blob: f6504d3fadb310420cfd5e66263adb41e7a4ac80 [file] [log] [blame]
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001/*
2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
David Teiglande0c2a9a2012-01-09 17:18:05 -05003 * Copyright 2004-2011 Red Hat, Inc.
Steven Whitehousef057f6c2009-01-12 10:43:39 +00004 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/fs.h>
11#include <linux/dlm.h>
Tejun Heo5a0e3ad2010-03-24 17:04:11 +090012#include <linux/slab.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000013#include <linux/types.h>
David Teiglande0c2a9a2012-01-09 17:18:05 -050014#include <linux/delay.h>
Steven Whitehousef057f6c2009-01-12 10:43:39 +000015#include <linux/gfs2_ondisk.h>
16
17#include "incore.h"
18#include "glock.h"
19#include "util.h"
David Teiglande0c2a9a2012-01-09 17:18:05 -050020#include "sys.h"
Steven Whitehousea2457692012-01-20 10:38:36 +000021#include "trace_gfs2.h"
Steven Whitehousef057f6c2009-01-12 10:43:39 +000022
David Teiglande0c2a9a2012-01-09 17:18:05 -050023extern struct workqueue_struct *gfs2_control_wq;
Steven Whitehousef057f6c2009-01-12 10:43:39 +000024
Steven Whitehousea2457692012-01-20 10:38:36 +000025/**
26 * gfs2_update_stats - Update time based stats
27 * @mv: Pointer to mean/variance structure to update
28 * @sample: New data to include
29 *
30 * @delta is the difference between the current rtt sample and the
31 * running average srtt. We add 1/8 of that to the srtt in order to
32 * update the current srtt estimate. The varience estimate is a bit
33 * more complicated. We subtract the abs value of the @delta from
34 * the current variance estimate and add 1/4 of that to the running
35 * total.
36 *
37 * Note that the index points at the array entry containing the smoothed
38 * mean value, and the variance is always in the following entry
39 *
40 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
41 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
42 * they are not scaled fixed point.
43 */
44
45static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46 s64 sample)
47{
48 s64 delta = sample - s->stats[index];
49 s->stats[index] += (delta >> 3);
50 index++;
51 s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52}
53
54/**
55 * gfs2_update_reply_times - Update locking statistics
56 * @gl: The glock to update
57 *
58 * This assumes that gl->gl_dstamp has been set earlier.
59 *
60 * The rtt (lock round trip time) is an estimate of the time
61 * taken to perform a dlm lock request. We update it on each
62 * reply from the dlm.
63 *
64 * The blocking flag is set on the glock for all dlm requests
65 * which may potentially block due to lock requests from other nodes.
66 * DLM requests where the current lock state is exclusive, the
67 * requested state is null (or unlocked) or where the TRY or
68 * TRY_1CB flags are set are classified as non-blocking. All
69 * other DLM requests are counted as (potentially) blocking.
70 */
71static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72{
73 struct gfs2_pcpu_lkstats *lks;
74 const unsigned gltype = gl->gl_name.ln_type;
75 unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
76 GFS2_LKS_SRTTB : GFS2_LKS_SRTT;
77 s64 rtt;
78
79 preempt_disable();
80 rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82 gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83 gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
84 preempt_enable();
85
86 trace_gfs2_glock_lock_time(gl, rtt);
87}
88
89/**
90 * gfs2_update_request_times - Update locking statistics
91 * @gl: The glock to update
92 *
93 * The irt (lock inter-request times) measures the average time
94 * between requests to the dlm. It is updated immediately before
95 * each dlm call.
96 */
97
98static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99{
100 struct gfs2_pcpu_lkstats *lks;
101 const unsigned gltype = gl->gl_name.ln_type;
102 ktime_t dstamp;
103 s64 irt;
104
105 preempt_disable();
106 dstamp = gl->gl_dstamp;
107 gl->gl_dstamp = ktime_get_real();
108 irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109 lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110 gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111 gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112 preempt_enable();
113}
114
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000115static void gdlm_ast(void *arg)
116{
117 struct gfs2_glock *gl = arg;
118 unsigned ret = gl->gl_state;
119
Steven Whitehousea2457692012-01-20 10:38:36 +0000120 gfs2_update_reply_times(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000121 BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122
123 if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID)
124 memset(gl->gl_lvb, 0, GDLM_LVB_SIZE);
125
126 switch (gl->gl_lksb.sb_status) {
127 case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000128 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000129 return;
130 case -DLM_ECANCEL: /* Cancel while getting lock */
131 ret |= LM_OUT_CANCELED;
132 goto out;
133 case -EAGAIN: /* Try lock fails */
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100134 case -EDEADLK: /* Deadlock detected */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000135 goto out;
Steven Whitehouse1fea7c22010-09-08 10:09:25 +0100136 case -ETIMEDOUT: /* Canceled due to timeout */
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000137 ret |= LM_OUT_ERROR;
138 goto out;
139 case 0: /* Success */
140 break;
141 default: /* Something unexpected */
142 BUG();
143 }
144
Benjamin Marzinski02ffad02009-03-06 10:03:20 -0600145 ret = gl->gl_req;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000146 if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
Benjamin Marzinski02ffad02009-03-06 10:03:20 -0600147 if (gl->gl_req == LM_ST_SHARED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000148 ret = LM_ST_DEFERRED;
Benjamin Marzinski02ffad02009-03-06 10:03:20 -0600149 else if (gl->gl_req == LM_ST_DEFERRED)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000150 ret = LM_ST_SHARED;
151 else
152 BUG();
153 }
154
155 set_bit(GLF_INITIAL, &gl->gl_flags);
156 gfs2_glock_complete(gl, ret);
157 return;
158out:
159 if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160 gl->gl_lksb.sb_lkid = 0;
161 gfs2_glock_complete(gl, ret);
162}
163
164static void gdlm_bast(void *arg, int mode)
165{
166 struct gfs2_glock *gl = arg;
167
168 switch (mode) {
169 case DLM_LOCK_EX:
170 gfs2_glock_cb(gl, LM_ST_UNLOCKED);
171 break;
172 case DLM_LOCK_CW:
173 gfs2_glock_cb(gl, LM_ST_DEFERRED);
174 break;
175 case DLM_LOCK_PR:
176 gfs2_glock_cb(gl, LM_ST_SHARED);
177 break;
178 default:
179 printk(KERN_ERR "unknown bast mode %d", mode);
180 BUG();
181 }
182}
183
184/* convert gfs lock-state to dlm lock-mode */
185
186static int make_mode(const unsigned int lmstate)
187{
188 switch (lmstate) {
189 case LM_ST_UNLOCKED:
190 return DLM_LOCK_NL;
191 case LM_ST_EXCLUSIVE:
192 return DLM_LOCK_EX;
193 case LM_ST_DEFERRED:
194 return DLM_LOCK_CW;
195 case LM_ST_SHARED:
196 return DLM_LOCK_PR;
197 }
198 printk(KERN_ERR "unknown LM state %d", lmstate);
199 BUG();
200 return -1;
201}
202
Bob Peterson4c569a72012-04-10 14:45:24 -0400203static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000204 const int req)
205{
Steven Whitehousea2457692012-01-20 10:38:36 +0000206 u32 lkf = DLM_LKF_VALBLK;
Bob Peterson4c569a72012-04-10 14:45:24 -0400207 u32 lkid = gl->gl_lksb.sb_lkid;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000208
209 if (gfs_flags & LM_FLAG_TRY)
210 lkf |= DLM_LKF_NOQUEUE;
211
212 if (gfs_flags & LM_FLAG_TRY_1CB) {
213 lkf |= DLM_LKF_NOQUEUE;
214 lkf |= DLM_LKF_NOQUEUEBAST;
215 }
216
217 if (gfs_flags & LM_FLAG_PRIORITY) {
218 lkf |= DLM_LKF_NOORDER;
219 lkf |= DLM_LKF_HEADQUE;
220 }
221
222 if (gfs_flags & LM_FLAG_ANY) {
223 if (req == DLM_LOCK_PR)
224 lkf |= DLM_LKF_ALTCW;
225 else if (req == DLM_LOCK_CW)
226 lkf |= DLM_LKF_ALTPR;
227 else
228 BUG();
229 }
230
Bob Peterson4c569a72012-04-10 14:45:24 -0400231 if (lkid != 0) {
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000232 lkf |= DLM_LKF_CONVERT;
Bob Peterson4c569a72012-04-10 14:45:24 -0400233 if (test_bit(GLF_BLOCKING, &gl->gl_flags))
234 lkf |= DLM_LKF_QUECVT;
235 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000236
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000237 return lkf;
238}
239
Steven Whitehousea2457692012-01-20 10:38:36 +0000240static void gfs2_reverse_hex(char *c, u64 value)
241{
242 while (value) {
243 *c-- = hex_asc[value & 0x0f];
244 value >>= 4;
245 }
246}
247
Steven Whitehouse921169c2010-11-29 12:50:38 +0000248static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
249 unsigned int flags)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000250{
251 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000252 int req;
253 u32 lkf;
Steven Whitehousea2457692012-01-20 10:38:36 +0000254 char strname[GDLM_STRNAME_BYTES] = "";
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000255
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000256 req = make_mode(req_state);
Bob Peterson4c569a72012-04-10 14:45:24 -0400257 lkf = make_flags(gl, flags, req);
Steven Whitehousea2457692012-01-20 10:38:36 +0000258 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
259 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
260 if (gl->gl_lksb.sb_lkid) {
261 gfs2_update_request_times(gl);
262 } else {
263 memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
264 strname[GDLM_STRNAME_BYTES - 1] = '\0';
265 gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
266 gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
267 gl->gl_dstamp = ktime_get_real();
268 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000269 /*
270 * Submit the actual lock request.
271 */
272
Steven Whitehousea2457692012-01-20 10:38:36 +0000273 return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
Steven Whitehouse921169c2010-11-29 12:50:38 +0000274 GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000275}
276
Steven Whitehousebc015cb2011-01-19 09:30:01 +0000277static void gdlm_put_lock(struct gfs2_glock *gl)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000278{
Steven Whitehousee4027462010-01-25 11:20:19 +0000279 struct gfs2_sbd *sdp = gl->gl_sbd;
280 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000281 int error;
282
283 if (gl->gl_lksb.sb_lkid == 0) {
Steven Whitehousefc0e38d2011-03-09 10:58:04 +0000284 gfs2_glock_free(gl);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000285 return;
286 }
287
Steven Whitehousea2457692012-01-20 10:38:36 +0000288 clear_bit(GLF_BLOCKING, &gl->gl_flags);
289 gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
290 gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
291 gfs2_update_request_times(gl);
David Teiglandfb6791d2012-11-13 10:58:56 -0500292
293 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
294 if (test_bit(SDF_SKIP_DLM_UNLOCK, &sdp->sd_flags) &&
295 gl->gl_state != LM_ST_EXCLUSIVE) {
296 gfs2_glock_free(gl);
297 return;
298 }
299
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000300 error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
301 NULL, gl);
302 if (error) {
303 printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
304 gl->gl_name.ln_type,
305 (unsigned long long)gl->gl_name.ln_number, error);
306 return;
307 }
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000308}
309
310static void gdlm_cancel(struct gfs2_glock *gl)
311{
312 struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
313 dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
314}
315
David Teiglande0c2a9a2012-01-09 17:18:05 -0500316/*
317 * dlm/gfs2 recovery coordination using dlm_recover callbacks
318 *
319 * 1. dlm_controld sees lockspace members change
320 * 2. dlm_controld blocks dlm-kernel locking activity
321 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
322 * 4. dlm_controld starts and finishes its own user level recovery
323 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
324 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
325 * 7. dlm_recoverd does its own lock recovery
326 * 8. dlm_recoverd unblocks dlm-kernel locking activity
327 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
328 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
329 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
330 * 12. gfs2_recover dequeues and recovers journals of failed nodes
331 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
332 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
333 * 15. gfs2_control unblocks normal locking when all journals are recovered
334 *
335 * - failures during recovery
336 *
337 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
338 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
339 * recovering for a prior failure. gfs2_control needs a way to detect
340 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
341 * the recover_block and recover_start values.
342 *
343 * recover_done() provides a new lockspace generation number each time it
344 * is called (step 9). This generation number is saved as recover_start.
345 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
346 * recover_block = recover_start. So, while recover_block is equal to
347 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
348 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
349 *
350 * - more specific gfs2 steps in sequence above
351 *
352 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
353 * 6. recover_slot records any failed jids (maybe none)
354 * 9. recover_done sets recover_start = new generation number
355 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
356 * 12. gfs2_recover does journal recoveries for failed jids identified above
357 * 14. gfs2_control clears control_lock lvb bits for recovered jids
358 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
359 * again) then do nothing, otherwise if recover_start > recover_block
360 * then clear BLOCK_LOCKS.
361 *
362 * - parallel recovery steps across all nodes
363 *
364 * All nodes attempt to update the control_lock lvb with the new generation
365 * number and jid bits, but only the first to get the control_lock EX will
366 * do so; others will see that it's already done (lvb already contains new
367 * generation number.)
368 *
369 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
370 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
371 * . One node gets control_lock first and writes the lvb, others see it's done
372 * . All nodes attempt to recover jids for which they see control_lock bits set
373 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
374 * . All nodes will eventually see all lvb bits clear and unblock locks
375 *
376 * - is there a problem with clearing an lvb bit that should be set
377 * and missing a journal recovery?
378 *
379 * 1. jid fails
380 * 2. lvb bit set for step 1
381 * 3. jid recovered for step 1
382 * 4. jid taken again (new mount)
383 * 5. jid fails (for step 4)
384 * 6. lvb bit set for step 5 (will already be set)
385 * 7. lvb bit cleared for step 3
386 *
387 * This is not a problem because the failure in step 5 does not
388 * require recovery, because the mount in step 4 could not have
389 * progressed far enough to unblock locks and access the fs. The
390 * control_mount() function waits for all recoveries to be complete
391 * for the latest lockspace generation before ever unblocking locks
392 * and returning. The mount in step 4 waits until the recovery in
393 * step 1 is done.
394 *
395 * - special case of first mounter: first node to mount the fs
396 *
397 * The first node to mount a gfs2 fs needs to check all the journals
398 * and recover any that need recovery before other nodes are allowed
399 * to mount the fs. (Others may begin mounting, but they must wait
400 * for the first mounter to be done before taking locks on the fs
401 * or accessing the fs.) This has two parts:
402 *
403 * 1. The mounted_lock tells a node it's the first to mount the fs.
404 * Each node holds the mounted_lock in PR while it's mounted.
405 * Each node tries to acquire the mounted_lock in EX when it mounts.
406 * If a node is granted the mounted_lock EX it means there are no
407 * other mounted nodes (no PR locks exist), and it is the first mounter.
408 * The mounted_lock is demoted to PR when first recovery is done, so
409 * others will fail to get an EX lock, but will get a PR lock.
410 *
411 * 2. The control_lock blocks others in control_mount() while the first
412 * mounter is doing first mount recovery of all journals.
413 * A mounting node needs to acquire control_lock in EX mode before
414 * it can proceed. The first mounter holds control_lock in EX while doing
415 * the first mount recovery, blocking mounts from other nodes, then demotes
416 * control_lock to NL when it's done (others_may_mount/first_done),
417 * allowing other nodes to continue mounting.
418 *
419 * first mounter:
420 * control_lock EX/NOQUEUE success
421 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
422 * set first=1
423 * do first mounter recovery
424 * mounted_lock EX->PR
425 * control_lock EX->NL, write lvb generation
426 *
427 * other mounter:
428 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
429 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
430 * mounted_lock PR/NOQUEUE success
431 * read lvb generation
432 * control_lock EX->NL
433 * set first=0
434 *
435 * - mount during recovery
436 *
437 * If a node mounts while others are doing recovery (not first mounter),
438 * the mounting node will get its initial recover_done() callback without
439 * having seen any previous failures/callbacks.
440 *
441 * It must wait for all recoveries preceding its mount to be finished
442 * before it unblocks locks. It does this by repeating the "other mounter"
443 * steps above until the lvb generation number is >= its mount generation
444 * number (from initial recover_done) and all lvb bits are clear.
445 *
446 * - control_lock lvb format
447 *
448 * 4 bytes generation number: the latest dlm lockspace generation number
449 * from recover_done callback. Indicates the jid bitmap has been updated
450 * to reflect all slot failures through that generation.
451 * 4 bytes unused.
452 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
453 * that jid N needs recovery.
454 */
455
456#define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
457
458static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
459 char *lvb_bits)
460{
461 uint32_t gen;
462 memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
463 memcpy(&gen, lvb_bits, sizeof(uint32_t));
464 *lvb_gen = le32_to_cpu(gen);
465}
466
467static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
468 char *lvb_bits)
469{
470 uint32_t gen;
471 memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
472 gen = cpu_to_le32(lvb_gen);
473 memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
474}
475
476static int all_jid_bits_clear(char *lvb)
477{
478 int i;
479 for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
480 if (lvb[i])
481 return 0;
482 }
483 return 1;
484}
485
486static void sync_wait_cb(void *arg)
487{
488 struct lm_lockstruct *ls = arg;
489 complete(&ls->ls_sync_wait);
490}
491
492static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000493{
494 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
495 int error;
496
David Teiglande0c2a9a2012-01-09 17:18:05 -0500497 error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
498 if (error) {
499 fs_err(sdp, "%s lkid %x error %d\n",
500 name, lksb->sb_lkid, error);
501 return error;
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000502 }
503
David Teiglande0c2a9a2012-01-09 17:18:05 -0500504 wait_for_completion(&ls->ls_sync_wait);
505
506 if (lksb->sb_status != -DLM_EUNLOCK) {
507 fs_err(sdp, "%s lkid %x status %d\n",
508 name, lksb->sb_lkid, lksb->sb_status);
509 return -1;
510 }
511 return 0;
512}
513
514static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
515 unsigned int num, struct dlm_lksb *lksb, char *name)
516{
517 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
518 char strname[GDLM_STRNAME_BYTES];
519 int error, status;
520
521 memset(strname, 0, GDLM_STRNAME_BYTES);
522 snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
523
524 error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
525 strname, GDLM_STRNAME_BYTES - 1,
526 0, sync_wait_cb, ls, NULL);
527 if (error) {
528 fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
529 name, lksb->sb_lkid, flags, mode, error);
530 return error;
531 }
532
533 wait_for_completion(&ls->ls_sync_wait);
534
535 status = lksb->sb_status;
536
537 if (status && status != -EAGAIN) {
538 fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
539 name, lksb->sb_lkid, flags, mode, status);
540 }
541
542 return status;
543}
544
545static int mounted_unlock(struct gfs2_sbd *sdp)
546{
547 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
548 return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
549}
550
551static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
552{
553 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
554 return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
555 &ls->ls_mounted_lksb, "mounted_lock");
556}
557
558static int control_unlock(struct gfs2_sbd *sdp)
559{
560 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
561 return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
562}
563
564static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
565{
566 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
567 return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
568 &ls->ls_control_lksb, "control_lock");
569}
570
571static void gfs2_control_func(struct work_struct *work)
572{
573 struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
574 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
575 char lvb_bits[GDLM_LVB_SIZE];
576 uint32_t block_gen, start_gen, lvb_gen, flags;
577 int recover_set = 0;
578 int write_lvb = 0;
579 int recover_size;
580 int i, error;
581
582 spin_lock(&ls->ls_recover_spin);
583 /*
584 * No MOUNT_DONE means we're still mounting; control_mount()
585 * will set this flag, after which this thread will take over
586 * all further clearing of BLOCK_LOCKS.
587 *
588 * FIRST_MOUNT means this node is doing first mounter recovery,
589 * for which recovery control is handled by
590 * control_mount()/control_first_done(), not this thread.
591 */
592 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
593 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
594 spin_unlock(&ls->ls_recover_spin);
595 return;
596 }
597 block_gen = ls->ls_recover_block;
598 start_gen = ls->ls_recover_start;
599 spin_unlock(&ls->ls_recover_spin);
600
601 /*
602 * Equal block_gen and start_gen implies we are between
603 * recover_prep and recover_done callbacks, which means
604 * dlm recovery is in progress and dlm locking is blocked.
605 * There's no point trying to do any work until recover_done.
606 */
607
608 if (block_gen == start_gen)
609 return;
610
611 /*
612 * Propagate recover_submit[] and recover_result[] to lvb:
613 * dlm_recoverd adds to recover_submit[] jids needing recovery
614 * gfs2_recover adds to recover_result[] journal recovery results
615 *
616 * set lvb bit for jids in recover_submit[] if the lvb has not
617 * yet been updated for the generation of the failure
618 *
619 * clear lvb bit for jids in recover_result[] if the result of
620 * the journal recovery is SUCCESS
621 */
622
623 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
624 if (error) {
625 fs_err(sdp, "control lock EX error %d\n", error);
626 return;
627 }
628
629 control_lvb_read(ls, &lvb_gen, lvb_bits);
630
631 spin_lock(&ls->ls_recover_spin);
632 if (block_gen != ls->ls_recover_block ||
633 start_gen != ls->ls_recover_start) {
634 fs_info(sdp, "recover generation %u block1 %u %u\n",
635 start_gen, block_gen, ls->ls_recover_block);
636 spin_unlock(&ls->ls_recover_spin);
637 control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
638 return;
639 }
640
641 recover_size = ls->ls_recover_size;
642
643 if (lvb_gen <= start_gen) {
644 /*
645 * Clear lvb bits for jids we've successfully recovered.
646 * Because all nodes attempt to recover failed journals,
647 * a journal can be recovered multiple times successfully
648 * in succession. Only the first will really do recovery,
649 * the others find it clean, but still report a successful
650 * recovery. So, another node may have already recovered
651 * the jid and cleared the lvb bit for it.
652 */
653 for (i = 0; i < recover_size; i++) {
654 if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
655 continue;
656
657 ls->ls_recover_result[i] = 0;
658
659 if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
660 continue;
661
662 __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
663 write_lvb = 1;
664 }
665 }
666
667 if (lvb_gen == start_gen) {
668 /*
669 * Failed slots before start_gen are already set in lvb.
670 */
671 for (i = 0; i < recover_size; i++) {
672 if (!ls->ls_recover_submit[i])
673 continue;
674 if (ls->ls_recover_submit[i] < lvb_gen)
675 ls->ls_recover_submit[i] = 0;
676 }
677 } else if (lvb_gen < start_gen) {
678 /*
679 * Failed slots before start_gen are not yet set in lvb.
680 */
681 for (i = 0; i < recover_size; i++) {
682 if (!ls->ls_recover_submit[i])
683 continue;
684 if (ls->ls_recover_submit[i] < start_gen) {
685 ls->ls_recover_submit[i] = 0;
686 __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
687 }
688 }
689 /* even if there are no bits to set, we need to write the
690 latest generation to the lvb */
691 write_lvb = 1;
692 } else {
693 /*
694 * we should be getting a recover_done() for lvb_gen soon
695 */
696 }
697 spin_unlock(&ls->ls_recover_spin);
698
699 if (write_lvb) {
700 control_lvb_write(ls, start_gen, lvb_bits);
701 flags = DLM_LKF_CONVERT | DLM_LKF_VALBLK;
702 } else {
703 flags = DLM_LKF_CONVERT;
704 }
705
706 error = control_lock(sdp, DLM_LOCK_NL, flags);
707 if (error) {
708 fs_err(sdp, "control lock NL error %d\n", error);
709 return;
710 }
711
712 /*
713 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
714 * and clear a jid bit in the lvb if the recovery is a success.
715 * Eventually all journals will be recovered, all jid bits will
716 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
717 */
718
719 for (i = 0; i < recover_size; i++) {
720 if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
721 fs_info(sdp, "recover generation %u jid %d\n",
722 start_gen, i);
723 gfs2_recover_set(sdp, i);
724 recover_set++;
725 }
726 }
727 if (recover_set)
728 return;
729
730 /*
731 * No more jid bits set in lvb, all recovery is done, unblock locks
732 * (unless a new recover_prep callback has occured blocking locks
733 * again while working above)
734 */
735
736 spin_lock(&ls->ls_recover_spin);
737 if (ls->ls_recover_block == block_gen &&
738 ls->ls_recover_start == start_gen) {
739 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
740 spin_unlock(&ls->ls_recover_spin);
741 fs_info(sdp, "recover generation %u done\n", start_gen);
742 gfs2_glock_thaw(sdp);
743 } else {
744 fs_info(sdp, "recover generation %u block2 %u %u\n",
745 start_gen, block_gen, ls->ls_recover_block);
746 spin_unlock(&ls->ls_recover_spin);
747 }
748}
749
750static int control_mount(struct gfs2_sbd *sdp)
751{
752 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
753 char lvb_bits[GDLM_LVB_SIZE];
754 uint32_t start_gen, block_gen, mount_gen, lvb_gen;
755 int mounted_mode;
756 int retries = 0;
757 int error;
758
759 memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
760 memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
761 memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
762 ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
763 init_completion(&ls->ls_sync_wait);
764
765 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
766
767 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
768 if (error) {
769 fs_err(sdp, "control_mount control_lock NL error %d\n", error);
770 return error;
771 }
772
773 error = mounted_lock(sdp, DLM_LOCK_NL, 0);
774 if (error) {
775 fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
776 control_unlock(sdp);
777 return error;
778 }
779 mounted_mode = DLM_LOCK_NL;
780
781restart:
782 if (retries++ && signal_pending(current)) {
783 error = -EINTR;
784 goto fail;
785 }
786
787 /*
788 * We always start with both locks in NL. control_lock is
789 * demoted to NL below so we don't need to do it here.
790 */
791
792 if (mounted_mode != DLM_LOCK_NL) {
793 error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
794 if (error)
795 goto fail;
796 mounted_mode = DLM_LOCK_NL;
797 }
798
799 /*
800 * Other nodes need to do some work in dlm recovery and gfs2_control
801 * before the recover_done and control_lock will be ready for us below.
802 * A delay here is not required but often avoids having to retry.
803 */
804
805 msleep_interruptible(500);
806
807 /*
808 * Acquire control_lock in EX and mounted_lock in either EX or PR.
809 * control_lock lvb keeps track of any pending journal recoveries.
810 * mounted_lock indicates if any other nodes have the fs mounted.
811 */
812
813 error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
814 if (error == -EAGAIN) {
815 goto restart;
816 } else if (error) {
817 fs_err(sdp, "control_mount control_lock EX error %d\n", error);
818 goto fail;
819 }
820
821 error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
822 if (!error) {
823 mounted_mode = DLM_LOCK_EX;
824 goto locks_done;
825 } else if (error != -EAGAIN) {
826 fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
827 goto fail;
828 }
829
830 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
831 if (!error) {
832 mounted_mode = DLM_LOCK_PR;
833 goto locks_done;
834 } else {
835 /* not even -EAGAIN should happen here */
836 fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
837 goto fail;
838 }
839
840locks_done:
841 /*
842 * If we got both locks above in EX, then we're the first mounter.
843 * If not, then we need to wait for the control_lock lvb to be
844 * updated by other mounted nodes to reflect our mount generation.
845 *
846 * In simple first mounter cases, first mounter will see zero lvb_gen,
847 * but in cases where all existing nodes leave/fail before mounting
848 * nodes finish control_mount, then all nodes will be mounting and
849 * lvb_gen will be non-zero.
850 */
851
852 control_lvb_read(ls, &lvb_gen, lvb_bits);
853
854 if (lvb_gen == 0xFFFFFFFF) {
855 /* special value to force mount attempts to fail */
856 fs_err(sdp, "control_mount control_lock disabled\n");
857 error = -EINVAL;
858 goto fail;
859 }
860
861 if (mounted_mode == DLM_LOCK_EX) {
862 /* first mounter, keep both EX while doing first recovery */
863 spin_lock(&ls->ls_recover_spin);
864 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
865 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
866 set_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
867 spin_unlock(&ls->ls_recover_spin);
868 fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
869 return 0;
870 }
871
872 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000873 if (error)
David Teiglande0c2a9a2012-01-09 17:18:05 -0500874 goto fail;
875
876 /*
877 * We are not first mounter, now we need to wait for the control_lock
878 * lvb generation to be >= the generation from our first recover_done
879 * and all lvb bits to be clear (no pending journal recoveries.)
880 */
881
882 if (!all_jid_bits_clear(lvb_bits)) {
883 /* journals need recovery, wait until all are clear */
884 fs_info(sdp, "control_mount wait for journal recovery\n");
885 goto restart;
886 }
887
888 spin_lock(&ls->ls_recover_spin);
889 block_gen = ls->ls_recover_block;
890 start_gen = ls->ls_recover_start;
891 mount_gen = ls->ls_recover_mount;
892
893 if (lvb_gen < mount_gen) {
894 /* wait for mounted nodes to update control_lock lvb to our
895 generation, which might include new recovery bits set */
896 fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
897 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
898 lvb_gen, ls->ls_recover_flags);
899 spin_unlock(&ls->ls_recover_spin);
900 goto restart;
901 }
902
903 if (lvb_gen != start_gen) {
904 /* wait for mounted nodes to update control_lock lvb to the
905 latest recovery generation */
906 fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
907 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
908 lvb_gen, ls->ls_recover_flags);
909 spin_unlock(&ls->ls_recover_spin);
910 goto restart;
911 }
912
913 if (block_gen == start_gen) {
914 /* dlm recovery in progress, wait for it to finish */
915 fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
916 "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
917 lvb_gen, ls->ls_recover_flags);
918 spin_unlock(&ls->ls_recover_spin);
919 goto restart;
920 }
921
922 clear_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
923 set_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags);
924 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
925 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
926 spin_unlock(&ls->ls_recover_spin);
927 return 0;
928
929fail:
930 mounted_unlock(sdp);
931 control_unlock(sdp);
932 return error;
933}
934
935static int dlm_recovery_wait(void *word)
936{
937 schedule();
938 return 0;
939}
940
941static int control_first_done(struct gfs2_sbd *sdp)
942{
943 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
944 char lvb_bits[GDLM_LVB_SIZE];
945 uint32_t start_gen, block_gen;
946 int error;
947
948restart:
949 spin_lock(&ls->ls_recover_spin);
950 start_gen = ls->ls_recover_start;
951 block_gen = ls->ls_recover_block;
952
953 if (test_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags) ||
954 !test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
955 !test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
956 /* sanity check, should not happen */
957 fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
958 start_gen, block_gen, ls->ls_recover_flags);
959 spin_unlock(&ls->ls_recover_spin);
960 control_unlock(sdp);
961 return -1;
962 }
963
964 if (start_gen == block_gen) {
965 /*
966 * Wait for the end of a dlm recovery cycle to switch from
967 * first mounter recovery. We can ignore any recover_slot
968 * callbacks between the recover_prep and next recover_done
969 * because we are still the first mounter and any failed nodes
970 * have not fully mounted, so they don't need recovery.
971 */
972 spin_unlock(&ls->ls_recover_spin);
973 fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
974
975 wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
976 dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
977 goto restart;
978 }
979
980 clear_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
981 set_bit(DFL_FIRST_MOUNT_DONE, &ls->ls_recover_flags);
982 memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
983 memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
984 spin_unlock(&ls->ls_recover_spin);
985
986 memset(lvb_bits, 0, sizeof(lvb_bits));
987 control_lvb_write(ls, start_gen, lvb_bits);
988
989 error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
990 if (error)
991 fs_err(sdp, "control_first_done mounted PR error %d\n", error);
992
993 error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
994 if (error)
995 fs_err(sdp, "control_first_done control NL error %d\n", error);
Steven Whitehousef057f6c2009-01-12 10:43:39 +0000996
997 return error;
998}
999
David Teiglande0c2a9a2012-01-09 17:18:05 -05001000/*
1001 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1002 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1003 * gfs2 jids start at 0, so jid = slot - 1)
1004 */
1005
1006#define RECOVER_SIZE_INC 16
1007
1008static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1009 int num_slots)
1010{
1011 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1012 uint32_t *submit = NULL;
1013 uint32_t *result = NULL;
1014 uint32_t old_size, new_size;
1015 int i, max_jid;
1016
1017 max_jid = 0;
1018 for (i = 0; i < num_slots; i++) {
1019 if (max_jid < slots[i].slot - 1)
1020 max_jid = slots[i].slot - 1;
1021 }
1022
1023 old_size = ls->ls_recover_size;
1024
1025 if (old_size >= max_jid + 1)
1026 return 0;
1027
1028 new_size = old_size + RECOVER_SIZE_INC;
1029
1030 submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1031 result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1032 if (!submit || !result) {
1033 kfree(submit);
1034 kfree(result);
1035 return -ENOMEM;
1036 }
1037
1038 spin_lock(&ls->ls_recover_spin);
1039 memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1040 memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1041 kfree(ls->ls_recover_submit);
1042 kfree(ls->ls_recover_result);
1043 ls->ls_recover_submit = submit;
1044 ls->ls_recover_result = result;
1045 ls->ls_recover_size = new_size;
1046 spin_unlock(&ls->ls_recover_spin);
1047 return 0;
1048}
1049
1050static void free_recover_size(struct lm_lockstruct *ls)
1051{
1052 kfree(ls->ls_recover_submit);
1053 kfree(ls->ls_recover_result);
1054 ls->ls_recover_submit = NULL;
1055 ls->ls_recover_result = NULL;
1056 ls->ls_recover_size = 0;
1057}
1058
1059/* dlm calls before it does lock recovery */
1060
1061static void gdlm_recover_prep(void *arg)
1062{
1063 struct gfs2_sbd *sdp = arg;
1064 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1065
1066 spin_lock(&ls->ls_recover_spin);
1067 ls->ls_recover_block = ls->ls_recover_start;
1068 set_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1069
1070 if (!test_bit(DFL_MOUNT_DONE, &ls->ls_recover_flags) ||
1071 test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1072 spin_unlock(&ls->ls_recover_spin);
1073 return;
1074 }
1075 set_bit(DFL_BLOCK_LOCKS, &ls->ls_recover_flags);
1076 spin_unlock(&ls->ls_recover_spin);
1077}
1078
1079/* dlm calls after recover_prep has been completed on all lockspace members;
1080 identifies slot/jid of failed member */
1081
1082static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1083{
1084 struct gfs2_sbd *sdp = arg;
1085 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1086 int jid = slot->slot - 1;
1087
1088 spin_lock(&ls->ls_recover_spin);
1089 if (ls->ls_recover_size < jid + 1) {
1090 fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1091 jid, ls->ls_recover_block, ls->ls_recover_size);
1092 spin_unlock(&ls->ls_recover_spin);
1093 return;
1094 }
1095
1096 if (ls->ls_recover_submit[jid]) {
1097 fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1098 jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1099 }
1100 ls->ls_recover_submit[jid] = ls->ls_recover_block;
1101 spin_unlock(&ls->ls_recover_spin);
1102}
1103
1104/* dlm calls after recover_slot and after it completes lock recovery */
1105
1106static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1107 int our_slot, uint32_t generation)
1108{
1109 struct gfs2_sbd *sdp = arg;
1110 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1111
1112 /* ensure the ls jid arrays are large enough */
1113 set_recover_size(sdp, slots, num_slots);
1114
1115 spin_lock(&ls->ls_recover_spin);
1116 ls->ls_recover_start = generation;
1117
1118 if (!ls->ls_recover_mount) {
1119 ls->ls_recover_mount = generation;
1120 ls->ls_jid = our_slot - 1;
1121 }
1122
1123 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1124 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1125
1126 clear_bit(DFL_DLM_RECOVERY, &ls->ls_recover_flags);
1127 smp_mb__after_clear_bit();
1128 wake_up_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY);
1129 spin_unlock(&ls->ls_recover_spin);
1130}
1131
1132/* gfs2_recover thread has a journal recovery result */
1133
1134static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1135 unsigned int result)
1136{
1137 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1138
1139 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1140 return;
1141
1142 /* don't care about the recovery of own journal during mount */
1143 if (jid == ls->ls_jid)
1144 return;
1145
1146 spin_lock(&ls->ls_recover_spin);
1147 if (test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags)) {
1148 spin_unlock(&ls->ls_recover_spin);
1149 return;
1150 }
1151 if (ls->ls_recover_size < jid + 1) {
1152 fs_err(sdp, "recovery_result jid %d short size %d",
1153 jid, ls->ls_recover_size);
1154 spin_unlock(&ls->ls_recover_spin);
1155 return;
1156 }
1157
1158 fs_info(sdp, "recover jid %d result %s\n", jid,
1159 result == LM_RD_GAVEUP ? "busy" : "success");
1160
1161 ls->ls_recover_result[jid] = result;
1162
1163 /* GAVEUP means another node is recovering the journal; delay our
1164 next attempt to recover it, to give the other node a chance to
1165 finish before trying again */
1166
1167 if (!test_bit(DFL_UNMOUNT, &ls->ls_recover_flags))
1168 queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1169 result == LM_RD_GAVEUP ? HZ : 0);
1170 spin_unlock(&ls->ls_recover_spin);
1171}
1172
1173const struct dlm_lockspace_ops gdlm_lockspace_ops = {
1174 .recover_prep = gdlm_recover_prep,
1175 .recover_slot = gdlm_recover_slot,
1176 .recover_done = gdlm_recover_done,
1177};
1178
1179static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1180{
1181 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1182 char cluster[GFS2_LOCKNAME_LEN];
1183 const char *fsname;
1184 uint32_t flags;
1185 int error, ops_result;
1186
1187 /*
1188 * initialize everything
1189 */
1190
1191 INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1192 spin_lock_init(&ls->ls_recover_spin);
1193 ls->ls_recover_flags = 0;
1194 ls->ls_recover_mount = 0;
1195 ls->ls_recover_start = 0;
1196 ls->ls_recover_block = 0;
1197 ls->ls_recover_size = 0;
1198 ls->ls_recover_submit = NULL;
1199 ls->ls_recover_result = NULL;
1200
1201 error = set_recover_size(sdp, NULL, 0);
1202 if (error)
1203 goto fail;
1204
1205 /*
1206 * prepare dlm_new_lockspace args
1207 */
1208
1209 fsname = strchr(table, ':');
1210 if (!fsname) {
1211 fs_info(sdp, "no fsname found\n");
1212 error = -EINVAL;
1213 goto fail_free;
1214 }
1215 memset(cluster, 0, sizeof(cluster));
1216 memcpy(cluster, table, strlen(table) - strlen(fsname));
1217 fsname++;
1218
1219 flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
David Teiglande0c2a9a2012-01-09 17:18:05 -05001220
1221 /*
1222 * create/join lockspace
1223 */
1224
1225 error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1226 &gdlm_lockspace_ops, sdp, &ops_result,
1227 &ls->ls_dlm);
1228 if (error) {
1229 fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1230 goto fail_free;
1231 }
1232
1233 if (ops_result < 0) {
1234 /*
1235 * dlm does not support ops callbacks,
1236 * old dlm_controld/gfs_controld are used, try without ops.
1237 */
1238 fs_info(sdp, "dlm lockspace ops not used\n");
1239 free_recover_size(ls);
1240 set_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags);
1241 return 0;
1242 }
1243
1244 if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1245 fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1246 error = -EINVAL;
1247 goto fail_release;
1248 }
1249
1250 /*
1251 * control_mount() uses control_lock to determine first mounter,
1252 * and for later mounts, waits for any recoveries to be cleared.
1253 */
1254
1255 error = control_mount(sdp);
1256 if (error) {
1257 fs_err(sdp, "mount control error %d\n", error);
1258 goto fail_release;
1259 }
1260
1261 ls->ls_first = !!test_bit(DFL_FIRST_MOUNT, &ls->ls_recover_flags);
1262 clear_bit(SDF_NOJOURNALID, &sdp->sd_flags);
1263 smp_mb__after_clear_bit();
1264 wake_up_bit(&sdp->sd_flags, SDF_NOJOURNALID);
1265 return 0;
1266
1267fail_release:
1268 dlm_release_lockspace(ls->ls_dlm, 2);
1269fail_free:
1270 free_recover_size(ls);
1271fail:
1272 return error;
1273}
1274
1275static void gdlm_first_done(struct gfs2_sbd *sdp)
1276{
1277 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1278 int error;
1279
1280 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1281 return;
1282
1283 error = control_first_done(sdp);
1284 if (error)
1285 fs_err(sdp, "mount first_done error %d\n", error);
1286}
1287
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001288static void gdlm_unmount(struct gfs2_sbd *sdp)
1289{
1290 struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1291
David Teiglande0c2a9a2012-01-09 17:18:05 -05001292 if (test_bit(DFL_NO_DLM_OPS, &ls->ls_recover_flags))
1293 goto release;
1294
1295 /* wait for gfs2_control_wq to be done with this mount */
1296
1297 spin_lock(&ls->ls_recover_spin);
1298 set_bit(DFL_UNMOUNT, &ls->ls_recover_flags);
1299 spin_unlock(&ls->ls_recover_spin);
Tejun Heo43829732012-08-20 14:51:24 -07001300 flush_delayed_work(&sdp->sd_control_work);
David Teiglande0c2a9a2012-01-09 17:18:05 -05001301
1302 /* mounted_lock and control_lock will be purged in dlm recovery */
1303release:
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001304 if (ls->ls_dlm) {
1305 dlm_release_lockspace(ls->ls_dlm, 2);
1306 ls->ls_dlm = NULL;
1307 }
David Teiglande0c2a9a2012-01-09 17:18:05 -05001308
1309 free_recover_size(ls);
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001310}
1311
1312static const match_table_t dlm_tokens = {
1313 { Opt_jid, "jid=%d"},
1314 { Opt_id, "id=%d"},
1315 { Opt_first, "first=%d"},
1316 { Opt_nodir, "nodir=%d"},
1317 { Opt_err, NULL },
1318};
1319
1320const struct lm_lockops gfs2_dlm_ops = {
1321 .lm_proto_name = "lock_dlm",
1322 .lm_mount = gdlm_mount,
David Teiglande0c2a9a2012-01-09 17:18:05 -05001323 .lm_first_done = gdlm_first_done,
1324 .lm_recovery_result = gdlm_recovery_result,
Steven Whitehousef057f6c2009-01-12 10:43:39 +00001325 .lm_unmount = gdlm_unmount,
1326 .lm_put_lock = gdlm_put_lock,
1327 .lm_lock = gdlm_lock,
1328 .lm_cancel = gdlm_cancel,
1329 .lm_tokens = &dlm_tokens,
1330};
1331