|  | /* | 
|  | *  net/dccp/input.c | 
|  | * | 
|  | *  An implementation of the DCCP protocol | 
|  | *  Arnaldo Carvalho de Melo <acme@conectiva.com.br> | 
|  | * | 
|  | *	This program is free software; you can redistribute it and/or | 
|  | *	modify it under the terms of the GNU General Public License | 
|  | *	as published by the Free Software Foundation; either version | 
|  | *	2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/dccp.h> | 
|  | #include <linux/skbuff.h> | 
|  |  | 
|  | #include <net/sock.h> | 
|  |  | 
|  | #include "ackvec.h" | 
|  | #include "ccid.h" | 
|  | #include "dccp.h" | 
|  |  | 
|  | /* rate-limit for syncs in reply to sequence-invalid packets; RFC 4340, 7.5.4 */ | 
|  | int sysctl_dccp_sync_ratelimit	__read_mostly = HZ / 8; | 
|  |  | 
|  | static void dccp_enqueue_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | __skb_pull(skb, dccp_hdr(skb)->dccph_doff * 4); | 
|  | __skb_queue_tail(&sk->sk_receive_queue, skb); | 
|  | skb_set_owner_r(skb, sk); | 
|  | sk->sk_data_ready(sk, 0); | 
|  | } | 
|  |  | 
|  | static void dccp_fin(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | /* | 
|  | * On receiving Close/CloseReq, both RD/WR shutdown are performed. | 
|  | * RFC 4340, 8.3 says that we MAY send further Data/DataAcks after | 
|  | * receiving the closing segment, but there is no guarantee that such | 
|  | * data will be processed at all. | 
|  | */ | 
|  | sk->sk_shutdown = SHUTDOWN_MASK; | 
|  | sock_set_flag(sk, SOCK_DONE); | 
|  | dccp_enqueue_skb(sk, skb); | 
|  | } | 
|  |  | 
|  | static int dccp_rcv_close(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | int queued = 0; | 
|  |  | 
|  | switch (sk->sk_state) { | 
|  | /* | 
|  | * We ignore Close when received in one of the following states: | 
|  | *  - CLOSED		(may be a late or duplicate packet) | 
|  | *  - PASSIVE_CLOSEREQ	(the peer has sent a CloseReq earlier) | 
|  | *  - RESPOND		(already handled by dccp_check_req) | 
|  | */ | 
|  | case DCCP_CLOSING: | 
|  | /* | 
|  | * Simultaneous-close: receiving a Close after sending one. This | 
|  | * can happen if both client and server perform active-close and | 
|  | * will result in an endless ping-pong of crossing and retrans- | 
|  | * mitted Close packets, which only terminates when one of the | 
|  | * nodes times out (min. 64 seconds). Quicker convergence can be | 
|  | * achieved when one of the nodes acts as tie-breaker. | 
|  | * This is ok as both ends are done with data transfer and each | 
|  | * end is just waiting for the other to acknowledge termination. | 
|  | */ | 
|  | if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT) | 
|  | break; | 
|  | /* fall through */ | 
|  | case DCCP_REQUESTING: | 
|  | case DCCP_ACTIVE_CLOSEREQ: | 
|  | dccp_send_reset(sk, DCCP_RESET_CODE_CLOSED); | 
|  | dccp_done(sk); | 
|  | break; | 
|  | case DCCP_OPEN: | 
|  | case DCCP_PARTOPEN: | 
|  | /* Give waiting application a chance to read pending data */ | 
|  | queued = 1; | 
|  | dccp_fin(sk, skb); | 
|  | dccp_set_state(sk, DCCP_PASSIVE_CLOSE); | 
|  | /* fall through */ | 
|  | case DCCP_PASSIVE_CLOSE: | 
|  | /* | 
|  | * Retransmitted Close: we have already enqueued the first one. | 
|  | */ | 
|  | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); | 
|  | } | 
|  | return queued; | 
|  | } | 
|  |  | 
|  | static int dccp_rcv_closereq(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | int queued = 0; | 
|  |  | 
|  | /* | 
|  | *   Step 7: Check for unexpected packet types | 
|  | *      If (S.is_server and P.type == CloseReq) | 
|  | *	  Send Sync packet acknowledging P.seqno | 
|  | *	  Drop packet and return | 
|  | */ | 
|  | if (dccp_sk(sk)->dccps_role != DCCP_ROLE_CLIENT) { | 
|  | dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq, DCCP_PKT_SYNC); | 
|  | return queued; | 
|  | } | 
|  |  | 
|  | /* Step 13: process relevant Client states < CLOSEREQ */ | 
|  | switch (sk->sk_state) { | 
|  | case DCCP_REQUESTING: | 
|  | dccp_send_close(sk, 0); | 
|  | dccp_set_state(sk, DCCP_CLOSING); | 
|  | break; | 
|  | case DCCP_OPEN: | 
|  | case DCCP_PARTOPEN: | 
|  | /* Give waiting application a chance to read pending data */ | 
|  | queued = 1; | 
|  | dccp_fin(sk, skb); | 
|  | dccp_set_state(sk, DCCP_PASSIVE_CLOSEREQ); | 
|  | /* fall through */ | 
|  | case DCCP_PASSIVE_CLOSEREQ: | 
|  | sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP); | 
|  | } | 
|  | return queued; | 
|  | } | 
|  |  | 
|  | static u8 dccp_reset_code_convert(const u8 code) | 
|  | { | 
|  | const u8 error_code[] = { | 
|  | [DCCP_RESET_CODE_CLOSED]	     = 0,	/* normal termination */ | 
|  | [DCCP_RESET_CODE_UNSPECIFIED]	     = 0,	/* nothing known */ | 
|  | [DCCP_RESET_CODE_ABORTED]	     = ECONNRESET, | 
|  |  | 
|  | [DCCP_RESET_CODE_NO_CONNECTION]	     = ECONNREFUSED, | 
|  | [DCCP_RESET_CODE_CONNECTION_REFUSED] = ECONNREFUSED, | 
|  | [DCCP_RESET_CODE_TOO_BUSY]	     = EUSERS, | 
|  | [DCCP_RESET_CODE_AGGRESSION_PENALTY] = EDQUOT, | 
|  |  | 
|  | [DCCP_RESET_CODE_PACKET_ERROR]	     = ENOMSG, | 
|  | [DCCP_RESET_CODE_BAD_INIT_COOKIE]    = EBADR, | 
|  | [DCCP_RESET_CODE_BAD_SERVICE_CODE]   = EBADRQC, | 
|  | [DCCP_RESET_CODE_OPTION_ERROR]	     = EILSEQ, | 
|  | [DCCP_RESET_CODE_MANDATORY_ERROR]    = EOPNOTSUPP, | 
|  | }; | 
|  |  | 
|  | return code >= DCCP_MAX_RESET_CODES ? 0 : error_code[code]; | 
|  | } | 
|  |  | 
|  | static void dccp_rcv_reset(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | u8 err = dccp_reset_code_convert(dccp_hdr_reset(skb)->dccph_reset_code); | 
|  |  | 
|  | sk->sk_err = err; | 
|  |  | 
|  | /* Queue the equivalent of TCP fin so that dccp_recvmsg exits the loop */ | 
|  | dccp_fin(sk, skb); | 
|  |  | 
|  | if (err && !sock_flag(sk, SOCK_DEAD)) | 
|  | sk_wake_async(sk, SOCK_WAKE_IO, POLL_ERR); | 
|  | dccp_time_wait(sk, DCCP_TIME_WAIT, 0); | 
|  | } | 
|  |  | 
|  | static void dccp_event_ack_recv(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct dccp_sock *dp = dccp_sk(sk); | 
|  |  | 
|  | if (dccp_msk(sk)->dccpms_send_ack_vector) | 
|  | dccp_ackvec_check_rcv_ackno(dp->dccps_hc_rx_ackvec, sk, | 
|  | DCCP_SKB_CB(skb)->dccpd_ack_seq); | 
|  | } | 
|  |  | 
|  | static void dccp_deliver_input_to_ccids(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | const struct dccp_sock *dp = dccp_sk(sk); | 
|  |  | 
|  | /* Don't deliver to RX CCID when node has shut down read end. */ | 
|  | if (!(sk->sk_shutdown & RCV_SHUTDOWN)) | 
|  | ccid_hc_rx_packet_recv(dp->dccps_hc_rx_ccid, sk, skb); | 
|  | /* | 
|  | * Until the TX queue has been drained, we can not honour SHUT_WR, since | 
|  | * we need received feedback as input to adjust congestion control. | 
|  | */ | 
|  | if (sk->sk_write_queue.qlen > 0 || !(sk->sk_shutdown & SEND_SHUTDOWN)) | 
|  | ccid_hc_tx_packet_recv(dp->dccps_hc_tx_ccid, sk, skb); | 
|  | } | 
|  |  | 
|  | static int dccp_check_seqno(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | const struct dccp_hdr *dh = dccp_hdr(skb); | 
|  | struct dccp_sock *dp = dccp_sk(sk); | 
|  | u64 lswl, lawl, seqno = DCCP_SKB_CB(skb)->dccpd_seq, | 
|  | ackno = DCCP_SKB_CB(skb)->dccpd_ack_seq; | 
|  |  | 
|  | /* | 
|  | *   Step 5: Prepare sequence numbers for Sync | 
|  | *     If P.type == Sync or P.type == SyncAck, | 
|  | *	  If S.AWL <= P.ackno <= S.AWH and P.seqno >= S.SWL, | 
|  | *	     / * P is valid, so update sequence number variables | 
|  | *		 accordingly.  After this update, P will pass the tests | 
|  | *		 in Step 6.  A SyncAck is generated if necessary in | 
|  | *		 Step 15 * / | 
|  | *	     Update S.GSR, S.SWL, S.SWH | 
|  | *	  Otherwise, | 
|  | *	     Drop packet and return | 
|  | */ | 
|  | if (dh->dccph_type == DCCP_PKT_SYNC || | 
|  | dh->dccph_type == DCCP_PKT_SYNCACK) { | 
|  | if (between48(ackno, dp->dccps_awl, dp->dccps_awh) && | 
|  | dccp_delta_seqno(dp->dccps_swl, seqno) >= 0) | 
|  | dccp_update_gsr(sk, seqno); | 
|  | else | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *   Step 6: Check sequence numbers | 
|  | *      Let LSWL = S.SWL and LAWL = S.AWL | 
|  | *      If P.type == CloseReq or P.type == Close or P.type == Reset, | 
|  | *	  LSWL := S.GSR + 1, LAWL := S.GAR | 
|  | *      If LSWL <= P.seqno <= S.SWH | 
|  | *	     and (P.ackno does not exist or LAWL <= P.ackno <= S.AWH), | 
|  | *	  Update S.GSR, S.SWL, S.SWH | 
|  | *	  If P.type != Sync, | 
|  | *	     Update S.GAR | 
|  | */ | 
|  | lswl = dp->dccps_swl; | 
|  | lawl = dp->dccps_awl; | 
|  |  | 
|  | if (dh->dccph_type == DCCP_PKT_CLOSEREQ || | 
|  | dh->dccph_type == DCCP_PKT_CLOSE || | 
|  | dh->dccph_type == DCCP_PKT_RESET) { | 
|  | lswl = ADD48(dp->dccps_gsr, 1); | 
|  | lawl = dp->dccps_gar; | 
|  | } | 
|  |  | 
|  | if (between48(seqno, lswl, dp->dccps_swh) && | 
|  | (ackno == DCCP_PKT_WITHOUT_ACK_SEQ || | 
|  | between48(ackno, lawl, dp->dccps_awh))) { | 
|  | dccp_update_gsr(sk, seqno); | 
|  |  | 
|  | if (dh->dccph_type != DCCP_PKT_SYNC && | 
|  | (ackno != DCCP_PKT_WITHOUT_ACK_SEQ)) | 
|  | dp->dccps_gar = ackno; | 
|  | } else { | 
|  | unsigned long now = jiffies; | 
|  | /* | 
|  | *   Step 6: Check sequence numbers | 
|  | *      Otherwise, | 
|  | *         If P.type == Reset, | 
|  | *            Send Sync packet acknowledging S.GSR | 
|  | *         Otherwise, | 
|  | *            Send Sync packet acknowledging P.seqno | 
|  | *      Drop packet and return | 
|  | * | 
|  | *   These Syncs are rate-limited as per RFC 4340, 7.5.4: | 
|  | *   at most 1 / (dccp_sync_rate_limit * HZ) Syncs per second. | 
|  | */ | 
|  | if (time_before(now, (dp->dccps_rate_last + | 
|  | sysctl_dccp_sync_ratelimit))) | 
|  | return 0; | 
|  |  | 
|  | DCCP_WARN("DCCP: Step 6 failed for %s packet, " | 
|  | "(LSWL(%llu) <= P.seqno(%llu) <= S.SWH(%llu)) and " | 
|  | "(P.ackno %s or LAWL(%llu) <= P.ackno(%llu) <= S.AWH(%llu), " | 
|  | "sending SYNC...\n",  dccp_packet_name(dh->dccph_type), | 
|  | (unsigned long long) lswl, (unsigned long long) seqno, | 
|  | (unsigned long long) dp->dccps_swh, | 
|  | (ackno == DCCP_PKT_WITHOUT_ACK_SEQ) ? "doesn't exist" | 
|  | : "exists", | 
|  | (unsigned long long) lawl, (unsigned long long) ackno, | 
|  | (unsigned long long) dp->dccps_awh); | 
|  |  | 
|  | dp->dccps_rate_last = now; | 
|  |  | 
|  | if (dh->dccph_type == DCCP_PKT_RESET) | 
|  | seqno = dp->dccps_gsr; | 
|  | dccp_send_sync(sk, seqno, DCCP_PKT_SYNC); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __dccp_rcv_established(struct sock *sk, struct sk_buff *skb, | 
|  | const struct dccp_hdr *dh, const unsigned len) | 
|  | { | 
|  | struct dccp_sock *dp = dccp_sk(sk); | 
|  |  | 
|  | switch (dccp_hdr(skb)->dccph_type) { | 
|  | case DCCP_PKT_DATAACK: | 
|  | case DCCP_PKT_DATA: | 
|  | /* | 
|  | * FIXME: schedule DATA_DROPPED (RFC 4340, 11.7.2) if and when | 
|  | * - sk_shutdown == RCV_SHUTDOWN, use Code 1, "Not Listening" | 
|  | * - sk_receive_queue is full, use Code 2, "Receive Buffer" | 
|  | */ | 
|  | dccp_enqueue_skb(sk, skb); | 
|  | return 0; | 
|  | case DCCP_PKT_ACK: | 
|  | goto discard; | 
|  | case DCCP_PKT_RESET: | 
|  | /* | 
|  | *  Step 9: Process Reset | 
|  | *	If P.type == Reset, | 
|  | *		Tear down connection | 
|  | *		S.state := TIMEWAIT | 
|  | *		Set TIMEWAIT timer | 
|  | *		Drop packet and return | 
|  | */ | 
|  | dccp_rcv_reset(sk, skb); | 
|  | return 0; | 
|  | case DCCP_PKT_CLOSEREQ: | 
|  | if (dccp_rcv_closereq(sk, skb)) | 
|  | return 0; | 
|  | goto discard; | 
|  | case DCCP_PKT_CLOSE: | 
|  | if (dccp_rcv_close(sk, skb)) | 
|  | return 0; | 
|  | goto discard; | 
|  | case DCCP_PKT_REQUEST: | 
|  | /* Step 7 | 
|  | *   or (S.is_server and P.type == Response) | 
|  | *   or (S.is_client and P.type == Request) | 
|  | *   or (S.state >= OPEN and P.type == Request | 
|  | *	and P.seqno >= S.OSR) | 
|  | *    or (S.state >= OPEN and P.type == Response | 
|  | *	and P.seqno >= S.OSR) | 
|  | *    or (S.state == RESPOND and P.type == Data), | 
|  | *  Send Sync packet acknowledging P.seqno | 
|  | *  Drop packet and return | 
|  | */ | 
|  | if (dp->dccps_role != DCCP_ROLE_LISTEN) | 
|  | goto send_sync; | 
|  | goto check_seq; | 
|  | case DCCP_PKT_RESPONSE: | 
|  | if (dp->dccps_role != DCCP_ROLE_CLIENT) | 
|  | goto send_sync; | 
|  | check_seq: | 
|  | if (dccp_delta_seqno(dp->dccps_osr, | 
|  | DCCP_SKB_CB(skb)->dccpd_seq) >= 0) { | 
|  | send_sync: | 
|  | dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq, | 
|  | DCCP_PKT_SYNC); | 
|  | } | 
|  | break; | 
|  | case DCCP_PKT_SYNC: | 
|  | dccp_send_sync(sk, DCCP_SKB_CB(skb)->dccpd_seq, | 
|  | DCCP_PKT_SYNCACK); | 
|  | /* | 
|  | * From RFC 4340, sec. 5.7 | 
|  | * | 
|  | * As with DCCP-Ack packets, DCCP-Sync and DCCP-SyncAck packets | 
|  | * MAY have non-zero-length application data areas, whose | 
|  | * contents receivers MUST ignore. | 
|  | */ | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | DCCP_INC_STATS_BH(DCCP_MIB_INERRS); | 
|  | discard: | 
|  | __kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int dccp_rcv_established(struct sock *sk, struct sk_buff *skb, | 
|  | const struct dccp_hdr *dh, const unsigned len) | 
|  | { | 
|  | struct dccp_sock *dp = dccp_sk(sk); | 
|  |  | 
|  | if (dccp_check_seqno(sk, skb)) | 
|  | goto discard; | 
|  |  | 
|  | if (dccp_parse_options(sk, NULL, skb)) | 
|  | return 1; | 
|  |  | 
|  | if (DCCP_SKB_CB(skb)->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ) | 
|  | dccp_event_ack_recv(sk, skb); | 
|  |  | 
|  | if (dccp_msk(sk)->dccpms_send_ack_vector && | 
|  | dccp_ackvec_add(dp->dccps_hc_rx_ackvec, sk, | 
|  | DCCP_SKB_CB(skb)->dccpd_seq, | 
|  | DCCP_ACKVEC_STATE_RECEIVED)) | 
|  | goto discard; | 
|  | dccp_deliver_input_to_ccids(sk, skb); | 
|  |  | 
|  | return __dccp_rcv_established(sk, skb, dh, len); | 
|  | discard: | 
|  | __kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(dccp_rcv_established); | 
|  |  | 
|  | static int dccp_rcv_request_sent_state_process(struct sock *sk, | 
|  | struct sk_buff *skb, | 
|  | const struct dccp_hdr *dh, | 
|  | const unsigned len) | 
|  | { | 
|  | /* | 
|  | *  Step 4: Prepare sequence numbers in REQUEST | 
|  | *     If S.state == REQUEST, | 
|  | *	  If (P.type == Response or P.type == Reset) | 
|  | *		and S.AWL <= P.ackno <= S.AWH, | 
|  | *	     / * Set sequence number variables corresponding to the | 
|  | *		other endpoint, so P will pass the tests in Step 6 * / | 
|  | *	     Set S.GSR, S.ISR, S.SWL, S.SWH | 
|  | *	     / * Response processing continues in Step 10; Reset | 
|  | *		processing continues in Step 9 * / | 
|  | */ | 
|  | if (dh->dccph_type == DCCP_PKT_RESPONSE) { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct dccp_sock *dp = dccp_sk(sk); | 
|  | long tstamp = dccp_timestamp(); | 
|  |  | 
|  | if (!between48(DCCP_SKB_CB(skb)->dccpd_ack_seq, | 
|  | dp->dccps_awl, dp->dccps_awh)) { | 
|  | dccp_pr_debug("invalid ackno: S.AWL=%llu, " | 
|  | "P.ackno=%llu, S.AWH=%llu \n", | 
|  | (unsigned long long)dp->dccps_awl, | 
|  | (unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq, | 
|  | (unsigned long long)dp->dccps_awh); | 
|  | goto out_invalid_packet; | 
|  | } | 
|  |  | 
|  | if (dccp_parse_options(sk, NULL, skb)) | 
|  | goto out_invalid_packet; | 
|  |  | 
|  | /* Obtain usec RTT sample from SYN exchange (used by CCID 3) */ | 
|  | if (likely(dp->dccps_options_received.dccpor_timestamp_echo)) | 
|  | dp->dccps_syn_rtt = dccp_sample_rtt(sk, 10 * (tstamp - | 
|  | dp->dccps_options_received.dccpor_timestamp_echo)); | 
|  |  | 
|  | if (dccp_msk(sk)->dccpms_send_ack_vector && | 
|  | dccp_ackvec_add(dp->dccps_hc_rx_ackvec, sk, | 
|  | DCCP_SKB_CB(skb)->dccpd_seq, | 
|  | DCCP_ACKVEC_STATE_RECEIVED)) | 
|  | goto out_invalid_packet; /* FIXME: change error code */ | 
|  |  | 
|  | /* Stop the REQUEST timer */ | 
|  | inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS); | 
|  | WARN_ON(sk->sk_send_head == NULL); | 
|  | kfree_skb(sk->sk_send_head); | 
|  | sk->sk_send_head = NULL; | 
|  |  | 
|  | dp->dccps_isr = DCCP_SKB_CB(skb)->dccpd_seq; | 
|  | dccp_update_gsr(sk, dp->dccps_isr); | 
|  | /* | 
|  | * SWL and AWL are initially adjusted so that they are not less than | 
|  | * the initial Sequence Numbers received and sent, respectively: | 
|  | *	SWL := max(GSR + 1 - floor(W/4), ISR), | 
|  | *	AWL := max(GSS - W' + 1, ISS). | 
|  | * These adjustments MUST be applied only at the beginning of the | 
|  | * connection. | 
|  | * | 
|  | * AWL was adjusted in dccp_v4_connect -acme | 
|  | */ | 
|  | dccp_set_seqno(&dp->dccps_swl, | 
|  | max48(dp->dccps_swl, dp->dccps_isr)); | 
|  |  | 
|  | dccp_sync_mss(sk, icsk->icsk_pmtu_cookie); | 
|  |  | 
|  | /* | 
|  | *    Step 10: Process REQUEST state (second part) | 
|  | *       If S.state == REQUEST, | 
|  | *	  / * If we get here, P is a valid Response from the | 
|  | *	      server (see Step 4), and we should move to | 
|  | *	      PARTOPEN state. PARTOPEN means send an Ack, | 
|  | *	      don't send Data packets, retransmit Acks | 
|  | *	      periodically, and always include any Init Cookie | 
|  | *	      from the Response * / | 
|  | *	  S.state := PARTOPEN | 
|  | *	  Set PARTOPEN timer | 
|  | *	  Continue with S.state == PARTOPEN | 
|  | *	  / * Step 12 will send the Ack completing the | 
|  | *	      three-way handshake * / | 
|  | */ | 
|  | dccp_set_state(sk, DCCP_PARTOPEN); | 
|  |  | 
|  | /* Make sure socket is routed, for correct metrics. */ | 
|  | icsk->icsk_af_ops->rebuild_header(sk); | 
|  |  | 
|  | if (!sock_flag(sk, SOCK_DEAD)) { | 
|  | sk->sk_state_change(sk); | 
|  | sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); | 
|  | } | 
|  |  | 
|  | if (sk->sk_write_pending || icsk->icsk_ack.pingpong || | 
|  | icsk->icsk_accept_queue.rskq_defer_accept) { | 
|  | /* Save one ACK. Data will be ready after | 
|  | * several ticks, if write_pending is set. | 
|  | * | 
|  | * It may be deleted, but with this feature tcpdumps | 
|  | * look so _wonderfully_ clever, that I was not able | 
|  | * to stand against the temptation 8)     --ANK | 
|  | */ | 
|  | /* | 
|  | * OK, in DCCP we can as well do a similar trick, its | 
|  | * even in the draft, but there is no need for us to | 
|  | * schedule an ack here, as dccp_sendmsg does this for | 
|  | * us, also stated in the draft. -acme | 
|  | */ | 
|  | __kfree_skb(skb); | 
|  | return 0; | 
|  | } | 
|  | dccp_send_ack(sk); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | out_invalid_packet: | 
|  | /* dccp_v4_do_rcv will send a reset */ | 
|  | DCCP_SKB_CB(skb)->dccpd_reset_code = DCCP_RESET_CODE_PACKET_ERROR; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int dccp_rcv_respond_partopen_state_process(struct sock *sk, | 
|  | struct sk_buff *skb, | 
|  | const struct dccp_hdr *dh, | 
|  | const unsigned len) | 
|  | { | 
|  | int queued = 0; | 
|  |  | 
|  | switch (dh->dccph_type) { | 
|  | case DCCP_PKT_RESET: | 
|  | inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); | 
|  | break; | 
|  | case DCCP_PKT_DATA: | 
|  | if (sk->sk_state == DCCP_RESPOND) | 
|  | break; | 
|  | case DCCP_PKT_DATAACK: | 
|  | case DCCP_PKT_ACK: | 
|  | /* | 
|  | * FIXME: we should be reseting the PARTOPEN (DELACK) timer | 
|  | * here but only if we haven't used the DELACK timer for | 
|  | * something else, like sending a delayed ack for a TIMESTAMP | 
|  | * echo, etc, for now were not clearing it, sending an extra | 
|  | * ACK when there is nothing else to do in DELACK is not a big | 
|  | * deal after all. | 
|  | */ | 
|  |  | 
|  | /* Stop the PARTOPEN timer */ | 
|  | if (sk->sk_state == DCCP_PARTOPEN) | 
|  | inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); | 
|  |  | 
|  | dccp_sk(sk)->dccps_osr = DCCP_SKB_CB(skb)->dccpd_seq; | 
|  | dccp_set_state(sk, DCCP_OPEN); | 
|  |  | 
|  | if (dh->dccph_type == DCCP_PKT_DATAACK || | 
|  | dh->dccph_type == DCCP_PKT_DATA) { | 
|  | __dccp_rcv_established(sk, skb, dh, len); | 
|  | queued = 1; /* packet was queued | 
|  | (by __dccp_rcv_established) */ | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return queued; | 
|  | } | 
|  |  | 
|  | int dccp_rcv_state_process(struct sock *sk, struct sk_buff *skb, | 
|  | struct dccp_hdr *dh, unsigned len) | 
|  | { | 
|  | struct dccp_sock *dp = dccp_sk(sk); | 
|  | struct dccp_skb_cb *dcb = DCCP_SKB_CB(skb); | 
|  | const int old_state = sk->sk_state; | 
|  | int queued = 0; | 
|  |  | 
|  | /* | 
|  | *  Step 3: Process LISTEN state | 
|  | * | 
|  | *     If S.state == LISTEN, | 
|  | *	 If P.type == Request or P contains a valid Init Cookie option, | 
|  | *	      (* Must scan the packet's options to check for Init | 
|  | *		 Cookies.  Only Init Cookies are processed here, | 
|  | *		 however; other options are processed in Step 8.  This | 
|  | *		 scan need only be performed if the endpoint uses Init | 
|  | *		 Cookies *) | 
|  | *	      (* Generate a new socket and switch to that socket *) | 
|  | *	      Set S := new socket for this port pair | 
|  | *	      S.state = RESPOND | 
|  | *	      Choose S.ISS (initial seqno) or set from Init Cookies | 
|  | *	      Initialize S.GAR := S.ISS | 
|  | *	      Set S.ISR, S.GSR, S.SWL, S.SWH from packet or Init | 
|  | *	      Cookies Continue with S.state == RESPOND | 
|  | *	      (* A Response packet will be generated in Step 11 *) | 
|  | *	 Otherwise, | 
|  | *	      Generate Reset(No Connection) unless P.type == Reset | 
|  | *	      Drop packet and return | 
|  | */ | 
|  | if (sk->sk_state == DCCP_LISTEN) { | 
|  | if (dh->dccph_type == DCCP_PKT_REQUEST) { | 
|  | if (inet_csk(sk)->icsk_af_ops->conn_request(sk, | 
|  | skb) < 0) | 
|  | return 1; | 
|  |  | 
|  | /* FIXME: do congestion control initialization */ | 
|  | goto discard; | 
|  | } | 
|  | if (dh->dccph_type == DCCP_PKT_RESET) | 
|  | goto discard; | 
|  |  | 
|  | /* Caller (dccp_v4_do_rcv) will send Reset */ | 
|  | dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (sk->sk_state != DCCP_REQUESTING) { | 
|  | if (dccp_check_seqno(sk, skb)) | 
|  | goto discard; | 
|  |  | 
|  | /* | 
|  | * Step 8: Process options and mark acknowledgeable | 
|  | */ | 
|  | if (dccp_parse_options(sk, NULL, skb)) | 
|  | return 1; | 
|  |  | 
|  | if (dcb->dccpd_ack_seq != DCCP_PKT_WITHOUT_ACK_SEQ) | 
|  | dccp_event_ack_recv(sk, skb); | 
|  |  | 
|  | if (dccp_msk(sk)->dccpms_send_ack_vector && | 
|  | dccp_ackvec_add(dp->dccps_hc_rx_ackvec, sk, | 
|  | DCCP_SKB_CB(skb)->dccpd_seq, | 
|  | DCCP_ACKVEC_STATE_RECEIVED)) | 
|  | goto discard; | 
|  |  | 
|  | dccp_deliver_input_to_ccids(sk, skb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *  Step 9: Process Reset | 
|  | *	If P.type == Reset, | 
|  | *		Tear down connection | 
|  | *		S.state := TIMEWAIT | 
|  | *		Set TIMEWAIT timer | 
|  | *		Drop packet and return | 
|  | */ | 
|  | if (dh->dccph_type == DCCP_PKT_RESET) { | 
|  | dccp_rcv_reset(sk, skb); | 
|  | return 0; | 
|  | /* | 
|  | *   Step 7: Check for unexpected packet types | 
|  | *      If (S.is_server and P.type == Response) | 
|  | *	    or (S.is_client and P.type == Request) | 
|  | *	    or (S.state == RESPOND and P.type == Data), | 
|  | *	  Send Sync packet acknowledging P.seqno | 
|  | *	  Drop packet and return | 
|  | */ | 
|  | } else if ((dp->dccps_role != DCCP_ROLE_CLIENT && | 
|  | dh->dccph_type == DCCP_PKT_RESPONSE) || | 
|  | (dp->dccps_role == DCCP_ROLE_CLIENT && | 
|  | dh->dccph_type == DCCP_PKT_REQUEST) || | 
|  | (sk->sk_state == DCCP_RESPOND && | 
|  | dh->dccph_type == DCCP_PKT_DATA)) { | 
|  | dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNC); | 
|  | goto discard; | 
|  | } else if (dh->dccph_type == DCCP_PKT_CLOSEREQ) { | 
|  | if (dccp_rcv_closereq(sk, skb)) | 
|  | return 0; | 
|  | goto discard; | 
|  | } else if (dh->dccph_type == DCCP_PKT_CLOSE) { | 
|  | if (dccp_rcv_close(sk, skb)) | 
|  | return 0; | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | switch (sk->sk_state) { | 
|  | case DCCP_CLOSED: | 
|  | dcb->dccpd_reset_code = DCCP_RESET_CODE_NO_CONNECTION; | 
|  | return 1; | 
|  |  | 
|  | case DCCP_REQUESTING: | 
|  | /* FIXME: do congestion control initialization */ | 
|  |  | 
|  | queued = dccp_rcv_request_sent_state_process(sk, skb, dh, len); | 
|  | if (queued >= 0) | 
|  | return queued; | 
|  |  | 
|  | __kfree_skb(skb); | 
|  | return 0; | 
|  |  | 
|  | case DCCP_RESPOND: | 
|  | case DCCP_PARTOPEN: | 
|  | queued = dccp_rcv_respond_partopen_state_process(sk, skb, | 
|  | dh, len); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (dh->dccph_type == DCCP_PKT_ACK || | 
|  | dh->dccph_type == DCCP_PKT_DATAACK) { | 
|  | switch (old_state) { | 
|  | case DCCP_PARTOPEN: | 
|  | sk->sk_state_change(sk); | 
|  | sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT); | 
|  | break; | 
|  | } | 
|  | } else if (unlikely(dh->dccph_type == DCCP_PKT_SYNC)) { | 
|  | dccp_send_sync(sk, dcb->dccpd_seq, DCCP_PKT_SYNCACK); | 
|  | goto discard; | 
|  | } | 
|  |  | 
|  | if (!queued) { | 
|  | discard: | 
|  | __kfree_skb(skb); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(dccp_rcv_state_process); | 
|  |  | 
|  | /** | 
|  | *  dccp_sample_rtt  -  Validate and finalise computation of RTT sample | 
|  | *  @delta:	number of microseconds between packet and acknowledgment | 
|  | *  The routine is kept generic to work in different contexts. It should be | 
|  | *  called immediately when the ACK used for the RTT sample arrives. | 
|  | */ | 
|  | u32 dccp_sample_rtt(struct sock *sk, long delta) | 
|  | { | 
|  | /* dccpor_elapsed_time is either zeroed out or set and > 0 */ | 
|  | delta -= dccp_sk(sk)->dccps_options_received.dccpor_elapsed_time * 10; | 
|  |  | 
|  | if (unlikely(delta <= 0)) { | 
|  | DCCP_WARN("unusable RTT sample %ld, using min\n", delta); | 
|  | return DCCP_SANE_RTT_MIN; | 
|  | } | 
|  | if (unlikely(delta > DCCP_SANE_RTT_MAX)) { | 
|  | DCCP_WARN("RTT sample %ld too large, using max\n", delta); | 
|  | return DCCP_SANE_RTT_MAX; | 
|  | } | 
|  |  | 
|  | return delta; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(dccp_sample_rtt); |