->curr)
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200489 vruntime = se->vruntime;
490 else
491 vruntime = min_vruntime(vruntime, se->vruntime);
492 }
493
Andrei Epure1bf08232013-03-12 21:12:24 +0200494 /* ensure we never gain time by being placed backwards. */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200495 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
Peter Zijlstra3fe16982011-04-05 17:23:48 +0200496#ifndef CONFIG_64BIT
497 smp_wmb();
498 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
499#endif
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200500}
501
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200502/*
503 * Enqueue an entity into the rb-tree:
504 */
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200505static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200506{
507 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
508 struct rb_node *parent = NULL;
509 struct sched_entity *entry;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200510 int leftmost = 1;
511
512 /*
513 * Find the right place in the rbtree:
514 */
515 while (*link) {
516 parent = *link;
517 entry = rb_entry(parent, struct sched_entity, run_node);
518 /*
519 * We dont care about collisions. Nodes with
520 * the same key stay together.
521 */
Stephan Baerwolf2bd2d6f2011-07-20 14:46:59 +0200522 if (entity_before(se, entry)) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200523 link = &parent->rb_left;
524 } else {
525 link = &parent->rb_right;
526 leftmost = 0;
527 }
528 }
529
530 /*
531 * Maintain a cache of leftmost tree entries (it is frequently
532 * used):
533 */
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200534 if (leftmost)
Ingo Molnar57cb4992007-10-15 17:00:11 +0200535 cfs_rq->rb_leftmost = &se->run_node;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200536
537 rb_link_node(&se->run_node, parent, link);
538 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200539}
540
Ingo Molnar0702e3e2007-10-15 17:00:14 +0200541static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200542{
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100543 if (cfs_rq->rb_leftmost == &se->run_node) {
544 struct rb_node *next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100545
546 next_node = rb_next(&se->run_node);
547 cfs_rq->rb_leftmost = next_node;
Peter Zijlstra3fe69742008-03-14 20:55:51 +0100548 }
Ingo Molnare9acbff2007-10-15 17:00:04 +0200549
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200550 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200551}
552
Peter Zijlstra029632f2011-10-25 10:00:11 +0200553struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200554{
Peter Zijlstraf4b67552008-11-04 21:25:07 +0100555 struct rb_node *left = cfs_rq->rb_leftmost;
556
557 if (!left)
558 return NULL;
559
560 return rb_entry(left, struct sched_entity, run_node);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200561}
562
Rik van Rielac53db52011-02-01 09:51:03 -0500563static struct sched_entity *__pick_next_entity(struct sched_entity *se)
564{
565 struct rb_node *next = rb_next(&se->run_node);
566
567 if (!next)
568 return NULL;
569
570 return rb_entry(next, struct sched_entity, run_node);
571}
572
573#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +0200574struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200575{
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100576 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200577
Balbir Singh70eee742008-02-22 13:25:53 +0530578 if (!last)
579 return NULL;
Ingo Molnar7eee3e62008-02-22 10:32:21 +0100580
581 return rb_entry(last, struct sched_entity, run_node);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +0200582}
583
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200584/**************************************************************
585 * Scheduling class statistics methods:
586 */
587
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100588int sched_proc_update_handler(struct ctl_table *table, int write,
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700589 void __user *buffer, size_t *lenp,
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100590 loff_t *ppos)
591{
Alexey Dobriyan8d65af72009-09-23 15:57:19 -0700592 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100593 int factor = get_update_sysctl_factor();
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100594
595 if (ret || !write)
596 return ret;
597
598 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
599 sysctl_sched_min_granularity);
600
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100601#define WRT_SYSCTL(name) \
602 (normalized_sysctl_##name = sysctl_##name / (factor))
603 WRT_SYSCTL(sched_min_granularity);
604 WRT_SYSCTL(sched_latency);
605 WRT_SYSCTL(sched_wakeup_granularity);
Christian Ehrhardtacb4a842009-11-30 12:16:48 +0100606#undef WRT_SYSCTL
607
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100608 return 0;
609}
610#endif
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200611
612/*
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200613 * delta /= w
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200614 */
615static inline unsigned long
616calc_delta_fair(unsigned long delta, struct sched_entity *se)
617{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200618 if (unlikely(se->load.weight != NICE_0_LOAD))
619 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200620
621 return delta;
622}
623
624/*
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200625 * The idea is to set a period in which each task runs once.
626 *
Borislav Petkov532b1852012-08-08 16:16:04 +0200627 * When there are too many tasks (sched_nr_latency) we have to stretch
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200628 * this period because otherwise the slices get too small.
629 *
630 * p = (nr <= nl) ? l : l*nr/nl
631 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200632static u64 __sched_period(unsigned long nr_running)
633{
634 u64 period = sysctl_sched_latency;
Peter Zijlstrab2be5e92007-11-09 22:39:37 +0100635 unsigned long nr_latency = sched_nr_latency;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200636
637 if (unlikely(nr_running > nr_latency)) {
Peter Zijlstra4bf0b772008-01-25 21:08:21 +0100638 period = sysctl_sched_min_granularity;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200639 period *= nr_running;
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +0200640 }
641
642 return period;
643}
644
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200645/*
646 * We calculate the wall-time slice from the period by taking a part
647 * proportional to the weight.
648 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200649 * s = p*P[w/rw]
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200650 */
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +0200651static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Peter Zijlstra21805082007-08-25 18:41:53 +0200652{
Mike Galbraith0a582442009-01-02 12:16:42 +0100653 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200654
Mike Galbraith0a582442009-01-02 12:16:42 +0100655 for_each_sched_entity(se) {
Lin Ming6272d682009-01-15 17:17:15 +0100656 struct load_weight *load;
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200657 struct load_weight lw;
Lin Ming6272d682009-01-15 17:17:15 +0100658
659 cfs_rq = cfs_rq_of(se);
660 load = &cfs_rq->load;
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200661
Mike Galbraith0a582442009-01-02 12:16:42 +0100662 if (unlikely(!se->on_rq)) {
Christian Engelmayer3104bf02009-06-16 10:35:12 +0200663 lw = cfs_rq->load;
Mike Galbraith0a582442009-01-02 12:16:42 +0100664
665 update_load_add(&lw, se->load.weight);
666 load = &lw;
667 }
668 slice = calc_delta_mine(slice, se->load.weight, load);
669 }
670 return slice;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200671}
672
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200673/*
Andrei Epure660cc002013-03-11 12:03:20 +0200674 * We calculate the vruntime slice of a to-be-inserted task.
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200675 *
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200676 * vs = s/w
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200677 */
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200678static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnar647e7ca2007-10-15 17:00:13 +0200679{
Peter Zijlstraf9c0b092008-10-17 19:27:04 +0200680 return calc_delta_fair(sched_slice(cfs_rq, se), se);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200681}
682
Alex Shia75cdaa2013-06-20 10:18:47 +0800683#ifdef CONFIG_SMP
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100684static unsigned long task_h_load(struct task_struct *p);
685
Alex Shia75cdaa2013-06-20 10:18:47 +0800686static inline void __update_task_entity_contrib(struct sched_entity *se);
687
688/* Give new task start runnable values to heavy its load in infant time */
689void init_task_runnable_average(struct task_struct *p)
690{
691 u32 slice;
692
693 p->se.avg.decay_count = 0;
694 slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
695 p->se.avg.runnable_avg_sum = slice;
696 p->se.avg.runnable_avg_period = slice;
697 __update_task_entity_contrib(&p->se);
698}
699#else
700void init_task_runnable_average(struct task_struct *p)
701{
702}
703#endif
704
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200705/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200706 * Update the current task's runtime statistics. Skip current tasks that
707 * are not in our scheduling class.
708 */
709static inline void
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200710__update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
711 unsigned long delta_exec)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200712{
Ingo Molnarbbdba7c2007-10-15 17:00:06 +0200713 unsigned long delta_exec_weighted;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200714
Lucas De Marchi41acab82010-03-10 23:37:45 -0300715 schedstat_set(curr->statistics.exec_max,
716 max((u64)delta_exec, curr->statistics.exec_max));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200717
718 curr->sum_exec_runtime += delta_exec;
Ingo Molnar7a62eab2007-10-15 17:00:06 +0200719 schedstat_add(cfs_rq, exec_clock, delta_exec);
Peter Zijlstraa7be37a2008-06-27 13:41:11 +0200720 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +0100721
Ingo Molnare9acbff2007-10-15 17:00:04 +0200722 curr->vruntime += delta_exec_weighted;
Peter Zijlstra1af5f732008-10-24 11:06:13 +0200723 update_min_vruntime(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200724}
725
Ingo Molnarb7cc0892007-08-09 11:16:47 +0200726static void update_curr(struct cfs_rq *cfs_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200727{
Ingo Molnar429d43b2007-10-15 17:00:03 +0200728 struct sched_entity *curr = cfs_rq->curr;
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200729 u64 now = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200730 unsigned long delta_exec;
731
732 if (unlikely(!curr))
733 return;
734
735 /*
736 * Get the amount of time the current task was running
737 * since the last time we changed load (this cannot
738 * overflow on 32 bits):
739 */
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200740 delta_exec = (unsigned long)(now - curr->exec_start);
Peter Zijlstra34f28ec2008-12-16 08:45:31 +0100741 if (!delta_exec)
742 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200743
Ingo Molnar8ebc91d2007-10-15 17:00:03 +0200744 __update_curr(cfs_rq, curr, delta_exec);
745 curr->exec_start = now;
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100746
747 if (entity_is_task(curr)) {
748 struct task_struct *curtask = task_of(curr);
749
Ingo Molnarf977bb42009-09-13 18:15:54 +0200750 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100751 cpuacct_charge(curtask, delta_exec);
Frank Mayharf06febc2008-09-12 09:54:39 -0700752 account_group_exec_runtime(curtask, delta_exec);
Srivatsa Vaddagirid842de82007-12-02 20:04:49 +0100753 }
Paul Turnerec12cb72011-07-21 09:43:30 -0700754
755 account_cfs_rq_runtime(cfs_rq, delta_exec);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200756}
757
758static inline void
Ingo Molnar5870db52007-08-09 11:16:47 +0200759update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200760{
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200761 schedstat_set(se->statistics.wait_start, rq_clock(rq_of(cfs_rq)));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200762}
763
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200764/*
765 * Task is being enqueued - update stats:
766 */
Ingo Molnard2417e52007-08-09 11:16:47 +0200767static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200768{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200769 /*
770 * Are we enqueueing a waiting task? (for current tasks
771 * a dequeue/enqueue event is a NOP)
772 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200773 if (se != cfs_rq->curr)
Ingo Molnar5870db52007-08-09 11:16:47 +0200774 update_stats_wait_start(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200775}
776
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200777static void
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200778update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200779{
Lucas De Marchi41acab82010-03-10 23:37:45 -0300780 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200781 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start));
Lucas De Marchi41acab82010-03-10 23:37:45 -0300782 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
783 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200784 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200785#ifdef CONFIG_SCHEDSTATS
786 if (entity_is_task(se)) {
787 trace_sched_stat_wait(task_of(se),
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200788 rq_clock(rq_of(cfs_rq)) - se->statistics.wait_start);
Peter Zijlstra768d0c22009-07-23 20:13:26 +0200789 }
790#endif
Lucas De Marchi41acab82010-03-10 23:37:45 -0300791 schedstat_set(se->statistics.wait_start, 0);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200792}
793
794static inline void
Ingo Molnar19b6a2e2007-08-09 11:16:48 +0200795update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200796{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200797 /*
798 * Mark the end of the wait period if dequeueing a
799 * waiting task:
800 */
Ingo Molnar429d43b2007-10-15 17:00:03 +0200801 if (se != cfs_rq->curr)
Ingo Molnar9ef0a962007-08-09 11:16:47 +0200802 update_stats_wait_end(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200803}
804
805/*
806 * We are picking a new current task - update its stats:
807 */
808static inline void
Ingo Molnar79303e92007-08-09 11:16:47 +0200809update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200810{
811 /*
812 * We are starting a new run period:
813 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +0200814 se->exec_start = rq_clock_task(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200815}
816
Ingo Molnarbf0f6f22007-07-09 18:51:58 +0200817/**************************************************
818 * Scheduling class queueing methods:
819 */
820
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200821#ifdef CONFIG_NUMA_BALANCING
822/*
Mel Gorman598f0ec2013-10-07 11:28:55 +0100823 * Approximate time to scan a full NUMA task in ms. The task scan period is
824 * calculated based on the tasks virtual memory size and
825 * numa_balancing_scan_size.
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200826 */
Mel Gorman598f0ec2013-10-07 11:28:55 +0100827unsigned int sysctl_numa_balancing_scan_period_min = 1000;
828unsigned int sysctl_numa_balancing_scan_period_max = 60000;
829unsigned int sysctl_numa_balancing_scan_period_reset = 60000;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +0200830
831/* Portion of address space to scan in MB */
832unsigned int sysctl_numa_balancing_scan_size = 256;
Peter Zijlstracbee9f82012-10-25 14:16:43 +0200833
Peter Zijlstra4b96a292012-10-25 14:16:47 +0200834/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
835unsigned int sysctl_numa_balancing_scan_delay = 1000;
836
Mel Gorman598f0ec2013-10-07 11:28:55 +0100837static unsigned int task_nr_scan_windows(struct task_struct *p)
838{
839 unsigned long rss = 0;
840 unsigned long nr_scan_pages;
841
842 /*
843 * Calculations based on RSS as non-present and empty pages are skipped
844 * by the PTE scanner and NUMA hinting faults should be trapped based
845 * on resident pages
846 */
847 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
848 rss = get_mm_rss(p->mm);
849 if (!rss)
850 rss = nr_scan_pages;
851
852 rss = round_up(rss, nr_scan_pages);
853 return rss / nr_scan_pages;
854}
855
856/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
857#define MAX_SCAN_WINDOW 2560
858
859static unsigned int task_scan_min(struct task_struct *p)
860{
861 unsigned int scan, floor;
862 unsigned int windows = 1;
863
864 if (sysctl_numa_balancing_scan_size < MAX_SCAN_WINDOW)
865 windows = MAX_SCAN_WINDOW / sysctl_numa_balancing_scan_size;
866 floor = 1000 / windows;
867
868 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
869 return max_t(unsigned int, floor, scan);
870}
871
872static unsigned int task_scan_max(struct task_struct *p)
873{
874 unsigned int smin = task_scan_min(p);
875 unsigned int smax;
876
877 /* Watch for min being lower than max due to floor calculations */
878 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
879 return max(smin, smax);
880}
881
Mel Gorman3a7053b2013-10-07 11:29:00 +0100882/*
883 * Once a preferred node is selected the scheduler balancer will prefer moving
884 * a task to that node for sysctl_numa_balancing_settle_count number of PTE
885 * scans. This will give the process the chance to accumulate more faults on
886 * the preferred node but still allow the scheduler to move the task again if
887 * the nodes CPUs are overloaded.
888 */
Rik van Riel6fe6b2d2013-10-07 11:29:08 +0100889unsigned int sysctl_numa_balancing_settle_count __read_mostly = 4;
Mel Gorman3a7053b2013-10-07 11:29:00 +0100890
Mel Gormanac8e8952013-10-07 11:29:03 +0100891static inline int task_faults_idx(int nid, int priv)
892{
893 return 2 * nid + priv;
894}
895
896static inline unsigned long task_faults(struct task_struct *p, int nid)
897{
898 if (!p->numa_faults)
899 return 0;
900
901 return p->numa_faults[task_faults_idx(nid, 0)] +
902 p->numa_faults[task_faults_idx(nid, 1)];
903}
904
Mel Gormane6628d52013-10-07 11:29:02 +0100905static unsigned long weighted_cpuload(const int cpu);
Mel Gorman58d081b2013-10-07 11:29:10 +0100906static unsigned long source_load(int cpu, int type);
907static unsigned long target_load(int cpu, int type);
908static unsigned long power_of(int cpu);
909static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
Mel Gormane6628d52013-10-07 11:29:02 +0100910
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100911/* Cached statistics for all CPUs within a node */
Mel Gorman58d081b2013-10-07 11:29:10 +0100912struct numa_stats {
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100913 unsigned long nr_running;
Mel Gorman58d081b2013-10-07 11:29:10 +0100914 unsigned long load;
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100915
916 /* Total compute capacity of CPUs on a node */
917 unsigned long power;
918
919 /* Approximate capacity in terms of runnable tasks on a node */
920 unsigned long capacity;
921 int has_capacity;
Mel Gorman58d081b2013-10-07 11:29:10 +0100922};
Mel Gormane6628d52013-10-07 11:29:02 +0100923
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100924/*
925 * XXX borrowed from update_sg_lb_stats
926 */
927static void update_numa_stats(struct numa_stats *ns, int nid)
928{
929 int cpu;
930
931 memset(ns, 0, sizeof(*ns));
932 for_each_cpu(cpu, cpumask_of_node(nid)) {
933 struct rq *rq = cpu_rq(cpu);
934
935 ns->nr_running += rq->nr_running;
936 ns->load += weighted_cpuload(cpu);
937 ns->power += power_of(cpu);
938 }
939
940 ns->load = (ns->load * SCHED_POWER_SCALE) / ns->power;
941 ns->capacity = DIV_ROUND_CLOSEST(ns->power, SCHED_POWER_SCALE);
942 ns->has_capacity = (ns->nr_running < ns->capacity);
943}
944
Mel Gorman58d081b2013-10-07 11:29:10 +0100945struct task_numa_env {
946 struct task_struct *p;
947
948 int src_cpu, src_nid;
949 int dst_cpu, dst_nid;
950
951 struct numa_stats src_stats, dst_stats;
952
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100953 int imbalance_pct, idx;
954
955 struct task_struct *best_task;
956 long best_imp;
Mel Gorman58d081b2013-10-07 11:29:10 +0100957 int best_cpu;
958};
959
Mel Gormanfb13c7e2013-10-07 11:29:17 +0100960static void task_numa_assign(struct task_numa_env *env,
961 struct task_struct *p, long imp)
962{
963 if (env->best_task)
964 put_task_struct(env->best_task);
965 if (p)
966 get_task_struct(p);
967
968 env->best_task = p;
969 env->best_imp = imp;
970 env->best_cpu = env->dst_cpu;
971}
972
973/*
974 * This checks if the overall compute and NUMA accesses of the system would
975 * be improved if the source tasks was migrated to the target dst_cpu taking
976 * into account that it might be best if task running on the dst_cpu should
977 * be exchanged with the source task
978 */
979static void task_numa_compare(struct task_numa_env *env, long imp)
980{
981 struct rq *src_rq = cpu_rq(env->src_cpu);
982 struct rq *dst_rq = cpu_rq(env->dst_cpu);
983 struct task_struct *cur;
984 long dst_load, src_load;
985 long load;
986
987 rcu_read_lock();
988 cur = ACCESS_ONCE(dst_rq->curr);
989 if (cur->pid == 0) /* idle */
990 cur = NULL;
991
992 /*
993 * "imp" is the fault differential for the source task between the
994 * source and destination node. Calculate the total differential for
995 * the source task and potential destination task. The more negative
996 * the value is, the more rmeote accesses that would be expected to
997 * be incurred if the tasks were swapped.
998 */
999 if (cur) {
1000 /* Skip this swap candidate if cannot move to the source cpu */
1001 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1002 goto unlock;
1003
1004 imp += task_faults(cur, env->src_nid) -
1005 task_faults(cur, env->dst_nid);
1006 }
1007
1008 if (imp < env->best_imp)
1009 goto unlock;
1010
1011 if (!cur) {
1012 /* Is there capacity at our destination? */
1013 if (env->src_stats.has_capacity &&
1014 !env->dst_stats.has_capacity)
1015 goto unlock;
1016
1017 goto balance;
1018 }
1019
1020 /* Balance doesn't matter much if we're running a task per cpu */
1021 if (src_rq->nr_running == 1 && dst_rq->nr_running == 1)
1022 goto assign;
1023
1024 /*
1025 * In the overloaded case, try and keep the load balanced.
1026 */
1027balance:
1028 dst_load = env->dst_stats.load;
1029 src_load = env->src_stats.load;
1030
1031 /* XXX missing power terms */
1032 load = task_h_load(env->p);
1033 dst_load += load;
1034 src_load -= load;
1035
1036 if (cur) {
1037 load = task_h_load(cur);
1038 dst_load -= load;
1039 src_load += load;
1040 }
1041
1042 /* make src_load the smaller */
1043 if (dst_load < src_load)
1044 swap(dst_load, src_load);
1045
1046 if (src_load * env->imbalance_pct < dst_load * 100)
1047 goto unlock;
1048
1049assign:
1050 task_numa_assign(env, cur, imp);
1051unlock:
1052 rcu_read_unlock();
1053}
1054
Mel Gorman58d081b2013-10-07 11:29:10 +01001055static int task_numa_migrate(struct task_struct *p)
Mel Gormane6628d52013-10-07 11:29:02 +01001056{
Mel Gorman58d081b2013-10-07 11:29:10 +01001057 struct task_numa_env env = {
1058 .p = p,
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001059
Mel Gorman58d081b2013-10-07 11:29:10 +01001060 .src_cpu = task_cpu(p),
1061 .src_nid = cpu_to_node(task_cpu(p)),
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001062
1063 .imbalance_pct = 112,
1064
1065 .best_task = NULL,
1066 .best_imp = 0,
1067 .best_cpu = -1
Mel Gorman58d081b2013-10-07 11:29:10 +01001068 };
1069 struct sched_domain *sd;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001070 unsigned long faults;
1071 int nid, cpu, ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001072
Mel Gorman58d081b2013-10-07 11:29:10 +01001073 /*
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001074 * Pick the lowest SD_NUMA domain, as that would have the smallest
1075 * imbalance and would be the first to start moving tasks about.
1076 *
1077 * And we want to avoid any moving of tasks about, as that would create
1078 * random movement of tasks -- counter the numa conditions we're trying
1079 * to satisfy here.
Mel Gorman58d081b2013-10-07 11:29:10 +01001080 */
Mel Gormane6628d52013-10-07 11:29:02 +01001081 rcu_read_lock();
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001082 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1083 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
Mel Gormane6628d52013-10-07 11:29:02 +01001084 rcu_read_unlock();
1085
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001086 faults = task_faults(p, env.src_nid);
1087 update_numa_stats(&env.src_stats, env.src_nid);
Mel Gorman58d081b2013-10-07 11:29:10 +01001088
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001089 /* Find an alternative node with relatively better statistics */
1090 for_each_online_node(nid) {
1091 long imp;
Mel Gorman58d081b2013-10-07 11:29:10 +01001092
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001093 if (nid == env.src_nid)
Mel Gorman58d081b2013-10-07 11:29:10 +01001094 continue;
1095
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001096 /* Only consider nodes that recorded more faults */
1097 imp = task_faults(p, nid) - faults;
1098 if (imp < 0)
1099 continue;
1100
1101 env.dst_nid = nid;
1102 update_numa_stats(&env.dst_stats, env.dst_nid);
1103 for_each_cpu(cpu, cpumask_of_node(nid)) {
1104 /* Skip this CPU if the source task cannot migrate */
1105 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
1106 continue;
1107
1108 env.dst_cpu = cpu;
1109 task_numa_compare(&env, imp);
Mel Gorman58d081b2013-10-07 11:29:10 +01001110 }
1111 }
1112
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001113 /* No better CPU than the current one was found. */
1114 if (env.best_cpu == -1)
1115 return -EAGAIN;
1116
1117 if (env.best_task == NULL) {
1118 int ret = migrate_task_to(p, env.best_cpu);
1119 return ret;
1120 }
1121
1122 ret = migrate_swap(p, env.best_task);
1123 put_task_struct(env.best_task);
1124 return ret;
Mel Gormane6628d52013-10-07 11:29:02 +01001125}
1126
Mel Gorman6b9a7462013-10-07 11:29:11 +01001127/* Attempt to migrate a task to a CPU on the preferred node. */
1128static void numa_migrate_preferred(struct task_struct *p)
1129{
1130 /* Success if task is already running on preferred CPU */
1131 p->numa_migrate_retry = 0;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001132 if (cpu_to_node(task_cpu(p)) == p->numa_preferred_nid) {
1133 /*
1134 * If migration is temporarily disabled due to a task migration
1135 * then re-enable it now as the task is running on its
1136 * preferred node and memory should migrate locally
1137 */
1138 if (!p->numa_migrate_seq)
1139 p->numa_migrate_seq++;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001140 return;
Rik van Riel06ea5e02013-10-07 11:29:12 +01001141 }
Mel Gorman6b9a7462013-10-07 11:29:11 +01001142
1143 /* This task has no NUMA fault statistics yet */
1144 if (unlikely(p->numa_preferred_nid == -1))
1145 return;
1146
1147 /* Otherwise, try migrate to a CPU on the preferred node */
1148 if (task_numa_migrate(p) != 0)
1149 p->numa_migrate_retry = jiffies + HZ*5;
1150}
1151
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001152static void task_numa_placement(struct task_struct *p)
1153{
Mel Gorman688b7582013-10-07 11:28:58 +01001154 int seq, nid, max_nid = -1;
1155 unsigned long max_faults = 0;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001156
Hugh Dickins2832bc12012-12-19 17:42:16 -08001157 seq = ACCESS_ONCE(p->mm->numa_scan_seq);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001158 if (p->numa_scan_seq == seq)
1159 return;
1160 p->numa_scan_seq = seq;
Mel Gorman3a7053b2013-10-07 11:29:00 +01001161 p->numa_migrate_seq++;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001162 p->numa_scan_period_max = task_scan_max(p);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001163
Mel Gorman688b7582013-10-07 11:28:58 +01001164 /* Find the node with the highest number of faults */
1165 for_each_online_node(nid) {
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001166 unsigned long faults = 0;
Mel Gormanac8e8952013-10-07 11:29:03 +01001167 int priv, i;
Mel Gorman745d6142013-10-07 11:28:59 +01001168
Mel Gormanac8e8952013-10-07 11:29:03 +01001169 for (priv = 0; priv < 2; priv++) {
1170 i = task_faults_idx(nid, priv);
Mel Gorman745d6142013-10-07 11:28:59 +01001171
Mel Gormanac8e8952013-10-07 11:29:03 +01001172 /* Decay existing window, copy faults since last scan */
1173 p->numa_faults[i] >>= 1;
1174 p->numa_faults[i] += p->numa_faults_buffer[i];
1175 p->numa_faults_buffer[i] = 0;
Mel Gormanfb13c7e2013-10-07 11:29:17 +01001176
1177 faults += p->numa_faults[i];
Mel Gormanac8e8952013-10-07 11:29:03 +01001178 }
1179
Mel Gorman688b7582013-10-07 11:28:58 +01001180 if (faults > max_faults) {
1181 max_faults = faults;
1182 max_nid = nid;
1183 }
1184 }
1185
Mel Gorman6b9a7462013-10-07 11:29:11 +01001186 /* Preferred node as the node with the most faults */
Mel Gorman3a7053b2013-10-07 11:29:00 +01001187 if (max_faults && max_nid != p->numa_preferred_nid) {
Mel Gormane6628d52013-10-07 11:29:02 +01001188 /* Update the preferred nid and migrate task if possible */
Mel Gorman688b7582013-10-07 11:28:58 +01001189 p->numa_preferred_nid = max_nid;
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01001190 p->numa_migrate_seq = 1;
Mel Gorman6b9a7462013-10-07 11:29:11 +01001191 numa_migrate_preferred(p);
Mel Gorman3a7053b2013-10-07 11:29:00 +01001192 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001193}
1194
1195/*
1196 * Got a PROT_NONE fault for a page on @node.
1197 */
Mel Gormanb7958542013-10-07 11:29:07 +01001198void task_numa_fault(int last_nidpid, int node, int pages, bool migrated)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001199{
1200 struct task_struct *p = current;
Mel Gormanac8e8952013-10-07 11:29:03 +01001201 int priv;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001202
Dave Kleikamp10e84b92013-07-31 13:53:35 -07001203 if (!numabalancing_enabled)
Mel Gorman1a687c22012-11-22 11:16:36 +00001204 return;
1205
Mel Gorman9ff1d9f2013-10-07 11:29:04 +01001206 /* for example, ksmd faulting in a user's mm */
1207 if (!p->mm)
1208 return;
1209
Mel Gormanb7958542013-10-07 11:29:07 +01001210 /*
1211 * First accesses are treated as private, otherwise consider accesses
1212 * to be private if the accessing pid has not changed
1213 */
1214 if (!nidpid_pid_unset(last_nidpid))
1215 priv = ((p->pid & LAST__PID_MASK) == nidpid_to_pid(last_nidpid));
1216 else
1217 priv = 1;
Mel Gormanac8e8952013-10-07 11:29:03 +01001218
Mel Gormanf809ca92013-10-07 11:28:57 +01001219 /* Allocate buffer to track faults on a per-node basis */
1220 if (unlikely(!p->numa_faults)) {
Mel Gormanac8e8952013-10-07 11:29:03 +01001221 int size = sizeof(*p->numa_faults) * 2 * nr_node_ids;
Mel Gormanf809ca92013-10-07 11:28:57 +01001222
Mel Gorman745d6142013-10-07 11:28:59 +01001223 /* numa_faults and numa_faults_buffer share the allocation */
1224 p->numa_faults = kzalloc(size * 2, GFP_KERNEL|__GFP_NOWARN);
Mel Gormanf809ca92013-10-07 11:28:57 +01001225 if (!p->numa_faults)
1226 return;
Mel Gorman745d6142013-10-07 11:28:59 +01001227
1228 BUG_ON(p->numa_faults_buffer);
Mel Gormanac8e8952013-10-07 11:29:03 +01001229 p->numa_faults_buffer = p->numa_faults + (2 * nr_node_ids);
Mel Gormanf809ca92013-10-07 11:28:57 +01001230 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001231
Mel Gormanfb003b82012-11-15 09:01:14 +00001232 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001233 * If pages are properly placed (did not migrate) then scan slower.
1234 * This is reset periodically in case of phase changes
Mel Gormanfb003b82012-11-15 09:01:14 +00001235 */
Mel Gorman598f0ec2013-10-07 11:28:55 +01001236 if (!migrated) {
1237 /* Initialise if necessary */
1238 if (!p->numa_scan_period_max)
1239 p->numa_scan_period_max = task_scan_max(p);
1240
1241 p->numa_scan_period = min(p->numa_scan_period_max,
1242 p->numa_scan_period + 10);
1243 }
Mel Gormanfb003b82012-11-15 09:01:14 +00001244
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001245 task_numa_placement(p);
Mel Gormanf809ca92013-10-07 11:28:57 +01001246
Mel Gorman6b9a7462013-10-07 11:29:11 +01001247 /* Retry task to preferred node migration if it previously failed */
1248 if (p->numa_migrate_retry && time_after(jiffies, p->numa_migrate_retry))
1249 numa_migrate_preferred(p);
1250
Mel Gormanac8e8952013-10-07 11:29:03 +01001251 p->numa_faults_buffer[task_faults_idx(node, priv)] += pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001252}
1253
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001254static void reset_ptenuma_scan(struct task_struct *p)
1255{
1256 ACCESS_ONCE(p->mm->numa_scan_seq)++;
1257 p->mm->numa_scan_offset = 0;
1258}
1259
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001260/*
1261 * The expensive part of numa migration is done from task_work context.
1262 * Triggered from task_tick_numa().
1263 */
1264void task_numa_work(struct callback_head *work)
1265{
1266 unsigned long migrate, next_scan, now = jiffies;
1267 struct task_struct *p = current;
1268 struct mm_struct *mm = p->mm;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001269 struct vm_area_struct *vma;
Mel Gorman9f406042012-11-14 18:34:32 +00001270 unsigned long start, end;
Mel Gorman598f0ec2013-10-07 11:28:55 +01001271 unsigned long nr_pte_updates = 0;
Mel Gorman9f406042012-11-14 18:34:32 +00001272 long pages;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001273
1274 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
1275
1276 work->next = work; /* protect against double add */
1277 /*
1278 * Who cares about NUMA placement when they're dying.
1279 *
1280 * NOTE: make sure not to dereference p->mm before this check,
1281 * exit_task_work() happens _after_ exit_mm() so we could be called
1282 * without p->mm even though we still had it when we enqueued this
1283 * work.
1284 */
1285 if (p->flags & PF_EXITING)
1286 return;
1287
Mel Gorman7e8d16b2013-10-07 11:28:54 +01001288 if (!mm->numa_next_reset || !mm->numa_next_scan) {
1289 mm->numa_next_scan = now +
1290 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1291 mm->numa_next_reset = now +
1292 msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1293 }
1294
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001295 /*
Mel Gormanb8593bf2012-11-21 01:18:23 +00001296 * Reset the scan period if enough time has gone by. Objective is that
1297 * scanning will be reduced if pages are properly placed. As tasks
1298 * can enter different phases this needs to be re-examined. Lacking
1299 * proper tracking of reference behaviour, this blunt hammer is used.
1300 */
1301 migrate = mm->numa_next_reset;
1302 if (time_after(now, migrate)) {
Mel Gorman598f0ec2013-10-07 11:28:55 +01001303 p->numa_scan_period = task_scan_min(p);
Mel Gormanb8593bf2012-11-21 01:18:23 +00001304 next_scan = now + msecs_to_jiffies(sysctl_numa_balancing_scan_period_reset);
1305 xchg(&mm->numa_next_reset, next_scan);
1306 }
1307
1308 /*
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001309 * Enforce maximal scan/migration frequency..
1310 */
1311 migrate = mm->numa_next_scan;
1312 if (time_before(now, migrate))
1313 return;
1314
Mel Gorman598f0ec2013-10-07 11:28:55 +01001315 if (p->numa_scan_period == 0) {
1316 p->numa_scan_period_max = task_scan_max(p);
1317 p->numa_scan_period = task_scan_min(p);
1318 }
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001319
Mel Gormanfb003b82012-11-15 09:01:14 +00001320 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001321 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
1322 return;
1323
Mel Gormane14808b2012-11-19 10:59:15 +00001324 /*
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001325 * Delay this task enough that another task of this mm will likely win
1326 * the next time around.
1327 */
1328 p->node_stamp += 2 * TICK_NSEC;
1329
Mel Gorman9f406042012-11-14 18:34:32 +00001330 start = mm->numa_scan_offset;
1331 pages = sysctl_numa_balancing_scan_size;
1332 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
1333 if (!pages)
1334 return;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001335
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001336 down_read(&mm->mmap_sem);
Mel Gorman9f406042012-11-14 18:34:32 +00001337 vma = find_vma(mm, start);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001338 if (!vma) {
1339 reset_ptenuma_scan(p);
Mel Gorman9f406042012-11-14 18:34:32 +00001340 start = 0;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001341 vma = mm->mmap;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001342 }
Mel Gorman9f406042012-11-14 18:34:32 +00001343 for (; vma; vma = vma->vm_next) {
Mel Gormanfc3147242013-10-07 11:29:09 +01001344 if (!vma_migratable(vma) || !vma_policy_mof(p, vma))
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001345 continue;
1346
Mel Gorman4591ce4f2013-10-07 11:29:13 +01001347 /*
1348 * Shared library pages mapped by multiple processes are not
1349 * migrated as it is expected they are cache replicated. Avoid
1350 * hinting faults in read-only file-backed mappings or the vdso
1351 * as migrating the pages will be of marginal benefit.
1352 */
1353 if (!vma->vm_mm ||
1354 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
1355 continue;
1356
Mel Gorman9f406042012-11-14 18:34:32 +00001357 do {
1358 start = max(start, vma->vm_start);
1359 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
1360 end = min(end, vma->vm_end);
Mel Gorman598f0ec2013-10-07 11:28:55 +01001361 nr_pte_updates += change_prot_numa(vma, start, end);
1362
1363 /*
1364 * Scan sysctl_numa_balancing_scan_size but ensure that
1365 * at least one PTE is updated so that unused virtual
1366 * address space is quickly skipped.
1367 */
1368 if (nr_pte_updates)
1369 pages -= (end - start) >> PAGE_SHIFT;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001370
Mel Gorman9f406042012-11-14 18:34:32 +00001371 start = end;
1372 if (pages <= 0)
1373 goto out;
1374 } while (end != vma->vm_end);
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001375 }
1376
Mel Gorman9f406042012-11-14 18:34:32 +00001377out:
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001378 /*
Mel Gormanf307cd12013-10-07 11:28:56 +01001379 * If the whole process was scanned without updates then no NUMA
1380 * hinting faults are being recorded and scan rate should be lower.
1381 */
1382 if (mm->numa_scan_offset == 0 && !nr_pte_updates) {
1383 p->numa_scan_period = min(p->numa_scan_period_max,
1384 p->numa_scan_period << 1);
1385
1386 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
1387 mm->numa_next_scan = next_scan;
1388 }
1389
1390 /*
Peter Zijlstrac69307d2013-10-07 11:28:41 +01001391 * It is possible to reach the end of the VMA list but the last few
1392 * VMAs are not guaranteed to the vma_migratable. If they are not, we
1393 * would find the !migratable VMA on the next scan but not reset the
1394 * scanner to the start so check it now.
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001395 */
1396 if (vma)
Mel Gorman9f406042012-11-14 18:34:32 +00001397 mm->numa_scan_offset = start;
Peter Zijlstra6e5fb222012-10-25 14:16:45 +02001398 else
1399 reset_ptenuma_scan(p);
1400 up_read(&mm->mmap_sem);
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001401}
1402
1403/*
1404 * Drive the periodic memory faults..
1405 */
1406void task_tick_numa(struct rq *rq, struct task_struct *curr)
1407{
1408 struct callback_head *work = &curr->numa_work;
1409 u64 period, now;
1410
1411 /*
1412 * We don't care about NUMA placement if we don't have memory.
1413 */
1414 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
1415 return;
1416
1417 /*
1418 * Using runtime rather than walltime has the dual advantage that
1419 * we (mostly) drive the selection from busy threads and that the
1420 * task needs to have done some actual work before we bother with
1421 * NUMA placement.
1422 */
1423 now = curr->se.sum_exec_runtime;
1424 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
1425
1426 if (now - curr->node_stamp > period) {
Peter Zijlstra4b96a292012-10-25 14:16:47 +02001427 if (!curr->node_stamp)
Mel Gorman598f0ec2013-10-07 11:28:55 +01001428 curr->numa_scan_period = task_scan_min(curr);
Peter Zijlstra19a78d12013-10-07 11:28:51 +01001429 curr->node_stamp += period;
Peter Zijlstracbee9f82012-10-25 14:16:43 +02001430
1431 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
1432 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
1433 task_work_add(curr, work, true);
1434 }
1435 }
1436}
1437#else
1438static void task_tick_numa(struct rq *rq, struct task_struct *curr)
1439{
1440}
1441#endif /* CONFIG_NUMA_BALANCING */
1442
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001443static void
1444account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1445{
1446 update_load_add(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001447 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001448 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001449#ifdef CONFIG_SMP
1450 if (entity_is_task(se))
Peter Zijlstraeb953082012-04-17 13:38:40 +02001451 list_add(&se->group_node, &rq_of(cfs_rq)->cfs_tasks);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001452#endif
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001453 cfs_rq->nr_running++;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001454}
1455
1456static void
1457account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
1458{
1459 update_load_sub(&cfs_rq->load, se->load.weight);
Peter Zijlstrac09595f2008-06-27 13:41:14 +02001460 if (!parent_entity(se))
Peter Zijlstra029632f2011-10-25 10:00:11 +02001461 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
Peter Zijlstra367456c2012-02-20 21:49:09 +01001462 if (entity_is_task(se))
Bharata B Raob87f1722008-09-25 09:53:54 +05301463 list_del_init(&se->group_node);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001464 cfs_rq->nr_running--;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02001465}
1466
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001467#ifdef CONFIG_FAIR_GROUP_SCHED
1468# ifdef CONFIG_SMP
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001469static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
1470{
1471 long tg_weight;
1472
1473 /*
1474 * Use this CPU's actual weight instead of the last load_contribution
1475 * to gain a more accurate current total weight. See
1476 * update_cfs_rq_load_contribution().
1477 */
Alex Shibf5b9862013-06-20 10:18:54 +08001478 tg_weight = atomic_long_read(&tg->load_avg);
Paul Turner82958362012-10-04 13:18:31 +02001479 tg_weight -= cfs_rq->tg_load_contrib;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001480 tg_weight += cfs_rq->load.weight;
1481
1482 return tg_weight;
1483}
1484
Paul Turner6d5ab292011-01-21 20:45:01 -08001485static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001486{
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001487 long tg_weight, load, shares;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001488
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001489 tg_weight = calc_tg_weight(tg, cfs_rq);
Paul Turner6d5ab292011-01-21 20:45:01 -08001490 load = cfs_rq->load.weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001491
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001492 shares = (tg->shares * load);
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02001493 if (tg_weight)
1494 shares /= tg_weight;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001495
1496 if (shares < MIN_SHARES)
1497 shares = MIN_SHARES;
1498 if (shares > tg->shares)
1499 shares = tg->shares;
1500
1501 return shares;
1502}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001503# else /* CONFIG_SMP */
Paul Turner6d5ab292011-01-21 20:45:01 -08001504static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001505{
1506 return tg->shares;
1507}
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001508# endif /* CONFIG_SMP */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001509static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
1510 unsigned long weight)
1511{
Paul Turner19e5eeb2010-12-15 19:10:18 -08001512 if (se->on_rq) {
1513 /* commit outstanding execution time */
1514 if (cfs_rq->curr == se)
1515 update_curr(cfs_rq);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001516 account_entity_dequeue(cfs_rq, se);
Paul Turner19e5eeb2010-12-15 19:10:18 -08001517 }
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001518
1519 update_load_set(&se->load, weight);
1520
1521 if (se->on_rq)
1522 account_entity_enqueue(cfs_rq, se);
1523}
1524
Paul Turner82958362012-10-04 13:18:31 +02001525static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
1526
Paul Turner6d5ab292011-01-21 20:45:01 -08001527static void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001528{
1529 struct task_group *tg;
1530 struct sched_entity *se;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001531 long shares;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001532
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001533 tg = cfs_rq->tg;
1534 se = tg->se[cpu_of(rq_of(cfs_rq))];
Paul Turner64660c82011-07-21 09:43:36 -07001535 if (!se || throttled_hierarchy(cfs_rq))
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001536 return;
Yong Zhang3ff6dca2011-01-24 15:33:52 +08001537#ifndef CONFIG_SMP
1538 if (likely(se->load.weight == tg->shares))
1539 return;
1540#endif
Paul Turner6d5ab292011-01-21 20:45:01 -08001541 shares = calc_cfs_shares(cfs_rq, tg);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001542
1543 reweight_entity(cfs_rq_of(se), se, shares);
1544}
1545#else /* CONFIG_FAIR_GROUP_SCHED */
Paul Turner6d5ab292011-01-21 20:45:01 -08001546static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
Peter Zijlstra2069dd72010-11-15 15:47:00 -08001547{
1548}
1549#endif /* CONFIG_FAIR_GROUP_SCHED */
1550
Alex Shi141965c2013-06-26 13:05:39 +08001551#ifdef CONFIG_SMP
Paul Turner9d85f212012-10-04 13:18:29 +02001552/*
Paul Turner5b51f2f2012-10-04 13:18:32 +02001553 * We choose a half-life close to 1 scheduling period.
1554 * Note: The tables below are dependent on this value.
1555 */
1556#define LOAD_AVG_PERIOD 32
1557#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
1558#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
1559
1560/* Precomputed fixed inverse multiplies for multiplication by y^n */
1561static const u32 runnable_avg_yN_inv[] = {
1562 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
1563 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
1564 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
1565 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
1566 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
1567 0x85aac367, 0x82cd8698,
1568};
1569
1570/*
1571 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
1572 * over-estimates when re-combining.
1573 */
1574static const u32 runnable_avg_yN_sum[] = {
1575 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
1576 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
1577 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
1578};
1579
1580/*
Paul Turner9d85f212012-10-04 13:18:29 +02001581 * Approximate:
1582 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
1583 */
1584static __always_inline u64 decay_load(u64 val, u64 n)
1585{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001586 unsigned int local_n;
1587
1588 if (!n)
1589 return val;
1590 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
1591 return 0;
1592
1593 /* after bounds checking we can collapse to 32-bit */
1594 local_n = n;
1595
1596 /*
1597 * As y^PERIOD = 1/2, we can combine
1598 * y^n = 1/2^(n/PERIOD) * k^(n%PERIOD)
1599 * With a look-up table which covers k^n (n<PERIOD)
1600 *
1601 * To achieve constant time decay_load.
1602 */
1603 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
1604 val >>= local_n / LOAD_AVG_PERIOD;
1605 local_n %= LOAD_AVG_PERIOD;
Paul Turner9d85f212012-10-04 13:18:29 +02001606 }
1607
Paul Turner5b51f2f2012-10-04 13:18:32 +02001608 val *= runnable_avg_yN_inv[local_n];
1609 /* We don't use SRR here since we always want to round down. */
1610 return val >> 32;
1611}
1612
1613/*
1614 * For updates fully spanning n periods, the contribution to runnable
1615 * average will be: \Sum 1024*y^n
1616 *
1617 * We can compute this reasonably efficiently by combining:
1618 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
1619 */
1620static u32 __compute_runnable_contrib(u64 n)
1621{
1622 u32 contrib = 0;
1623
1624 if (likely(n <= LOAD_AVG_PERIOD))
1625 return runnable_avg_yN_sum[n];
1626 else if (unlikely(n >= LOAD_AVG_MAX_N))
1627 return LOAD_AVG_MAX;
1628
1629 /* Compute \Sum k^n combining precomputed values for k^i, \Sum k^j */
1630 do {
1631 contrib /= 2; /* y^LOAD_AVG_PERIOD = 1/2 */
1632 contrib += runnable_avg_yN_sum[LOAD_AVG_PERIOD];
1633
1634 n -= LOAD_AVG_PERIOD;
1635 } while (n > LOAD_AVG_PERIOD);
1636
1637 contrib = decay_load(contrib, n);
1638 return contrib + runnable_avg_yN_sum[n];
Paul Turner9d85f212012-10-04 13:18:29 +02001639}
1640
1641/*
1642 * We can represent the historical contribution to runnable average as the
1643 * coefficients of a geometric series. To do this we sub-divide our runnable
1644 * history into segments of approximately 1ms (1024us); label the segment that
1645 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
1646 *
1647 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
1648 * p0 p1 p2
1649 * (now) (~1ms ago) (~2ms ago)
1650 *
1651 * Let u_i denote the fraction of p_i that the entity was runnable.
1652 *
1653 * We then designate the fractions u_i as our co-efficients, yielding the
1654 * following representation of historical load:
1655 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
1656 *
1657 * We choose y based on the with of a reasonably scheduling period, fixing:
1658 * y^32 = 0.5
1659 *
1660 * This means that the contribution to load ~32ms ago (u_32) will be weighted
1661 * approximately half as much as the contribution to load within the last ms
1662 * (u_0).
1663 *
1664 * When a period "rolls over" and we have new u_0`, multiplying the previous
1665 * sum again by y is sufficient to update:
1666 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
1667 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
1668 */
1669static __always_inline int __update_entity_runnable_avg(u64 now,
1670 struct sched_avg *sa,
1671 int runnable)
1672{
Paul Turner5b51f2f2012-10-04 13:18:32 +02001673 u64 delta, periods;
1674 u32 runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001675 int delta_w, decayed = 0;
1676
1677 delta = now - sa->last_runnable_update;
1678 /*
1679 * This should only happen when time goes backwards, which it
1680 * unfortunately does during sched clock init when we swap over to TSC.
1681 */
1682 if ((s64)delta < 0) {
1683 sa->last_runnable_update = now;
1684 return 0;
1685 }
1686
1687 /*
1688 * Use 1024ns as the unit of measurement since it's a reasonable
1689 * approximation of 1us and fast to compute.
1690 */
1691 delta >>= 10;
1692 if (!delta)
1693 return 0;
1694 sa->last_runnable_update = now;
1695
1696 /* delta_w is the amount already accumulated against our next period */
1697 delta_w = sa->runnable_avg_period % 1024;
1698 if (delta + delta_w >= 1024) {
1699 /* period roll-over */
1700 decayed = 1;
1701
1702 /*
1703 * Now that we know we're crossing a period boundary, figure
1704 * out how much from delta we need to complete the current
1705 * period and accrue it.
1706 */
1707 delta_w = 1024 - delta_w;
Paul Turner5b51f2f2012-10-04 13:18:32 +02001708 if (runnable)
1709 sa->runnable_avg_sum += delta_w;
1710 sa->runnable_avg_period += delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001711
Paul Turner5b51f2f2012-10-04 13:18:32 +02001712 delta -= delta_w;
Paul Turner9d85f212012-10-04 13:18:29 +02001713
Paul Turner5b51f2f2012-10-04 13:18:32 +02001714 /* Figure out how many additional periods this update spans */
1715 periods = delta / 1024;
1716 delta %= 1024;
1717
1718 sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
1719 periods + 1);
1720 sa->runnable_avg_period = decay_load(sa->runnable_avg_period,
1721 periods + 1);
1722
1723 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
1724 runnable_contrib = __compute_runnable_contrib(periods);
1725 if (runnable)
1726 sa->runnable_avg_sum += runnable_contrib;
1727 sa->runnable_avg_period += runnable_contrib;
Paul Turner9d85f212012-10-04 13:18:29 +02001728 }
1729
1730 /* Remainder of delta accrued against u_0` */
1731 if (runnable)
1732 sa->runnable_avg_sum += delta;
1733 sa->runnable_avg_period += delta;
1734
1735 return decayed;
1736}
1737
Paul Turner9ee474f2012-10-04 13:18:30 +02001738/* Synchronize an entity's decay with its parenting cfs_rq.*/
Paul Turneraff3e492012-10-04 13:18:30 +02001739static inline u64 __synchronize_entity_decay(struct sched_entity *se)
Paul Turner9ee474f2012-10-04 13:18:30 +02001740{
1741 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1742 u64 decays = atomic64_read(&cfs_rq->decay_counter);
1743
1744 decays -= se->avg.decay_count;
1745 if (!decays)
Paul Turneraff3e492012-10-04 13:18:30 +02001746 return 0;
Paul Turner9ee474f2012-10-04 13:18:30 +02001747
1748 se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
1749 se->avg.decay_count = 0;
Paul Turneraff3e492012-10-04 13:18:30 +02001750
1751 return decays;
Paul Turner9ee474f2012-10-04 13:18:30 +02001752}
1753
Paul Turnerc566e8e2012-10-04 13:18:30 +02001754#ifdef CONFIG_FAIR_GROUP_SCHED
1755static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1756 int force_update)
1757{
1758 struct task_group *tg = cfs_rq->tg;
Alex Shibf5b9862013-06-20 10:18:54 +08001759 long tg_contrib;
Paul Turnerc566e8e2012-10-04 13:18:30 +02001760
1761 tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
1762 tg_contrib -= cfs_rq->tg_load_contrib;
1763
Alex Shibf5b9862013-06-20 10:18:54 +08001764 if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
1765 atomic_long_add(tg_contrib, &tg->load_avg);
Paul Turnerc566e8e2012-10-04 13:18:30 +02001766 cfs_rq->tg_load_contrib += tg_contrib;
1767 }
1768}
Paul Turner8165e142012-10-04 13:18:31 +02001769
Paul Turnerbb17f652012-10-04 13:18:31 +02001770/*
1771 * Aggregate cfs_rq runnable averages into an equivalent task_group
1772 * representation for computing load contributions.
1773 */
1774static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1775 struct cfs_rq *cfs_rq)
1776{
1777 struct task_group *tg = cfs_rq->tg;
1778 long contrib;
1779
1780 /* The fraction of a cpu used by this cfs_rq */
1781 contrib = div_u64(sa->runnable_avg_sum << NICE_0_SHIFT,
1782 sa->runnable_avg_period + 1);
1783 contrib -= cfs_rq->tg_runnable_contrib;
1784
1785 if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
1786 atomic_add(contrib, &tg->runnable_avg);
1787 cfs_rq->tg_runnable_contrib += contrib;
1788 }
1789}
1790
Paul Turner8165e142012-10-04 13:18:31 +02001791static inline void __update_group_entity_contrib(struct sched_entity *se)
1792{
1793 struct cfs_rq *cfs_rq = group_cfs_rq(se);
1794 struct task_group *tg = cfs_rq->tg;
Paul Turnerbb17f652012-10-04 13:18:31 +02001795 int runnable_avg;
1796
Paul Turner8165e142012-10-04 13:18:31 +02001797 u64 contrib;
1798
1799 contrib = cfs_rq->tg_load_contrib * tg->shares;
Alex Shibf5b9862013-06-20 10:18:54 +08001800 se->avg.load_avg_contrib = div_u64(contrib,
1801 atomic_long_read(&tg->load_avg) + 1);
Paul Turnerbb17f652012-10-04 13:18:31 +02001802
1803 /*
1804 * For group entities we need to compute a correction term in the case
1805 * that they are consuming <1 cpu so that we would contribute the same
1806 * load as a task of equal weight.
1807 *
1808 * Explicitly co-ordinating this measurement would be expensive, but
1809 * fortunately the sum of each cpus contribution forms a usable
1810 * lower-bound on the true value.
1811 *
1812 * Consider the aggregate of 2 contributions. Either they are disjoint
1813 * (and the sum represents true value) or they are disjoint and we are
1814 * understating by the aggregate of their overlap.
1815 *
1816 * Extending this to N cpus, for a given overlap, the maximum amount we
1817 * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
1818 * cpus that overlap for this interval and w_i is the interval width.
1819 *
1820 * On a small machine; the first term is well-bounded which bounds the
1821 * total error since w_i is a subset of the period. Whereas on a
1822 * larger machine, while this first term can be larger, if w_i is the
1823 * of consequential size guaranteed to see n_i*w_i quickly converge to
1824 * our upper bound of 1-cpu.
1825 */
1826 runnable_avg = atomic_read(&tg->runnable_avg);
1827 if (runnable_avg < NICE_0_LOAD) {
1828 se->avg.load_avg_contrib *= runnable_avg;
1829 se->avg.load_avg_contrib >>= NICE_0_SHIFT;
1830 }
Paul Turner8165e142012-10-04 13:18:31 +02001831}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001832#else
1833static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
1834 int force_update) {}
Paul Turnerbb17f652012-10-04 13:18:31 +02001835static inline void __update_tg_runnable_avg(struct sched_avg *sa,
1836 struct cfs_rq *cfs_rq) {}
Paul Turner8165e142012-10-04 13:18:31 +02001837static inline void __update_group_entity_contrib(struct sched_entity *se) {}
Paul Turnerc566e8e2012-10-04 13:18:30 +02001838#endif
1839
Paul Turner8165e142012-10-04 13:18:31 +02001840static inline void __update_task_entity_contrib(struct sched_entity *se)
1841{
1842 u32 contrib;
1843
1844 /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
1845 contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
1846 contrib /= (se->avg.runnable_avg_period + 1);
1847 se->avg.load_avg_contrib = scale_load(contrib);
1848}
1849
Paul Turner2dac7542012-10-04 13:18:30 +02001850/* Compute the current contribution to load_avg by se, return any delta */
1851static long __update_entity_load_avg_contrib(struct sched_entity *se)
1852{
1853 long old_contrib = se->avg.load_avg_contrib;
1854
Paul Turner8165e142012-10-04 13:18:31 +02001855 if (entity_is_task(se)) {
1856 __update_task_entity_contrib(se);
1857 } else {
Paul Turnerbb17f652012-10-04 13:18:31 +02001858 __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
Paul Turner8165e142012-10-04 13:18:31 +02001859 __update_group_entity_contrib(se);
1860 }
Paul Turner2dac7542012-10-04 13:18:30 +02001861
1862 return se->avg.load_avg_contrib - old_contrib;
1863}
1864
Paul Turner9ee474f2012-10-04 13:18:30 +02001865static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
1866 long load_contrib)
1867{
1868 if (likely(load_contrib < cfs_rq->blocked_load_avg))
1869 cfs_rq->blocked_load_avg -= load_contrib;
1870 else
1871 cfs_rq->blocked_load_avg = 0;
1872}
1873
Paul Turnerf1b17282012-10-04 13:18:31 +02001874static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
1875
Paul Turner9d85f212012-10-04 13:18:29 +02001876/* Update a sched_entity's runnable average */
Paul Turner9ee474f2012-10-04 13:18:30 +02001877static inline void update_entity_load_avg(struct sched_entity *se,
1878 int update_cfs_rq)
Paul Turner9d85f212012-10-04 13:18:29 +02001879{
Paul Turner2dac7542012-10-04 13:18:30 +02001880 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1881 long contrib_delta;
Paul Turnerf1b17282012-10-04 13:18:31 +02001882 u64 now;
Paul Turner2dac7542012-10-04 13:18:30 +02001883
Paul Turnerf1b17282012-10-04 13:18:31 +02001884 /*
1885 * For a group entity we need to use their owned cfs_rq_clock_task() in
1886 * case they are the parent of a throttled hierarchy.
1887 */
1888 if (entity_is_task(se))
1889 now = cfs_rq_clock_task(cfs_rq);
1890 else
1891 now = cfs_rq_clock_task(group_cfs_rq(se));
1892
1893 if (!__update_entity_runnable_avg(now, &se->avg, se->on_rq))
Paul Turner2dac7542012-10-04 13:18:30 +02001894 return;
1895
1896 contrib_delta = __update_entity_load_avg_contrib(se);
Paul Turner9ee474f2012-10-04 13:18:30 +02001897
1898 if (!update_cfs_rq)
1899 return;
1900
Paul Turner2dac7542012-10-04 13:18:30 +02001901 if (se->on_rq)
1902 cfs_rq->runnable_load_avg += contrib_delta;
Paul Turner9ee474f2012-10-04 13:18:30 +02001903 else
1904 subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
1905}
1906
1907/*
1908 * Decay the load contributed by all blocked children and account this so that
1909 * their contribution may appropriately discounted when they wake up.
1910 */
Paul Turneraff3e492012-10-04 13:18:30 +02001911static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001912{
Paul Turnerf1b17282012-10-04 13:18:31 +02001913 u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02001914 u64 decays;
1915
1916 decays = now - cfs_rq->last_decay;
Paul Turneraff3e492012-10-04 13:18:30 +02001917 if (!decays && !force_update)
Paul Turner9ee474f2012-10-04 13:18:30 +02001918 return;
1919
Alex Shi25099402013-06-20 10:18:55 +08001920 if (atomic_long_read(&cfs_rq->removed_load)) {
1921 unsigned long removed_load;
1922 removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
Paul Turneraff3e492012-10-04 13:18:30 +02001923 subtract_blocked_load_contrib(cfs_rq, removed_load);
1924 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001925
Paul Turneraff3e492012-10-04 13:18:30 +02001926 if (decays) {
1927 cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
1928 decays);
1929 atomic64_add(decays, &cfs_rq->decay_counter);
1930 cfs_rq->last_decay = now;
1931 }
Paul Turnerc566e8e2012-10-04 13:18:30 +02001932
1933 __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
Paul Turner9d85f212012-10-04 13:18:29 +02001934}
Ben Segall18bf2802012-10-04 12:51:20 +02001935
1936static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
1937{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001938 __update_entity_runnable_avg(rq_clock_task(rq), &rq->avg, runnable);
Paul Turnerbb17f652012-10-04 13:18:31 +02001939 __update_tg_runnable_avg(&rq->avg, &rq->cfs);
Ben Segall18bf2802012-10-04 12:51:20 +02001940}
Paul Turner2dac7542012-10-04 13:18:30 +02001941
1942/* Add the load generated by se into cfs_rq's child load-average */
1943static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02001944 struct sched_entity *se,
1945 int wakeup)
Paul Turner2dac7542012-10-04 13:18:30 +02001946{
Paul Turneraff3e492012-10-04 13:18:30 +02001947 /*
1948 * We track migrations using entity decay_count <= 0, on a wake-up
1949 * migration we use a negative decay count to track the remote decays
1950 * accumulated while sleeping.
Alex Shia75cdaa2013-06-20 10:18:47 +08001951 *
1952 * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
1953 * are seen by enqueue_entity_load_avg() as a migration with an already
1954 * constructed load_avg_contrib.
Paul Turneraff3e492012-10-04 13:18:30 +02001955 */
1956 if (unlikely(se->avg.decay_count <= 0)) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02001957 se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
Paul Turneraff3e492012-10-04 13:18:30 +02001958 if (se->avg.decay_count) {
1959 /*
1960 * In a wake-up migration we have to approximate the
1961 * time sleeping. This is because we can't synchronize
1962 * clock_task between the two cpus, and it is not
1963 * guaranteed to be read-safe. Instead, we can
1964 * approximate this using our carried decays, which are
1965 * explicitly atomically readable.
1966 */
1967 se->avg.last_runnable_update -= (-se->avg.decay_count)
1968 << 20;
1969 update_entity_load_avg(se, 0);
1970 /* Indicate that we're now synchronized and on-rq */
1971 se->avg.decay_count = 0;
1972 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001973 wakeup = 0;
1974 } else {
Alex Shi282cf492013-06-20 10:18:48 +08001975 /*
1976 * Task re-woke on same cpu (or else migrate_task_rq_fair()
1977 * would have made count negative); we must be careful to avoid
1978 * double-accounting blocked time after synchronizing decays.
1979 */
1980 se->avg.last_runnable_update += __synchronize_entity_decay(se)
1981 << 20;
Paul Turner9ee474f2012-10-04 13:18:30 +02001982 }
1983
Paul Turneraff3e492012-10-04 13:18:30 +02001984 /* migrated tasks did not contribute to our blocked load */
1985 if (wakeup) {
Paul Turner9ee474f2012-10-04 13:18:30 +02001986 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turneraff3e492012-10-04 13:18:30 +02001987 update_entity_load_avg(se, 0);
1988 }
Paul Turner9ee474f2012-10-04 13:18:30 +02001989
Paul Turner2dac7542012-10-04 13:18:30 +02001990 cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
Paul Turneraff3e492012-10-04 13:18:30 +02001991 /* we force update consideration on load-balancer moves */
1992 update_cfs_rq_blocked_load(cfs_rq, !wakeup);
Paul Turner2dac7542012-10-04 13:18:30 +02001993}
1994
Paul Turner9ee474f2012-10-04 13:18:30 +02001995/*
1996 * Remove se's load from this cfs_rq child load-average, if the entity is
1997 * transitioning to a blocked state we track its projected decay using
1998 * blocked_load_avg.
1999 */
Paul Turner2dac7542012-10-04 13:18:30 +02002000static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002001 struct sched_entity *se,
2002 int sleep)
Paul Turner2dac7542012-10-04 13:18:30 +02002003{
Paul Turner9ee474f2012-10-04 13:18:30 +02002004 update_entity_load_avg(se, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002005 /* we force update consideration on load-balancer moves */
2006 update_cfs_rq_blocked_load(cfs_rq, !sleep);
Paul Turner9ee474f2012-10-04 13:18:30 +02002007
Paul Turner2dac7542012-10-04 13:18:30 +02002008 cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
Paul Turner9ee474f2012-10-04 13:18:30 +02002009 if (sleep) {
2010 cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
2011 se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
2012 } /* migrations, e.g. sleep=0 leave decay_count == 0 */
Paul Turner2dac7542012-10-04 13:18:30 +02002013}
Vincent Guittot642dbc32013-04-18 18:34:26 +02002014
2015/*
2016 * Update the rq's load with the elapsed running time before entering
2017 * idle. if the last scheduled task is not a CFS task, idle_enter will
2018 * be the only way to update the runnable statistic.
2019 */
2020void idle_enter_fair(struct rq *this_rq)
2021{
2022 update_rq_runnable_avg(this_rq, 1);
2023}
2024
2025/*
2026 * Update the rq's load with the elapsed idle time before a task is
2027 * scheduled. if the newly scheduled task is not a CFS task, idle_exit will
2028 * be the only way to update the runnable statistic.
2029 */
2030void idle_exit_fair(struct rq *this_rq)
2031{
2032 update_rq_runnable_avg(this_rq, 0);
2033}
2034
Paul Turner9d85f212012-10-04 13:18:29 +02002035#else
Paul Turner9ee474f2012-10-04 13:18:30 +02002036static inline void update_entity_load_avg(struct sched_entity *se,
2037 int update_cfs_rq) {}
Ben Segall18bf2802012-10-04 12:51:20 +02002038static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002039static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002040 struct sched_entity *se,
2041 int wakeup) {}
Paul Turner2dac7542012-10-04 13:18:30 +02002042static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
Paul Turner9ee474f2012-10-04 13:18:30 +02002043 struct sched_entity *se,
2044 int sleep) {}
Paul Turneraff3e492012-10-04 13:18:30 +02002045static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
2046 int force_update) {}
Paul Turner9d85f212012-10-04 13:18:29 +02002047#endif
2048
Ingo Molnar2396af62007-08-09 11:16:48 +02002049static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002050{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002051#ifdef CONFIG_SCHEDSTATS
Peter Zijlstrae4143142009-07-23 20:13:26 +02002052 struct task_struct *tsk = NULL;
2053
2054 if (entity_is_task(se))
2055 tsk = task_of(se);
2056
Lucas De Marchi41acab82010-03-10 23:37:45 -03002057 if (se->statistics.sleep_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002058 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.sleep_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002059
2060 if ((s64)delta < 0)
2061 delta = 0;
2062
Lucas De Marchi41acab82010-03-10 23:37:45 -03002063 if (unlikely(delta > se->statistics.sleep_max))
2064 se->statistics.sleep_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002065
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002066 se->statistics.sleep_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002067 se->statistics.sum_sleep_runtime += delta;
Arjan van de Ven97455122008-01-25 21:08:34 +01002068
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002069 if (tsk) {
Peter Zijlstrae4143142009-07-23 20:13:26 +02002070 account_scheduler_latency(tsk, delta >> 10, 1);
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002071 trace_sched_stat_sleep(tsk, delta);
2072 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002073 }
Lucas De Marchi41acab82010-03-10 23:37:45 -03002074 if (se->statistics.block_start) {
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002075 u64 delta = rq_clock(rq_of(cfs_rq)) - se->statistics.block_start;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002076
2077 if ((s64)delta < 0)
2078 delta = 0;
2079
Lucas De Marchi41acab82010-03-10 23:37:45 -03002080 if (unlikely(delta > se->statistics.block_max))
2081 se->statistics.block_max = delta;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002082
Peter Zijlstra8c79a042012-01-30 14:51:37 +01002083 se->statistics.block_start = 0;
Lucas De Marchi41acab82010-03-10 23:37:45 -03002084 se->statistics.sum_sleep_runtime += delta;
Ingo Molnar30084fb2007-10-02 14:13:08 +02002085
Peter Zijlstrae4143142009-07-23 20:13:26 +02002086 if (tsk) {
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002087 if (tsk->in_iowait) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002088 se->statistics.iowait_sum += delta;
2089 se->statistics.iowait_count++;
Peter Zijlstra768d0c22009-07-23 20:13:26 +02002090 trace_sched_stat_iowait(tsk, delta);
Arjan van de Ven8f0dfc32009-07-20 11:26:58 -07002091 }
2092
Andrew Vaginb781a602011-11-28 12:03:35 +03002093 trace_sched_stat_blocked(tsk, delta);
2094
Peter Zijlstrae4143142009-07-23 20:13:26 +02002095 /*
2096 * Blocking time is in units of nanosecs, so shift by
2097 * 20 to get a milliseconds-range estimation of the
2098 * amount of time that the task spent sleeping:
2099 */
2100 if (unlikely(prof_on == SLEEP_PROFILING)) {
2101 profile_hits(SLEEP_PROFILING,
2102 (void *)get_wchan(tsk),
2103 delta >> 20);
2104 }
2105 account_scheduler_latency(tsk, delta >> 10, 0);
Ingo Molnar30084fb2007-10-02 14:13:08 +02002106 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002107 }
2108#endif
2109}
2110
Peter Zijlstraddc97292007-10-15 17:00:10 +02002111static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
2112{
2113#ifdef CONFIG_SCHED_DEBUG
2114 s64 d = se->vruntime - cfs_rq->min_vruntime;
2115
2116 if (d < 0)
2117 d = -d;
2118
2119 if (d > 3*sysctl_sched_latency)
2120 schedstat_inc(cfs_rq, nr_spread_over);
2121#endif
2122}
2123
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002124static void
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002125place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
2126{
Peter Zijlstra1af5f732008-10-24 11:06:13 +02002127 u64 vruntime = cfs_rq->min_vruntime;
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002128
Peter Zijlstra2cb86002007-11-09 22:39:37 +01002129 /*
2130 * The 'current' period is already promised to the current tasks,
2131 * however the extra weight of the new task will slow them down a
2132 * little, place the new task so that it fits in the slot that
2133 * stays open at the end.
2134 */
Peter Zijlstra94dfb5e2007-10-15 17:00:05 +02002135 if (initial && sched_feat(START_DEBIT))
Peter Zijlstraf9c0b092008-10-17 19:27:04 +02002136 vruntime += sched_vslice(cfs_rq, se);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002137
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002138 /* sleeps up to a single latency don't count. */
Mike Galbraith5ca98802010-03-11 17:17:17 +01002139 if (!initial) {
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002140 unsigned long thresh = sysctl_sched_latency;
Peter Zijlstraa7be37a2008-06-27 13:41:11 +02002141
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002142 /*
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002143 * Halve their sleep time's effect, to allow
2144 * for a gentler effect of sleepers:
2145 */
2146 if (sched_feat(GENTLE_FAIR_SLEEPERS))
2147 thresh >>= 1;
Ingo Molnar51e03042009-09-16 08:54:45 +02002148
Mike Galbraitha2e7a7e2009-09-18 09:19:25 +02002149 vruntime -= thresh;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002150 }
2151
Mike Galbraithb5d9d732009-09-08 11:12:28 +02002152 /* ensure we never gain time by being placed backwards. */
Viresh Kumar16c8f1c2012-11-08 13:33:46 +05302153 se->vruntime = max_vruntime(se->vruntime, vruntime);
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002154}
2155
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002156static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
2157
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002158static void
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002159enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002160{
2161 /*
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002162 * Update the normalized vruntime before updating min_vruntime
Kamalesh Babulal0fc576d2013-06-27 11:24:18 +05302163 * through calling update_curr().
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002164 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002165 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002166 se->vruntime += cfs_rq->min_vruntime;
2167
2168 /*
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002169 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002170 */
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002171 update_curr(cfs_rq);
Paul Turnerf269ae02012-10-04 13:18:31 +02002172 enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002173 account_entity_enqueue(cfs_rq, se);
2174 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002175
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002176 if (flags & ENQUEUE_WAKEUP) {
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02002177 place_entity(cfs_rq, se, 0);
Ingo Molnar2396af62007-08-09 11:16:48 +02002178 enqueue_sleeper(cfs_rq, se);
Ingo Molnare9acbff2007-10-15 17:00:04 +02002179 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002180
Ingo Molnard2417e52007-08-09 11:16:47 +02002181 update_stats_enqueue(cfs_rq, se);
Peter Zijlstraddc97292007-10-15 17:00:10 +02002182 check_spread(cfs_rq, se);
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002183 if (se != cfs_rq->curr)
2184 __enqueue_entity(cfs_rq, se);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08002185 se->on_rq = 1;
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002186
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002187 if (cfs_rq->nr_running == 1) {
Peter Zijlstra3d4b47b2010-11-15 15:47:01 -08002188 list_add_leaf_cfs_rq(cfs_rq);
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002189 check_enqueue_throttle(cfs_rq);
2190 }
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002191}
2192
Rik van Riel2c13c9192011-02-01 09:48:37 -05002193static void __clear_buddies_last(struct sched_entity *se)
Peter Zijlstra2002c692008-11-11 11:52:33 +01002194{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002195 for_each_sched_entity(se) {
2196 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2197 if (cfs_rq->last == se)
2198 cfs_rq->last = NULL;
2199 else
2200 break;
2201 }
2202}
Peter Zijlstra2002c692008-11-11 11:52:33 +01002203
Rik van Riel2c13c9192011-02-01 09:48:37 -05002204static void __clear_buddies_next(struct sched_entity *se)
2205{
2206 for_each_sched_entity(se) {
2207 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2208 if (cfs_rq->next == se)
2209 cfs_rq->next = NULL;
2210 else
2211 break;
2212 }
Peter Zijlstra2002c692008-11-11 11:52:33 +01002213}
2214
Rik van Rielac53db52011-02-01 09:51:03 -05002215static void __clear_buddies_skip(struct sched_entity *se)
2216{
2217 for_each_sched_entity(se) {
2218 struct cfs_rq *cfs_rq = cfs_rq_of(se);
2219 if (cfs_rq->skip == se)
2220 cfs_rq->skip = NULL;
2221 else
2222 break;
2223 }
2224}
2225
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002226static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
2227{
Rik van Riel2c13c9192011-02-01 09:48:37 -05002228 if (cfs_rq->last == se)
2229 __clear_buddies_last(se);
2230
2231 if (cfs_rq->next == se)
2232 __clear_buddies_next(se);
Rik van Rielac53db52011-02-01 09:51:03 -05002233
2234 if (cfs_rq->skip == se)
2235 __clear_buddies_skip(se);
Peter Zijlstraa571bbe2009-01-28 14:51:40 +01002236}
2237
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002238static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
Paul Turnerd8b49862011-07-21 09:43:41 -07002239
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002240static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002241dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002242{
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002243 /*
2244 * Update run-time statistics of the 'current'.
2245 */
2246 update_curr(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002247 dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
Dmitry Adamushkoa2a2d682007-10-15 17:00:13 +02002248
Ingo Molnar19b6a2e2007-08-09 11:16:48 +02002249 update_stats_dequeue(cfs_rq, se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002250 if (flags & DEQUEUE_SLEEP) {
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002251#ifdef CONFIG_SCHEDSTATS
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002252 if (entity_is_task(se)) {
2253 struct task_struct *tsk = task_of(se);
2254
2255 if (tsk->state & TASK_INTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002256 se->statistics.sleep_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002257 if (tsk->state & TASK_UNINTERRUPTIBLE)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002258 se->statistics.block_start = rq_clock(rq_of(cfs_rq));
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002259 }
Dmitry Adamushkodb36cc72007-10-15 17:00:06 +02002260#endif
Peter Zijlstra67e9fb22007-10-15 17:00:10 +02002261 }
2262
Peter Zijlstra2002c692008-11-11 11:52:33 +01002263 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002264
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002265 if (se != cfs_rq->curr)
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002266 __dequeue_entity(cfs_rq, se);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002267 se->on_rq = 0;
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002268 account_entity_dequeue(cfs_rq, se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002269
2270 /*
2271 * Normalize the entity after updating the min_vruntime because the
2272 * update can refer to the ->curr item and we need to reflect this
2273 * movement in our normalized position.
2274 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01002275 if (!(flags & DEQUEUE_SLEEP))
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01002276 se->vruntime -= cfs_rq->min_vruntime;
Peter Zijlstra1e876232011-05-17 16:21:10 -07002277
Paul Turnerd8b49862011-07-21 09:43:41 -07002278 /* return excess runtime on last dequeue */
2279 return_cfs_rq_runtime(cfs_rq);
2280
Peter Zijlstra1e876232011-05-17 16:21:10 -07002281 update_min_vruntime(cfs_rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08002282 update_cfs_shares(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002283}
2284
2285/*
2286 * Preempt the current task with a newly woken task if needed:
2287 */
Peter Zijlstra7c92e542007-09-05 14:32:49 +02002288static void
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002289check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002290{
Peter Zijlstra11697832007-09-05 14:32:49 +02002291 unsigned long ideal_runtime, delta_exec;
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002292 struct sched_entity *se;
2293 s64 delta;
Peter Zijlstra11697832007-09-05 14:32:49 +02002294
Peter Zijlstra6d0f0eb2007-10-15 17:00:05 +02002295 ideal_runtime = sched_slice(cfs_rq, curr);
Peter Zijlstra11697832007-09-05 14:32:49 +02002296 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002297 if (delta_exec > ideal_runtime) {
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002298 resched_task(rq_of(cfs_rq)->curr);
Mike Galbraitha9f3e2b2009-01-28 14:51:39 +01002299 /*
2300 * The current task ran long enough, ensure it doesn't get
2301 * re-elected due to buddy favours.
2302 */
2303 clear_buddies(cfs_rq, curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002304 return;
2305 }
2306
2307 /*
2308 * Ensure that a task that missed wakeup preemption by a
2309 * narrow margin doesn't have to wait for a full slice.
2310 * This also mitigates buddy induced latencies under load.
2311 */
Mike Galbraithf685cea2009-10-23 23:09:22 +02002312 if (delta_exec < sysctl_sched_min_granularity)
2313 return;
2314
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002315 se = __pick_first_entity(cfs_rq);
2316 delta = curr->vruntime - se->vruntime;
Mike Galbraithf685cea2009-10-23 23:09:22 +02002317
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002318 if (delta < 0)
2319 return;
Mike Galbraithd7d82942011-01-05 05:41:17 +01002320
Wang Xingchaof4cfb332011-09-16 13:35:52 -04002321 if (delta > ideal_runtime)
2322 resched_task(rq_of(cfs_rq)->curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002323}
2324
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002325static void
Ingo Molnar8494f412007-08-09 11:16:48 +02002326set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002327{
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02002328 /* 'current' is not kept within the tree. */
2329 if (se->on_rq) {
2330 /*
2331 * Any task has to be enqueued before it get to execute on
2332 * a CPU. So account for the time it spent waiting on the
2333 * runqueue.
2334 */
2335 update_stats_wait_end(cfs_rq, se);
2336 __dequeue_entity(cfs_rq, se);
2337 }
2338
Ingo Molnar79303e92007-08-09 11:16:47 +02002339 update_stats_curr_start(cfs_rq, se);
Ingo Molnar429d43b2007-10-15 17:00:03 +02002340 cfs_rq->curr = se;
Ingo Molnareba1ed42007-10-15 17:00:02 +02002341#ifdef CONFIG_SCHEDSTATS
2342 /*
2343 * Track our maximum slice length, if the CPU's load is at
2344 * least twice that of our own weight (i.e. dont track it
2345 * when there are only lesser-weight tasks around):
2346 */
Dmitry Adamushko495eca42007-10-15 17:00:06 +02002347 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03002348 se->statistics.slice_max = max(se->statistics.slice_max,
Ingo Molnareba1ed42007-10-15 17:00:02 +02002349 se->sum_exec_runtime - se->prev_sum_exec_runtime);
2350 }
2351#endif
Peter Zijlstra4a55b452007-09-05 14:32:49 +02002352 se->prev_sum_exec_runtime = se->sum_exec_runtime;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002353}
2354
Peter Zijlstra3f3a4902008-10-24 11:06:16 +02002355static int
2356wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
2357
Rik van Rielac53db52011-02-01 09:51:03 -05002358/*
2359 * Pick the next process, keeping these things in mind, in this order:
2360 * 1) keep things fair between processes/task groups
2361 * 2) pick the "next" process, since someone really wants that to run
2362 * 3) pick the "last" process, for cache locality
2363 * 4) do not run the "skip" process, if something else is available
2364 */
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002365static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002366{
Rik van Rielac53db52011-02-01 09:51:03 -05002367 struct sched_entity *se = __pick_first_entity(cfs_rq);
Mike Galbraithf685cea2009-10-23 23:09:22 +02002368 struct sched_entity *left = se;
Peter Zijlstraf4b67552008-11-04 21:25:07 +01002369
Rik van Rielac53db52011-02-01 09:51:03 -05002370 /*
2371 * Avoid running the skip buddy, if running something else can
2372 * be done without getting too unfair.
2373 */
2374 if (cfs_rq->skip == se) {
2375 struct sched_entity *second = __pick_next_entity(se);
2376 if (second && wakeup_preempt_entity(second, left) < 1)
2377 se = second;
2378 }
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002379
Mike Galbraithf685cea2009-10-23 23:09:22 +02002380 /*
2381 * Prefer last buddy, try to return the CPU to a preempted task.
2382 */
2383 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
2384 se = cfs_rq->last;
2385
Rik van Rielac53db52011-02-01 09:51:03 -05002386 /*
2387 * Someone really wants this to run. If it's not unfair, run it.
2388 */
2389 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
2390 se = cfs_rq->next;
2391
Mike Galbraithf685cea2009-10-23 23:09:22 +02002392 clear_buddies(cfs_rq, se);
Peter Zijlstra47932412008-11-04 21:25:09 +01002393
2394 return se;
Peter Zijlstraaa2ac252008-03-14 21:12:12 +01002395}
2396
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002397static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
2398
Ingo Molnarab6cde22007-08-09 11:16:48 +02002399static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002400{
2401 /*
2402 * If still on the runqueue then deactivate_task()
2403 * was not called and update_curr() has to be done:
2404 */
2405 if (prev->on_rq)
Ingo Molnarb7cc0892007-08-09 11:16:47 +02002406 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002407
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002408 /* throttle cfs_rqs exceeding runtime */
2409 check_cfs_rq_runtime(cfs_rq);
2410
Peter Zijlstraddc97292007-10-15 17:00:10 +02002411 check_spread(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002412 if (prev->on_rq) {
Ingo Molnar5870db52007-08-09 11:16:47 +02002413 update_stats_wait_start(cfs_rq, prev);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002414 /* Put 'current' back into the tree. */
2415 __enqueue_entity(cfs_rq, prev);
Paul Turner9d85f212012-10-04 13:18:29 +02002416 /* in !on_rq case, update occurred at dequeue */
Paul Turner9ee474f2012-10-04 13:18:30 +02002417 update_entity_load_avg(prev, 1);
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002418 }
Ingo Molnar429d43b2007-10-15 17:00:03 +02002419 cfs_rq->curr = NULL;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002420}
2421
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002422static void
2423entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002424{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002425 /*
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002426 * Update run-time statistics of the 'current'.
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002427 */
Dmitry Adamushko30cfdcf2007-10-15 17:00:07 +02002428 update_curr(cfs_rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002429
Paul Turner43365bd2010-12-15 19:10:17 -08002430 /*
Paul Turner9d85f212012-10-04 13:18:29 +02002431 * Ensure that runnable average is periodically updated.
2432 */
Paul Turner9ee474f2012-10-04 13:18:30 +02002433 update_entity_load_avg(curr, 1);
Paul Turneraff3e492012-10-04 13:18:30 +02002434 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstrabf0bd942013-07-26 23:48:42 +02002435 update_cfs_shares(cfs_rq);
Paul Turner9d85f212012-10-04 13:18:29 +02002436
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002437#ifdef CONFIG_SCHED_HRTICK
2438 /*
2439 * queued ticks are scheduled to match the slice, so don't bother
2440 * validating it and just reschedule.
2441 */
Harvey Harrison983ed7a2008-04-24 18:17:55 -07002442 if (queued) {
2443 resched_task(rq_of(cfs_rq)->curr);
2444 return;
2445 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01002446 /*
2447 * don't let the period tick interfere with the hrtick preemption
2448 */
2449 if (!sched_feat(DOUBLE_TICK) &&
2450 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
2451 return;
2452#endif
2453
Yong Zhang2c2efae2011-07-29 16:20:33 +08002454 if (cfs_rq->nr_running > 1)
Ingo Molnar2e09bf52007-10-15 17:00:05 +02002455 check_preempt_tick(cfs_rq, curr);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02002456}
2457
Paul Turnerab84d312011-07-21 09:43:28 -07002458
2459/**************************************************
2460 * CFS bandwidth control machinery
2461 */
2462
2463#ifdef CONFIG_CFS_BANDWIDTH
Peter Zijlstra029632f2011-10-25 10:00:11 +02002464
2465#ifdef HAVE_JUMP_LABEL
Ingo Molnarc5905af2012-02-24 08:31:31 +01002466static struct static_key __cfs_bandwidth_used;
Peter Zijlstra029632f2011-10-25 10:00:11 +02002467
2468static inline bool cfs_bandwidth_used(void)
2469{
Ingo Molnarc5905af2012-02-24 08:31:31 +01002470 return static_key_false(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002471}
2472
2473void account_cfs_bandwidth_used(int enabled, int was_enabled)
2474{
2475 /* only need to count groups transitioning between enabled/!enabled */
2476 if (enabled && !was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002477 static_key_slow_inc(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002478 else if (!enabled && was_enabled)
Ingo Molnarc5905af2012-02-24 08:31:31 +01002479 static_key_slow_dec(&__cfs_bandwidth_used);
Peter Zijlstra029632f2011-10-25 10:00:11 +02002480}
2481#else /* HAVE_JUMP_LABEL */
2482static bool cfs_bandwidth_used(void)
2483{
2484 return true;
2485}
2486
2487void account_cfs_bandwidth_used(int enabled, int was_enabled) {}
2488#endif /* HAVE_JUMP_LABEL */
2489
Paul Turnerab84d312011-07-21 09:43:28 -07002490/*
2491 * default period for cfs group bandwidth.
2492 * default: 0.1s, units: nanoseconds
2493 */
2494static inline u64 default_cfs_period(void)
2495{
2496 return 100000000ULL;
2497}
Paul Turnerec12cb72011-07-21 09:43:30 -07002498
2499static inline u64 sched_cfs_bandwidth_slice(void)
2500{
2501 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
2502}
2503
Paul Turnera9cf55b2011-07-21 09:43:32 -07002504/*
2505 * Replenish runtime according to assigned quota and update expiration time.
2506 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
2507 * additional synchronization around rq->lock.
2508 *
2509 * requires cfs_b->lock
2510 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02002511void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
Paul Turnera9cf55b2011-07-21 09:43:32 -07002512{
2513 u64 now;
2514
2515 if (cfs_b->quota == RUNTIME_INF)
2516 return;
2517
2518 now = sched_clock_cpu(smp_processor_id());
2519 cfs_b->runtime = cfs_b->quota;
2520 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
2521}
2522
Peter Zijlstra029632f2011-10-25 10:00:11 +02002523static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
2524{
2525 return &tg->cfs_bandwidth;
2526}
2527
Paul Turnerf1b17282012-10-04 13:18:31 +02002528/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
2529static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
2530{
2531 if (unlikely(cfs_rq->throttle_count))
2532 return cfs_rq->throttled_clock_task;
2533
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002534 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
Paul Turnerf1b17282012-10-04 13:18:31 +02002535}
2536
Paul Turner85dac902011-07-21 09:43:33 -07002537/* returns 0 on failure to allocate runtime */
2538static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
Paul Turnerec12cb72011-07-21 09:43:30 -07002539{
2540 struct task_group *tg = cfs_rq->tg;
2541 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002542 u64 amount = 0, min_amount, expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002543
2544 /* note: this is a positive sum as runtime_remaining <= 0 */
2545 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
2546
2547 raw_spin_lock(&cfs_b->lock);
2548 if (cfs_b->quota == RUNTIME_INF)
2549 amount = min_amount;
Paul Turner58088ad2011-07-21 09:43:31 -07002550 else {
Paul Turnera9cf55b2011-07-21 09:43:32 -07002551 /*
2552 * If the bandwidth pool has become inactive, then at least one
2553 * period must have elapsed since the last consumption.
2554 * Refresh the global state and ensure bandwidth timer becomes
2555 * active.
2556 */
2557 if (!cfs_b->timer_active) {
2558 __refill_cfs_bandwidth_runtime(cfs_b);
Paul Turner58088ad2011-07-21 09:43:31 -07002559 __start_cfs_bandwidth(cfs_b);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002560 }
Paul Turner58088ad2011-07-21 09:43:31 -07002561
2562 if (cfs_b->runtime > 0) {
2563 amount = min(cfs_b->runtime, min_amount);
2564 cfs_b->runtime -= amount;
2565 cfs_b->idle = 0;
2566 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002567 }
Paul Turnera9cf55b2011-07-21 09:43:32 -07002568 expires = cfs_b->runtime_expires;
Paul Turnerec12cb72011-07-21 09:43:30 -07002569 raw_spin_unlock(&cfs_b->lock);
2570
2571 cfs_rq->runtime_remaining += amount;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002572 /*
2573 * we may have advanced our local expiration to account for allowed
2574 * spread between our sched_clock and the one on which runtime was
2575 * issued.
2576 */
2577 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
2578 cfs_rq->runtime_expires = expires;
Paul Turner85dac902011-07-21 09:43:33 -07002579
2580 return cfs_rq->runtime_remaining > 0;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002581}
2582
2583/*
2584 * Note: This depends on the synchronization provided by sched_clock and the
2585 * fact that rq->clock snapshots this value.
2586 */
2587static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2588{
2589 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
Paul Turnera9cf55b2011-07-21 09:43:32 -07002590
2591 /* if the deadline is ahead of our clock, nothing to do */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002592 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
Paul Turnera9cf55b2011-07-21 09:43:32 -07002593 return;
2594
2595 if (cfs_rq->runtime_remaining < 0)
2596 return;
2597
2598 /*
2599 * If the local deadline has passed we have to consider the
2600 * possibility that our sched_clock is 'fast' and the global deadline
2601 * has not truly expired.
2602 *
2603 * Fortunately we can check determine whether this the case by checking
2604 * whether the global deadline has advanced.
2605 */
2606
2607 if ((s64)(cfs_rq->runtime_expires - cfs_b->runtime_expires) >= 0) {
2608 /* extend local deadline, drift is bounded above by 2 ticks */
2609 cfs_rq->runtime_expires += TICK_NSEC;
2610 } else {
2611 /* global deadline is ahead, expiration has passed */
2612 cfs_rq->runtime_remaining = 0;
2613 }
Paul Turnerec12cb72011-07-21 09:43:30 -07002614}
2615
2616static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
2617 unsigned long delta_exec)
2618{
Paul Turnera9cf55b2011-07-21 09:43:32 -07002619 /* dock delta_exec before expiring quota (as it could span periods) */
Paul Turnerec12cb72011-07-21 09:43:30 -07002620 cfs_rq->runtime_remaining -= delta_exec;
Paul Turnera9cf55b2011-07-21 09:43:32 -07002621 expire_cfs_rq_runtime(cfs_rq);
2622
2623 if (likely(cfs_rq->runtime_remaining > 0))
Paul Turnerec12cb72011-07-21 09:43:30 -07002624 return;
2625
Paul Turner85dac902011-07-21 09:43:33 -07002626 /*
2627 * if we're unable to extend our runtime we resched so that the active
2628 * hierarchy can be throttled
2629 */
2630 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
2631 resched_task(rq_of(cfs_rq)->curr);
Paul Turnerec12cb72011-07-21 09:43:30 -07002632}
2633
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07002634static __always_inline
2635void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, unsigned long delta_exec)
Paul Turnerec12cb72011-07-21 09:43:30 -07002636{
Paul Turner56f570e2011-11-07 20:26:33 -08002637 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
Paul Turnerec12cb72011-07-21 09:43:30 -07002638 return;
2639
2640 __account_cfs_rq_runtime(cfs_rq, delta_exec);
2641}
2642
Paul Turner85dac902011-07-21 09:43:33 -07002643static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
2644{
Paul Turner56f570e2011-11-07 20:26:33 -08002645 return cfs_bandwidth_used() && cfs_rq->throttled;
Paul Turner85dac902011-07-21 09:43:33 -07002646}
2647
Paul Turner64660c82011-07-21 09:43:36 -07002648/* check whether cfs_rq, or any parent, is throttled */
2649static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
2650{
Paul Turner56f570e2011-11-07 20:26:33 -08002651 return cfs_bandwidth_used() && cfs_rq->throttle_count;
Paul Turner64660c82011-07-21 09:43:36 -07002652}
2653
2654/*
2655 * Ensure that neither of the group entities corresponding to src_cpu or
2656 * dest_cpu are members of a throttled hierarchy when performing group
2657 * load-balance operations.
2658 */
2659static inline int throttled_lb_pair(struct task_group *tg,
2660 int src_cpu, int dest_cpu)
2661{
2662 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
2663
2664 src_cfs_rq = tg->cfs_rq[src_cpu];
2665 dest_cfs_rq = tg->cfs_rq[dest_cpu];
2666
2667 return throttled_hierarchy(src_cfs_rq) ||
2668 throttled_hierarchy(dest_cfs_rq);
2669}
2670
2671/* updated child weight may affect parent so we have to do this bottom up */
2672static int tg_unthrottle_up(struct task_group *tg, void *data)
2673{
2674 struct rq *rq = data;
2675 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2676
2677 cfs_rq->throttle_count--;
2678#ifdef CONFIG_SMP
2679 if (!cfs_rq->throttle_count) {
Paul Turnerf1b17282012-10-04 13:18:31 +02002680 /* adjust cfs_rq_clock_task() */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002681 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
Paul Turnerf1b17282012-10-04 13:18:31 +02002682 cfs_rq->throttled_clock_task;
Paul Turner64660c82011-07-21 09:43:36 -07002683 }
2684#endif
2685
2686 return 0;
2687}
2688
2689static int tg_throttle_down(struct task_group *tg, void *data)
2690{
2691 struct rq *rq = data;
2692 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
2693
Paul Turner82958362012-10-04 13:18:31 +02002694 /* group is entering throttled state, stop time */
2695 if (!cfs_rq->throttle_count)
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002696 cfs_rq->throttled_clock_task = rq_clock_task(rq);
Paul Turner64660c82011-07-21 09:43:36 -07002697 cfs_rq->throttle_count++;
2698
2699 return 0;
2700}
2701
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002702static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner85dac902011-07-21 09:43:33 -07002703{
2704 struct rq *rq = rq_of(cfs_rq);
2705 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2706 struct sched_entity *se;
2707 long task_delta, dequeue = 1;
2708
2709 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
2710
Paul Turnerf1b17282012-10-04 13:18:31 +02002711 /* freeze hierarchy runnable averages while throttled */
Paul Turner64660c82011-07-21 09:43:36 -07002712 rcu_read_lock();
2713 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
2714 rcu_read_unlock();
Paul Turner85dac902011-07-21 09:43:33 -07002715
2716 task_delta = cfs_rq->h_nr_running;
2717 for_each_sched_entity(se) {
2718 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
2719 /* throttled entity or throttle-on-deactivate */
2720 if (!se->on_rq)
2721 break;
2722
2723 if (dequeue)
2724 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
2725 qcfs_rq->h_nr_running -= task_delta;
2726
2727 if (qcfs_rq->load.weight)
2728 dequeue = 0;
2729 }
2730
2731 if (!se)
2732 rq->nr_running -= task_delta;
2733
2734 cfs_rq->throttled = 1;
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002735 cfs_rq->throttled_clock = rq_clock(rq);
Paul Turner85dac902011-07-21 09:43:33 -07002736 raw_spin_lock(&cfs_b->lock);
2737 list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
2738 raw_spin_unlock(&cfs_b->lock);
2739}
2740
Peter Zijlstra029632f2011-10-25 10:00:11 +02002741void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
Paul Turner671fd9d2011-07-21 09:43:34 -07002742{
2743 struct rq *rq = rq_of(cfs_rq);
2744 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2745 struct sched_entity *se;
2746 int enqueue = 1;
2747 long task_delta;
2748
Michael Wang22b958d2013-06-04 14:23:39 +08002749 se = cfs_rq->tg->se[cpu_of(rq)];
Paul Turner671fd9d2011-07-21 09:43:34 -07002750
2751 cfs_rq->throttled = 0;
Frederic Weisbecker1a55af22013-04-12 01:51:01 +02002752
2753 update_rq_clock(rq);
2754
Paul Turner671fd9d2011-07-21 09:43:34 -07002755 raw_spin_lock(&cfs_b->lock);
Frederic Weisbecker78becc22013-04-12 01:51:02 +02002756 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
Paul Turner671fd9d2011-07-21 09:43:34 -07002757 list_del_rcu(&cfs_rq->throttled_list);
2758 raw_spin_unlock(&cfs_b->lock);
2759
Paul Turner64660c82011-07-21 09:43:36 -07002760 /* update hierarchical throttle state */
2761 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
2762
Paul Turner671fd9d2011-07-21 09:43:34 -07002763 if (!cfs_rq->load.weight)
2764 return;
2765
2766 task_delta = cfs_rq->h_nr_running;
2767 for_each_sched_entity(se) {
2768 if (se->on_rq)
2769 enqueue = 0;
2770
2771 cfs_rq = cfs_rq_of(se);
2772 if (enqueue)
2773 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
2774 cfs_rq->h_nr_running += task_delta;
2775
2776 if (cfs_rq_throttled(cfs_rq))
2777 break;
2778 }
2779
2780 if (!se)
2781 rq->nr_running += task_delta;
2782
2783 /* determine whether we need to wake up potentially idle cpu */
2784 if (rq->curr == rq->idle && rq->cfs.nr_running)
2785 resched_task(rq->curr);
2786}
2787
2788static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
2789 u64 remaining, u64 expires)
2790{
2791 struct cfs_rq *cfs_rq;
2792 u64 runtime = remaining;
2793
2794 rcu_read_lock();
2795 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
2796 throttled_list) {
2797 struct rq *rq = rq_of(cfs_rq);
2798
2799 raw_spin_lock(&rq->lock);
2800 if (!cfs_rq_throttled(cfs_rq))
2801 goto next;
2802
2803 runtime = -cfs_rq->runtime_remaining + 1;
2804 if (runtime > remaining)
2805 runtime = remaining;
2806 remaining -= runtime;
2807
2808 cfs_rq->runtime_remaining += runtime;
2809 cfs_rq->runtime_expires = expires;
2810
2811 /* we check whether we're throttled above */
2812 if (cfs_rq->runtime_remaining > 0)
2813 unthrottle_cfs_rq(cfs_rq);
2814
2815next:
2816 raw_spin_unlock(&rq->lock);
2817
2818 if (!remaining)
2819 break;
2820 }
2821 rcu_read_unlock();
2822
2823 return remaining;
2824}
2825
Paul Turner58088ad2011-07-21 09:43:31 -07002826/*
2827 * Responsible for refilling a task_group's bandwidth and unthrottling its
2828 * cfs_rqs as appropriate. If there has been no activity within the last
2829 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
2830 * used to track this state.
2831 */
2832static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
2833{
Paul Turner671fd9d2011-07-21 09:43:34 -07002834 u64 runtime, runtime_expires;
2835 int idle = 1, throttled;
Paul Turner58088ad2011-07-21 09:43:31 -07002836
2837 raw_spin_lock(&cfs_b->lock);
2838 /* no need to continue the timer with no bandwidth constraint */
2839 if (cfs_b->quota == RUNTIME_INF)
2840 goto out_unlock;
2841
Paul Turner671fd9d2011-07-21 09:43:34 -07002842 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2843 /* idle depends on !throttled (for the case of a large deficit) */
2844 idle = cfs_b->idle && !throttled;
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002845 cfs_b->nr_periods += overrun;
Paul Turner671fd9d2011-07-21 09:43:34 -07002846
Paul Turnera9cf55b2011-07-21 09:43:32 -07002847 /* if we're going inactive then everything else can be deferred */
2848 if (idle)
2849 goto out_unlock;
2850
2851 __refill_cfs_bandwidth_runtime(cfs_b);
2852
Paul Turner671fd9d2011-07-21 09:43:34 -07002853 if (!throttled) {
2854 /* mark as potentially idle for the upcoming period */
2855 cfs_b->idle = 1;
2856 goto out_unlock;
2857 }
Paul Turner58088ad2011-07-21 09:43:31 -07002858
Nikhil Raoe8da1b12011-07-21 09:43:40 -07002859 /* account preceding periods in which throttling occurred */
2860 cfs_b->nr_throttled += overrun;
2861
Paul Turner671fd9d2011-07-21 09:43:34 -07002862 /*
2863 * There are throttled entities so we must first use the new bandwidth
2864 * to unthrottle them before making it generally available. This
2865 * ensures that all existing debts will be paid before a new cfs_rq is
2866 * allowed to run.
2867 */
2868 runtime = cfs_b->runtime;
2869 runtime_expires = cfs_b->runtime_expires;
2870 cfs_b->runtime = 0;
2871
2872 /*
2873 * This check is repeated as we are holding onto the new bandwidth
2874 * while we unthrottle. This can potentially race with an unthrottled
2875 * group trying to acquire new bandwidth from the global pool.
2876 */
2877 while (throttled && runtime > 0) {
2878 raw_spin_unlock(&cfs_b->lock);
2879 /* we can't nest cfs_b->lock while distributing bandwidth */
2880 runtime = distribute_cfs_runtime(cfs_b, runtime,
2881 runtime_expires);
2882 raw_spin_lock(&cfs_b->lock);
2883
2884 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
2885 }
2886
2887 /* return (any) remaining runtime */
2888 cfs_b->runtime = runtime;
2889 /*
2890 * While we are ensured activity in the period following an
2891 * unthrottle, this also covers the case in which the new bandwidth is
2892 * insufficient to cover the existing bandwidth deficit. (Forcing the
2893 * timer to remain active while there are any throttled entities.)
2894 */
2895 cfs_b->idle = 0;
Paul Turner58088ad2011-07-21 09:43:31 -07002896out_unlock:
2897 if (idle)
2898 cfs_b->timer_active = 0;
2899 raw_spin_unlock(&cfs_b->lock);
2900
2901 return idle;
2902}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07002903
Paul Turnerd8b49862011-07-21 09:43:41 -07002904/* a cfs_rq won't donate quota below this amount */
2905static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
2906/* minimum remaining period time to redistribute slack quota */
2907static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
2908/* how long we wait to gather additional slack before distributing */
2909static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
2910
2911/* are we near the end of the current quota period? */
2912static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
2913{
2914 struct hrtimer *refresh_timer = &cfs_b->period_timer;
2915 u64 remaining;
2916
2917 /* if the call-back is running a quota refresh is already occurring */
2918 if (hrtimer_callback_running(refresh_timer))
2919 return 1;
2920
2921 /* is a quota refresh about to occur? */
2922 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
2923 if (remaining < min_expire)
2924 return 1;
2925
2926 return 0;
2927}
2928
2929static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
2930{
2931 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
2932
2933 /* if there's a quota refresh soon don't bother with slack */
2934 if (runtime_refresh_within(cfs_b, min_left))
2935 return;
2936
2937 start_bandwidth_timer(&cfs_b->slack_timer,
2938 ns_to_ktime(cfs_bandwidth_slack_period));
2939}
2940
2941/* we know any runtime found here is valid as update_curr() precedes return */
2942static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2943{
2944 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
2945 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
2946
2947 if (slack_runtime <= 0)
2948 return;
2949
2950 raw_spin_lock(&cfs_b->lock);
2951 if (cfs_b->quota != RUNTIME_INF &&
2952 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
2953 cfs_b->runtime += slack_runtime;
2954
2955 /* we are under rq->lock, defer unthrottling using a timer */
2956 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
2957 !list_empty(&cfs_b->throttled_cfs_rq))
2958 start_cfs_slack_bandwidth(cfs_b);
2959 }
2960 raw_spin_unlock(&cfs_b->lock);
2961
2962 /* even if it's not valid for return we don't want to try again */
2963 cfs_rq->runtime_remaining -= slack_runtime;
2964}
2965
2966static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
2967{
Paul Turner56f570e2011-11-07 20:26:33 -08002968 if (!cfs_bandwidth_used())
2969 return;
2970
Paul Turnerfccfdc62011-11-07 20:26:34 -08002971 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
Paul Turnerd8b49862011-07-21 09:43:41 -07002972 return;
2973
2974 __return_cfs_rq_runtime(cfs_rq);
2975}
2976
2977/*
2978 * This is done with a timer (instead of inline with bandwidth return) since
2979 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
2980 */
2981static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
2982{
2983 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
2984 u64 expires;
2985
2986 /* confirm we're still not at a refresh boundary */
2987 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration))
2988 return;
2989
2990 raw_spin_lock(&cfs_b->lock);
2991 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice) {
2992 runtime = cfs_b->runtime;
2993 cfs_b->runtime = 0;
2994 }
2995 expires = cfs_b->runtime_expires;
2996 raw_spin_unlock(&cfs_b->lock);
2997
2998 if (!runtime)
2999 return;
3000
3001 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
3002
3003 raw_spin_lock(&cfs_b->lock);
3004 if (expires == cfs_b->runtime_expires)
3005 cfs_b->runtime = runtime;
3006 raw_spin_unlock(&cfs_b->lock);
3007}
3008
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003009/*
3010 * When a group wakes up we want to make sure that its quota is not already
3011 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
3012 * runtime as update_curr() throttling can not not trigger until it's on-rq.
3013 */
3014static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
3015{
Paul Turner56f570e2011-11-07 20:26:33 -08003016 if (!cfs_bandwidth_used())
3017 return;
3018
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003019 /* an active group must be handled by the update_curr()->put() path */
3020 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
3021 return;
3022
3023 /* ensure the group is not already throttled */
3024 if (cfs_rq_throttled(cfs_rq))
3025 return;
3026
3027 /* update runtime allocation */
3028 account_cfs_rq_runtime(cfs_rq, 0);
3029 if (cfs_rq->runtime_remaining <= 0)
3030 throttle_cfs_rq(cfs_rq);
3031}
3032
3033/* conditionally throttle active cfs_rq's from put_prev_entity() */
3034static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3035{
Paul Turner56f570e2011-11-07 20:26:33 -08003036 if (!cfs_bandwidth_used())
3037 return;
3038
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003039 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
3040 return;
3041
3042 /*
3043 * it's possible for a throttled entity to be forced into a running
3044 * state (e.g. set_curr_task), in this case we're finished.
3045 */
3046 if (cfs_rq_throttled(cfs_rq))
3047 return;
3048
3049 throttle_cfs_rq(cfs_rq);
3050}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003051
Peter Zijlstra029632f2011-10-25 10:00:11 +02003052static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
3053{
3054 struct cfs_bandwidth *cfs_b =
3055 container_of(timer, struct cfs_bandwidth, slack_timer);
3056 do_sched_cfs_slack_timer(cfs_b);
3057
3058 return HRTIMER_NORESTART;
3059}
3060
3061static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
3062{
3063 struct cfs_bandwidth *cfs_b =
3064 container_of(timer, struct cfs_bandwidth, period_timer);
3065 ktime_t now;
3066 int overrun;
3067 int idle = 0;
3068
3069 for (;;) {
3070 now = hrtimer_cb_get_time(timer);
3071 overrun = hrtimer_forward(timer, now, cfs_b->period);
3072
3073 if (!overrun)
3074 break;
3075
3076 idle = do_sched_cfs_period_timer(cfs_b, overrun);
3077 }
3078
3079 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
3080}
3081
3082void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3083{
3084 raw_spin_lock_init(&cfs_b->lock);
3085 cfs_b->runtime = 0;
3086 cfs_b->quota = RUNTIME_INF;
3087 cfs_b->period = ns_to_ktime(default_cfs_period());
3088
3089 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
3090 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3091 cfs_b->period_timer.function = sched_cfs_period_timer;
3092 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3093 cfs_b->slack_timer.function = sched_cfs_slack_timer;
3094}
3095
3096static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
3097{
3098 cfs_rq->runtime_enabled = 0;
3099 INIT_LIST_HEAD(&cfs_rq->throttled_list);
3100}
3101
3102/* requires cfs_b->lock, may release to reprogram timer */
3103void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3104{
3105 /*
3106 * The timer may be active because we're trying to set a new bandwidth
3107 * period or because we're racing with the tear-down path
3108 * (timer_active==0 becomes visible before the hrtimer call-back
3109 * terminates). In either case we ensure that it's re-programmed
3110 */
3111 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
3112 raw_spin_unlock(&cfs_b->lock);
3113 /* ensure cfs_b->lock is available while we wait */
3114 hrtimer_cancel(&cfs_b->period_timer);
3115
3116 raw_spin_lock(&cfs_b->lock);
3117 /* if someone else restarted the timer then we're done */
3118 if (cfs_b->timer_active)
3119 return;
3120 }
3121
3122 cfs_b->timer_active = 1;
3123 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
3124}
3125
3126static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
3127{
3128 hrtimer_cancel(&cfs_b->period_timer);
3129 hrtimer_cancel(&cfs_b->slack_timer);
3130}
3131
Arnd Bergmann38dc3342013-01-25 14:14:22 +00003132static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
Peter Zijlstra029632f2011-10-25 10:00:11 +02003133{
3134 struct cfs_rq *cfs_rq;
3135
3136 for_each_leaf_cfs_rq(rq, cfs_rq) {
3137 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3138
3139 if (!cfs_rq->runtime_enabled)
3140 continue;
3141
3142 /*
3143 * clock_task is not advancing so we just need to make sure
3144 * there's some valid quota amount
3145 */
3146 cfs_rq->runtime_remaining = cfs_b->quota;
3147 if (cfs_rq_throttled(cfs_rq))
3148 unthrottle_cfs_rq(cfs_rq);
3149 }
3150}
3151
3152#else /* CONFIG_CFS_BANDWIDTH */
Paul Turnerf1b17282012-10-04 13:18:31 +02003153static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3154{
Frederic Weisbecker78becc22013-04-12 01:51:02 +02003155 return rq_clock_task(rq_of(cfs_rq));
Paul Turnerf1b17282012-10-04 13:18:31 +02003156}
3157
3158static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq,
3159 unsigned long delta_exec) {}
Paul Turnerd3d9dc32011-07-21 09:43:39 -07003160static void check_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
3161static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
Peter Zijlstra6c16a6d2012-03-21 13:07:16 -07003162static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turner85dac902011-07-21 09:43:33 -07003163
3164static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3165{
3166 return 0;
3167}
Paul Turner64660c82011-07-21 09:43:36 -07003168
3169static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3170{
3171 return 0;
3172}
3173
3174static inline int throttled_lb_pair(struct task_group *tg,
3175 int src_cpu, int dest_cpu)
3176{
3177 return 0;
3178}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003179
3180void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
3181
3182#ifdef CONFIG_FAIR_GROUP_SCHED
3183static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
Paul Turnerab84d312011-07-21 09:43:28 -07003184#endif
3185
Peter Zijlstra029632f2011-10-25 10:00:11 +02003186static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3187{
3188 return NULL;
3189}
3190static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07003191static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
Peter Zijlstra029632f2011-10-25 10:00:11 +02003192
3193#endif /* CONFIG_CFS_BANDWIDTH */
3194
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003195/**************************************************
3196 * CFS operations on tasks:
3197 */
3198
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003199#ifdef CONFIG_SCHED_HRTICK
3200static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
3201{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003202 struct sched_entity *se = &p->se;
3203 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3204
3205 WARN_ON(task_rq(p) != rq);
3206
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003207 if (cfs_rq->nr_running > 1) {
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003208 u64 slice = sched_slice(cfs_rq, se);
3209 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
3210 s64 delta = slice - ran;
3211
3212 if (delta < 0) {
3213 if (rq->curr == p)
3214 resched_task(p);
3215 return;
3216 }
3217
3218 /*
3219 * Don't schedule slices shorter than 10000ns, that just
3220 * doesn't make sense. Rely on vruntime for fairness.
3221 */
Peter Zijlstra31656512008-07-18 18:01:23 +02003222 if (rq->curr != p)
Peter Zijlstra157124c2008-07-28 11:53:11 +02003223 delta = max_t(s64, 10000LL, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003224
Peter Zijlstra31656512008-07-18 18:01:23 +02003225 hrtick_start(rq, delta);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003226 }
3227}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003228
3229/*
3230 * called from enqueue/dequeue and updates the hrtick when the
3231 * current task is from our class and nr_running is low enough
3232 * to matter.
3233 */
3234static void hrtick_update(struct rq *rq)
3235{
3236 struct task_struct *curr = rq->curr;
3237
Mike Galbraithb39e66e2011-11-22 15:20:07 +01003238 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003239 return;
3240
3241 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
3242 hrtick_start_fair(rq, curr);
3243}
Dhaval Giani55e12e52008-06-24 23:39:43 +05303244#else /* !CONFIG_SCHED_HRTICK */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003245static inline void
3246hrtick_start_fair(struct rq *rq, struct task_struct *p)
3247{
3248}
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003249
3250static inline void hrtick_update(struct rq *rq)
3251{
3252}
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003253#endif
3254
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003255/*
3256 * The enqueue_task method is called before nr_running is
3257 * increased. Here we update the fair scheduling stats and
3258 * then put the task into the rbtree:
3259 */
Thomas Gleixnerea87bb72010-01-20 20:58:57 +00003260static void
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003261enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003262{
3263 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003264 struct sched_entity *se = &p->se;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003265
3266 for_each_sched_entity(se) {
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003267 if (se->on_rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003268 break;
3269 cfs_rq = cfs_rq_of(se);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003270 enqueue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003271
3272 /*
3273 * end evaluation on encountering a throttled cfs_rq
3274 *
3275 * note: in the case of encountering a throttled cfs_rq we will
3276 * post the final h_nr_running increment below.
3277 */
3278 if (cfs_rq_throttled(cfs_rq))
3279 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003280 cfs_rq->h_nr_running++;
Paul Turner85dac902011-07-21 09:43:33 -07003281
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003282 flags = ENQUEUE_WAKEUP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003283 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003284
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003285 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003286 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003287 cfs_rq->h_nr_running++;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003288
Paul Turner85dac902011-07-21 09:43:33 -07003289 if (cfs_rq_throttled(cfs_rq))
3290 break;
3291
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003292 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003293 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003294 }
3295
Ben Segall18bf2802012-10-04 12:51:20 +02003296 if (!se) {
3297 update_rq_runnable_avg(rq, rq->nr_running);
Paul Turner85dac902011-07-21 09:43:33 -07003298 inc_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003299 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003300 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003301}
3302
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003303static void set_next_buddy(struct sched_entity *se);
3304
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003305/*
3306 * The dequeue_task method is called before nr_running is
3307 * decreased. We remove the task from the rbtree and
3308 * update the fair scheduling stats:
3309 */
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003310static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003311{
3312 struct cfs_rq *cfs_rq;
Peter Zijlstra62fb1852008-02-25 17:34:02 +01003313 struct sched_entity *se = &p->se;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003314 int task_sleep = flags & DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003315
3316 for_each_sched_entity(se) {
3317 cfs_rq = cfs_rq_of(se);
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003318 dequeue_entity(cfs_rq, se, flags);
Paul Turner85dac902011-07-21 09:43:33 -07003319
3320 /*
3321 * end evaluation on encountering a throttled cfs_rq
3322 *
3323 * note: in the case of encountering a throttled cfs_rq we will
3324 * post the final h_nr_running decrement below.
3325 */
3326 if (cfs_rq_throttled(cfs_rq))
3327 break;
Paul Turner953bfcd2011-07-21 09:43:27 -07003328 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003329
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003330 /* Don't dequeue parent if it has other entities besides us */
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003331 if (cfs_rq->load.weight) {
3332 /*
3333 * Bias pick_next to pick a task from this cfs_rq, as
3334 * p is sleeping when it is within its sched_slice.
3335 */
3336 if (task_sleep && parent_entity(se))
3337 set_next_buddy(parent_entity(se));
Paul Turner9598c822011-07-06 22:30:37 -07003338
3339 /* avoid re-evaluating load for this entity */
3340 se = parent_entity(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003341 break;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07003342 }
Peter Zijlstra371fd7e2010-03-24 16:38:48 +01003343 flags |= DEQUEUE_SLEEP;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003344 }
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01003345
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003346 for_each_sched_entity(se) {
Lin Ming0f317142011-07-22 09:14:31 +08003347 cfs_rq = cfs_rq_of(se);
Paul Turner953bfcd2011-07-21 09:43:27 -07003348 cfs_rq->h_nr_running--;
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003349
Paul Turner85dac902011-07-21 09:43:33 -07003350 if (cfs_rq_throttled(cfs_rq))
3351 break;
3352
Linus Torvalds17bc14b2012-12-14 07:20:43 -08003353 update_cfs_shares(cfs_rq);
Paul Turner9ee474f2012-10-04 13:18:30 +02003354 update_entity_load_avg(se, 1);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003355 }
3356
Ben Segall18bf2802012-10-04 12:51:20 +02003357 if (!se) {
Paul Turner85dac902011-07-21 09:43:33 -07003358 dec_nr_running(rq);
Ben Segall18bf2802012-10-04 12:51:20 +02003359 update_rq_runnable_avg(rq, 1);
3360 }
Peter Zijlstraa4c2f002008-10-17 19:27:03 +02003361 hrtick_update(rq);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02003362}
3363
Gregory Haskinse7693a32008-01-25 21:08:09 +01003364#ifdef CONFIG_SMP
Peter Zijlstra029632f2011-10-25 10:00:11 +02003365/* Used instead of source_load when we know the type == 0 */
3366static unsigned long weighted_cpuload(const int cpu)
3367{
Alex Shib92486c2013-06-20 10:18:50 +08003368 return cpu_rq(cpu)->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003369}
3370
3371/*
3372 * Return a low guess at the load of a migration-source cpu weighted
3373 * according to the scheduling class and "nice" value.
3374 *
3375 * We want to under-estimate the load of migration sources, to
3376 * balance conservatively.
3377 */
3378static unsigned long source_load(int cpu, int type)
3379{
3380 struct rq *rq = cpu_rq(cpu);
3381 unsigned long total = weighted_cpuload(cpu);
3382
3383 if (type == 0 || !sched_feat(LB_BIAS))
3384 return total;
3385
3386 return min(rq->cpu_load[type-1], total);
3387}
3388
3389/*
3390 * Return a high guess at the load of a migration-target cpu weighted
3391 * according to the scheduling class and "nice" value.
3392 */
3393static unsigned long target_load(int cpu, int type)
3394{
3395 struct rq *rq = cpu_rq(cpu);
3396 unsigned long total = weighted_cpuload(cpu);
3397
3398 if (type == 0 || !sched_feat(LB_BIAS))
3399 return total;
3400
3401 return max(rq->cpu_load[type-1], total);
3402}
3403
3404static unsigned long power_of(int cpu)
3405{
3406 return cpu_rq(cpu)->cpu_power;
3407}
3408
3409static unsigned long cpu_avg_load_per_task(int cpu)
3410{
3411 struct rq *rq = cpu_rq(cpu);
3412 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
Alex Shib92486c2013-06-20 10:18:50 +08003413 unsigned long load_avg = rq->cfs.runnable_load_avg;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003414
3415 if (nr_running)
Alex Shib92486c2013-06-20 10:18:50 +08003416 return load_avg / nr_running;
Peter Zijlstra029632f2011-10-25 10:00:11 +02003417
3418 return 0;
3419}
3420
Michael Wang62470412013-07-04 12:55:51 +08003421static void record_wakee(struct task_struct *p)
3422{
3423 /*
3424 * Rough decay (wiping) for cost saving, don't worry
3425 * about the boundary, really active task won't care
3426 * about the loss.
3427 */
3428 if (jiffies > current->wakee_flip_decay_ts + HZ) {
3429 current->wakee_flips = 0;
3430 current->wakee_flip_decay_ts = jiffies;
3431 }
3432
3433 if (current->last_wakee != p) {
3434 current->last_wakee = p;
3435 current->wakee_flips++;
3436 }
3437}
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003438
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003439static void task_waking_fair(struct task_struct *p)
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003440{
3441 struct sched_entity *se = &p->se;
3442 struct cfs_rq *cfs_rq = cfs_rq_of(se);
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003443 u64 min_vruntime;
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003444
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003445#ifndef CONFIG_64BIT
3446 u64 min_vruntime_copy;
Peter Zijlstra74f8e4b2011-04-05 17:23:47 +02003447
Peter Zijlstra3fe16982011-04-05 17:23:48 +02003448 do {
3449 min_vruntime_copy = cfs_rq->min_vruntime_copy;
3450 smp_rmb();
3451 min_vruntime = cfs_rq->min_vruntime;
3452 } while (min_vruntime != min_vruntime_copy);
3453#else
3454 min_vruntime = cfs_rq->min_vruntime;
3455#endif
3456
3457 se->vruntime -= min_vruntime;
Michael Wang62470412013-07-04 12:55:51 +08003458 record_wakee(p);
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01003459}
3460
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003461#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003462/*
3463 * effective_load() calculates the load change as seen from the root_task_group
3464 *
3465 * Adding load to a group doesn't make a group heavier, but can cause movement
3466 * of group shares between cpus. Assuming the shares were perfectly aligned one
3467 * can calculate the shift in shares.
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003468 *
3469 * Calculate the effective load difference if @wl is added (subtracted) to @tg
3470 * on this @cpu and results in a total addition (subtraction) of @wg to the
3471 * total group weight.
3472 *
3473 * Given a runqueue weight distribution (rw_i) we can compute a shares
3474 * distribution (s_i) using:
3475 *
3476 * s_i = rw_i / \Sum rw_j (1)
3477 *
3478 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
3479 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
3480 * shares distribution (s_i):
3481 *
3482 * rw_i = { 2, 4, 1, 0 }
3483 * s_i = { 2/7, 4/7, 1/7, 0 }
3484 *
3485 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
3486 * task used to run on and the CPU the waker is running on), we need to
3487 * compute the effect of waking a task on either CPU and, in case of a sync
3488 * wakeup, compute the effect of the current task going to sleep.
3489 *
3490 * So for a change of @wl to the local @cpu with an overall group weight change
3491 * of @wl we can compute the new shares distribution (s'_i) using:
3492 *
3493 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
3494 *
3495 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
3496 * differences in waking a task to CPU 0. The additional task changes the
3497 * weight and shares distributions like:
3498 *
3499 * rw'_i = { 3, 4, 1, 0 }
3500 * s'_i = { 3/8, 4/8, 1/8, 0 }
3501 *
3502 * We can then compute the difference in effective weight by using:
3503 *
3504 * dw_i = S * (s'_i - s_i) (3)
3505 *
3506 * Where 'S' is the group weight as seen by its parent.
3507 *
3508 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
3509 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
3510 * 4/7) times the weight of the group.
Peter Zijlstraf5bfb7d2008-06-27 13:41:39 +02003511 */
Peter Zijlstra2069dd72010-11-15 15:47:00 -08003512static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003513{
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003514 struct sched_entity *se = tg->se[cpu];
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003515
Mel Gorman58d081b2013-10-07 11:29:10 +01003516 if (!tg->parent || !wl) /* the trivial, non-cgroup case */
Peter Zijlstraf1d239f2008-06-27 13:41:38 +02003517 return wl;
3518
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003519 for_each_sched_entity(se) {
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003520 long w, W;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003521
Paul Turner977dda72011-01-14 17:57:50 -08003522 tg = se->my_q->tg;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003523
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003524 /*
3525 * W = @wg + \Sum rw_j
3526 */
3527 W = wg + calc_tg_weight(tg, se->my_q);
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003528
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003529 /*
3530 * w = rw_i + @wl
3531 */
3532 w = se->my_q->load.weight + wl;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003533
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003534 /*
3535 * wl = S * s'_i; see (2)
3536 */
3537 if (W > 0 && w < W)
3538 wl = (w * tg->shares) / W;
Paul Turner977dda72011-01-14 17:57:50 -08003539 else
3540 wl = tg->shares;
Peter Zijlstra940959e2008-09-23 15:33:42 +02003541
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003542 /*
3543 * Per the above, wl is the new se->load.weight value; since
3544 * those are clipped to [MIN_SHARES, ...) do so now. See
3545 * calc_cfs_shares().
3546 */
Paul Turner977dda72011-01-14 17:57:50 -08003547 if (wl < MIN_SHARES)
3548 wl = MIN_SHARES;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003549
3550 /*
3551 * wl = dw_i = S * (s'_i - s_i); see (3)
3552 */
Paul Turner977dda72011-01-14 17:57:50 -08003553 wl -= se->load.weight;
Peter Zijlstracf5f0ac2011-10-13 16:52:28 +02003554
3555 /*
3556 * Recursively apply this logic to all parent groups to compute
3557 * the final effective load change on the root group. Since
3558 * only the @tg group gets extra weight, all parent groups can
3559 * only redistribute existing shares. @wl is the shift in shares
3560 * resulting from this level per the above.
3561 */
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003562 wg = 0;
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003563 }
3564
3565 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003566}
3567#else
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003568
Mel Gorman58d081b2013-10-07 11:29:10 +01003569static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003570{
Peter Zijlstra83378262008-06-27 13:41:37 +02003571 return wl;
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003572}
Peter Zijlstra4be9daa2008-06-27 13:41:30 +02003573
Peter Zijlstrabb3469a2008-06-27 13:41:27 +02003574#endif
3575
Michael Wang62470412013-07-04 12:55:51 +08003576static int wake_wide(struct task_struct *p)
3577{
Peter Zijlstra7d9ffa82013-07-04 12:56:46 +08003578 int factor = this_cpu_read(sd_llc_size);
Michael Wang62470412013-07-04 12:55:51 +08003579
3580 /*
3581 * Yeah, it's the switching-frequency, could means many wakee or
3582 * rapidly switch, use factor here will just help to automatically
3583 * adjust the loose-degree, so bigger node will lead to more pull.
3584 */
3585 if (p->wakee_flips > factor) {
3586 /*
3587 * wakee is somewhat hot, it needs certain amount of cpu
3588 * resource, so if waker is far more hot, prefer to leave
3589 * it alone.
3590 */
3591 if (current->wakee_flips > (factor * p->wakee_flips))
3592 return 1;
3593 }
3594
3595 return 0;
3596}
3597
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003598static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003599{
Paul Turnere37b6a72011-01-21 20:44:59 -08003600 s64 this_load, load;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003601 int idx, this_cpu, prev_cpu;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003602 unsigned long tl_per_task;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003603 struct task_group *tg;
Peter Zijlstra83378262008-06-27 13:41:37 +02003604 unsigned long weight;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003605 int balanced;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003606
Michael Wang62470412013-07-04 12:55:51 +08003607 /*
3608 * If we wake multiple tasks be careful to not bounce
3609 * ourselves around too much.
3610 */
3611 if (wake_wide(p))
3612 return 0;
3613
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003614 idx = sd->wake_idx;
3615 this_cpu = smp_processor_id();
3616 prev_cpu = task_cpu(p);
3617 load = source_load(prev_cpu, idx);
3618 this_load = target_load(this_cpu, idx);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003619
3620 /*
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003621 * If sync wakeup then subtract the (maximum possible)
3622 * effect of the currently running task from the load
3623 * of the current CPU:
3624 */
Peter Zijlstra83378262008-06-27 13:41:37 +02003625 if (sync) {
3626 tg = task_group(current);
3627 weight = current->se.load.weight;
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003628
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003629 this_load += effective_load(tg, this_cpu, -weight, -weight);
Peter Zijlstra83378262008-06-27 13:41:37 +02003630 load += effective_load(tg, prev_cpu, 0, -weight);
3631 }
3632
3633 tg = task_group(p);
3634 weight = p->se.load.weight;
3635
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003636 /*
3637 * In low-load situations, where prev_cpu is idle and this_cpu is idle
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003638 * due to the sync cause above having dropped this_load to 0, we'll
3639 * always have an imbalance, but there's really nothing you can do
3640 * about that, so that's good too.
Peter Zijlstra71a29aa2009-09-07 18:28:05 +02003641 *
3642 * Otherwise check if either cpus are near enough in load to allow this
3643 * task to be woken on this_cpu.
3644 */
Paul Turnere37b6a72011-01-21 20:44:59 -08003645 if (this_load > 0) {
3646 s64 this_eff_load, prev_eff_load;
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02003647
3648 this_eff_load = 100;
3649 this_eff_load *= power_of(prev_cpu);
3650 this_eff_load *= this_load +
3651 effective_load(tg, this_cpu, weight, weight);
3652
3653 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
3654 prev_eff_load *= power_of(this_cpu);
3655 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
3656
3657 balanced = this_eff_load <= prev_eff_load;
3658 } else
3659 balanced = true;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003660
3661 /*
3662 * If the currently running task will sleep within
3663 * a reasonable amount of time then attract this newly
3664 * woken task:
3665 */
Peter Zijlstra2fb76352008-10-08 09:16:04 +02003666 if (sync && balanced)
3667 return 1;
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003668
Lucas De Marchi41acab82010-03-10 23:37:45 -03003669 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
Mike Galbraithb3137bc2008-05-29 11:11:41 +02003670 tl_per_task = cpu_avg_load_per_task(this_cpu);
3671
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003672 if (balanced ||
3673 (this_load <= load &&
3674 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003675 /*
3676 * This domain has SD_WAKE_AFFINE and
3677 * p is cache cold in this domain, and
3678 * there is no bad imbalance.
3679 */
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003680 schedstat_inc(sd, ttwu_move_affine);
Lucas De Marchi41acab82010-03-10 23:37:45 -03003681 schedstat_inc(p, se.statistics.nr_wakeups_affine);
Ingo Molnar098fb9d2008-03-16 20:36:10 +01003682
3683 return 1;
3684 }
3685 return 0;
3686}
3687
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003688/*
3689 * find_idlest_group finds and returns the least busy CPU group within the
3690 * domain.
3691 */
3692static struct sched_group *
Peter Zijlstra78e7ed52009-09-03 13:16:51 +02003693find_idlest_group(struct sched_domain *sd, struct task_struct *p,
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003694 int this_cpu, int load_idx)
Gregory Haskinse7693a32008-01-25 21:08:09 +01003695{
Andi Kleenb3bd3de2010-08-10 14:17:51 -07003696 struct sched_group *idlest = NULL, *group = sd->groups;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003697 unsigned long min_load = ULONG_MAX, this_load = 0;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003698 int imbalance = 100 + (sd->imbalance_pct-100)/2;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003699
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003700 do {
3701 unsigned long load, avg_load;
3702 int local_group;
3703 int i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003704
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003705 /* Skip over this group if it has no CPUs allowed */
3706 if (!cpumask_intersects(sched_group_cpus(group),
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003707 tsk_cpus_allowed(p)))
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003708 continue;
3709
3710 local_group = cpumask_test_cpu(this_cpu,
3711 sched_group_cpus(group));
3712
3713 /* Tally up the load of all CPUs in the group */
3714 avg_load = 0;
3715
3716 for_each_cpu(i, sched_group_cpus(group)) {
3717 /* Bias balancing toward cpus of our domain */
3718 if (local_group)
3719 load = source_load(i, load_idx);
3720 else
3721 load = target_load(i, load_idx);
3722
3723 avg_load += load;
3724 }
3725
3726 /* Adjust by relative CPU power of the group */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02003727 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003728
3729 if (local_group) {
3730 this_load = avg_load;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003731 } else if (avg_load < min_load) {
3732 min_load = avg_load;
3733 idlest = group;
3734 }
3735 } while (group = group->next, group != sd->groups);
3736
3737 if (!idlest || 100*this_load < imbalance*min_load)
3738 return NULL;
3739 return idlest;
3740}
3741
3742/*
3743 * find_idlest_cpu - find the idlest cpu among the cpus in group.
3744 */
3745static int
3746find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
3747{
3748 unsigned long load, min_load = ULONG_MAX;
3749 int idlest = -1;
3750 int i;
3751
3752 /* Traverse only the allowed CPUs */
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003753 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003754 load = weighted_cpuload(i);
3755
3756 if (load < min_load || (load == min_load && i == this_cpu)) {
3757 min_load = load;
3758 idlest = i;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003759 }
3760 }
3761
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003762 return idlest;
3763}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003764
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003765/*
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003766 * Try and locate an idle CPU in the sched_domain.
3767 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003768static int select_idle_sibling(struct task_struct *p, int target)
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003769{
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003770 struct sched_domain *sd;
Linus Torvalds37407ea2012-09-16 12:29:43 -07003771 struct sched_group *sg;
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003772 int i = task_cpu(p);
3773
3774 if (idle_cpu(target))
3775 return target;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003776
3777 /*
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003778 * If the prevous cpu is cache affine and idle, don't be stupid.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003779 */
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003780 if (i != target && cpus_share_cache(i, target) && idle_cpu(i))
3781 return i;
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003782
3783 /*
Linus Torvalds37407ea2012-09-16 12:29:43 -07003784 * Otherwise, iterate the domains and find an elegible idle cpu.
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003785 */
Peter Zijlstra518cd622011-12-07 15:07:31 +01003786 sd = rcu_dereference(per_cpu(sd_llc, target));
Suresh Siddha77e81362011-11-17 11:08:23 -08003787 for_each_lower_domain(sd) {
Linus Torvalds37407ea2012-09-16 12:29:43 -07003788 sg = sd->groups;
3789 do {
3790 if (!cpumask_intersects(sched_group_cpus(sg),
3791 tsk_cpus_allowed(p)))
3792 goto next;
Mike Galbraith970e1782012-06-12 05:18:32 +02003793
Linus Torvalds37407ea2012-09-16 12:29:43 -07003794 for_each_cpu(i, sched_group_cpus(sg)) {
Mike Galbraithe0a79f52013-01-28 12:19:25 +01003795 if (i == target || !idle_cpu(i))
Linus Torvalds37407ea2012-09-16 12:29:43 -07003796 goto next;
3797 }
3798
3799 target = cpumask_first_and(sched_group_cpus(sg),
3800 tsk_cpus_allowed(p));
3801 goto done;
3802next:
3803 sg = sg->next;
3804 } while (sg != sd->groups);
3805 }
3806done:
Peter Zijlstraa50bde52009-11-12 15:55:28 +01003807 return target;
3808}
3809
3810/*
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003811 * sched_balance_self: balance the current task (running on cpu) in domains
3812 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
3813 * SD_BALANCE_EXEC.
3814 *
3815 * Balance, ie. select the least loaded group.
3816 *
3817 * Returns the target CPU number, or the same CPU if no balancing is needed.
3818 *
3819 * preempt must be disabled.
3820 */
Peter Zijlstra0017d732010-03-24 18:34:10 +01003821static int
Peter Zijlstraac66f542013-10-07 11:29:16 +01003822select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003823{
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003824 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003825 int cpu = smp_processor_id();
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003826 int new_cpu = cpu;
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003827 int want_affine = 0;
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003828 int sync = wake_flags & WF_SYNC;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003829
Peter Zijlstra29baa742012-04-23 12:11:21 +02003830 if (p->nr_cpus_allowed == 1)
Mike Galbraith76854c72011-11-22 15:18:24 +01003831 return prev_cpu;
3832
Peter Zijlstra0763a662009-09-14 19:37:39 +02003833 if (sd_flag & SD_BALANCE_WAKE) {
Peter Zijlstrafa17b502011-06-16 12:23:22 +02003834 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p)))
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003835 want_affine = 1;
3836 new_cpu = prev_cpu;
3837 }
Gregory Haskinse7693a32008-01-25 21:08:09 +01003838
Peter Zijlstradce840a2011-04-07 14:09:50 +02003839 rcu_read_lock();
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003840 for_each_domain(cpu, tmp) {
Peter Zijlstrae4f42882009-12-16 18:04:34 +01003841 if (!(tmp->flags & SD_LOAD_BALANCE))
3842 continue;
3843
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003844 /*
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003845 * If both cpu and prev_cpu are part of this domain,
3846 * cpu is a valid SD_WAKE_AFFINE target.
Peter Zijlstrafe3bcfe2009-11-12 15:55:29 +01003847 */
Suresh Siddha99bd5e22010-03-31 16:47:45 -07003848 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
3849 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
3850 affine_sd = tmp;
Alex Shif03542a2012-07-26 08:55:34 +08003851 break;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003852 }
3853
Alex Shif03542a2012-07-26 08:55:34 +08003854 if (tmp->flags & sd_flag)
Peter Zijlstra29cd8ba2009-09-17 09:01:14 +02003855 sd = tmp;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003856 }
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003857
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003858 if (affine_sd) {
Alex Shif03542a2012-07-26 08:55:34 +08003859 if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
Peter Zijlstradce840a2011-04-07 14:09:50 +02003860 prev_cpu = cpu;
3861
3862 new_cpu = select_idle_sibling(p, prev_cpu);
3863 goto unlock;
Mike Galbraith8b911ac2010-03-11 17:17:16 +01003864 }
Peter Zijlstra3b640892009-09-16 13:44:33 +02003865
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003866 while (sd) {
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003867 int load_idx = sd->forkexec_idx;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003868 struct sched_group *group;
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003869 int weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003870
Peter Zijlstra0763a662009-09-14 19:37:39 +02003871 if (!(sd->flags & sd_flag)) {
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003872 sd = sd->child;
3873 continue;
3874 }
3875
Peter Zijlstra5158f4e2009-09-16 13:46:59 +02003876 if (sd_flag & SD_BALANCE_WAKE)
3877 load_idx = sd->wake_idx;
3878
3879 group = find_idlest_group(sd, p, cpu, load_idx);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003880 if (!group) {
3881 sd = sd->child;
3882 continue;
3883 }
3884
Peter Zijlstrad7c33c42009-09-11 12:45:38 +02003885 new_cpu = find_idlest_cpu(group, p, cpu);
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003886 if (new_cpu == -1 || new_cpu == cpu) {
3887 /* Now try balancing at a lower domain level of cpu */
3888 sd = sd->child;
3889 continue;
3890 }
3891
3892 /* Now try balancing at a lower domain level of new_cpu */
3893 cpu = new_cpu;
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003894 weight = sd->span_weight;
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003895 sd = NULL;
3896 for_each_domain(cpu, tmp) {
Peter Zijlstra669c55e2010-04-16 14:59:29 +02003897 if (weight <= tmp->span_weight)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003898 break;
Peter Zijlstra0763a662009-09-14 19:37:39 +02003899 if (tmp->flags & sd_flag)
Peter Zijlstraaaee1202009-09-10 13:36:25 +02003900 sd = tmp;
3901 }
3902 /* while loop will break here if sd == NULL */
Gregory Haskinse7693a32008-01-25 21:08:09 +01003903 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02003904unlock:
3905 rcu_read_unlock();
Gregory Haskinse7693a32008-01-25 21:08:09 +01003906
Peter Zijlstrac88d5912009-09-10 13:50:02 +02003907 return new_cpu;
Gregory Haskinse7693a32008-01-25 21:08:09 +01003908}
Paul Turner0a74bef2012-10-04 13:18:30 +02003909
3910/*
3911 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
3912 * cfs_rq_of(p) references at time of call are still valid and identify the
3913 * previous cpu. However, the caller only guarantees p->pi_lock is held; no
3914 * other assumptions, including the state of rq->lock, should be made.
3915 */
3916static void
3917migrate_task_rq_fair(struct task_struct *p, int next_cpu)
3918{
Paul Turneraff3e492012-10-04 13:18:30 +02003919 struct sched_entity *se = &p->se;
3920 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3921
3922 /*
3923 * Load tracking: accumulate removed load so that it can be processed
3924 * when we next update owning cfs_rq under rq->lock. Tasks contribute
3925 * to blocked load iff they have a positive decay-count. It can never
3926 * be negative here since on-rq tasks have decay-count == 0.
3927 */
3928 if (se->avg.decay_count) {
3929 se->avg.decay_count = -__synchronize_entity_decay(se);
Alex Shi25099402013-06-20 10:18:55 +08003930 atomic_long_add(se->avg.load_avg_contrib,
3931 &cfs_rq->removed_load);
Paul Turneraff3e492012-10-04 13:18:30 +02003932 }
Paul Turner0a74bef2012-10-04 13:18:30 +02003933}
Gregory Haskinse7693a32008-01-25 21:08:09 +01003934#endif /* CONFIG_SMP */
3935
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003936static unsigned long
3937wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003938{
3939 unsigned long gran = sysctl_sched_wakeup_granularity;
3940
3941 /*
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003942 * Since its curr running now, convert the gran from real-time
3943 * to virtual-time in his units.
Mike Galbraith13814d42010-03-11 17:17:04 +01003944 *
3945 * By using 'se' instead of 'curr' we penalize light tasks, so
3946 * they get preempted easier. That is, if 'se' < 'curr' then
3947 * the resulting gran will be larger, therefore penalizing the
3948 * lighter, if otoh 'se' > 'curr' then the resulting gran will
3949 * be smaller, again penalizing the lighter task.
3950 *
3951 * This is especially important for buddies when the leftmost
3952 * task is higher priority than the buddy.
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003953 */
Shaohua Lif4ad9bd2011-04-08 12:53:09 +08003954 return calc_delta_fair(gran, se);
Peter Zijlstra0bbd3332008-04-19 19:44:57 +02003955}
3956
3957/*
Peter Zijlstra464b7522008-10-24 11:06:15 +02003958 * Should 'se' preempt 'curr'.
3959 *
3960 * |s1
3961 * |s2
3962 * |s3
3963 * g
3964 * |<--->|c
3965 *
3966 * w(c, s1) = -1
3967 * w(c, s2) = 0
3968 * w(c, s3) = 1
3969 *
3970 */
3971static int
3972wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
3973{
3974 s64 gran, vdiff = curr->vruntime - se->vruntime;
3975
3976 if (vdiff <= 0)
3977 return -1;
3978
Peter Zijlstrae52fb7c2009-01-14 12:39:19 +01003979 gran = wakeup_gran(curr, se);
Peter Zijlstra464b7522008-10-24 11:06:15 +02003980 if (vdiff > gran)
3981 return 1;
3982
3983 return 0;
3984}
3985
Peter Zijlstra02479092008-11-04 21:25:10 +01003986static void set_last_buddy(struct sched_entity *se)
3987{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003988 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3989 return;
3990
3991 for_each_sched_entity(se)
3992 cfs_rq_of(se)->last = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01003993}
3994
3995static void set_next_buddy(struct sched_entity *se)
3996{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07003997 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
3998 return;
3999
4000 for_each_sched_entity(se)
4001 cfs_rq_of(se)->next = se;
Peter Zijlstra02479092008-11-04 21:25:10 +01004002}
4003
Rik van Rielac53db52011-02-01 09:51:03 -05004004static void set_skip_buddy(struct sched_entity *se)
4005{
Venkatesh Pallipadi69c80f32011-04-13 18:21:09 -07004006 for_each_sched_entity(se)
4007 cfs_rq_of(se)->skip = se;
Rik van Rielac53db52011-02-01 09:51:03 -05004008}
4009
Peter Zijlstra464b7522008-10-24 11:06:15 +02004010/*
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004011 * Preempt the current task with a newly woken task if needed:
4012 */
Peter Zijlstra5a9b86f2009-09-16 13:47:58 +02004013static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004014{
4015 struct task_struct *curr = rq->curr;
Srivatsa Vaddagiri8651a862007-10-15 17:00:12 +02004016 struct sched_entity *se = &curr->se, *pse = &p->se;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004017 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
Mike Galbraithf685cea2009-10-23 23:09:22 +02004018 int scale = cfs_rq->nr_running >= sched_nr_latency;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004019 int next_buddy_marked = 0;
Mike Galbraith03e89e42008-12-16 08:45:30 +01004020
Ingo Molnar4ae7d5c2008-03-19 01:42:00 +01004021 if (unlikely(se == pse))
4022 return;
4023
Paul Turner5238cdd2011-07-21 09:43:37 -07004024 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004025 * This is possible from callers such as move_task(), in which we
Paul Turner5238cdd2011-07-21 09:43:37 -07004026 * unconditionally check_prempt_curr() after an enqueue (which may have
4027 * lead to a throttle). This both saves work and prevents false
4028 * next-buddy nomination below.
4029 */
4030 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
4031 return;
4032
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004033 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
Mike Galbraith3cb63d52009-09-11 12:01:17 +02004034 set_next_buddy(pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004035 next_buddy_marked = 1;
4036 }
Peter Zijlstra57fdc262008-09-23 15:33:45 +02004037
Bharata B Raoaec0a512008-08-28 14:42:49 +05304038 /*
4039 * We can come here with TIF_NEED_RESCHED already set from new task
4040 * wake up path.
Paul Turner5238cdd2011-07-21 09:43:37 -07004041 *
4042 * Note: this also catches the edge-case of curr being in a throttled
4043 * group (e.g. via set_curr_task), since update_curr() (in the
4044 * enqueue of curr) will have resulted in resched being set. This
4045 * prevents us from potentially nominating it as a false LAST_BUDDY
4046 * below.
Bharata B Raoaec0a512008-08-28 14:42:49 +05304047 */
4048 if (test_tsk_need_resched(curr))
4049 return;
4050
Darren Harta2f5c9a2011-02-22 13:04:33 -08004051 /* Idle tasks are by definition preempted by non-idle tasks. */
4052 if (unlikely(curr->policy == SCHED_IDLE) &&
4053 likely(p->policy != SCHED_IDLE))
4054 goto preempt;
4055
Ingo Molnar91c234b2007-10-15 17:00:18 +02004056 /*
Darren Harta2f5c9a2011-02-22 13:04:33 -08004057 * Batch and idle tasks do not preempt non-idle tasks (their preemption
4058 * is driven by the tick):
Ingo Molnar91c234b2007-10-15 17:00:18 +02004059 */
Ingo Molnar8ed92e52012-10-14 14:28:50 +02004060 if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
Ingo Molnar91c234b2007-10-15 17:00:18 +02004061 return;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004062
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004063 find_matching_se(&se, &pse);
Paul Turner9bbd7372011-07-05 19:07:21 -07004064 update_curr(cfs_rq_of(se));
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004065 BUG_ON(!pse);
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004066 if (wakeup_preempt_entity(se, pse) == 1) {
4067 /*
4068 * Bias pick_next to pick the sched entity that is
4069 * triggering this preemption.
4070 */
4071 if (!next_buddy_marked)
4072 set_next_buddy(pse);
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004073 goto preempt;
Venkatesh Pallipadi2f368252011-04-14 10:30:53 -07004074 }
Jupyung Leea65ac742009-11-17 18:51:40 +09004075
Peter Zijlstra3a7e73a2009-11-28 18:51:02 +01004076 return;
4077
4078preempt:
4079 resched_task(curr);
4080 /*
4081 * Only set the backward buddy when the current task is still
4082 * on the rq. This can happen when a wakeup gets interleaved
4083 * with schedule on the ->pre_schedule() or idle_balance()
4084 * point, either of which can * drop the rq lock.
4085 *
4086 * Also, during early boot the idle thread is in the fair class,
4087 * for obvious reasons its a bad idea to schedule back to it.
4088 */
4089 if (unlikely(!se->on_rq || curr == rq->idle))
4090 return;
4091
4092 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
4093 set_last_buddy(se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004094}
4095
Ingo Molnarfb8d4722007-08-09 11:16:48 +02004096static struct task_struct *pick_next_task_fair(struct rq *rq)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004097{
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004098 struct task_struct *p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004099 struct cfs_rq *cfs_rq = &rq->cfs;
4100 struct sched_entity *se;
4101
Tim Blechmann36ace272009-11-24 11:55:45 +01004102 if (!cfs_rq->nr_running)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004103 return NULL;
4104
4105 do {
Ingo Molnar9948f4b2007-08-09 11:16:48 +02004106 se = pick_next_entity(cfs_rq);
Peter Zijlstraf4b67552008-11-04 21:25:07 +01004107 set_next_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004108 cfs_rq = group_cfs_rq(se);
4109 } while (cfs_rq);
4110
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004111 p = task_of(se);
Mike Galbraithb39e66e2011-11-22 15:20:07 +01004112 if (hrtick_enabled(rq))
4113 hrtick_start_fair(rq, p);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01004114
4115 return p;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004116}
4117
4118/*
4119 * Account for a descheduled task:
4120 */
Ingo Molnar31ee5292007-08-09 11:16:49 +02004121static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004122{
4123 struct sched_entity *se = &prev->se;
4124 struct cfs_rq *cfs_rq;
4125
4126 for_each_sched_entity(se) {
4127 cfs_rq = cfs_rq_of(se);
Ingo Molnarab6cde22007-08-09 11:16:48 +02004128 put_prev_entity(cfs_rq, se);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004129 }
4130}
4131
Rik van Rielac53db52011-02-01 09:51:03 -05004132/*
4133 * sched_yield() is very simple
4134 *
4135 * The magic of dealing with the ->skip buddy is in pick_next_entity.
4136 */
4137static void yield_task_fair(struct rq *rq)
4138{
4139 struct task_struct *curr = rq->curr;
4140 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
4141 struct sched_entity *se = &curr->se;
4142
4143 /*
4144 * Are we the only task in the tree?
4145 */
4146 if (unlikely(rq->nr_running == 1))
4147 return;
4148
4149 clear_buddies(cfs_rq, se);
4150
4151 if (curr->policy != SCHED_BATCH) {
4152 update_rq_clock(rq);
4153 /*
4154 * Update run-time statistics of the 'current'.
4155 */
4156 update_curr(cfs_rq);
Mike Galbraith916671c2011-11-22 15:21:26 +01004157 /*
4158 * Tell update_rq_clock() that we've just updated,
4159 * so we don't do microscopic update in schedule()
4160 * and double the fastpath cost.
4161 */
4162 rq->skip_clock_update = 1;
Rik van Rielac53db52011-02-01 09:51:03 -05004163 }
4164
4165 set_skip_buddy(se);
4166}
4167
Mike Galbraithd95f4122011-02-01 09:50:51 -05004168static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
4169{
4170 struct sched_entity *se = &p->se;
4171
Paul Turner5238cdd2011-07-21 09:43:37 -07004172 /* throttled hierarchies are not runnable */
4173 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
Mike Galbraithd95f4122011-02-01 09:50:51 -05004174 return false;
4175
4176 /* Tell the scheduler that we'd really like pse to run next. */
4177 set_next_buddy(se);
4178
Mike Galbraithd95f4122011-02-01 09:50:51 -05004179 yield_task_fair(rq);
4180
4181 return true;
4182}
4183
Peter Williams681f3e62007-10-24 18:23:51 +02004184#ifdef CONFIG_SMP
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004185/**************************************************
Peter Zijlstrae9c84cb2012-07-03 13:53:26 +02004186 * Fair scheduling class load-balancing methods.
4187 *
4188 * BASICS
4189 *
4190 * The purpose of load-balancing is to achieve the same basic fairness the
4191 * per-cpu scheduler provides, namely provide a proportional amount of compute
4192 * time to each task. This is expressed in the following equation:
4193 *
4194 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
4195 *
4196 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
4197 * W_i,0 is defined as:
4198 *
4199 * W_i,0 = \Sum_j w_i,j (2)
4200 *
4201 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
4202 * is derived from the nice value as per prio_to_weight[].
4203 *
4204 * The weight average is an exponential decay average of the instantaneous
4205 * weight:
4206 *
4207 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
4208 *
4209 * P_i is the cpu power (or compute capacity) of cpu i, typically it is the
4210 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
4211 * can also include other factors [XXX].
4212 *
4213 * To achieve this balance we define a measure of imbalance which follows
4214 * directly from (1):
4215 *
4216 * imb_i,j = max{ avg(W/P), W_i/P_i } - min{ avg(W/P), W_j/P_j } (4)
4217 *
4218 * We them move tasks around to minimize the imbalance. In the continuous
4219 * function space it is obvious this converges, in the discrete case we get
4220 * a few fun cases generally called infeasible weight scenarios.
4221 *
4222 * [XXX expand on:
4223 * - infeasible weights;
4224 * - local vs global optima in the discrete case. ]
4225 *
4226 *
4227 * SCHED DOMAINS
4228 *
4229 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
4230 * for all i,j solution, we create a tree of cpus that follows the hardware
4231 * topology where each level pairs two lower groups (or better). This results
4232 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
4233 * tree to only the first of the previous level and we decrease the frequency
4234 * of load-balance at each level inv. proportional to the number of cpus in
4235 * the groups.
4236 *
4237 * This yields:
4238 *
4239 * log_2 n 1 n
4240 * \Sum { --- * --- * 2^i } = O(n) (5)
4241 * i = 0 2^i 2^i
4242 * `- size of each group
4243 * | | `- number of cpus doing load-balance
4244 * | `- freq
4245 * `- sum over all levels
4246 *
4247 * Coupled with a limit on how many tasks we can migrate every balance pass,
4248 * this makes (5) the runtime complexity of the balancer.
4249 *
4250 * An important property here is that each CPU is still (indirectly) connected
4251 * to every other cpu in at most O(log n) steps:
4252 *
4253 * The adjacency matrix of the resulting graph is given by:
4254 *
4255 * log_2 n
4256 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
4257 * k = 0
4258 *
4259 * And you'll find that:
4260 *
4261 * A^(log_2 n)_i,j != 0 for all i,j (7)
4262 *
4263 * Showing there's indeed a path between every cpu in at most O(log n) steps.
4264 * The task movement gives a factor of O(m), giving a convergence complexity
4265 * of:
4266 *
4267 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
4268 *
4269 *
4270 * WORK CONSERVING
4271 *
4272 * In order to avoid CPUs going idle while there's still work to do, new idle
4273 * balancing is more aggressive and has the newly idle cpu iterate up the domain
4274 * tree itself instead of relying on other CPUs to bring it work.
4275 *
4276 * This adds some complexity to both (5) and (8) but it reduces the total idle
4277 * time.
4278 *
4279 * [XXX more?]
4280 *
4281 *
4282 * CGROUPS
4283 *
4284 * Cgroups make a horror show out of (2), instead of a simple sum we get:
4285 *
4286 * s_k,i
4287 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
4288 * S_k
4289 *
4290 * Where
4291 *
4292 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
4293 *
4294 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
4295 *
4296 * The big problem is S_k, its a global sum needed to compute a local (W_i)
4297 * property.
4298 *
4299 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
4300 * rewrite all of this once again.]
4301 */
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02004302
Hiroshi Shimamotoed387b72012-01-31 11:40:32 +09004303static unsigned long __read_mostly max_load_balance_interval = HZ/10;
4304
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004305#define LBF_ALL_PINNED 0x01
Peter Zijlstra367456c2012-02-20 21:49:09 +01004306#define LBF_NEED_BREAK 0x02
Peter Zijlstra62633222013-08-19 12:41:09 +02004307#define LBF_DST_PINNED 0x04
4308#define LBF_SOME_PINNED 0x08
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004309
4310struct lb_env {
4311 struct sched_domain *sd;
4312
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004313 struct rq *src_rq;
Prashanth Nageshappa85c1e7d2012-06-19 17:47:34 +05304314 int src_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004315
4316 int dst_cpu;
4317 struct rq *dst_rq;
4318
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304319 struct cpumask *dst_grpmask;
4320 int new_dst_cpu;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004321 enum cpu_idle_type idle;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004322 long imbalance;
Michael Wangb9403132012-07-12 16:10:13 +08004323 /* The set of CPUs under consideration for load-balancing */
4324 struct cpumask *cpus;
4325
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004326 unsigned int flags;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004327
4328 unsigned int loop;
4329 unsigned int loop_break;
4330 unsigned int loop_max;
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004331};
4332
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004333/*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004334 * move_task - move a task from one runqueue to another runqueue.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004335 * Both runqueues must be locked.
4336 */
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004337static void move_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004338{
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004339 deactivate_task(env->src_rq, p, 0);
4340 set_task_cpu(p, env->dst_cpu);
4341 activate_task(env->dst_rq, p, 0);
4342 check_preempt_curr(env->dst_rq, p, 0);
Rik van Riel6fe6b2d2013-10-07 11:29:08 +01004343#ifdef CONFIG_NUMA_BALANCING
4344 if (p->numa_preferred_nid != -1) {
4345 int src_nid = cpu_to_node(env->src_cpu);
4346 int dst_nid = cpu_to_node(env->dst_cpu);
4347
4348 /*
4349 * If the load balancer has moved the task then limit
4350 * migrations from taking place in the short term in
4351 * case this is a short-lived migration.
4352 */
4353 if (src_nid != dst_nid && dst_nid != p->numa_preferred_nid)
4354 p->numa_migrate_seq = 0;
4355 }
4356#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004357}
4358
4359/*
Peter Zijlstra029632f2011-10-25 10:00:11 +02004360 * Is this task likely cache-hot:
4361 */
4362static int
4363task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
4364{
4365 s64 delta;
4366
4367 if (p->sched_class != &fair_sched_class)
4368 return 0;
4369
4370 if (unlikely(p->policy == SCHED_IDLE))
4371 return 0;
4372
4373 /*
4374 * Buddy candidates are cache hot:
4375 */
4376 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
4377 (&p->se == cfs_rq_of(&p->se)->next ||
4378 &p->se == cfs_rq_of(&p->se)->last))
4379 return 1;
4380
4381 if (sysctl_sched_migration_cost == -1)
4382 return 1;
4383 if (sysctl_sched_migration_cost == 0)
4384 return 0;
4385
4386 delta = now - p->se.exec_start;
4387
4388 return delta < (s64)sysctl_sched_migration_cost;
4389}
4390
Mel Gorman3a7053b2013-10-07 11:29:00 +01004391#ifdef CONFIG_NUMA_BALANCING
4392/* Returns true if the destination node has incurred more faults */
4393static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
4394{
4395 int src_nid, dst_nid;
4396
4397 if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
4398 !(env->sd->flags & SD_NUMA)) {
4399 return false;
4400 }
4401
4402 src_nid = cpu_to_node(env->src_cpu);
4403 dst_nid = cpu_to_node(env->dst_cpu);
4404
4405 if (src_nid == dst_nid ||
4406 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4407 return false;
4408
4409 if (dst_nid == p->numa_preferred_nid ||
Mel Gormanac8e8952013-10-07 11:29:03 +01004410 task_faults(p, dst_nid) > task_faults(p, src_nid))
Mel Gorman3a7053b2013-10-07 11:29:00 +01004411 return true;
4412
4413 return false;
4414}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004415
4416
4417static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
4418{
4419 int src_nid, dst_nid;
4420
4421 if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
4422 return false;
4423
4424 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
4425 return false;
4426
4427 src_nid = cpu_to_node(env->src_cpu);
4428 dst_nid = cpu_to_node(env->dst_cpu);
4429
4430 if (src_nid == dst_nid ||
4431 p->numa_migrate_seq >= sysctl_numa_balancing_settle_count)
4432 return false;
4433
Mel Gormanac8e8952013-10-07 11:29:03 +01004434 if (task_faults(p, dst_nid) < task_faults(p, src_nid))
Mel Gorman7a0f3082013-10-07 11:29:01 +01004435 return true;
4436
4437 return false;
4438}
4439
Mel Gorman3a7053b2013-10-07 11:29:00 +01004440#else
4441static inline bool migrate_improves_locality(struct task_struct *p,
4442 struct lb_env *env)
4443{
4444 return false;
4445}
Mel Gorman7a0f3082013-10-07 11:29:01 +01004446
4447static inline bool migrate_degrades_locality(struct task_struct *p,
4448 struct lb_env *env)
4449{
4450 return false;
4451}
Mel Gorman3a7053b2013-10-07 11:29:00 +01004452#endif
4453
Peter Zijlstra029632f2011-10-25 10:00:11 +02004454/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004455 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
4456 */
4457static
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004458int can_migrate_task(struct task_struct *p, struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004459{
4460 int tsk_cache_hot = 0;
4461 /*
4462 * We do not migrate tasks that are:
Joonsoo Kimd3198082013-04-23 17:27:40 +09004463 * 1) throttled_lb_pair, or
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004464 * 2) cannot be migrated to this CPU due to cpus_allowed, or
Joonsoo Kimd3198082013-04-23 17:27:40 +09004465 * 3) running (obviously), or
4466 * 4) are cache-hot on their current CPU.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004467 */
Joonsoo Kimd3198082013-04-23 17:27:40 +09004468 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
4469 return 0;
4470
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004471 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004472 int cpu;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304473
Lucas De Marchi41acab82010-03-10 23:37:45 -03004474 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304475
Peter Zijlstra62633222013-08-19 12:41:09 +02004476 env->flags |= LBF_SOME_PINNED;
4477
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304478 /*
4479 * Remember if this task can be migrated to any other cpu in
4480 * our sched_group. We may want to revisit it if we couldn't
4481 * meet load balance goals by pulling other tasks on src_cpu.
4482 *
4483 * Also avoid computing new_dst_cpu if we have already computed
4484 * one in current iteration.
4485 */
Peter Zijlstra62633222013-08-19 12:41:09 +02004486 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304487 return 0;
4488
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004489 /* Prevent to re-select dst_cpu via env's cpus */
4490 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
4491 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
Peter Zijlstra62633222013-08-19 12:41:09 +02004492 env->flags |= LBF_DST_PINNED;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004493 env->new_dst_cpu = cpu;
4494 break;
4495 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304496 }
Joonsoo Kime02e60c2013-04-23 17:27:42 +09004497
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004498 return 0;
4499 }
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05304500
4501 /* Record that we found atleast one task that could run on dst_cpu */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004502 env->flags &= ~LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004503
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004504 if (task_running(env->src_rq, p)) {
Lucas De Marchi41acab82010-03-10 23:37:45 -03004505 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004506 return 0;
4507 }
4508
4509 /*
4510 * Aggressive migration if:
Mel Gorman3a7053b2013-10-07 11:29:00 +01004511 * 1) destination numa is preferred
4512 * 2) task is cache cold, or
4513 * 3) too many balance attempts have failed.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004514 */
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004515 tsk_cache_hot = task_hot(p, rq_clock_task(env->src_rq), env->sd);
Mel Gorman7a0f3082013-10-07 11:29:01 +01004516 if (!tsk_cache_hot)
4517 tsk_cache_hot = migrate_degrades_locality(p, env);
Mel Gorman3a7053b2013-10-07 11:29:00 +01004518
4519 if (migrate_improves_locality(p, env)) {
4520#ifdef CONFIG_SCHEDSTATS
4521 if (tsk_cache_hot) {
4522 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
4523 schedstat_inc(p, se.statistics.nr_forced_migrations);
4524 }
4525#endif
4526 return 1;
4527 }
4528
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004529 if (!tsk_cache_hot ||
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004530 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004531
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004532 if (tsk_cache_hot) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004533 schedstat_inc(env->sd, lb_hot_gained[env->idle]);
Lucas De Marchi41acab82010-03-10 23:37:45 -03004534 schedstat_inc(p, se.statistics.nr_forced_migrations);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004535 }
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004536
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004537 return 1;
4538 }
4539
Zhang Hang4e2dcb72013-04-10 14:04:55 +08004540 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
4541 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004542}
4543
Peter Zijlstra897c3952009-12-17 17:45:42 +01004544/*
4545 * move_one_task tries to move exactly one task from busiest to this_rq, as
4546 * part of active balancing operations within "domain".
4547 * Returns 1 if successful and 0 otherwise.
4548 *
4549 * Called with both runqueues locked.
4550 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004551static int move_one_task(struct lb_env *env)
Peter Zijlstra897c3952009-12-17 17:45:42 +01004552{
4553 struct task_struct *p, *n;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004554
Peter Zijlstra367456c2012-02-20 21:49:09 +01004555 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
Peter Zijlstra367456c2012-02-20 21:49:09 +01004556 if (!can_migrate_task(p, env))
4557 continue;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004558
Peter Zijlstra367456c2012-02-20 21:49:09 +01004559 move_task(p, env);
4560 /*
4561 * Right now, this is only the second place move_task()
4562 * is called, so we can safely collect move_task()
4563 * stats here rather than inside move_task().
4564 */
4565 schedstat_inc(env->sd, lb_gained[env->idle]);
4566 return 1;
Peter Zijlstra897c3952009-12-17 17:45:42 +01004567 }
Peter Zijlstra897c3952009-12-17 17:45:42 +01004568 return 0;
4569}
4570
Peter Zijlstraeb953082012-04-17 13:38:40 +02004571static const unsigned int sched_nr_migrate_break = 32;
4572
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004573/*
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004574 * move_tasks tries to move up to imbalance weighted load from busiest to
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004575 * this_rq, as part of a balancing operation within domain "sd".
4576 * Returns 1 if successful and 0 otherwise.
4577 *
4578 * Called with both runqueues locked.
4579 */
4580static int move_tasks(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004581{
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004582 struct list_head *tasks = &env->src_rq->cfs_tasks;
4583 struct task_struct *p;
Peter Zijlstra367456c2012-02-20 21:49:09 +01004584 unsigned long load;
4585 int pulled = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004586
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004587 if (env->imbalance <= 0)
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004588 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004589
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004590 while (!list_empty(tasks)) {
4591 p = list_first_entry(tasks, struct task_struct, se.group_node);
4592
Peter Zijlstra367456c2012-02-20 21:49:09 +01004593 env->loop++;
4594 /* We've more or less seen every task there is, call it quits */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004595 if (env->loop > env->loop_max)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004596 break;
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004597
4598 /* take a breather every nr_migrate tasks */
Peter Zijlstra367456c2012-02-20 21:49:09 +01004599 if (env->loop > env->loop_break) {
Peter Zijlstraeb953082012-04-17 13:38:40 +02004600 env->loop_break += sched_nr_migrate_break;
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004601 env->flags |= LBF_NEED_BREAK;
Peter Zijlstraee00e662009-12-17 17:25:20 +01004602 break;
Peter Zijlstraa195f002011-09-22 15:30:18 +02004603 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004604
Joonsoo Kimd3198082013-04-23 17:27:40 +09004605 if (!can_migrate_task(p, env))
Peter Zijlstra367456c2012-02-20 21:49:09 +01004606 goto next;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004607
Peter Zijlstra367456c2012-02-20 21:49:09 +01004608 load = task_h_load(p);
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004609
Peter Zijlstraeb953082012-04-17 13:38:40 +02004610 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004611 goto next;
4612
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004613 if ((load / 2) > env->imbalance)
Peter Zijlstra367456c2012-02-20 21:49:09 +01004614 goto next;
4615
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004616 move_task(p, env);
Peter Zijlstraee00e662009-12-17 17:25:20 +01004617 pulled++;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004618 env->imbalance -= load;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004619
4620#ifdef CONFIG_PREEMPT
Peter Zijlstraee00e662009-12-17 17:25:20 +01004621 /*
4622 * NEWIDLE balancing is a source of latency, so preemptible
4623 * kernels will stop after the first task is pulled to minimize
4624 * the critical section.
4625 */
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004626 if (env->idle == CPU_NEWLY_IDLE)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004627 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004628#endif
4629
Peter Zijlstraee00e662009-12-17 17:25:20 +01004630 /*
4631 * We only want to steal up to the prescribed amount of
4632 * weighted load.
4633 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02004634 if (env->imbalance <= 0)
Peter Zijlstraee00e662009-12-17 17:25:20 +01004635 break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004636
Peter Zijlstra367456c2012-02-20 21:49:09 +01004637 continue;
4638next:
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004639 list_move_tail(&p->se.group_node, tasks);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004640 }
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004641
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004642 /*
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01004643 * Right now, this is one of only two places move_task() is called,
4644 * so we can safely collect move_task() stats here rather than
4645 * inside move_task().
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004646 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01004647 schedstat_add(env->sd, lb_gained[env->idle], pulled);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004648
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01004649 return pulled;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004650}
4651
Peter Zijlstra230059de2009-12-17 17:47:12 +01004652#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004653/*
4654 * update tg->load_weight by folding this cpu's load_avg
4655 */
Paul Turner48a16752012-10-04 13:18:31 +02004656static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004657{
Paul Turner48a16752012-10-04 13:18:31 +02004658 struct sched_entity *se = tg->se[cpu];
4659 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004660
Paul Turner48a16752012-10-04 13:18:31 +02004661 /* throttled entities do not contribute to load */
4662 if (throttled_hierarchy(cfs_rq))
4663 return;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004664
Paul Turneraff3e492012-10-04 13:18:30 +02004665 update_cfs_rq_blocked_load(cfs_rq, 1);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004666
Paul Turner82958362012-10-04 13:18:31 +02004667 if (se) {
4668 update_entity_load_avg(se, 1);
4669 /*
4670 * We pivot on our runnable average having decayed to zero for
4671 * list removal. This generally implies that all our children
4672 * have also been removed (modulo rounding error or bandwidth
4673 * control); however, such cases are rare and we can fix these
4674 * at enqueue.
4675 *
4676 * TODO: fix up out-of-order children on enqueue.
4677 */
4678 if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
4679 list_del_leaf_cfs_rq(cfs_rq);
4680 } else {
Paul Turner48a16752012-10-04 13:18:31 +02004681 struct rq *rq = rq_of(cfs_rq);
Paul Turner82958362012-10-04 13:18:31 +02004682 update_rq_runnable_avg(rq, rq->nr_running);
4683 }
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004684}
4685
Paul Turner48a16752012-10-04 13:18:31 +02004686static void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004687{
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004688 struct rq *rq = cpu_rq(cpu);
Paul Turner48a16752012-10-04 13:18:31 +02004689 struct cfs_rq *cfs_rq;
4690 unsigned long flags;
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004691
Paul Turner48a16752012-10-04 13:18:31 +02004692 raw_spin_lock_irqsave(&rq->lock, flags);
4693 update_rq_clock(rq);
Peter Zijlstra9763b672011-07-13 13:09:25 +02004694 /*
4695 * Iterates the task_group tree in a bottom up fashion, see
4696 * list_add_leaf_cfs_rq() for details.
4697 */
Paul Turner64660c82011-07-21 09:43:36 -07004698 for_each_leaf_cfs_rq(rq, cfs_rq) {
Paul Turner48a16752012-10-04 13:18:31 +02004699 /*
4700 * Note: We may want to consider periodically releasing
4701 * rq->lock about these updates so that creating many task
4702 * groups does not result in continually extending hold time.
4703 */
4704 __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
Paul Turner64660c82011-07-21 09:43:36 -07004705 }
Paul Turner48a16752012-10-04 13:18:31 +02004706
4707 raw_spin_unlock_irqrestore(&rq->lock, flags);
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004708}
4709
Peter Zijlstra9763b672011-07-13 13:09:25 +02004710/*
Vladimir Davydov68520792013-07-15 17:49:19 +04004711 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
Peter Zijlstra9763b672011-07-13 13:09:25 +02004712 * This needs to be done in a top-down fashion because the load of a child
4713 * group is a fraction of its parents load.
4714 */
Vladimir Davydov68520792013-07-15 17:49:19 +04004715static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
Peter Zijlstra9763b672011-07-13 13:09:25 +02004716{
Vladimir Davydov68520792013-07-15 17:49:19 +04004717 struct rq *rq = rq_of(cfs_rq);
4718 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004719 unsigned long now = jiffies;
Vladimir Davydov68520792013-07-15 17:49:19 +04004720 unsigned long load;
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004721
Vladimir Davydov68520792013-07-15 17:49:19 +04004722 if (cfs_rq->last_h_load_update == now)
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004723 return;
4724
Vladimir Davydov68520792013-07-15 17:49:19 +04004725 cfs_rq->h_load_next = NULL;
4726 for_each_sched_entity(se) {
4727 cfs_rq = cfs_rq_of(se);
4728 cfs_rq->h_load_next = se;
4729 if (cfs_rq->last_h_load_update == now)
4730 break;
4731 }
Peter Zijlstraa35b6462012-08-08 21:46:40 +02004732
Vladimir Davydov68520792013-07-15 17:49:19 +04004733 if (!se) {
Vladimir Davydov7e3115e2013-09-14 19:39:46 +04004734 cfs_rq->h_load = cfs_rq->runnable_load_avg;
Vladimir Davydov68520792013-07-15 17:49:19 +04004735 cfs_rq->last_h_load_update = now;
4736 }
4737
4738 while ((se = cfs_rq->h_load_next) != NULL) {
4739 load = cfs_rq->h_load;
4740 load = div64_ul(load * se->avg.load_avg_contrib,
4741 cfs_rq->runnable_load_avg + 1);
4742 cfs_rq = group_cfs_rq(se);
4743 cfs_rq->h_load = load;
4744 cfs_rq->last_h_load_update = now;
4745 }
Peter Zijlstra9763b672011-07-13 13:09:25 +02004746}
4747
Peter Zijlstra367456c2012-02-20 21:49:09 +01004748static unsigned long task_h_load(struct task_struct *p)
Peter Zijlstra230059de2009-12-17 17:47:12 +01004749{
Peter Zijlstra367456c2012-02-20 21:49:09 +01004750 struct cfs_rq *cfs_rq = task_cfs_rq(p);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004751
Vladimir Davydov68520792013-07-15 17:49:19 +04004752 update_cfs_rq_h_load(cfs_rq);
Alex Shia003a252013-06-20 10:18:51 +08004753 return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
4754 cfs_rq->runnable_load_avg + 1);
Peter Zijlstra230059de2009-12-17 17:47:12 +01004755}
4756#else
Paul Turner48a16752012-10-04 13:18:31 +02004757static inline void update_blocked_averages(int cpu)
Peter Zijlstra9e3081c2010-11-15 15:47:02 -08004758{
4759}
4760
Peter Zijlstra367456c2012-02-20 21:49:09 +01004761static unsigned long task_h_load(struct task_struct *p)
4762{
Alex Shia003a252013-06-20 10:18:51 +08004763 return p->se.avg.load_avg_contrib;
Peter Zijlstra230059de2009-12-17 17:47:12 +01004764}
4765#endif
4766
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004767/********** Helpers for find_busiest_group ************************/
4768/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004769 * sg_lb_stats - stats of a sched_group required for load_balancing
4770 */
4771struct sg_lb_stats {
4772 unsigned long avg_load; /*Avg load across the CPUs of the group */
4773 unsigned long group_load; /* Total load over the CPUs of the group */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004774 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004775 unsigned long load_per_task;
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02004776 unsigned long group_power;
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004777 unsigned int sum_nr_running; /* Nr tasks running in the group */
4778 unsigned int group_capacity;
4779 unsigned int idle_cpus;
4780 unsigned int group_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004781 int group_imb; /* Is there an imbalance in the group ? */
Nikhil Raofab47622010-10-15 13:12:29 -07004782 int group_has_capacity; /* Is there extra capacity in the group? */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004783};
4784
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004785/*
4786 * sd_lb_stats - Structure to store the statistics of a sched_domain
4787 * during load balancing.
4788 */
4789struct sd_lb_stats {
4790 struct sched_group *busiest; /* Busiest group in this sd */
4791 struct sched_group *local; /* Local group in this sd */
4792 unsigned long total_load; /* Total load of all groups in sd */
4793 unsigned long total_pwr; /* Total power of all groups in sd */
4794 unsigned long avg_load; /* Average load across all groups in sd */
4795
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004796 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004797 struct sg_lb_stats local_stat; /* Statistics of the local group */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09004798};
4799
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02004800static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
4801{
4802 /*
4803 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
4804 * local_stat because update_sg_lb_stats() does a full clear/assignment.
4805 * We must however clear busiest_stat::avg_load because
4806 * update_sd_pick_busiest() reads this before assignment.
4807 */
4808 *sds = (struct sd_lb_stats){
4809 .busiest = NULL,
4810 .local = NULL,
4811 .total_load = 0UL,
4812 .total_pwr = 0UL,
4813 .busiest_stat = {
4814 .avg_load = 0UL,
4815 },
4816 };
4817}
4818
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004819/**
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004820 * get_sd_load_idx - Obtain the load index for a given sched domain.
4821 * @sd: The sched_domain whose load_idx is to be obtained.
4822 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
Yacine Belkadie69f6182013-07-12 20:45:47 +02004823 *
4824 * Return: The load index.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004825 */
4826static inline int get_sd_load_idx(struct sched_domain *sd,
4827 enum cpu_idle_type idle)
4828{
4829 int load_idx;
4830
4831 switch (idle) {
4832 case CPU_NOT_IDLE:
4833 load_idx = sd->busy_idx;
4834 break;
4835
4836 case CPU_NEWLY_IDLE:
4837 load_idx = sd->newidle_idx;
4838 break;
4839 default:
4840 load_idx = sd->idle_idx;
4841 break;
4842 }
4843
4844 return load_idx;
4845}
4846
Li Zefan15f803c2013-03-05 16:07:11 +08004847static unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004848{
Nikhil Rao1399fa72011-05-18 10:09:39 -07004849 return SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004850}
4851
4852unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
4853{
4854 return default_scale_freq_power(sd, cpu);
4855}
4856
Li Zefan15f803c2013-03-05 16:07:11 +08004857static unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004858{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004859 unsigned long weight = sd->span_weight;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004860 unsigned long smt_gain = sd->smt_gain;
4861
4862 smt_gain /= weight;
4863
4864 return smt_gain;
4865}
4866
4867unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
4868{
4869 return default_scale_smt_power(sd, cpu);
4870}
4871
Li Zefan15f803c2013-03-05 16:07:11 +08004872static unsigned long scale_rt_power(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004873{
4874 struct rq *rq = cpu_rq(cpu);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004875 u64 total, available, age_stamp, avg;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004876
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004877 /*
4878 * Since we're reading these variables without serialization make sure
4879 * we read them once before doing sanity checks on them.
4880 */
4881 age_stamp = ACCESS_ONCE(rq->age_stamp);
4882 avg = ACCESS_ONCE(rq->rt_avg);
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004883
Frederic Weisbecker78becc22013-04-12 01:51:02 +02004884 total = sched_avg_period() + (rq_clock(rq) - age_stamp);
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004885
4886 if (unlikely(total < avg)) {
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004887 /* Ensures that power won't end up being negative */
4888 available = 0;
4889 } else {
Peter Zijlstrab654f7d2012-05-22 14:04:28 +02004890 available = total - avg;
Venkatesh Pallipadiaa483802010-10-04 17:03:22 -07004891 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004892
Nikhil Rao1399fa72011-05-18 10:09:39 -07004893 if (unlikely((s64)total < SCHED_POWER_SCALE))
4894 total = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004895
Nikhil Rao1399fa72011-05-18 10:09:39 -07004896 total >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004897
4898 return div_u64(available, total);
4899}
4900
4901static void update_cpu_power(struct sched_domain *sd, int cpu)
4902{
Peter Zijlstra669c55e2010-04-16 14:59:29 +02004903 unsigned long weight = sd->span_weight;
Nikhil Rao1399fa72011-05-18 10:09:39 -07004904 unsigned long power = SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004905 struct sched_group *sdg = sd->groups;
4906
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004907 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
4908 if (sched_feat(ARCH_POWER))
4909 power *= arch_scale_smt_power(sd, cpu);
4910 else
4911 power *= default_scale_smt_power(sd, cpu);
4912
Nikhil Rao1399fa72011-05-18 10:09:39 -07004913 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004914 }
4915
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004916 sdg->sgp->power_orig = power;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004917
4918 if (sched_feat(ARCH_POWER))
4919 power *= arch_scale_freq_power(sd, cpu);
4920 else
4921 power *= default_scale_freq_power(sd, cpu);
4922
Nikhil Rao1399fa72011-05-18 10:09:39 -07004923 power >>= SCHED_POWER_SHIFT;
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004924
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004925 power *= scale_rt_power(cpu);
Nikhil Rao1399fa72011-05-18 10:09:39 -07004926 power >>= SCHED_POWER_SHIFT;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004927
4928 if (!power)
4929 power = 1;
4930
Peter Zijlstrae51fd5e2010-05-31 12:37:30 +02004931 cpu_rq(cpu)->cpu_power = power;
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02004932 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004933}
4934
Peter Zijlstra029632f2011-10-25 10:00:11 +02004935void update_group_power(struct sched_domain *sd, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004936{
4937 struct sched_domain *child = sd->child;
4938 struct sched_group *group, *sdg = sd->groups;
Peter Zijlstra863bffc2013-08-28 11:44:39 +02004939 unsigned long power, power_orig;
Vincent Guittot4ec44122011-12-12 20:21:08 +01004940 unsigned long interval;
4941
4942 interval = msecs_to_jiffies(sd->balance_interval);
4943 interval = clamp(interval, 1UL, max_load_balance_interval);
4944 sdg->sgp->next_update = jiffies + interval;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004945
4946 if (!child) {
4947 update_cpu_power(sd, cpu);
4948 return;
4949 }
4950
Peter Zijlstra863bffc2013-08-28 11:44:39 +02004951 power_orig = power = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004952
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02004953 if (child->flags & SD_OVERLAP) {
4954 /*
4955 * SD_OVERLAP domains cannot assume that child groups
4956 * span the current group.
4957 */
4958
Peter Zijlstra863bffc2013-08-28 11:44:39 +02004959 for_each_cpu(cpu, sched_group_cpus(sdg)) {
4960 struct sched_group *sg = cpu_rq(cpu)->sd->groups;
4961
4962 power_orig += sg->sgp->power_orig;
4963 power += sg->sgp->power;
4964 }
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02004965 } else {
4966 /*
4967 * !SD_OVERLAP domains can assume that child groups
4968 * span the current group.
4969 */
4970
4971 group = child->groups;
4972 do {
Peter Zijlstra863bffc2013-08-28 11:44:39 +02004973 power_orig += group->sgp->power_orig;
Peter Zijlstra74a5ce22012-05-23 18:00:43 +02004974 power += group->sgp->power;
4975 group = group->next;
4976 } while (group != child->groups);
4977 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004978
Peter Zijlstra863bffc2013-08-28 11:44:39 +02004979 sdg->sgp->power_orig = power_orig;
4980 sdg->sgp->power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01004981}
4982
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004983/*
4984 * Try and fix up capacity for tiny siblings, this is needed when
4985 * things like SD_ASYM_PACKING need f_b_g to select another sibling
4986 * which on its own isn't powerful enough.
4987 *
4988 * See update_sd_pick_busiest() and check_asym_packing().
4989 */
4990static inline int
4991fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
4992{
4993 /*
Nikhil Rao1399fa72011-05-18 10:09:39 -07004994 * Only siblings can have significantly less than SCHED_POWER_SCALE
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004995 */
Peter Zijlstraa6c75f22011-04-07 14:09:52 +02004996 if (!(sd->flags & SD_SHARE_CPUPOWER))
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10004997 return 0;
4998
4999 /*
5000 * If ~90% of the cpu_power is still there, we're good.
5001 */
Peter Zijlstra9c3f75c2011-07-14 13:00:06 +02005002 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005003 return 1;
5004
5005 return 0;
5006}
5007
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005008/*
5009 * Group imbalance indicates (and tries to solve) the problem where balancing
5010 * groups is inadequate due to tsk_cpus_allowed() constraints.
5011 *
5012 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
5013 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
5014 * Something like:
5015 *
5016 * { 0 1 2 3 } { 4 5 6 7 }
5017 * * * * *
5018 *
5019 * If we were to balance group-wise we'd place two tasks in the first group and
5020 * two tasks in the second group. Clearly this is undesired as it will overload
5021 * cpu 3 and leave one of the cpus in the second group unused.
5022 *
5023 * The current solution to this issue is detecting the skew in the first group
Peter Zijlstra62633222013-08-19 12:41:09 +02005024 * by noticing the lower domain failed to reach balance and had difficulty
5025 * moving tasks due to affinity constraints.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005026 *
5027 * When this is so detected; this group becomes a candidate for busiest; see
5028 * update_sd_pick_busiest(). And calculcate_imbalance() and
Peter Zijlstra62633222013-08-19 12:41:09 +02005029 * find_busiest_group() avoid some of the usual balance conditions to allow it
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005030 * to create an effective group imbalance.
5031 *
5032 * This is a somewhat tricky proposition since the next run might not find the
5033 * group imbalance and decide the groups need to be balanced again. A most
5034 * subtle and fragile situation.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005035 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005036
Peter Zijlstra62633222013-08-19 12:41:09 +02005037static inline int sg_imbalanced(struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005038{
Peter Zijlstra62633222013-08-19 12:41:09 +02005039 return group->sgp->imbalance;
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005040}
5041
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005042/*
5043 * Compute the group capacity.
5044 *
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005045 * Avoid the issue where N*frac(smt_power) >= 1 creates 'phantom' cores by
5046 * first dividing out the smt factor and computing the actual number of cores
5047 * and limit power unit capacity with that.
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005048 */
5049static inline int sg_capacity(struct lb_env *env, struct sched_group *group)
5050{
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005051 unsigned int capacity, smt, cpus;
5052 unsigned int power, power_orig;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005053
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005054 power = group->sgp->power;
5055 power_orig = group->sgp->power_orig;
5056 cpus = group->group_weight;
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005057
Peter Zijlstrac61037e2013-08-28 12:40:38 +02005058 /* smt := ceil(cpus / power), assumes: 1 < smt_power < 2 */
5059 smt = DIV_ROUND_UP(SCHED_POWER_SCALE * cpus, power_orig);
5060 capacity = cpus / smt; /* cores */
5061
5062 capacity = min_t(unsigned, capacity, DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE));
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005063 if (!capacity)
5064 capacity = fix_small_capacity(env->sd, group);
5065
5066 return capacity;
5067}
5068
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005069/**
5070 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
5071 * @env: The load balancing environment.
5072 * @group: sched_group whose statistics are to be updated.
5073 * @load_idx: Load index of sched_domain of this_cpu for load calc.
5074 * @local_group: Does group contain this_cpu.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005075 * @sgs: variable to hold the statistics for this group.
5076 */
5077static inline void update_sg_lb_stats(struct lb_env *env,
5078 struct sched_group *group, int load_idx,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005079 int local_group, struct sg_lb_stats *sgs)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005080{
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005081 unsigned long nr_running;
5082 unsigned long load;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005083 int i;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005084
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005085 memset(sgs, 0, sizeof(*sgs));
5086
Michael Wangb9403132012-07-12 16:10:13 +08005087 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005088 struct rq *rq = cpu_rq(i);
5089
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005090 nr_running = rq->nr_running;
5091
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005092 /* Bias balancing toward cpus of our domain */
Peter Zijlstra62633222013-08-19 12:41:09 +02005093 if (local_group)
Peter Zijlstra04f733b2012-05-11 00:12:02 +02005094 load = target_load(i, load_idx);
Peter Zijlstra62633222013-08-19 12:41:09 +02005095 else
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005096 load = source_load(i, load_idx);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005097
5098 sgs->group_load += load;
Peter Zijlstrae44bc5c2012-05-11 00:22:12 +02005099 sgs->sum_nr_running += nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005100 sgs->sum_weighted_load += weighted_cpuload(i);
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005101 if (idle_cpu(i))
5102 sgs->idle_cpus++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005103 }
5104
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005105 /* Adjust by relative CPU power of the group */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005106 sgs->group_power = group->sgp->power;
5107 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / sgs->group_power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005108
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005109 if (sgs->sum_nr_running)
Peter Zijlstra38d0f772013-08-15 19:47:56 +02005110 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005111
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005112 sgs->group_weight = group->group_weight;
Nikhil Raofab47622010-10-15 13:12:29 -07005113
Peter Zijlstrab37d9312013-08-28 11:50:34 +02005114 sgs->group_imb = sg_imbalanced(group);
5115 sgs->group_capacity = sg_capacity(env, group);
5116
Nikhil Raofab47622010-10-15 13:12:29 -07005117 if (sgs->group_capacity > sgs->sum_nr_running)
5118 sgs->group_has_capacity = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005119}
5120
5121/**
Michael Neuling532cb4c2010-06-08 14:57:02 +10005122 * update_sd_pick_busiest - return 1 on busiest group
Randy Dunlapcd968912012-06-08 13:18:33 -07005123 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005124 * @sds: sched_domain statistics
5125 * @sg: sched_group candidate to be checked for being the busiest
Michael Neulingb6b12292010-06-10 12:06:21 +10005126 * @sgs: sched_group statistics
Michael Neuling532cb4c2010-06-08 14:57:02 +10005127 *
5128 * Determine if @sg is a busier group than the previously selected
5129 * busiest group.
Yacine Belkadie69f6182013-07-12 20:45:47 +02005130 *
5131 * Return: %true if @sg is a busier group than the previously selected
5132 * busiest group. %false otherwise.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005133 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005134static bool update_sd_pick_busiest(struct lb_env *env,
Michael Neuling532cb4c2010-06-08 14:57:02 +10005135 struct sd_lb_stats *sds,
5136 struct sched_group *sg,
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005137 struct sg_lb_stats *sgs)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005138{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005139 if (sgs->avg_load <= sds->busiest_stat.avg_load)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005140 return false;
5141
5142 if (sgs->sum_nr_running > sgs->group_capacity)
5143 return true;
5144
5145 if (sgs->group_imb)
5146 return true;
5147
5148 /*
5149 * ASYM_PACKING needs to move all the work to the lowest
5150 * numbered CPUs in the group, therefore mark all groups
5151 * higher than ourself as busy.
5152 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005153 if ((env->sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
5154 env->dst_cpu < group_first_cpu(sg)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005155 if (!sds->busiest)
5156 return true;
5157
5158 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
5159 return true;
5160 }
5161
5162 return false;
5163}
5164
5165/**
Hui Kang461819a2011-10-11 23:00:59 -04005166 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005167 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005168 * @balance: Should we balance.
5169 * @sds: variable to hold the statistics for this sched_domain.
5170 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005171static inline void update_sd_lb_stats(struct lb_env *env,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005172 struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005173{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005174 struct sched_domain *child = env->sd->child;
5175 struct sched_group *sg = env->sd->groups;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005176 struct sg_lb_stats tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005177 int load_idx, prefer_sibling = 0;
5178
5179 if (child && child->flags & SD_PREFER_SIBLING)
5180 prefer_sibling = 1;
5181
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005182 load_idx = get_sd_load_idx(env->sd, env->idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005183
5184 do {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005185 struct sg_lb_stats *sgs = &tmp_sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005186 int local_group;
5187
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005188 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005189 if (local_group) {
5190 sds->local = sg;
5191 sgs = &sds->local_stat;
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005192
5193 if (env->idle != CPU_NEWLY_IDLE ||
5194 time_after_eq(jiffies, sg->sgp->next_update))
5195 update_group_power(env->sd, env->dst_cpu);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005196 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005197
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005198 update_sg_lb_stats(env, sg, load_idx, local_group, sgs);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005199
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005200 if (local_group)
5201 goto next_group;
5202
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005203 /*
5204 * In case the child domain prefers tasks go to siblings
Michael Neuling532cb4c2010-06-08 14:57:02 +10005205 * first, lower the sg capacity to one so that we'll try
Nikhil Rao75dd3212010-10-15 13:12:30 -07005206 * and move all the excess tasks away. We lower the capacity
5207 * of a group only if the local group has the capacity to fit
5208 * these excess tasks, i.e. nr_running < group_capacity. The
5209 * extra check prevents the case where you always pull from the
5210 * heaviest group when it is already under-utilized (possible
5211 * with a large weight task outweighs the tasks on the system).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005212 */
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005213 if (prefer_sibling && sds->local &&
5214 sds->local_stat.group_has_capacity)
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005215 sgs->group_capacity = min(sgs->group_capacity, 1U);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005216
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005217 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005218 sds->busiest = sg;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005219 sds->busiest_stat = *sgs;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005220 }
5221
Peter Zijlstrab72ff132013-08-28 10:32:32 +02005222next_group:
5223 /* Now, start updating sd_lb_stats */
5224 sds->total_load += sgs->group_load;
5225 sds->total_pwr += sgs->group_power;
5226
Michael Neuling532cb4c2010-06-08 14:57:02 +10005227 sg = sg->next;
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005228 } while (sg != env->sd->groups);
Michael Neuling532cb4c2010-06-08 14:57:02 +10005229}
5230
Michael Neuling532cb4c2010-06-08 14:57:02 +10005231/**
5232 * check_asym_packing - Check to see if the group is packed into the
5233 * sched doman.
5234 *
5235 * This is primarily intended to used at the sibling level. Some
5236 * cores like POWER7 prefer to use lower numbered SMT threads. In the
5237 * case of POWER7, it can move to lower SMT modes only when higher
5238 * threads are idle. When in lower SMT modes, the threads will
5239 * perform better since they share less core resources. Hence when we
5240 * have idle threads, we want them to be the higher ones.
5241 *
5242 * This packing function is run on idle threads. It checks to see if
5243 * the busiest CPU in this domain (core in the P7 case) has a higher
5244 * CPU number than the packing function is being run on. Here we are
5245 * assuming lower CPU number will be equivalent to lower a SMT thread
5246 * number.
5247 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005248 * Return: 1 when packing is required and a task should be moved to
Michael Neulingb6b12292010-06-10 12:06:21 +10005249 * this CPU. The amount of the imbalance is returned in *imbalance.
5250 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005251 * @env: The load balancing environment.
Michael Neuling532cb4c2010-06-08 14:57:02 +10005252 * @sds: Statistics of the sched_domain which is to be packed
Michael Neuling532cb4c2010-06-08 14:57:02 +10005253 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005254static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005255{
5256 int busiest_cpu;
5257
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005258 if (!(env->sd->flags & SD_ASYM_PACKING))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005259 return 0;
5260
5261 if (!sds->busiest)
5262 return 0;
5263
5264 busiest_cpu = group_first_cpu(sds->busiest);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005265 if (env->dst_cpu > busiest_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005266 return 0;
5267
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005268 env->imbalance = DIV_ROUND_CLOSEST(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005269 sds->busiest_stat.avg_load * sds->busiest_stat.group_power,
5270 SCHED_POWER_SCALE);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005271
Michael Neuling532cb4c2010-06-08 14:57:02 +10005272 return 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005273}
5274
5275/**
5276 * fix_small_imbalance - Calculate the minor imbalance that exists
5277 * amongst the groups of a sched_domain, during
5278 * load balancing.
Randy Dunlapcd968912012-06-08 13:18:33 -07005279 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005280 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005281 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005282static inline
5283void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005284{
5285 unsigned long tmp, pwr_now = 0, pwr_move = 0;
5286 unsigned int imbn = 2;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005287 unsigned long scaled_busy_load_per_task;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005288 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005289
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005290 local = &sds->local_stat;
5291 busiest = &sds->busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005292
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005293 if (!local->sum_nr_running)
5294 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
5295 else if (busiest->load_per_task > local->load_per_task)
5296 imbn = 1;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005297
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005298 scaled_busy_load_per_task =
5299 (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005300 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005301
Vladimir Davydov3029ede2013-09-15 17:49:14 +04005302 if (busiest->avg_load + scaled_busy_load_per_task >=
5303 local->avg_load + (scaled_busy_load_per_task * imbn)) {
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005304 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005305 return;
5306 }
5307
5308 /*
5309 * OK, we don't have enough imbalance to justify moving tasks,
5310 * however we may be able to increase total CPU power used by
5311 * moving them.
5312 */
5313
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005314 pwr_now += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005315 min(busiest->load_per_task, busiest->avg_load);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005316 pwr_now += local->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005317 min(local->load_per_task, local->avg_load);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005318 pwr_now /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005319
5320 /* Amount of load we'd subtract */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005321 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005322 busiest->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005323 if (busiest->avg_load > tmp) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005324 pwr_move += busiest->group_power *
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005325 min(busiest->load_per_task,
5326 busiest->avg_load - tmp);
5327 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005328
5329 /* Amount of load we'd add */
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005330 if (busiest->avg_load * busiest->group_power <
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005331 busiest->load_per_task * SCHED_POWER_SCALE) {
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005332 tmp = (busiest->avg_load * busiest->group_power) /
5333 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005334 } else {
5335 tmp = (busiest->load_per_task * SCHED_POWER_SCALE) /
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005336 local->group_power;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005337 }
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005338 pwr_move += local->group_power *
5339 min(local->load_per_task, local->avg_load + tmp);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005340 pwr_move /= SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005341
5342 /* Move if we gain throughput */
5343 if (pwr_move > pwr_now)
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005344 env->imbalance = busiest->load_per_task;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005345}
5346
5347/**
5348 * calculate_imbalance - Calculate the amount of imbalance present within the
5349 * groups of a given sched_domain during load balance.
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005350 * @env: load balance environment
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005351 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005352 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005353static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005354{
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005355 unsigned long max_pull, load_above_capacity = ~0UL;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005356 struct sg_lb_stats *local, *busiest;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005357
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005358 local = &sds->local_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005359 busiest = &sds->busiest_stat;
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005360
5361 if (busiest->group_imb) {
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005362 /*
5363 * In the group_imb case we cannot rely on group-wide averages
5364 * to ensure cpu-load equilibrium, look at wider averages. XXX
5365 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005366 busiest->load_per_task =
5367 min(busiest->load_per_task, sds->avg_load);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005368 }
5369
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005370 /*
5371 * In the presence of smp nice balancing, certain scenarios can have
5372 * max load less than avg load(as we skip the groups at or below
5373 * its cpu_power, while calculating max_load..)
5374 */
Vladimir Davydovb1885552013-09-15 17:49:13 +04005375 if (busiest->avg_load <= sds->avg_load ||
5376 local->avg_load >= sds->avg_load) {
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005377 env->imbalance = 0;
5378 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005379 }
5380
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005381 if (!busiest->group_imb) {
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005382 /*
5383 * Don't want to pull so many tasks that a group would go idle.
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005384 * Except of course for the group_imb case, since then we might
5385 * have to drop below capacity to reach cpu-load equilibrium.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005386 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005387 load_above_capacity =
5388 (busiest->sum_nr_running - busiest->group_capacity);
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005389
Nikhil Rao1399fa72011-05-18 10:09:39 -07005390 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005391 load_above_capacity /= busiest->group_power;
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005392 }
5393
5394 /*
5395 * We're trying to get all the cpus to the average_load, so we don't
5396 * want to push ourselves above the average load, nor do we wish to
5397 * reduce the max loaded cpu below the average load. At the same time,
5398 * we also don't want to reduce the group load below the group capacity
5399 * (so that we can implement power-savings policies etc). Thus we look
5400 * for the minimum possible imbalance.
Suresh Siddhadd5feea2010-02-23 16:13:52 -08005401 */
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005402 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005403
5404 /* How much load to actually move to equalise the imbalance */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005405 env->imbalance = min(
Peter Zijlstra3ae11c92013-08-15 20:37:48 +02005406 max_pull * busiest->group_power,
5407 (sds->avg_load - local->avg_load) * local->group_power
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005408 ) / SCHED_POWER_SCALE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005409
5410 /*
5411 * if *imbalance is less than the average load per runnable task
Lucas De Marchi25985ed2011-03-30 22:57:33 -03005412 * there is no guarantee that any tasks will be moved so we'll have
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005413 * a think about bumping its value to force at least one task to be
5414 * moved
5415 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005416 if (env->imbalance < busiest->load_per_task)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005417 return fix_small_imbalance(env, sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005418}
Nikhil Raofab47622010-10-15 13:12:29 -07005419
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005420/******* find_busiest_group() helpers end here *********************/
5421
5422/**
5423 * find_busiest_group - Returns the busiest group within the sched_domain
5424 * if there is an imbalance. If there isn't an imbalance, and
5425 * the user has opted for power-savings, it returns a group whose
5426 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
5427 * such a group exists.
5428 *
5429 * Also calculates the amount of weighted load which should be moved
5430 * to restore balance.
5431 *
Randy Dunlapcd968912012-06-08 13:18:33 -07005432 * @env: The load balancing environment.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005433 *
Yacine Belkadie69f6182013-07-12 20:45:47 +02005434 * Return: - The busiest group if imbalance exists.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005435 * - If no imbalance and user has opted for power-savings balance,
5436 * return the least loaded group whose CPUs can be
5437 * put to idle by rebalancing its tasks onto our group.
5438 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005439static struct sched_group *find_busiest_group(struct lb_env *env)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005440{
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005441 struct sg_lb_stats *local, *busiest;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005442 struct sd_lb_stats sds;
5443
Peter Zijlstra147c5fc2013-08-19 15:22:57 +02005444 init_sd_lb_stats(&sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005445
5446 /*
5447 * Compute the various statistics relavent for load balancing at
5448 * this level.
5449 */
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005450 update_sd_lb_stats(env, &sds);
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005451 local = &sds.local_stat;
5452 busiest = &sds.busiest_stat;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005453
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005454 if ((env->idle == CPU_IDLE || env->idle == CPU_NEWLY_IDLE) &&
5455 check_asym_packing(env, &sds))
Michael Neuling532cb4c2010-06-08 14:57:02 +10005456 return sds.busiest;
5457
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005458 /* There is no busy sibling group to pull tasks from */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005459 if (!sds.busiest || busiest->sum_nr_running == 0)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005460 goto out_balanced;
5461
Nikhil Rao1399fa72011-05-18 10:09:39 -07005462 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
Ken Chenb0432d82011-04-07 17:23:22 -07005463
Peter Zijlstra866ab432011-02-21 18:56:47 +01005464 /*
5465 * If the busiest group is imbalanced the below checks don't
Peter Zijlstra30ce5da2013-08-15 20:29:29 +02005466 * work because they assume all things are equal, which typically
Peter Zijlstra866ab432011-02-21 18:56:47 +01005467 * isn't true due to cpus_allowed constraints and the like.
5468 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005469 if (busiest->group_imb)
Peter Zijlstra866ab432011-02-21 18:56:47 +01005470 goto force_balance;
5471
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005472 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005473 if (env->idle == CPU_NEWLY_IDLE && local->group_has_capacity &&
5474 !busiest->group_has_capacity)
Nikhil Raofab47622010-10-15 13:12:29 -07005475 goto force_balance;
5476
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005477 /*
5478 * If the local group is more busy than the selected busiest group
5479 * don't try and pull any tasks.
5480 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005481 if (local->avg_load >= busiest->avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005482 goto out_balanced;
5483
Peter Zijlstracc57aa82011-02-21 18:55:32 +01005484 /*
5485 * Don't pull any tasks if this group is already above the domain
5486 * average load.
5487 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005488 if (local->avg_load >= sds.avg_load)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005489 goto out_balanced;
5490
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005491 if (env->idle == CPU_IDLE) {
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005492 /*
5493 * This cpu is idle. If the busiest group load doesn't
5494 * have more tasks than the number of available cpu's and
5495 * there is no imbalance between this and busiest group
5496 * wrt to idle cpu's, it is balanced.
5497 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005498 if ((local->idle_cpus < busiest->idle_cpus) &&
5499 busiest->sum_nr_running <= busiest->group_weight)
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005500 goto out_balanced;
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005501 } else {
5502 /*
5503 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
5504 * imbalance_pct to be conservative.
5505 */
Joonsoo Kim56cf5152013-08-06 17:36:43 +09005506 if (100 * busiest->avg_load <=
5507 env->sd->imbalance_pct * local->avg_load)
Peter Zijlstrac186faf2011-02-21 18:52:53 +01005508 goto out_balanced;
Suresh Siddhaaae6d3d2010-09-17 15:02:32 -07005509 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005510
Nikhil Raofab47622010-10-15 13:12:29 -07005511force_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005512 /* Looks like there is an imbalance. Compute it */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005513 calculate_imbalance(env, &sds);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005514 return sds.busiest;
5515
5516out_balanced:
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005517 env->imbalance = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005518 return NULL;
5519}
5520
5521/*
5522 * find_busiest_queue - find the busiest runqueue among the cpus in group.
5523 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005524static struct rq *find_busiest_queue(struct lb_env *env,
Michael Wangb9403132012-07-12 16:10:13 +08005525 struct sched_group *group)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005526{
5527 struct rq *busiest = NULL, *rq;
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005528 unsigned long busiest_load = 0, busiest_power = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005529 int i;
5530
Peter Zijlstra6906a402013-08-19 15:20:21 +02005531 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005532 unsigned long power = power_of(i);
Nikhil Rao1399fa72011-05-18 10:09:39 -07005533 unsigned long capacity = DIV_ROUND_CLOSEST(power,
5534 SCHED_POWER_SCALE);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005535 unsigned long wl;
5536
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005537 if (!capacity)
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005538 capacity = fix_small_capacity(env->sd, group);
Srivatsa Vaddagiri9d5efe02010-06-08 14:57:02 +10005539
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005540 rq = cpu_rq(i);
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005541 wl = weighted_cpuload(i);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005542
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005543 /*
5544 * When comparing with imbalance, use weighted_cpuload()
5545 * which is not scaled with the cpu power.
5546 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005547 if (capacity && rq->nr_running == 1 && wl > env->imbalance)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005548 continue;
5549
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005550 /*
5551 * For the load comparisons with the other cpu's, consider
5552 * the weighted_cpuload() scaled with the cpu power, so that
5553 * the load can be moved away from the cpu that is potentially
5554 * running at a lower capacity.
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005555 *
5556 * Thus we're looking for max(wl_i / power_i), crosswise
5557 * multiplication to rid ourselves of the division works out
5558 * to: wl_i * power_j > wl_j * power_i; where j is our
5559 * previous maximum.
Thomas Gleixner6e40f5b2010-02-16 16:48:56 +01005560 */
Joonsoo Kim95a79b82013-08-06 17:36:41 +09005561 if (wl * busiest_power > busiest_load * power) {
5562 busiest_load = wl;
5563 busiest_power = power;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005564 busiest = rq;
5565 }
5566 }
5567
5568 return busiest;
5569}
5570
5571/*
5572 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
5573 * so long as it is large enough.
5574 */
5575#define MAX_PINNED_INTERVAL 512
5576
5577/* Working cpumask for load_balance and load_balance_newidle. */
Joonsoo Kime6252c32013-04-23 17:27:41 +09005578DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005579
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005580static int need_active_balance(struct lb_env *env)
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005581{
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005582 struct sched_domain *sd = env->sd;
5583
5584 if (env->idle == CPU_NEWLY_IDLE) {
Michael Neuling532cb4c2010-06-08 14:57:02 +10005585
5586 /*
5587 * ASYM_PACKING needs to force migrate tasks from busy but
5588 * higher numbered CPUs in order to pack all tasks in the
5589 * lowest numbered CPUs.
5590 */
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005591 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
Michael Neuling532cb4c2010-06-08 14:57:02 +10005592 return 1;
Peter Zijlstra1af3ed32009-12-23 15:10:31 +01005593 }
5594
5595 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
5596}
5597
Tejun Heo969c7922010-05-06 18:49:21 +02005598static int active_load_balance_cpu_stop(void *data);
5599
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005600static int should_we_balance(struct lb_env *env)
5601{
5602 struct sched_group *sg = env->sd->groups;
5603 struct cpumask *sg_cpus, *sg_mask;
5604 int cpu, balance_cpu = -1;
5605
5606 /*
5607 * In the newly idle case, we will allow all the cpu's
5608 * to do the newly idle load balance.
5609 */
5610 if (env->idle == CPU_NEWLY_IDLE)
5611 return 1;
5612
5613 sg_cpus = sched_group_cpus(sg);
5614 sg_mask = sched_group_mask(sg);
5615 /* Try to find first idle cpu */
5616 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
5617 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
5618 continue;
5619
5620 balance_cpu = cpu;
5621 break;
5622 }
5623
5624 if (balance_cpu == -1)
5625 balance_cpu = group_balance_cpu(sg);
5626
5627 /*
5628 * First idle cpu or the first cpu(busiest) in this sched group
5629 * is eligible for doing load balancing at this and above domains.
5630 */
Joonsoo Kimb0cff9d2013-09-10 15:54:49 +09005631 return balance_cpu == env->dst_cpu;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005632}
5633
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005634/*
5635 * Check this_cpu to ensure it is balanced within domain. Attempt to move
5636 * tasks if there is an imbalance.
5637 */
5638static int load_balance(int this_cpu, struct rq *this_rq,
5639 struct sched_domain *sd, enum cpu_idle_type idle,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005640 int *continue_balancing)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005641{
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305642 int ld_moved, cur_ld_moved, active_balance = 0;
Peter Zijlstra62633222013-08-19 12:41:09 +02005643 struct sched_domain *sd_parent = sd->parent;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005644 struct sched_group *group;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005645 struct rq *busiest;
5646 unsigned long flags;
Joonsoo Kime6252c32013-04-23 17:27:41 +09005647 struct cpumask *cpus = __get_cpu_var(load_balance_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005648
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005649 struct lb_env env = {
5650 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005651 .dst_cpu = this_cpu,
5652 .dst_rq = this_rq,
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305653 .dst_grpmask = sched_group_cpus(sd->groups),
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005654 .idle = idle,
Peter Zijlstraeb953082012-04-17 13:38:40 +02005655 .loop_break = sched_nr_migrate_break,
Michael Wangb9403132012-07-12 16:10:13 +08005656 .cpus = cpus,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005657 };
5658
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005659 /*
5660 * For NEWLY_IDLE load_balancing, we don't need to consider
5661 * other cpus in our group
5662 */
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005663 if (idle == CPU_NEWLY_IDLE)
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005664 env.dst_grpmask = NULL;
Joonsoo Kimcfc03112013-04-23 17:27:39 +09005665
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005666 cpumask_copy(cpus, cpu_active_mask);
5667
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005668 schedstat_inc(sd, lb_count[idle]);
5669
5670redo:
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005671 if (!should_we_balance(&env)) {
5672 *continue_balancing = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005673 goto out_balanced;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005674 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005675
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005676 group = find_busiest_group(&env);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005677 if (!group) {
5678 schedstat_inc(sd, lb_nobusyg[idle]);
5679 goto out_balanced;
5680 }
5681
Michael Wangb9403132012-07-12 16:10:13 +08005682 busiest = find_busiest_queue(&env, group);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005683 if (!busiest) {
5684 schedstat_inc(sd, lb_nobusyq[idle]);
5685 goto out_balanced;
5686 }
5687
Michael Wang78feefc2012-08-06 16:41:59 +08005688 BUG_ON(busiest == env.dst_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005689
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005690 schedstat_add(sd, lb_imbalance[idle], env.imbalance);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005691
5692 ld_moved = 0;
5693 if (busiest->nr_running > 1) {
5694 /*
5695 * Attempt to move tasks. If find_busiest_group has found
5696 * an imbalance but busiest->nr_running <= 1, the group is
5697 * still unbalanced. ld_moved simply stays zero, so it is
5698 * correctly treated as an imbalance.
5699 */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005700 env.flags |= LBF_ALL_PINNED;
Peter Zijlstrac82513e2012-04-26 13:12:27 +02005701 env.src_cpu = busiest->cpu;
5702 env.src_rq = busiest;
5703 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005704
Peter Zijlstra5d6523e2012-03-10 00:07:36 +01005705more_balance:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005706 local_irq_save(flags);
Michael Wang78feefc2012-08-06 16:41:59 +08005707 double_rq_lock(env.dst_rq, busiest);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305708
5709 /*
5710 * cur_ld_moved - load moved in current iteration
5711 * ld_moved - cumulative load moved across iterations
5712 */
5713 cur_ld_moved = move_tasks(&env);
5714 ld_moved += cur_ld_moved;
Michael Wang78feefc2012-08-06 16:41:59 +08005715 double_rq_unlock(env.dst_rq, busiest);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005716 local_irq_restore(flags);
5717
5718 /*
5719 * some other cpu did the load balance for us.
5720 */
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305721 if (cur_ld_moved && env.dst_cpu != smp_processor_id())
5722 resched_cpu(env.dst_cpu);
5723
Joonsoo Kimf1cd0852013-04-23 17:27:37 +09005724 if (env.flags & LBF_NEED_BREAK) {
5725 env.flags &= ~LBF_NEED_BREAK;
5726 goto more_balance;
5727 }
5728
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305729 /*
5730 * Revisit (affine) tasks on src_cpu that couldn't be moved to
5731 * us and move them to an alternate dst_cpu in our sched_group
5732 * where they can run. The upper limit on how many times we
5733 * iterate on same src_cpu is dependent on number of cpus in our
5734 * sched_group.
5735 *
5736 * This changes load balance semantics a bit on who can move
5737 * load to a given_cpu. In addition to the given_cpu itself
5738 * (or a ilb_cpu acting on its behalf where given_cpu is
5739 * nohz-idle), we now have balance_cpu in a position to move
5740 * load to given_cpu. In rare situations, this may cause
5741 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
5742 * _independently_ and at _same_ time to move some load to
5743 * given_cpu) causing exceess load to be moved to given_cpu.
5744 * This however should not happen so much in practice and
5745 * moreover subsequent load balance cycles should correct the
5746 * excess load moved.
5747 */
Peter Zijlstra62633222013-08-19 12:41:09 +02005748 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305749
Vladimir Davydov7aff2e32013-09-15 21:30:13 +04005750 /* Prevent to re-select dst_cpu via env's cpus */
5751 cpumask_clear_cpu(env.dst_cpu, env.cpus);
5752
Michael Wang78feefc2012-08-06 16:41:59 +08005753 env.dst_rq = cpu_rq(env.new_dst_cpu);
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305754 env.dst_cpu = env.new_dst_cpu;
Peter Zijlstra62633222013-08-19 12:41:09 +02005755 env.flags &= ~LBF_DST_PINNED;
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305756 env.loop = 0;
5757 env.loop_break = sched_nr_migrate_break;
Joonsoo Kime02e60c2013-04-23 17:27:42 +09005758
Srivatsa Vaddagiri88b8dac2012-06-19 17:43:15 +05305759 /*
5760 * Go back to "more_balance" rather than "redo" since we
5761 * need to continue with same src_cpu.
5762 */
5763 goto more_balance;
5764 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005765
Peter Zijlstra62633222013-08-19 12:41:09 +02005766 /*
5767 * We failed to reach balance because of affinity.
5768 */
5769 if (sd_parent) {
5770 int *group_imbalance = &sd_parent->groups->sgp->imbalance;
5771
5772 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0) {
5773 *group_imbalance = 1;
5774 } else if (*group_imbalance)
5775 *group_imbalance = 0;
5776 }
5777
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005778 /* All tasks on this runqueue were pinned by CPU affinity */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005779 if (unlikely(env.flags & LBF_ALL_PINNED)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005780 cpumask_clear_cpu(cpu_of(busiest), cpus);
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305781 if (!cpumask_empty(cpus)) {
5782 env.loop = 0;
5783 env.loop_break = sched_nr_migrate_break;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005784 goto redo;
Prashanth Nageshappabbf18b12012-06-19 17:52:07 +05305785 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005786 goto out_balanced;
5787 }
5788 }
5789
5790 if (!ld_moved) {
5791 schedstat_inc(sd, lb_failed[idle]);
Venkatesh Pallipadi58b26c42010-09-10 18:19:17 -07005792 /*
5793 * Increment the failure counter only on periodic balance.
5794 * We do not want newidle balance, which can be very
5795 * frequent, pollute the failure counter causing
5796 * excessive cache_hot migrations and active balances.
5797 */
5798 if (idle != CPU_NEWLY_IDLE)
5799 sd->nr_balance_failed++;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005800
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005801 if (need_active_balance(&env)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005802 raw_spin_lock_irqsave(&busiest->lock, flags);
5803
Tejun Heo969c7922010-05-06 18:49:21 +02005804 /* don't kick the active_load_balance_cpu_stop,
5805 * if the curr task on busiest cpu can't be
5806 * moved to this_cpu
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005807 */
5808 if (!cpumask_test_cpu(this_cpu,
Peter Zijlstrafa17b502011-06-16 12:23:22 +02005809 tsk_cpus_allowed(busiest->curr))) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005810 raw_spin_unlock_irqrestore(&busiest->lock,
5811 flags);
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005812 env.flags |= LBF_ALL_PINNED;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005813 goto out_one_pinned;
5814 }
5815
Tejun Heo969c7922010-05-06 18:49:21 +02005816 /*
5817 * ->active_balance synchronizes accesses to
5818 * ->active_balance_work. Once set, it's cleared
5819 * only after active load balance is finished.
5820 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005821 if (!busiest->active_balance) {
5822 busiest->active_balance = 1;
5823 busiest->push_cpu = this_cpu;
5824 active_balance = 1;
5825 }
5826 raw_spin_unlock_irqrestore(&busiest->lock, flags);
Tejun Heo969c7922010-05-06 18:49:21 +02005827
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005828 if (active_balance) {
Tejun Heo969c7922010-05-06 18:49:21 +02005829 stop_one_cpu_nowait(cpu_of(busiest),
5830 active_load_balance_cpu_stop, busiest,
5831 &busiest->active_balance_work);
Peter Zijlstrabd939f42012-05-02 14:20:37 +02005832 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005833
5834 /*
5835 * We've kicked active balancing, reset the failure
5836 * counter.
5837 */
5838 sd->nr_balance_failed = sd->cache_nice_tries+1;
5839 }
5840 } else
5841 sd->nr_balance_failed = 0;
5842
5843 if (likely(!active_balance)) {
5844 /* We were unbalanced, so reset the balancing interval */
5845 sd->balance_interval = sd->min_interval;
5846 } else {
5847 /*
5848 * If we've begun active balancing, start to back off. This
5849 * case may not be covered by the all_pinned logic if there
5850 * is only 1 task on the busy runqueue (because we don't call
5851 * move_tasks).
5852 */
5853 if (sd->balance_interval < sd->max_interval)
5854 sd->balance_interval *= 2;
5855 }
5856
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005857 goto out;
5858
5859out_balanced:
5860 schedstat_inc(sd, lb_balanced[idle]);
5861
5862 sd->nr_balance_failed = 0;
5863
5864out_one_pinned:
5865 /* tune up the balancing interval */
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005866 if (((env.flags & LBF_ALL_PINNED) &&
Peter Zijlstra5b54b562011-09-22 15:23:13 +02005867 sd->balance_interval < MAX_PINNED_INTERVAL) ||
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005868 (sd->balance_interval < sd->max_interval))
5869 sd->balance_interval *= 2;
5870
Venkatesh Pallipadi46e49b32011-02-14 14:38:50 -08005871 ld_moved = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005872out:
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005873 return ld_moved;
5874}
5875
5876/*
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005877 * idle_balance is called by schedule() if this_cpu is about to become
5878 * idle. Attempts to pull tasks from other CPUs.
5879 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02005880void idle_balance(int this_cpu, struct rq *this_rq)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005881{
5882 struct sched_domain *sd;
5883 int pulled_task = 0;
5884 unsigned long next_balance = jiffies + HZ;
Jason Low9bd721c2013-09-13 11:26:52 -07005885 u64 curr_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005886
Frederic Weisbecker78becc22013-04-12 01:51:02 +02005887 this_rq->idle_stamp = rq_clock(this_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005888
5889 if (this_rq->avg_idle < sysctl_sched_migration_cost)
5890 return;
5891
Peter Zijlstraf492e122009-12-23 15:29:42 +01005892 /*
5893 * Drop the rq->lock, but keep IRQ/preempt disabled.
5894 */
5895 raw_spin_unlock(&this_rq->lock);
5896
Paul Turner48a16752012-10-04 13:18:31 +02005897 update_blocked_averages(this_cpu);
Peter Zijlstradce840a2011-04-07 14:09:50 +02005898 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005899 for_each_domain(this_cpu, sd) {
5900 unsigned long interval;
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005901 int continue_balancing = 1;
Jason Low9bd721c2013-09-13 11:26:52 -07005902 u64 t0, domain_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005903
5904 if (!(sd->flags & SD_LOAD_BALANCE))
5905 continue;
5906
Jason Low9bd721c2013-09-13 11:26:52 -07005907 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
5908 break;
5909
Peter Zijlstraf492e122009-12-23 15:29:42 +01005910 if (sd->flags & SD_BALANCE_NEWIDLE) {
Jason Low9bd721c2013-09-13 11:26:52 -07005911 t0 = sched_clock_cpu(this_cpu);
5912
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005913 /* If we've pulled tasks over stop searching: */
Peter Zijlstraf492e122009-12-23 15:29:42 +01005914 pulled_task = load_balance(this_cpu, this_rq,
Joonsoo Kim23f0d202013-08-06 17:36:42 +09005915 sd, CPU_NEWLY_IDLE,
5916 &continue_balancing);
Jason Low9bd721c2013-09-13 11:26:52 -07005917
5918 domain_cost = sched_clock_cpu(this_cpu) - t0;
5919 if (domain_cost > sd->max_newidle_lb_cost)
5920 sd->max_newidle_lb_cost = domain_cost;
5921
5922 curr_cost += domain_cost;
Peter Zijlstraf492e122009-12-23 15:29:42 +01005923 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005924
5925 interval = msecs_to_jiffies(sd->balance_interval);
5926 if (time_after(next_balance, sd->last_balance + interval))
5927 next_balance = sd->last_balance + interval;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005928 if (pulled_task) {
5929 this_rq->idle_stamp = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005930 break;
Nikhil Raod5ad1402010-11-17 11:42:04 -08005931 }
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005932 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02005933 rcu_read_unlock();
Peter Zijlstraf492e122009-12-23 15:29:42 +01005934
5935 raw_spin_lock(&this_rq->lock);
5936
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005937 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
5938 /*
5939 * We are going idle. next_balance may be set based on
5940 * a busy processor. So reset next_balance.
5941 */
5942 this_rq->next_balance = next_balance;
5943 }
Jason Low9bd721c2013-09-13 11:26:52 -07005944
5945 if (curr_cost > this_rq->max_idle_balance_cost)
5946 this_rq->max_idle_balance_cost = curr_cost;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005947}
5948
5949/*
Tejun Heo969c7922010-05-06 18:49:21 +02005950 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
5951 * running tasks off the busiest CPU onto idle CPUs. It requires at
5952 * least 1 task to be running on each physical CPU where possible, and
5953 * avoids physical / logical imbalances.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005954 */
Tejun Heo969c7922010-05-06 18:49:21 +02005955static int active_load_balance_cpu_stop(void *data)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005956{
Tejun Heo969c7922010-05-06 18:49:21 +02005957 struct rq *busiest_rq = data;
5958 int busiest_cpu = cpu_of(busiest_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005959 int target_cpu = busiest_rq->push_cpu;
Tejun Heo969c7922010-05-06 18:49:21 +02005960 struct rq *target_rq = cpu_rq(target_cpu);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005961 struct sched_domain *sd;
Tejun Heo969c7922010-05-06 18:49:21 +02005962
5963 raw_spin_lock_irq(&busiest_rq->lock);
5964
5965 /* make sure the requested cpu hasn't gone down in the meantime */
5966 if (unlikely(busiest_cpu != smp_processor_id() ||
5967 !busiest_rq->active_balance))
5968 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005969
5970 /* Is there any task to move? */
5971 if (busiest_rq->nr_running <= 1)
Tejun Heo969c7922010-05-06 18:49:21 +02005972 goto out_unlock;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005973
5974 /*
5975 * This condition is "impossible", if it occurs
5976 * we need to fix it. Originally reported by
5977 * Bjorn Helgaas on a 128-cpu setup.
5978 */
5979 BUG_ON(busiest_rq == target_rq);
5980
5981 /* move a task from busiest_rq to target_rq */
5982 double_lock_balance(busiest_rq, target_rq);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005983
5984 /* Search for an sd spanning us and the target CPU. */
Peter Zijlstradce840a2011-04-07 14:09:50 +02005985 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01005986 for_each_domain(target_cpu, sd) {
5987 if ((sd->flags & SD_LOAD_BALANCE) &&
5988 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
5989 break;
5990 }
5991
5992 if (likely(sd)) {
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005993 struct lb_env env = {
5994 .sd = sd,
Peter Zijlstraddcdf6e2012-02-22 19:27:40 +01005995 .dst_cpu = target_cpu,
5996 .dst_rq = target_rq,
5997 .src_cpu = busiest_rq->cpu,
5998 .src_rq = busiest_rq,
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01005999 .idle = CPU_IDLE,
6000 };
6001
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006002 schedstat_inc(sd, alb_count);
6003
Peter Zijlstra8e45cb52012-02-22 12:47:19 +01006004 if (move_one_task(&env))
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006005 schedstat_inc(sd, alb_pushed);
6006 else
6007 schedstat_inc(sd, alb_failed);
6008 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006009 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006010 double_unlock_balance(busiest_rq, target_rq);
Tejun Heo969c7922010-05-06 18:49:21 +02006011out_unlock:
6012 busiest_rq->active_balance = 0;
6013 raw_spin_unlock_irq(&busiest_rq->lock);
6014 return 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006015}
6016
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006017#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006018/*
6019 * idle load balancing details
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006020 * - When one of the busy CPUs notice that there may be an idle rebalancing
6021 * needed, they will kick the idle load balancer, which then does idle
6022 * load balancing for all the idle CPUs.
6023 */
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006024static struct {
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006025 cpumask_var_t idle_cpus_mask;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006026 atomic_t nr_cpus;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006027 unsigned long next_balance; /* in jiffy units */
6028} nohz ____cacheline_aligned;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006029
Peter Zijlstra8e7fbcb2012-01-09 11:28:35 +01006030static inline int find_new_ilb(int call_cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006031{
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006032 int ilb = cpumask_first(nohz.idle_cpus_mask);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006033
Suresh Siddha786d6dc2011-12-01 17:07:35 -08006034 if (ilb < nr_cpu_ids && idle_cpu(ilb))
6035 return ilb;
6036
6037 return nr_cpu_ids;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006038}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006039
6040/*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006041 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
6042 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
6043 * CPU (if there is one).
6044 */
6045static void nohz_balancer_kick(int cpu)
6046{
6047 int ilb_cpu;
6048
6049 nohz.next_balance++;
6050
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006051 ilb_cpu = find_new_ilb(cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006052
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006053 if (ilb_cpu >= nr_cpu_ids)
6054 return;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006055
Suresh Siddhacd490c52011-12-06 11:26:34 -08006056 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
Suresh Siddha1c792db2011-12-01 17:07:32 -08006057 return;
6058 /*
6059 * Use smp_send_reschedule() instead of resched_cpu().
6060 * This way we generate a sched IPI on the target cpu which
6061 * is idle. And the softirq performing nohz idle load balance
6062 * will be run before returning from the IPI.
6063 */
6064 smp_send_reschedule(ilb_cpu);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006065 return;
6066}
6067
Alex Shic1cc0172012-09-10 15:10:58 +08006068static inline void nohz_balance_exit_idle(int cpu)
Suresh Siddha71325962012-01-19 18:28:57 -08006069{
6070 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
6071 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
6072 atomic_dec(&nohz.nr_cpus);
6073 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
6074 }
6075}
6076
Suresh Siddha69e1e812011-12-01 17:07:33 -08006077static inline void set_cpu_sd_state_busy(void)
6078{
6079 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006080
Suresh Siddha69e1e812011-12-01 17:07:33 -08006081 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006082 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006083
6084 if (!sd || !sd->nohz_idle)
6085 goto unlock;
6086 sd->nohz_idle = 0;
6087
6088 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006089 atomic_inc(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006090unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006091 rcu_read_unlock();
6092}
6093
6094void set_cpu_sd_state_idle(void)
6095{
6096 struct sched_domain *sd;
Suresh Siddha69e1e812011-12-01 17:07:33 -08006097
Suresh Siddha69e1e812011-12-01 17:07:33 -08006098 rcu_read_lock();
Nathan Zimmer424c93f2013-05-09 11:24:03 -05006099 sd = rcu_dereference_check_sched_domain(this_rq()->sd);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006100
6101 if (!sd || sd->nohz_idle)
6102 goto unlock;
6103 sd->nohz_idle = 1;
6104
6105 for (; sd; sd = sd->parent)
Suresh Siddha69e1e812011-12-01 17:07:33 -08006106 atomic_dec(&sd->groups->sgp->nr_busy_cpus);
Vincent Guittot25f55d92013-04-23 16:59:02 +02006107unlock:
Suresh Siddha69e1e812011-12-01 17:07:33 -08006108 rcu_read_unlock();
6109}
6110
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006111/*
Alex Shic1cc0172012-09-10 15:10:58 +08006112 * This routine will record that the cpu is going idle with tick stopped.
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006113 * This info will be used in performing idle load balancing in the future.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006114 */
Alex Shic1cc0172012-09-10 15:10:58 +08006115void nohz_balance_enter_idle(int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006116{
Suresh Siddha71325962012-01-19 18:28:57 -08006117 /*
6118 * If this cpu is going down, then nothing needs to be done.
6119 */
6120 if (!cpu_active(cpu))
6121 return;
6122
Alex Shic1cc0172012-09-10 15:10:58 +08006123 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
6124 return;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006125
Alex Shic1cc0172012-09-10 15:10:58 +08006126 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
6127 atomic_inc(&nohz.nr_cpus);
6128 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006129}
Suresh Siddha71325962012-01-19 18:28:57 -08006130
Paul Gortmaker0db06282013-06-19 14:53:51 -04006131static int sched_ilb_notifier(struct notifier_block *nfb,
Suresh Siddha71325962012-01-19 18:28:57 -08006132 unsigned long action, void *hcpu)
6133{
6134 switch (action & ~CPU_TASKS_FROZEN) {
6135 case CPU_DYING:
Alex Shic1cc0172012-09-10 15:10:58 +08006136 nohz_balance_exit_idle(smp_processor_id());
Suresh Siddha71325962012-01-19 18:28:57 -08006137 return NOTIFY_OK;
6138 default:
6139 return NOTIFY_DONE;
6140 }
6141}
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006142#endif
6143
6144static DEFINE_SPINLOCK(balancing);
6145
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006146/*
6147 * Scale the max load_balance interval with the number of CPUs in the system.
6148 * This trades load-balance latency on larger machines for less cross talk.
6149 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006150void update_max_interval(void)
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006151{
6152 max_load_balance_interval = HZ*num_online_cpus()/10;
6153}
6154
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006155/*
6156 * It checks each scheduling domain to see if it is due to be balanced,
6157 * and initiates a balancing operation if so.
6158 *
Libinb9b08532013-04-01 19:14:01 +08006159 * Balancing parameters are set up in init_sched_domains.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006160 */
6161static void rebalance_domains(int cpu, enum cpu_idle_type idle)
6162{
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006163 int continue_balancing = 1;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006164 struct rq *rq = cpu_rq(cpu);
6165 unsigned long interval;
Peter Zijlstra04f733b2012-05-11 00:12:02 +02006166 struct sched_domain *sd;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006167 /* Earliest time when we have to do rebalance again */
6168 unsigned long next_balance = jiffies + 60*HZ;
6169 int update_next_balance = 0;
Jason Lowf48627e2013-09-13 11:26:53 -07006170 int need_serialize, need_decay = 0;
6171 u64 max_cost = 0;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006172
Paul Turner48a16752012-10-04 13:18:31 +02006173 update_blocked_averages(cpu);
Peter Zijlstra2069dd72010-11-15 15:47:00 -08006174
Peter Zijlstradce840a2011-04-07 14:09:50 +02006175 rcu_read_lock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006176 for_each_domain(cpu, sd) {
Jason Lowf48627e2013-09-13 11:26:53 -07006177 /*
6178 * Decay the newidle max times here because this is a regular
6179 * visit to all the domains. Decay ~1% per second.
6180 */
6181 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
6182 sd->max_newidle_lb_cost =
6183 (sd->max_newidle_lb_cost * 253) / 256;
6184 sd->next_decay_max_lb_cost = jiffies + HZ;
6185 need_decay = 1;
6186 }
6187 max_cost += sd->max_newidle_lb_cost;
6188
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006189 if (!(sd->flags & SD_LOAD_BALANCE))
6190 continue;
6191
Jason Lowf48627e2013-09-13 11:26:53 -07006192 /*
6193 * Stop the load balance at this level. There is another
6194 * CPU in our sched group which is doing load balancing more
6195 * actively.
6196 */
6197 if (!continue_balancing) {
6198 if (need_decay)
6199 continue;
6200 break;
6201 }
6202
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006203 interval = sd->balance_interval;
6204 if (idle != CPU_IDLE)
6205 interval *= sd->busy_factor;
6206
6207 /* scale ms to jiffies */
6208 interval = msecs_to_jiffies(interval);
Peter Zijlstra49c022e2011-04-05 10:14:25 +02006209 interval = clamp(interval, 1UL, max_load_balance_interval);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006210
6211 need_serialize = sd->flags & SD_SERIALIZE;
6212
6213 if (need_serialize) {
6214 if (!spin_trylock(&balancing))
6215 goto out;
6216 }
6217
6218 if (time_after_eq(jiffies, sd->last_balance + interval)) {
Joonsoo Kim23f0d202013-08-06 17:36:42 +09006219 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006220 /*
Peter Zijlstra62633222013-08-19 12:41:09 +02006221 * The LBF_DST_PINNED logic could have changed
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006222 * env->dst_cpu, so we can't know our idle
6223 * state even if we migrated tasks. Update it.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006224 */
Joonsoo Kimde5eb2d2013-04-23 17:27:38 +09006225 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006226 }
6227 sd->last_balance = jiffies;
6228 }
6229 if (need_serialize)
6230 spin_unlock(&balancing);
6231out:
6232 if (time_after(next_balance, sd->last_balance + interval)) {
6233 next_balance = sd->last_balance + interval;
6234 update_next_balance = 1;
6235 }
Jason Lowf48627e2013-09-13 11:26:53 -07006236 }
6237 if (need_decay) {
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006238 /*
Jason Lowf48627e2013-09-13 11:26:53 -07006239 * Ensure the rq-wide value also decays but keep it at a
6240 * reasonable floor to avoid funnies with rq->avg_idle.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006241 */
Jason Lowf48627e2013-09-13 11:26:53 -07006242 rq->max_idle_balance_cost =
6243 max((u64)sysctl_sched_migration_cost, max_cost);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006244 }
Peter Zijlstradce840a2011-04-07 14:09:50 +02006245 rcu_read_unlock();
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006246
6247 /*
6248 * next_balance will be updated only when there is a need.
6249 * When the cpu is attached to null domain for ex, it will not be
6250 * updated.
6251 */
6252 if (likely(update_next_balance))
6253 rq->next_balance = next_balance;
6254}
6255
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006256#ifdef CONFIG_NO_HZ_COMMON
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006257/*
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006258 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006259 * rebalancing for all the cpus for whom scheduler ticks are stopped.
6260 */
6261static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
6262{
6263 struct rq *this_rq = cpu_rq(this_cpu);
6264 struct rq *rq;
6265 int balance_cpu;
6266
Suresh Siddha1c792db2011-12-01 17:07:32 -08006267 if (idle != CPU_IDLE ||
6268 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
6269 goto end;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006270
6271 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
Suresh Siddha8a6d42d2011-12-06 11:19:37 -08006272 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006273 continue;
6274
6275 /*
6276 * If this cpu gets work to do, stop the load balancing
6277 * work being done for other cpus. Next load
6278 * balancing owner will pick it up.
6279 */
Suresh Siddha1c792db2011-12-01 17:07:32 -08006280 if (need_resched())
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006281 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006282
Vincent Guittot5ed4f1d2012-09-13 06:11:26 +02006283 rq = cpu_rq(balance_cpu);
6284
6285 raw_spin_lock_irq(&rq->lock);
6286 update_rq_clock(rq);
6287 update_idle_cpu_load(rq);
6288 raw_spin_unlock_irq(&rq->lock);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006289
6290 rebalance_domains(balance_cpu, CPU_IDLE);
6291
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006292 if (time_after(this_rq->next_balance, rq->next_balance))
6293 this_rq->next_balance = rq->next_balance;
6294 }
6295 nohz.next_balance = this_rq->next_balance;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006296end:
6297 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006298}
6299
6300/*
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006301 * Current heuristic for kicking the idle load balancer in the presence
6302 * of an idle cpu is the system.
6303 * - This rq has more than one task.
6304 * - At any scheduler domain level, this cpu's scheduler group has multiple
6305 * busy cpu's exceeding the group's power.
6306 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
6307 * domain span are idle.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006308 */
6309static inline int nohz_kick_needed(struct rq *rq, int cpu)
6310{
6311 unsigned long now = jiffies;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006312 struct sched_domain *sd;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006313
Suresh Siddha1c792db2011-12-01 17:07:32 -08006314 if (unlikely(idle_cpu(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006315 return 0;
6316
Suresh Siddha1c792db2011-12-01 17:07:32 -08006317 /*
6318 * We may be recently in ticked or tickless idle mode. At the first
6319 * busy tick after returning from idle, we will update the busy stats.
6320 */
Suresh Siddha69e1e812011-12-01 17:07:33 -08006321 set_cpu_sd_state_busy();
Alex Shic1cc0172012-09-10 15:10:58 +08006322 nohz_balance_exit_idle(cpu);
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006323
6324 /*
6325 * None are in tickless mode and hence no need for NOHZ idle load
6326 * balancing.
6327 */
6328 if (likely(!atomic_read(&nohz.nr_cpus)))
6329 return 0;
Suresh Siddha1c792db2011-12-01 17:07:32 -08006330
6331 if (time_before(now, nohz.next_balance))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006332 return 0;
6333
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006334 if (rq->nr_running >= 2)
6335 goto need_kick;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006336
Peter Zijlstra067491b2011-12-07 14:32:08 +01006337 rcu_read_lock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006338 for_each_domain(cpu, sd) {
6339 struct sched_group *sg = sd->groups;
6340 struct sched_group_power *sgp = sg->sgp;
6341 int nr_busy = atomic_read(&sgp->nr_busy_cpus);
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006342
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006343 if (sd->flags & SD_SHARE_PKG_RESOURCES && nr_busy > 1)
Peter Zijlstra067491b2011-12-07 14:32:08 +01006344 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006345
6346 if (sd->flags & SD_ASYM_PACKING && nr_busy != sg->group_weight
6347 && (cpumask_first_and(nohz.idle_cpus_mask,
6348 sched_domain_span(sd)) < cpu))
Peter Zijlstra067491b2011-12-07 14:32:08 +01006349 goto need_kick_unlock;
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006350
6351 if (!(sd->flags & (SD_SHARE_PKG_RESOURCES | SD_ASYM_PACKING)))
6352 break;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006353 }
Peter Zijlstra067491b2011-12-07 14:32:08 +01006354 rcu_read_unlock();
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006355 return 0;
Peter Zijlstra067491b2011-12-07 14:32:08 +01006356
6357need_kick_unlock:
6358 rcu_read_unlock();
Suresh Siddha0b005cf2011-12-01 17:07:34 -08006359need_kick:
6360 return 1;
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006361}
6362#else
6363static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
6364#endif
6365
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006366/*
6367 * run_rebalance_domains is triggered when needed from the scheduler tick.
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006368 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006369 */
6370static void run_rebalance_domains(struct softirq_action *h)
6371{
6372 int this_cpu = smp_processor_id();
6373 struct rq *this_rq = cpu_rq(this_cpu);
Suresh Siddha6eb57e02011-10-03 15:09:01 -07006374 enum cpu_idle_type idle = this_rq->idle_balance ?
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006375 CPU_IDLE : CPU_NOT_IDLE;
6376
6377 rebalance_domains(this_cpu, idle);
6378
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006379 /*
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006380 * If this cpu has a pending nohz_balance_kick, then do the
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006381 * balancing on behalf of the other idle cpus whose ticks are
6382 * stopped.
6383 */
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006384 nohz_idle_balance(this_cpu, idle);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006385}
6386
6387static inline int on_null_domain(int cpu)
6388{
Paul E. McKenney90a65012010-02-28 08:32:18 -08006389 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006390}
6391
6392/*
6393 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006394 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006395void trigger_load_balance(struct rq *rq, int cpu)
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006396{
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006397 /* Don't need to rebalance while attached to NULL domain */
6398 if (time_after_eq(jiffies, rq->next_balance) &&
6399 likely(!on_null_domain(cpu)))
6400 raise_softirq(SCHED_SOFTIRQ);
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006401#ifdef CONFIG_NO_HZ_COMMON
Suresh Siddha1c792db2011-12-01 17:07:32 -08006402 if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
Venkatesh Pallipadi83cd4fe2010-05-21 17:09:41 -07006403 nohz_balancer_kick(cpu);
6404#endif
Peter Zijlstra1e3c88b2009-12-17 17:00:43 +01006405}
6406
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006407static void rq_online_fair(struct rq *rq)
6408{
6409 update_sysctl();
6410}
6411
6412static void rq_offline_fair(struct rq *rq)
6413{
6414 update_sysctl();
Peter Boonstoppela4c96ae2012-08-09 15:34:47 -07006415
6416 /* Ensure any throttled groups are reachable by pick_next_task */
6417 unthrottle_offline_cfs_rqs(rq);
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006418}
6419
Dhaval Giani55e12e52008-06-24 23:39:43 +05306420#endif /* CONFIG_SMP */
Peter Williamse1d14842007-10-24 18:23:51 +02006421
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006422/*
6423 * scheduler tick hitting a task of our scheduling class:
6424 */
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006425static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006426{
6427 struct cfs_rq *cfs_rq;
6428 struct sched_entity *se = &curr->se;
6429
6430 for_each_sched_entity(se) {
6431 cfs_rq = cfs_rq_of(se);
Peter Zijlstra8f4d37e2008-01-25 21:08:29 +01006432 entity_tick(cfs_rq, se, queued);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006433 }
Ben Segall18bf2802012-10-04 12:51:20 +02006434
Dave Kleikamp10e84b92013-07-31 13:53:35 -07006435 if (numabalancing_enabled)
Peter Zijlstracbee9f82012-10-25 14:16:43 +02006436 task_tick_numa(rq, curr);
Linus Torvalds3d59eeb2012-12-16 14:33:25 -08006437
Ben Segall18bf2802012-10-04 12:51:20 +02006438 update_rq_runnable_avg(rq, 1);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006439}
6440
6441/*
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006442 * called on fork with the child task as argument from the parent's context
6443 * - child not yet on the tasklist
6444 * - preemption disabled
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006445 */
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006446static void task_fork_fair(struct task_struct *p)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006447{
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006448 struct cfs_rq *cfs_rq;
6449 struct sched_entity *se = &p->se, *curr;
Ingo Molnar00bf7bf2007-10-15 17:00:14 +02006450 int this_cpu = smp_processor_id();
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006451 struct rq *rq = this_rq();
6452 unsigned long flags;
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006453
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006454 raw_spin_lock_irqsave(&rq->lock, flags);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006455
Peter Zijlstra861d0342010-08-19 13:31:43 +02006456 update_rq_clock(rq);
6457
Daisuke Nishimura4fc420c2011-12-15 14:36:55 +09006458 cfs_rq = task_cfs_rq(current);
6459 curr = cfs_rq->curr;
6460
Daisuke Nishimura6c9a27f2013-09-10 18:16:36 +09006461 /*
6462 * Not only the cpu but also the task_group of the parent might have
6463 * been changed after parent->se.parent,cfs_rq were copied to
6464 * child->se.parent,cfs_rq. So call __set_task_cpu() to make those
6465 * of child point to valid ones.
6466 */
6467 rcu_read_lock();
6468 __set_task_cpu(p, this_cpu);
6469 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006470
Ting Yang7109c442007-08-28 12:53:24 +02006471 update_curr(cfs_rq);
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006472
Mike Galbraithb5d9d732009-09-08 11:12:28 +02006473 if (curr)
6474 se->vruntime = curr->vruntime;
Peter Zijlstraaeb73b02007-10-15 17:00:05 +02006475 place_entity(cfs_rq, se, 1);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006476
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006477 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
Dmitry Adamushko87fefa32007-10-15 17:00:08 +02006478 /*
Ingo Molnaredcb60a2007-10-15 17:00:08 +02006479 * Upon rescheduling, sched_class::put_prev_task() will place
6480 * 'current' within the tree based on its new key value.
6481 */
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006482 swap(curr->vruntime, se->vruntime);
Bharata B Raoaec0a512008-08-28 14:42:49 +05306483 resched_task(rq->curr);
Peter Zijlstra4d78e7b2007-10-15 17:00:04 +02006484 }
6485
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006486 se->vruntime -= cfs_rq->min_vruntime;
6487
Thomas Gleixner05fa7852009-11-17 14:28:38 +01006488 raw_spin_unlock_irqrestore(&rq->lock, flags);
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006489}
6490
Steven Rostedtcb469842008-01-25 21:08:22 +01006491/*
6492 * Priority of the task has changed. Check to see if we preempt
6493 * the current task.
6494 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006495static void
6496prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
Steven Rostedtcb469842008-01-25 21:08:22 +01006497{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006498 if (!p->se.on_rq)
6499 return;
6500
Steven Rostedtcb469842008-01-25 21:08:22 +01006501 /*
6502 * Reschedule if we are currently running on this runqueue and
6503 * our priority decreased, or if we are not currently running on
6504 * this runqueue and our priority is higher than the current's
6505 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006506 if (rq->curr == p) {
Steven Rostedtcb469842008-01-25 21:08:22 +01006507 if (p->prio > oldprio)
6508 resched_task(rq->curr);
6509 } else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006510 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006511}
6512
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006513static void switched_from_fair(struct rq *rq, struct task_struct *p)
6514{
6515 struct sched_entity *se = &p->se;
6516 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6517
6518 /*
6519 * Ensure the task's vruntime is normalized, so that when its
6520 * switched back to the fair class the enqueue_entity(.flags=0) will
6521 * do the right thing.
6522 *
6523 * If it was on_rq, then the dequeue_entity(.flags=0) will already
6524 * have normalized the vruntime, if it was !on_rq, then only when
6525 * the task is sleeping will it still have non-normalized vruntime.
6526 */
6527 if (!se->on_rq && p->state != TASK_RUNNING) {
6528 /*
6529 * Fix up our vruntime so that the current sleep doesn't
6530 * cause 'unlimited' sleep bonus.
6531 */
6532 place_entity(cfs_rq, se, 0);
6533 se->vruntime -= cfs_rq->min_vruntime;
6534 }
Paul Turner9ee474f2012-10-04 13:18:30 +02006535
Alex Shi141965c2013-06-26 13:05:39 +08006536#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006537 /*
6538 * Remove our load from contribution when we leave sched_fair
6539 * and ensure we don't carry in an old decay_count if we
6540 * switch back.
6541 */
Kirill Tkhai87e3c8a2013-07-21 04:32:07 +04006542 if (se->avg.decay_count) {
6543 __synchronize_entity_decay(se);
6544 subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
Paul Turner9ee474f2012-10-04 13:18:30 +02006545 }
6546#endif
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006547}
6548
Steven Rostedtcb469842008-01-25 21:08:22 +01006549/*
6550 * We switched to the sched_fair class.
6551 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006552static void switched_to_fair(struct rq *rq, struct task_struct *p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006553{
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006554 if (!p->se.on_rq)
6555 return;
6556
Steven Rostedtcb469842008-01-25 21:08:22 +01006557 /*
6558 * We were most likely switched from sched_rt, so
6559 * kick off the schedule if running, otherwise just see
6560 * if we can still preempt the current task.
6561 */
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006562 if (rq->curr == p)
Steven Rostedtcb469842008-01-25 21:08:22 +01006563 resched_task(rq->curr);
6564 else
Peter Zijlstra15afe092008-09-20 23:38:02 +02006565 check_preempt_curr(rq, p, 0);
Steven Rostedtcb469842008-01-25 21:08:22 +01006566}
6567
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006568/* Account for a task changing its policy or group.
6569 *
6570 * This routine is mostly called to set cfs_rq->curr field when a task
6571 * migrates between groups/classes.
6572 */
6573static void set_curr_task_fair(struct rq *rq)
6574{
6575 struct sched_entity *se = &rq->curr->se;
6576
Paul Turnerec12cb72011-07-21 09:43:30 -07006577 for_each_sched_entity(se) {
6578 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6579
6580 set_next_entity(cfs_rq, se);
6581 /* ensure bandwidth has been allocated on our new cfs_rq */
6582 account_cfs_rq_runtime(cfs_rq, 0);
6583 }
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006584}
6585
Peter Zijlstra029632f2011-10-25 10:00:11 +02006586void init_cfs_rq(struct cfs_rq *cfs_rq)
6587{
6588 cfs_rq->tasks_timeline = RB_ROOT;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006589 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
6590#ifndef CONFIG_64BIT
6591 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
6592#endif
Alex Shi141965c2013-06-26 13:05:39 +08006593#ifdef CONFIG_SMP
Paul Turner9ee474f2012-10-04 13:18:30 +02006594 atomic64_set(&cfs_rq->decay_counter, 1);
Alex Shi25099402013-06-20 10:18:55 +08006595 atomic_long_set(&cfs_rq->removed_load, 0);
Paul Turner9ee474f2012-10-04 13:18:30 +02006596#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006597}
6598
Peter Zijlstra810b3812008-02-29 15:21:01 -05006599#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006600static void task_move_group_fair(struct task_struct *p, int on_rq)
Peter Zijlstra810b3812008-02-29 15:21:01 -05006601{
Paul Turneraff3e492012-10-04 13:18:30 +02006602 struct cfs_rq *cfs_rq;
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006603 /*
6604 * If the task was not on the rq at the time of this cgroup movement
6605 * it must have been asleep, sleeping tasks keep their ->vruntime
6606 * absolute on their old rq until wakeup (needed for the fair sleeper
6607 * bonus in place_entity()).
6608 *
6609 * If it was on the rq, we've just 'preempted' it, which does convert
6610 * ->vruntime to a relative base.
6611 *
6612 * Make sure both cases convert their relative position when migrating
6613 * to another cgroup's rq. This does somewhat interfere with the
6614 * fair sleeper stuff for the first placement, but who cares.
6615 */
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006616 /*
6617 * When !on_rq, vruntime of the task has usually NOT been normalized.
6618 * But there are some cases where it has already been normalized:
6619 *
6620 * - Moving a forked child which is waiting for being woken up by
6621 * wake_up_new_task().
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006622 * - Moving a task which has been woken up by try_to_wake_up() and
6623 * waiting for actually being woken up by sched_ttwu_pending().
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006624 *
6625 * To prevent boost or penalty in the new cfs_rq caused by delta
6626 * min_vruntime between the two cfs_rqs, we skip vruntime adjustment.
6627 */
Daisuke Nishimura62af3782011-12-15 14:37:41 +09006628 if (!on_rq && (!p->se.sum_exec_runtime || p->state == TASK_WAKING))
Daisuke Nishimura7ceff012011-12-15 14:36:07 +09006629 on_rq = 1;
6630
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006631 if (!on_rq)
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006632 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
6633 set_task_rq(p, task_cpu(p));
Paul Turneraff3e492012-10-04 13:18:30 +02006634 if (!on_rq) {
6635 cfs_rq = cfs_rq_of(&p->se);
6636 p->se.vruntime += cfs_rq->min_vruntime;
6637#ifdef CONFIG_SMP
6638 /*
6639 * migrate_task_rq_fair() will have removed our previous
6640 * contribution, but we must synchronize for ongoing future
6641 * decay.
6642 */
6643 p->se.avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
6644 cfs_rq->blocked_load_avg += p->se.avg.load_avg_contrib;
6645#endif
6646 }
Peter Zijlstra810b3812008-02-29 15:21:01 -05006647}
Peter Zijlstra029632f2011-10-25 10:00:11 +02006648
6649void free_fair_sched_group(struct task_group *tg)
6650{
6651 int i;
6652
6653 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
6654
6655 for_each_possible_cpu(i) {
6656 if (tg->cfs_rq)
6657 kfree(tg->cfs_rq[i]);
6658 if (tg->se)
6659 kfree(tg->se[i]);
6660 }
6661
6662 kfree(tg->cfs_rq);
6663 kfree(tg->se);
6664}
6665
6666int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6667{
6668 struct cfs_rq *cfs_rq;
6669 struct sched_entity *se;
6670 int i;
6671
6672 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
6673 if (!tg->cfs_rq)
6674 goto err;
6675 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
6676 if (!tg->se)
6677 goto err;
6678
6679 tg->shares = NICE_0_LOAD;
6680
6681 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
6682
6683 for_each_possible_cpu(i) {
6684 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
6685 GFP_KERNEL, cpu_to_node(i));
6686 if (!cfs_rq)
6687 goto err;
6688
6689 se = kzalloc_node(sizeof(struct sched_entity),
6690 GFP_KERNEL, cpu_to_node(i));
6691 if (!se)
6692 goto err_free_rq;
6693
6694 init_cfs_rq(cfs_rq);
6695 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
6696 }
6697
6698 return 1;
6699
6700err_free_rq:
6701 kfree(cfs_rq);
6702err:
6703 return 0;
6704}
6705
6706void unregister_fair_sched_group(struct task_group *tg, int cpu)
6707{
6708 struct rq *rq = cpu_rq(cpu);
6709 unsigned long flags;
6710
6711 /*
6712 * Only empty task groups can be destroyed; so we can speculatively
6713 * check on_list without danger of it being re-added.
6714 */
6715 if (!tg->cfs_rq[cpu]->on_list)
6716 return;
6717
6718 raw_spin_lock_irqsave(&rq->lock, flags);
6719 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
6720 raw_spin_unlock_irqrestore(&rq->lock, flags);
6721}
6722
6723void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
6724 struct sched_entity *se, int cpu,
6725 struct sched_entity *parent)
6726{
6727 struct rq *rq = cpu_rq(cpu);
6728
6729 cfs_rq->tg = tg;
6730 cfs_rq->rq = rq;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006731 init_cfs_rq_runtime(cfs_rq);
6732
6733 tg->cfs_rq[cpu] = cfs_rq;
6734 tg->se[cpu] = se;
6735
6736 /* se could be NULL for root_task_group */
6737 if (!se)
6738 return;
6739
6740 if (!parent)
6741 se->cfs_rq = &rq->cfs;
6742 else
6743 se->cfs_rq = parent->my_q;
6744
6745 se->my_q = cfs_rq;
6746 update_load_set(&se->load, 0);
6747 se->parent = parent;
6748}
6749
6750static DEFINE_MUTEX(shares_mutex);
6751
6752int sched_group_set_shares(struct task_group *tg, unsigned long shares)
6753{
6754 int i;
6755 unsigned long flags;
6756
6757 /*
6758 * We can't change the weight of the root cgroup.
6759 */
6760 if (!tg->se[0])
6761 return -EINVAL;
6762
6763 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
6764
6765 mutex_lock(&shares_mutex);
6766 if (tg->shares == shares)
6767 goto done;
6768
6769 tg->shares = shares;
6770 for_each_possible_cpu(i) {
6771 struct rq *rq = cpu_rq(i);
6772 struct sched_entity *se;
6773
6774 se = tg->se[i];
6775 /* Propagate contribution to hierarchy */
6776 raw_spin_lock_irqsave(&rq->lock, flags);
Frederic Weisbecker71b1da42013-04-12 01:50:59 +02006777
6778 /* Possible calls to update_curr() need rq clock */
6779 update_rq_clock(rq);
Linus Torvalds17bc14b2012-12-14 07:20:43 -08006780 for_each_sched_entity(se)
Peter Zijlstra029632f2011-10-25 10:00:11 +02006781 update_cfs_shares(group_cfs_rq(se));
6782 raw_spin_unlock_irqrestore(&rq->lock, flags);
6783 }
6784
6785done:
6786 mutex_unlock(&shares_mutex);
6787 return 0;
6788}
6789#else /* CONFIG_FAIR_GROUP_SCHED */
6790
6791void free_fair_sched_group(struct task_group *tg) { }
6792
6793int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
6794{
6795 return 1;
6796}
6797
6798void unregister_fair_sched_group(struct task_group *tg, int cpu) { }
6799
6800#endif /* CONFIG_FAIR_GROUP_SCHED */
6801
Peter Zijlstra810b3812008-02-29 15:21:01 -05006802
H Hartley Sweeten6d686f42010-01-13 20:21:52 -07006803static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
Peter Williams0d721ce2009-09-21 01:31:53 +00006804{
6805 struct sched_entity *se = &task->se;
Peter Williams0d721ce2009-09-21 01:31:53 +00006806 unsigned int rr_interval = 0;
6807
6808 /*
6809 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
6810 * idle runqueue:
6811 */
Peter Williams0d721ce2009-09-21 01:31:53 +00006812 if (rq->cfs.load.weight)
Zhu Yanhaia59f4e02013-01-08 12:56:52 +08006813 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
Peter Williams0d721ce2009-09-21 01:31:53 +00006814
6815 return rr_interval;
6816}
6817
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006818/*
6819 * All the scheduling class methods:
6820 */
Peter Zijlstra029632f2011-10-25 10:00:11 +02006821const struct sched_class fair_sched_class = {
Ingo Molnar5522d5d2007-10-15 17:00:12 +02006822 .next = &idle_sched_class,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006823 .enqueue_task = enqueue_task_fair,
6824 .dequeue_task = dequeue_task_fair,
6825 .yield_task = yield_task_fair,
Mike Galbraithd95f4122011-02-01 09:50:51 -05006826 .yield_to_task = yield_to_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006827
Ingo Molnar2e09bf52007-10-15 17:00:05 +02006828 .check_preempt_curr = check_preempt_wakeup,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006829
6830 .pick_next_task = pick_next_task_fair,
6831 .put_prev_task = put_prev_task_fair,
6832
Peter Williams681f3e62007-10-24 18:23:51 +02006833#ifdef CONFIG_SMP
Li Zefan4ce72a22008-10-22 15:25:26 +08006834 .select_task_rq = select_task_rq_fair,
Paul Turner0a74bef2012-10-04 13:18:30 +02006835 .migrate_task_rq = migrate_task_rq_fair,
Alex Shi141965c2013-06-26 13:05:39 +08006836
Christian Ehrhardt0bcdcf22009-11-30 12:16:46 +01006837 .rq_online = rq_online_fair,
6838 .rq_offline = rq_offline_fair,
Peter Zijlstra88ec22d2009-12-16 18:04:41 +01006839
6840 .task_waking = task_waking_fair,
Peter Williams681f3e62007-10-24 18:23:51 +02006841#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006842
Srivatsa Vaddagiri83b699e2007-10-15 17:00:08 +02006843 .set_curr_task = set_curr_task_fair,
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006844 .task_tick = task_tick_fair,
Peter Zijlstracd29fe62009-11-27 17:32:46 +01006845 .task_fork = task_fork_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006846
6847 .prio_changed = prio_changed_fair,
Peter Zijlstrada7a7352011-01-17 17:03:27 +01006848 .switched_from = switched_from_fair,
Steven Rostedtcb469842008-01-25 21:08:22 +01006849 .switched_to = switched_to_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006850
Peter Williams0d721ce2009-09-21 01:31:53 +00006851 .get_rr_interval = get_rr_interval_fair,
6852
Peter Zijlstra810b3812008-02-29 15:21:01 -05006853#ifdef CONFIG_FAIR_GROUP_SCHED
Peter Zijlstrab2b5ce02010-10-15 15:24:15 +02006854 .task_move_group = task_move_group_fair,
Peter Zijlstra810b3812008-02-29 15:21:01 -05006855#endif
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006856};
6857
6858#ifdef CONFIG_SCHED_DEBUG
Peter Zijlstra029632f2011-10-25 10:00:11 +02006859void print_cfs_stats(struct seq_file *m, int cpu)
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006860{
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006861 struct cfs_rq *cfs_rq;
6862
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006863 rcu_read_lock();
Ingo Molnarc3b64f12007-08-09 11:16:51 +02006864 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
Ingo Molnar5cef9ec2007-08-09 11:16:47 +02006865 print_cfs_rq(m, cpu, cfs_rq);
Peter Zijlstra5973e5b2008-01-25 21:08:34 +01006866 rcu_read_unlock();
Ingo Molnarbf0f6f22007-07-09 18:51:58 +02006867}
6868#endif
Peter Zijlstra029632f2011-10-25 10:00:11 +02006869
6870__init void init_sched_fair_class(void)
6871{
6872#ifdef CONFIG_SMP
6873 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
6874
Frederic Weisbecker3451d022011-08-10 23:21:01 +02006875#ifdef CONFIG_NO_HZ_COMMON
Diwakar Tundlam554ceca2012-03-07 14:44:26 -08006876 nohz.next_balance = jiffies;
Peter Zijlstra029632f2011-10-25 10:00:11 +02006877 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
Suresh Siddha71325962012-01-19 18:28:57 -08006878 cpu_notifier(sched_ilb_notifier, 0);
Peter Zijlstra029632f2011-10-25 10:00:11 +02006879#endif
6880#endif /* SMP */
6881
6882}