|  | /* SCTP kernel implementation | 
|  | * (C) Copyright IBM Corp. 2001, 2004 | 
|  | * Copyright (c) 1999 Cisco, Inc. | 
|  | * Copyright (c) 1999-2001 Motorola, Inc. | 
|  | * | 
|  | * This file is part of the SCTP kernel implementation | 
|  | * | 
|  | * These functions work with the state functions in sctp_sm_statefuns.c | 
|  | * to implement that state operations.  These functions implement the | 
|  | * steps which require modifying existing data structures. | 
|  | * | 
|  | * This SCTP implementation is free software; | 
|  | * you can redistribute it and/or modify it under the terms of | 
|  | * the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This SCTP implementation is distributed in the hope that it | 
|  | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | *                 ************************ | 
|  | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * See the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with GNU CC; see the file COPYING.  If not, write to | 
|  | * the Free Software Foundation, 59 Temple Place - Suite 330, | 
|  | * Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Please send any bug reports or fixes you make to the | 
|  | * email address(es): | 
|  | *    lksctp developers <lksctp-developers@lists.sourceforge.net> | 
|  | * | 
|  | * Or submit a bug report through the following website: | 
|  | *    http://www.sf.net/projects/lksctp | 
|  | * | 
|  | * Written or modified by: | 
|  | *    La Monte H.P. Yarroll <piggy@acm.org> | 
|  | *    Karl Knutson          <karl@athena.chicago.il.us> | 
|  | *    Jon Grimm             <jgrimm@austin.ibm.com> | 
|  | *    Hui Huang		    <hui.huang@nokia.com> | 
|  | *    Dajiang Zhang	    <dajiang.zhang@nokia.com> | 
|  | *    Daisy Chang	    <daisyc@us.ibm.com> | 
|  | *    Sridhar Samudrala	    <sri@us.ibm.com> | 
|  | *    Ardelle Fan	    <ardelle.fan@intel.com> | 
|  | * | 
|  | * Any bugs reported given to us we will try to fix... any fixes shared will | 
|  | * be incorporated into the next SCTP release. | 
|  | */ | 
|  |  | 
|  | #include <linux/skbuff.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/socket.h> | 
|  | #include <linux/ip.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/sctp/sctp.h> | 
|  | #include <net/sctp/sm.h> | 
|  |  | 
|  | static int sctp_cmd_interpreter(sctp_event_t event_type, | 
|  | sctp_subtype_t subtype, | 
|  | sctp_state_t state, | 
|  | struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | void *event_arg, | 
|  | sctp_disposition_t status, | 
|  | sctp_cmd_seq_t *commands, | 
|  | gfp_t gfp); | 
|  | static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, | 
|  | sctp_state_t state, | 
|  | struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | void *event_arg, | 
|  | sctp_disposition_t status, | 
|  | sctp_cmd_seq_t *commands, | 
|  | gfp_t gfp); | 
|  |  | 
|  | /******************************************************************** | 
|  | * Helper functions | 
|  | ********************************************************************/ | 
|  |  | 
|  | /* A helper function for delayed processing of INET ECN CE bit. */ | 
|  | static void sctp_do_ecn_ce_work(struct sctp_association *asoc, | 
|  | __u32 lowest_tsn) | 
|  | { | 
|  | /* Save the TSN away for comparison when we receive CWR */ | 
|  |  | 
|  | asoc->last_ecne_tsn = lowest_tsn; | 
|  | asoc->need_ecne = 1; | 
|  | } | 
|  |  | 
|  | /* Helper function for delayed processing of SCTP ECNE chunk.  */ | 
|  | /* RFC 2960 Appendix A | 
|  | * | 
|  | * RFC 2481 details a specific bit for a sender to send in | 
|  | * the header of its next outbound TCP segment to indicate to | 
|  | * its peer that it has reduced its congestion window.  This | 
|  | * is termed the CWR bit.  For SCTP the same indication is made | 
|  | * by including the CWR chunk.  This chunk contains one data | 
|  | * element, i.e. the TSN number that was sent in the ECNE chunk. | 
|  | * This element represents the lowest TSN number in the datagram | 
|  | * that was originally marked with the CE bit. | 
|  | */ | 
|  | static struct sctp_chunk *sctp_do_ecn_ecne_work(struct sctp_association *asoc, | 
|  | __u32 lowest_tsn, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_chunk *repl; | 
|  |  | 
|  | /* Our previously transmitted packet ran into some congestion | 
|  | * so we should take action by reducing cwnd and ssthresh | 
|  | * and then ACK our peer that we we've done so by | 
|  | * sending a CWR. | 
|  | */ | 
|  |  | 
|  | /* First, try to determine if we want to actually lower | 
|  | * our cwnd variables.  Only lower them if the ECNE looks more | 
|  | * recent than the last response. | 
|  | */ | 
|  | if (TSN_lt(asoc->last_cwr_tsn, lowest_tsn)) { | 
|  | struct sctp_transport *transport; | 
|  |  | 
|  | /* Find which transport's congestion variables | 
|  | * need to be adjusted. | 
|  | */ | 
|  | transport = sctp_assoc_lookup_tsn(asoc, lowest_tsn); | 
|  |  | 
|  | /* Update the congestion variables. */ | 
|  | if (transport) | 
|  | sctp_transport_lower_cwnd(transport, | 
|  | SCTP_LOWER_CWND_ECNE); | 
|  | asoc->last_cwr_tsn = lowest_tsn; | 
|  | } | 
|  |  | 
|  | /* Always try to quiet the other end.  In case of lost CWR, | 
|  | * resend last_cwr_tsn. | 
|  | */ | 
|  | repl = sctp_make_cwr(asoc, asoc->last_cwr_tsn, chunk); | 
|  |  | 
|  | /* If we run out of memory, it will look like a lost CWR.  We'll | 
|  | * get back in sync eventually. | 
|  | */ | 
|  | return repl; | 
|  | } | 
|  |  | 
|  | /* Helper function to do delayed processing of ECN CWR chunk.  */ | 
|  | static void sctp_do_ecn_cwr_work(struct sctp_association *asoc, | 
|  | __u32 lowest_tsn) | 
|  | { | 
|  | /* Turn off ECNE getting auto-prepended to every outgoing | 
|  | * packet | 
|  | */ | 
|  | asoc->need_ecne = 0; | 
|  | } | 
|  |  | 
|  | /* Generate SACK if necessary.  We call this at the end of a packet.  */ | 
|  | static int sctp_gen_sack(struct sctp_association *asoc, int force, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | __u32 ctsn, max_tsn_seen; | 
|  | struct sctp_chunk *sack; | 
|  | struct sctp_transport *trans = asoc->peer.last_data_from; | 
|  | int error = 0; | 
|  |  | 
|  | if (force || | 
|  | (!trans && (asoc->param_flags & SPP_SACKDELAY_DISABLE)) || | 
|  | (trans && (trans->param_flags & SPP_SACKDELAY_DISABLE))) | 
|  | asoc->peer.sack_needed = 1; | 
|  |  | 
|  | ctsn = sctp_tsnmap_get_ctsn(&asoc->peer.tsn_map); | 
|  | max_tsn_seen = sctp_tsnmap_get_max_tsn_seen(&asoc->peer.tsn_map); | 
|  |  | 
|  | /* From 12.2 Parameters necessary per association (i.e. the TCB): | 
|  | * | 
|  | * Ack State : This flag indicates if the next received packet | 
|  | * 	     : is to be responded to with a SACK. ... | 
|  | *	     : When DATA chunks are out of order, SACK's | 
|  | *           : are not delayed (see Section 6). | 
|  | * | 
|  | * [This is actually not mentioned in Section 6, but we | 
|  | * implement it here anyway. --piggy] | 
|  | */ | 
|  | if (max_tsn_seen != ctsn) | 
|  | asoc->peer.sack_needed = 1; | 
|  |  | 
|  | /* From 6.2  Acknowledgement on Reception of DATA Chunks: | 
|  | * | 
|  | * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, | 
|  | * an acknowledgement SHOULD be generated for at least every | 
|  | * second packet (not every second DATA chunk) received, and | 
|  | * SHOULD be generated within 200 ms of the arrival of any | 
|  | * unacknowledged DATA chunk. ... | 
|  | */ | 
|  | if (!asoc->peer.sack_needed) { | 
|  | asoc->peer.sack_cnt++; | 
|  |  | 
|  | /* Set the SACK delay timeout based on the | 
|  | * SACK delay for the last transport | 
|  | * data was received from, or the default | 
|  | * for the association. | 
|  | */ | 
|  | if (trans) { | 
|  | /* We will need a SACK for the next packet.  */ | 
|  | if (asoc->peer.sack_cnt >= trans->sackfreq - 1) | 
|  | asoc->peer.sack_needed = 1; | 
|  |  | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = | 
|  | trans->sackdelay; | 
|  | } else { | 
|  | /* We will need a SACK for the next packet.  */ | 
|  | if (asoc->peer.sack_cnt >= asoc->sackfreq - 1) | 
|  | asoc->peer.sack_needed = 1; | 
|  |  | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_SACK] = | 
|  | asoc->sackdelay; | 
|  | } | 
|  |  | 
|  | /* Restart the SACK timer. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); | 
|  | } else { | 
|  | if (asoc->a_rwnd > asoc->rwnd) | 
|  | asoc->a_rwnd = asoc->rwnd; | 
|  | sack = sctp_make_sack(asoc); | 
|  | if (!sack) | 
|  | goto nomem; | 
|  |  | 
|  | asoc->peer.sack_needed = 0; | 
|  | asoc->peer.sack_cnt = 0; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(sack)); | 
|  |  | 
|  | /* Stop the SACK timer.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); | 
|  | } | 
|  |  | 
|  | return error; | 
|  | nomem: | 
|  | error = -ENOMEM; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* When the T3-RTX timer expires, it calls this function to create the | 
|  | * relevant state machine event. | 
|  | */ | 
|  | void sctp_generate_t3_rtx_event(unsigned long peer) | 
|  | { | 
|  | int error; | 
|  | struct sctp_transport *transport = (struct sctp_transport *) peer; | 
|  | struct sctp_association *asoc = transport->asoc; | 
|  |  | 
|  | /* Check whether a task is in the sock.  */ | 
|  |  | 
|  | sctp_bh_lock_sock(asoc->base.sk); | 
|  | if (sock_owned_by_user(asoc->base.sk)) { | 
|  | SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); | 
|  |  | 
|  | /* Try again later.  */ | 
|  | if (!mod_timer(&transport->T3_rtx_timer, jiffies + (HZ/20))) | 
|  | sctp_transport_hold(transport); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Is this transport really dead and just waiting around for | 
|  | * the timer to let go of the reference? | 
|  | */ | 
|  | if (transport->dead) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Run through the state machine.  */ | 
|  | error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, | 
|  | SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_T3_RTX), | 
|  | asoc->state, | 
|  | asoc->ep, asoc, | 
|  | transport, GFP_ATOMIC); | 
|  |  | 
|  | if (error) | 
|  | asoc->base.sk->sk_err = -error; | 
|  |  | 
|  | out_unlock: | 
|  | sctp_bh_unlock_sock(asoc->base.sk); | 
|  | sctp_transport_put(transport); | 
|  | } | 
|  |  | 
|  | /* This is a sa interface for producing timeout events.  It works | 
|  | * for timeouts which use the association as their parameter. | 
|  | */ | 
|  | static void sctp_generate_timeout_event(struct sctp_association *asoc, | 
|  | sctp_event_timeout_t timeout_type) | 
|  | { | 
|  | int error = 0; | 
|  |  | 
|  | sctp_bh_lock_sock(asoc->base.sk); | 
|  | if (sock_owned_by_user(asoc->base.sk)) { | 
|  | SCTP_DEBUG_PRINTK("%s:Sock is busy: timer %d\n", | 
|  | __func__, | 
|  | timeout_type); | 
|  |  | 
|  | /* Try again later.  */ | 
|  | if (!mod_timer(&asoc->timers[timeout_type], jiffies + (HZ/20))) | 
|  | sctp_association_hold(asoc); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Is this association really dead and just waiting around for | 
|  | * the timer to let go of the reference? | 
|  | */ | 
|  | if (asoc->base.dead) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* Run through the state machine.  */ | 
|  | error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, | 
|  | SCTP_ST_TIMEOUT(timeout_type), | 
|  | asoc->state, asoc->ep, asoc, | 
|  | (void *)timeout_type, GFP_ATOMIC); | 
|  |  | 
|  | if (error) | 
|  | asoc->base.sk->sk_err = -error; | 
|  |  | 
|  | out_unlock: | 
|  | sctp_bh_unlock_sock(asoc->base.sk); | 
|  | sctp_association_put(asoc); | 
|  | } | 
|  |  | 
|  | static void sctp_generate_t1_cookie_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *) data; | 
|  | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_COOKIE); | 
|  | } | 
|  |  | 
|  | static void sctp_generate_t1_init_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *) data; | 
|  | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T1_INIT); | 
|  | } | 
|  |  | 
|  | static void sctp_generate_t2_shutdown_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *) data; | 
|  | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T2_SHUTDOWN); | 
|  | } | 
|  |  | 
|  | static void sctp_generate_t4_rto_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *) data; | 
|  | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_T4_RTO); | 
|  | } | 
|  |  | 
|  | static void sctp_generate_t5_shutdown_guard_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *)data; | 
|  | sctp_generate_timeout_event(asoc, | 
|  | SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD); | 
|  |  | 
|  | } /* sctp_generate_t5_shutdown_guard_event() */ | 
|  |  | 
|  | static void sctp_generate_autoclose_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *) data; | 
|  | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_AUTOCLOSE); | 
|  | } | 
|  |  | 
|  | /* Generate a heart beat event.  If the sock is busy, reschedule.   Make | 
|  | * sure that the transport is still valid. | 
|  | */ | 
|  | void sctp_generate_heartbeat_event(unsigned long data) | 
|  | { | 
|  | int error = 0; | 
|  | struct sctp_transport *transport = (struct sctp_transport *) data; | 
|  | struct sctp_association *asoc = transport->asoc; | 
|  |  | 
|  | sctp_bh_lock_sock(asoc->base.sk); | 
|  | if (sock_owned_by_user(asoc->base.sk)) { | 
|  | SCTP_DEBUG_PRINTK("%s:Sock is busy.\n", __func__); | 
|  |  | 
|  | /* Try again later.  */ | 
|  | if (!mod_timer(&transport->hb_timer, jiffies + (HZ/20))) | 
|  | sctp_transport_hold(transport); | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* Is this structure just waiting around for us to actually | 
|  | * get destroyed? | 
|  | */ | 
|  | if (transport->dead) | 
|  | goto out_unlock; | 
|  |  | 
|  | error = sctp_do_sm(SCTP_EVENT_T_TIMEOUT, | 
|  | SCTP_ST_TIMEOUT(SCTP_EVENT_TIMEOUT_HEARTBEAT), | 
|  | asoc->state, asoc->ep, asoc, | 
|  | transport, GFP_ATOMIC); | 
|  |  | 
|  | if (error) | 
|  | asoc->base.sk->sk_err = -error; | 
|  |  | 
|  | out_unlock: | 
|  | sctp_bh_unlock_sock(asoc->base.sk); | 
|  | sctp_transport_put(transport); | 
|  | } | 
|  |  | 
|  | /* Inject a SACK Timeout event into the state machine.  */ | 
|  | static void sctp_generate_sack_event(unsigned long data) | 
|  | { | 
|  | struct sctp_association *asoc = (struct sctp_association *) data; | 
|  | sctp_generate_timeout_event(asoc, SCTP_EVENT_TIMEOUT_SACK); | 
|  | } | 
|  |  | 
|  | sctp_timer_event_t *sctp_timer_events[SCTP_NUM_TIMEOUT_TYPES] = { | 
|  | NULL, | 
|  | sctp_generate_t1_cookie_event, | 
|  | sctp_generate_t1_init_event, | 
|  | sctp_generate_t2_shutdown_event, | 
|  | NULL, | 
|  | sctp_generate_t4_rto_event, | 
|  | sctp_generate_t5_shutdown_guard_event, | 
|  | NULL, | 
|  | sctp_generate_sack_event, | 
|  | sctp_generate_autoclose_event, | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* RFC 2960 8.2 Path Failure Detection | 
|  | * | 
|  | * When its peer endpoint is multi-homed, an endpoint should keep a | 
|  | * error counter for each of the destination transport addresses of the | 
|  | * peer endpoint. | 
|  | * | 
|  | * Each time the T3-rtx timer expires on any address, or when a | 
|  | * HEARTBEAT sent to an idle address is not acknowledged within a RTO, | 
|  | * the error counter of that destination address will be incremented. | 
|  | * When the value in the error counter exceeds the protocol parameter | 
|  | * 'Path.Max.Retrans' of that destination address, the endpoint should | 
|  | * mark the destination transport address as inactive, and a | 
|  | * notification SHOULD be sent to the upper layer. | 
|  | * | 
|  | */ | 
|  | static void sctp_do_8_2_transport_strike(struct sctp_association *asoc, | 
|  | struct sctp_transport *transport) | 
|  | { | 
|  | /* The check for association's overall error counter exceeding the | 
|  | * threshold is done in the state function. | 
|  | */ | 
|  | /* When probing UNCONFIRMED addresses, the association overall | 
|  | * error count is NOT incremented | 
|  | */ | 
|  | if (transport->state != SCTP_UNCONFIRMED) | 
|  | asoc->overall_error_count++; | 
|  |  | 
|  | if (transport->state != SCTP_INACTIVE && | 
|  | (transport->error_count++ >= transport->pathmaxrxt)) { | 
|  | SCTP_DEBUG_PRINTK_IPADDR("transport_strike:association %p", | 
|  | " transport IP: port:%d failed.\n", | 
|  | asoc, | 
|  | (&transport->ipaddr), | 
|  | ntohs(transport->ipaddr.v4.sin_port)); | 
|  | sctp_assoc_control_transport(asoc, transport, | 
|  | SCTP_TRANSPORT_DOWN, | 
|  | SCTP_FAILED_THRESHOLD); | 
|  | } | 
|  |  | 
|  | /* E2) For the destination address for which the timer | 
|  | * expires, set RTO <- RTO * 2 ("back off the timer").  The | 
|  | * maximum value discussed in rule C7 above (RTO.max) may be | 
|  | * used to provide an upper bound to this doubling operation. | 
|  | */ | 
|  | transport->last_rto = transport->rto; | 
|  | transport->rto = min((transport->rto * 2), transport->asoc->rto_max); | 
|  | } | 
|  |  | 
|  | /* Worker routine to handle INIT command failure.  */ | 
|  | static void sctp_cmd_init_failed(sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *asoc, | 
|  | unsigned error) | 
|  | { | 
|  | struct sctp_ulpevent *event; | 
|  |  | 
|  | event = sctp_ulpevent_make_assoc_change(asoc,0, SCTP_CANT_STR_ASSOC, | 
|  | (__u16)error, 0, 0, NULL, | 
|  | GFP_ATOMIC); | 
|  |  | 
|  | if (event) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(event)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  |  | 
|  | /* SEND_FAILED sent later when cleaning up the association. */ | 
|  | asoc->outqueue.error = error; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  | } | 
|  |  | 
|  | /* Worker routine to handle SCTP_CMD_ASSOC_FAILED.  */ | 
|  | static void sctp_cmd_assoc_failed(sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *asoc, | 
|  | sctp_event_t event_type, | 
|  | sctp_subtype_t subtype, | 
|  | struct sctp_chunk *chunk, | 
|  | unsigned error) | 
|  | { | 
|  | struct sctp_ulpevent *event; | 
|  |  | 
|  | /* Cancel any partial delivery in progress. */ | 
|  | sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); | 
|  |  | 
|  | if (event_type == SCTP_EVENT_T_CHUNK && subtype.chunk == SCTP_CID_ABORT) | 
|  | event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, | 
|  | (__u16)error, 0, 0, chunk, | 
|  | GFP_ATOMIC); | 
|  | else | 
|  | event = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_LOST, | 
|  | (__u16)error, 0, 0, NULL, | 
|  | GFP_ATOMIC); | 
|  | if (event) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(event)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  |  | 
|  | /* SEND_FAILED sent later when cleaning up the association. */ | 
|  | asoc->outqueue.error = error; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  | } | 
|  |  | 
|  | /* Process an init chunk (may be real INIT/INIT-ACK or an embedded INIT | 
|  | * inside the cookie.  In reality, this is only used for INIT-ACK processing | 
|  | * since all other cases use "temporary" associations and can do all | 
|  | * their work in statefuns directly. | 
|  | */ | 
|  | static int sctp_cmd_process_init(sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_init_chunk_t *peer_init, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* We only process the init as a sideeffect in a single | 
|  | * case.   This is when we process the INIT-ACK.   If we | 
|  | * fail during INIT processing (due to malloc problems), | 
|  | * just return the error and stop processing the stack. | 
|  | */ | 
|  | if (!sctp_process_init(asoc, chunk->chunk_hdr->type, | 
|  | sctp_source(chunk), peer_init, gfp)) | 
|  | error = -ENOMEM; | 
|  | else | 
|  | error = 0; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Helper function to break out starting up of heartbeat timers.  */ | 
|  | static void sctp_cmd_hb_timers_start(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | /* Start a heartbeat timer for each transport on the association. | 
|  | * hold a reference on the transport to make sure none of | 
|  | * the needed data structures go away. | 
|  | */ | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, transports) { | 
|  |  | 
|  | if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) | 
|  | sctp_transport_hold(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void sctp_cmd_hb_timers_stop(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | /* Stop all heartbeat timers. */ | 
|  |  | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | if (del_timer(&t->hb_timer)) | 
|  | sctp_transport_put(t); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Helper function to stop any pending T3-RTX timers */ | 
|  | static void sctp_cmd_t3_rtx_timers_stop(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | if (timer_pending(&t->T3_rtx_timer) && | 
|  | del_timer(&t->T3_rtx_timer)) { | 
|  | sctp_transport_put(t); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Helper function to update the heartbeat timer. */ | 
|  | static void sctp_cmd_hb_timer_update(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_transport *t) | 
|  | { | 
|  | /* Update the heartbeat timer.  */ | 
|  | if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) | 
|  | sctp_transport_hold(t); | 
|  | } | 
|  |  | 
|  | /* Helper function to handle the reception of an HEARTBEAT ACK.  */ | 
|  | static void sctp_cmd_transport_on(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_transport *t, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | sctp_sender_hb_info_t *hbinfo; | 
|  |  | 
|  | /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of the | 
|  | * HEARTBEAT should clear the error counter of the destination | 
|  | * transport address to which the HEARTBEAT was sent. | 
|  | * The association's overall error count is also cleared. | 
|  | */ | 
|  | t->error_count = 0; | 
|  | t->asoc->overall_error_count = 0; | 
|  |  | 
|  | /* Mark the destination transport address as active if it is not so | 
|  | * marked. | 
|  | */ | 
|  | if ((t->state == SCTP_INACTIVE) || (t->state == SCTP_UNCONFIRMED)) | 
|  | sctp_assoc_control_transport(asoc, t, SCTP_TRANSPORT_UP, | 
|  | SCTP_HEARTBEAT_SUCCESS); | 
|  |  | 
|  | /* The receiver of the HEARTBEAT ACK should also perform an | 
|  | * RTT measurement for that destination transport address | 
|  | * using the time value carried in the HEARTBEAT ACK chunk. | 
|  | * If the transport's rto_pending variable has been cleared, | 
|  | * it was most likely due to a retransmit.  However, we want | 
|  | * to re-enable it to properly update the rto. | 
|  | */ | 
|  | if (t->rto_pending == 0) | 
|  | t->rto_pending = 1; | 
|  |  | 
|  | hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; | 
|  | sctp_transport_update_rto(t, (jiffies - hbinfo->sent_at)); | 
|  |  | 
|  | /* Update the heartbeat timer.  */ | 
|  | if (!mod_timer(&t->hb_timer, sctp_transport_timeout(t))) | 
|  | sctp_transport_hold(t); | 
|  | } | 
|  |  | 
|  | /* Helper function to do a transport reset at the expiry of the hearbeat | 
|  | * timer. | 
|  | */ | 
|  | static void sctp_cmd_transport_reset(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_transport *t) | 
|  | { | 
|  | sctp_transport_lower_cwnd(t, SCTP_LOWER_CWND_INACTIVE); | 
|  |  | 
|  | /* Mark one strike against a transport.  */ | 
|  | sctp_do_8_2_transport_strike(asoc, t); | 
|  | } | 
|  |  | 
|  | /* Helper function to process the process SACK command.  */ | 
|  | static int sctp_cmd_process_sack(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_sackhdr *sackh) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | if (sctp_outq_sack(&asoc->outqueue, sackh)) { | 
|  | /* There are no more TSNs awaiting SACK.  */ | 
|  | err = sctp_do_sm(SCTP_EVENT_T_OTHER, | 
|  | SCTP_ST_OTHER(SCTP_EVENT_NO_PENDING_TSN), | 
|  | asoc->state, asoc->ep, asoc, NULL, | 
|  | GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Helper function to set the timeout value for T2-SHUTDOWN timer and to set | 
|  | * the transport for a shutdown chunk. | 
|  | */ | 
|  | static void sctp_cmd_setup_t2(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | t = sctp_assoc_choose_shutdown_transport(asoc); | 
|  | asoc->shutdown_last_sent_to = t; | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T2_SHUTDOWN] = t->rto; | 
|  | chunk->transport = t; | 
|  | } | 
|  |  | 
|  | /* Helper function to change the state of an association. */ | 
|  | static void sctp_cmd_new_state(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | sctp_state_t state) | 
|  | { | 
|  | struct sock *sk = asoc->base.sk; | 
|  |  | 
|  | asoc->state = state; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("sctp_cmd_new_state: asoc %p[%s]\n", | 
|  | asoc, sctp_state_tbl[state]); | 
|  |  | 
|  | if (sctp_style(sk, TCP)) { | 
|  | /* Change the sk->sk_state of a TCP-style socket that has | 
|  | * sucessfully completed a connect() call. | 
|  | */ | 
|  | if (sctp_state(asoc, ESTABLISHED) && sctp_sstate(sk, CLOSED)) | 
|  | sk->sk_state = SCTP_SS_ESTABLISHED; | 
|  |  | 
|  | /* Set the RCV_SHUTDOWN flag when a SHUTDOWN is received. */ | 
|  | if (sctp_state(asoc, SHUTDOWN_RECEIVED) && | 
|  | sctp_sstate(sk, ESTABLISHED)) | 
|  | sk->sk_shutdown |= RCV_SHUTDOWN; | 
|  | } | 
|  |  | 
|  | if (sctp_state(asoc, COOKIE_WAIT)) { | 
|  | /* Reset init timeouts since they may have been | 
|  | * increased due to timer expirations. | 
|  | */ | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_INIT] = | 
|  | asoc->rto_initial; | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T1_COOKIE] = | 
|  | asoc->rto_initial; | 
|  | } | 
|  |  | 
|  | if (sctp_state(asoc, ESTABLISHED) || | 
|  | sctp_state(asoc, CLOSED) || | 
|  | sctp_state(asoc, SHUTDOWN_RECEIVED)) { | 
|  | /* Wake up any processes waiting in the asoc's wait queue in | 
|  | * sctp_wait_for_connect() or sctp_wait_for_sndbuf(). | 
|  | */ | 
|  | if (waitqueue_active(&asoc->wait)) | 
|  | wake_up_interruptible(&asoc->wait); | 
|  |  | 
|  | /* Wake up any processes waiting in the sk's sleep queue of | 
|  | * a TCP-style or UDP-style peeled-off socket in | 
|  | * sctp_wait_for_accept() or sctp_wait_for_packet(). | 
|  | * For a UDP-style socket, the waiters are woken up by the | 
|  | * notifications. | 
|  | */ | 
|  | if (!sctp_style(sk, UDP)) | 
|  | sk->sk_state_change(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Helper function to delete an association. */ | 
|  | static void sctp_cmd_delete_tcb(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc) | 
|  | { | 
|  | struct sock *sk = asoc->base.sk; | 
|  |  | 
|  | /* If it is a non-temporary association belonging to a TCP-style | 
|  | * listening socket that is not closed, do not free it so that accept() | 
|  | * can pick it up later. | 
|  | */ | 
|  | if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING) && | 
|  | (!asoc->temp) && (sk->sk_shutdown != SHUTDOWN_MASK)) | 
|  | return; | 
|  |  | 
|  | sctp_unhash_established(asoc); | 
|  | sctp_association_free(asoc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ADDIP Section 4.1 ASCONF Chunk Procedures | 
|  | * A4) Start a T-4 RTO timer, using the RTO value of the selected | 
|  | * destination address (we use active path instead of primary path just | 
|  | * because primary path may be inactive. | 
|  | */ | 
|  | static void sctp_cmd_setup_t4(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | t = asoc->peer.active_path; | 
|  | asoc->timeouts[SCTP_EVENT_TIMEOUT_T4_RTO] = t->rto; | 
|  | chunk->transport = t; | 
|  | } | 
|  |  | 
|  | /* Process an incoming Operation Error Chunk. */ | 
|  | static void sctp_cmd_process_operr(sctp_cmd_seq_t *cmds, | 
|  | struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_operr_chunk *operr_chunk; | 
|  | struct sctp_errhdr *err_hdr; | 
|  |  | 
|  | operr_chunk = (struct sctp_operr_chunk *)chunk->chunk_hdr; | 
|  | err_hdr = &operr_chunk->err_hdr; | 
|  |  | 
|  | switch (err_hdr->cause) { | 
|  | case SCTP_ERROR_UNKNOWN_CHUNK: | 
|  | { | 
|  | struct sctp_chunkhdr *unk_chunk_hdr; | 
|  |  | 
|  | unk_chunk_hdr = (struct sctp_chunkhdr *)err_hdr->variable; | 
|  | switch (unk_chunk_hdr->type) { | 
|  | /* ADDIP 4.1 A9) If the peer responds to an ASCONF with an | 
|  | * ERROR chunk reporting that it did not recognized the ASCONF | 
|  | * chunk type, the sender of the ASCONF MUST NOT send any | 
|  | * further ASCONF chunks and MUST stop its T-4 timer. | 
|  | */ | 
|  | case SCTP_CID_ASCONF: | 
|  | asoc->peer.asconf_capable = 0; | 
|  | sctp_add_cmd_sf(cmds, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Process variable FWDTSN chunk information. */ | 
|  | static void sctp_cmd_process_fwdtsn(struct sctp_ulpq *ulpq, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_fwdtsn_skip *skip; | 
|  | /* Walk through all the skipped SSNs */ | 
|  | sctp_walk_fwdtsn(skip, chunk) { | 
|  | sctp_ulpq_skip(ulpq, ntohs(skip->stream), ntohs(skip->ssn)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Helper function to remove the association non-primary peer | 
|  | * transports. | 
|  | */ | 
|  | static void sctp_cmd_del_non_primary(struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  | struct list_head *pos; | 
|  | struct list_head *temp; | 
|  |  | 
|  | list_for_each_safe(pos, temp, &asoc->peer.transport_addr_list) { | 
|  | t = list_entry(pos, struct sctp_transport, transports); | 
|  | if (!sctp_cmp_addr_exact(&t->ipaddr, | 
|  | &asoc->peer.primary_addr)) { | 
|  | sctp_assoc_del_peer(asoc, &t->ipaddr); | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Helper function to set sk_err on a 1-1 style socket. */ | 
|  | static void sctp_cmd_set_sk_err(struct sctp_association *asoc, int error) | 
|  | { | 
|  | struct sock *sk = asoc->base.sk; | 
|  |  | 
|  | if (!sctp_style(sk, UDP)) | 
|  | sk->sk_err = error; | 
|  | } | 
|  |  | 
|  | /* Helper function to generate an association change event */ | 
|  | static void sctp_cmd_assoc_change(sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *asoc, | 
|  | u8 state) | 
|  | { | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | ev = sctp_ulpevent_make_assoc_change(asoc, 0, state, 0, | 
|  | asoc->c.sinit_num_ostreams, | 
|  | asoc->c.sinit_max_instreams, | 
|  | NULL, GFP_ATOMIC); | 
|  | if (ev) | 
|  | sctp_ulpq_tail_event(&asoc->ulpq, ev); | 
|  | } | 
|  |  | 
|  | /* Helper function to generate an adaptation indication event */ | 
|  | static void sctp_cmd_adaptation_ind(sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *asoc) | 
|  | { | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); | 
|  |  | 
|  | if (ev) | 
|  | sctp_ulpq_tail_event(&asoc->ulpq, ev); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void sctp_cmd_t1_timer_update(struct sctp_association *asoc, | 
|  | sctp_event_timeout_t timer, | 
|  | char *name) | 
|  | { | 
|  | struct sctp_transport *t; | 
|  |  | 
|  | t = asoc->init_last_sent_to; | 
|  | asoc->init_err_counter++; | 
|  |  | 
|  | if (t->init_sent_count > (asoc->init_cycle + 1)) { | 
|  | asoc->timeouts[timer] *= 2; | 
|  | if (asoc->timeouts[timer] > asoc->max_init_timeo) { | 
|  | asoc->timeouts[timer] = asoc->max_init_timeo; | 
|  | } | 
|  | asoc->init_cycle++; | 
|  | SCTP_DEBUG_PRINTK( | 
|  | "T1 %s Timeout adjustment" | 
|  | " init_err_counter: %d" | 
|  | " cycle: %d" | 
|  | " timeout: %ld\n", | 
|  | name, | 
|  | asoc->init_err_counter, | 
|  | asoc->init_cycle, | 
|  | asoc->timeouts[timer]); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | /* These three macros allow us to pull the debugging code out of the | 
|  | * main flow of sctp_do_sm() to keep attention focused on the real | 
|  | * functionality there. | 
|  | */ | 
|  | #define DEBUG_PRE \ | 
|  | SCTP_DEBUG_PRINTK("sctp_do_sm prefn: " \ | 
|  | "ep %p, %s, %s, asoc %p[%s], %s\n", \ | 
|  | ep, sctp_evttype_tbl[event_type], \ | 
|  | (*debug_fn)(subtype), asoc, \ | 
|  | sctp_state_tbl[state], state_fn->name) | 
|  |  | 
|  | #define DEBUG_POST \ | 
|  | SCTP_DEBUG_PRINTK("sctp_do_sm postfn: " \ | 
|  | "asoc %p, status: %s\n", \ | 
|  | asoc, sctp_status_tbl[status]) | 
|  |  | 
|  | #define DEBUG_POST_SFX \ | 
|  | SCTP_DEBUG_PRINTK("sctp_do_sm post sfx: error %d, asoc %p[%s]\n", \ | 
|  | error, asoc, \ | 
|  | sctp_state_tbl[(asoc && sctp_id2assoc(ep->base.sk, \ | 
|  | sctp_assoc2id(asoc)))?asoc->state:SCTP_STATE_CLOSED]) | 
|  |  | 
|  | /* | 
|  | * This is the master state machine processing function. | 
|  | * | 
|  | * If you want to understand all of lksctp, this is a | 
|  | * good place to start. | 
|  | */ | 
|  | int sctp_do_sm(sctp_event_t event_type, sctp_subtype_t subtype, | 
|  | sctp_state_t state, | 
|  | struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | void *event_arg, | 
|  | gfp_t gfp) | 
|  | { | 
|  | sctp_cmd_seq_t commands; | 
|  | const sctp_sm_table_entry_t *state_fn; | 
|  | sctp_disposition_t status; | 
|  | int error = 0; | 
|  | typedef const char *(printfn_t)(sctp_subtype_t); | 
|  |  | 
|  | static printfn_t *table[] = { | 
|  | NULL, sctp_cname, sctp_tname, sctp_oname, sctp_pname, | 
|  | }; | 
|  | printfn_t *debug_fn  __attribute__ ((unused)) = table[event_type]; | 
|  |  | 
|  | /* Look up the state function, run it, and then process the | 
|  | * side effects.  These three steps are the heart of lksctp. | 
|  | */ | 
|  | state_fn = sctp_sm_lookup_event(event_type, state, subtype); | 
|  |  | 
|  | sctp_init_cmd_seq(&commands); | 
|  |  | 
|  | DEBUG_PRE; | 
|  | status = (*state_fn->fn)(ep, asoc, subtype, event_arg, &commands); | 
|  | DEBUG_POST; | 
|  |  | 
|  | error = sctp_side_effects(event_type, subtype, state, | 
|  | ep, asoc, event_arg, status, | 
|  | &commands, gfp); | 
|  | DEBUG_POST_SFX; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #undef DEBUG_PRE | 
|  | #undef DEBUG_POST | 
|  |  | 
|  | /***************************************************************** | 
|  | * This the master state function side effect processing function. | 
|  | *****************************************************************/ | 
|  | static int sctp_side_effects(sctp_event_t event_type, sctp_subtype_t subtype, | 
|  | sctp_state_t state, | 
|  | struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | void *event_arg, | 
|  | sctp_disposition_t status, | 
|  | sctp_cmd_seq_t *commands, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | /* FIXME - Most of the dispositions left today would be categorized | 
|  | * as "exceptional" dispositions.  For those dispositions, it | 
|  | * may not be proper to run through any of the commands at all. | 
|  | * For example, the command interpreter might be run only with | 
|  | * disposition SCTP_DISPOSITION_CONSUME. | 
|  | */ | 
|  | if (0 != (error = sctp_cmd_interpreter(event_type, subtype, state, | 
|  | ep, asoc, | 
|  | event_arg, status, | 
|  | commands, gfp))) | 
|  | goto bail; | 
|  |  | 
|  | switch (status) { | 
|  | case SCTP_DISPOSITION_DISCARD: | 
|  | SCTP_DEBUG_PRINTK("Ignored sctp protocol event - state %d, " | 
|  | "event_type %d, event_id %d\n", | 
|  | state, event_type, subtype.chunk); | 
|  | break; | 
|  |  | 
|  | case SCTP_DISPOSITION_NOMEM: | 
|  | /* We ran out of memory, so we need to discard this | 
|  | * packet. | 
|  | */ | 
|  | /* BUG--we should now recover some memory, probably by | 
|  | * reneging... | 
|  | */ | 
|  | error = -ENOMEM; | 
|  | break; | 
|  |  | 
|  | case SCTP_DISPOSITION_DELETE_TCB: | 
|  | /* This should now be a command. */ | 
|  | break; | 
|  |  | 
|  | case SCTP_DISPOSITION_CONSUME: | 
|  | case SCTP_DISPOSITION_ABORT: | 
|  | /* | 
|  | * We should no longer have much work to do here as the | 
|  | * real work has been done as explicit commands above. | 
|  | */ | 
|  | break; | 
|  |  | 
|  | case SCTP_DISPOSITION_VIOLATION: | 
|  | if (net_ratelimit()) | 
|  | printk(KERN_ERR "sctp protocol violation state %d " | 
|  | "chunkid %d\n", state, subtype.chunk); | 
|  | break; | 
|  |  | 
|  | case SCTP_DISPOSITION_NOT_IMPL: | 
|  | printk(KERN_WARNING "sctp unimplemented feature in state %d, " | 
|  | "event_type %d, event_id %d\n", | 
|  | state, event_type, subtype.chunk); | 
|  | break; | 
|  |  | 
|  | case SCTP_DISPOSITION_BUG: | 
|  | printk(KERN_ERR "sctp bug in state %d, " | 
|  | "event_type %d, event_id %d\n", | 
|  | state, event_type, subtype.chunk); | 
|  | BUG(); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_ERR "sctp impossible disposition %d " | 
|  | "in state %d, event_type %d, event_id %d\n", | 
|  | status, state, event_type, subtype.chunk); | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bail: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * 2nd Level Abstractions | 
|  | ********************************************************************/ | 
|  |  | 
|  | /* This is the side-effect interpreter.  */ | 
|  | static int sctp_cmd_interpreter(sctp_event_t event_type, | 
|  | sctp_subtype_t subtype, | 
|  | sctp_state_t state, | 
|  | struct sctp_endpoint *ep, | 
|  | struct sctp_association *asoc, | 
|  | void *event_arg, | 
|  | sctp_disposition_t status, | 
|  | sctp_cmd_seq_t *commands, | 
|  | gfp_t gfp) | 
|  | { | 
|  | int error = 0; | 
|  | int force; | 
|  | sctp_cmd_t *cmd; | 
|  | struct sctp_chunk *new_obj; | 
|  | struct sctp_chunk *chunk = NULL; | 
|  | struct sctp_packet *packet; | 
|  | struct timer_list *timer; | 
|  | unsigned long timeout; | 
|  | struct sctp_transport *t; | 
|  | struct sctp_sackhdr sackh; | 
|  | int local_cork = 0; | 
|  |  | 
|  | if (SCTP_EVENT_T_TIMEOUT != event_type) | 
|  | chunk = (struct sctp_chunk *) event_arg; | 
|  |  | 
|  | /* Note:  This whole file is a huge candidate for rework. | 
|  | * For example, each command could either have its own handler, so | 
|  | * the loop would look like: | 
|  | *     while (cmds) | 
|  | *         cmd->handle(x, y, z) | 
|  | * --jgrimm | 
|  | */ | 
|  | while (NULL != (cmd = sctp_next_cmd(commands))) { | 
|  | switch (cmd->verb) { | 
|  | case SCTP_CMD_NOP: | 
|  | /* Do nothing. */ | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_NEW_ASOC: | 
|  | /* Register a new association.  */ | 
|  | if (local_cork) { | 
|  | sctp_outq_uncork(&asoc->outqueue); | 
|  | local_cork = 0; | 
|  | } | 
|  | asoc = cmd->obj.ptr; | 
|  | /* Register with the endpoint.  */ | 
|  | sctp_endpoint_add_asoc(ep, asoc); | 
|  | sctp_hash_established(asoc); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_UPDATE_ASSOC: | 
|  | sctp_assoc_update(asoc, cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PURGE_OUTQUEUE: | 
|  | sctp_outq_teardown(&asoc->outqueue); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_DELETE_TCB: | 
|  | if (local_cork) { | 
|  | sctp_outq_uncork(&asoc->outqueue); | 
|  | local_cork = 0; | 
|  | } | 
|  | /* Delete the current association.  */ | 
|  | sctp_cmd_delete_tcb(commands, asoc); | 
|  | asoc = NULL; | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_NEW_STATE: | 
|  | /* Enter a new state.  */ | 
|  | sctp_cmd_new_state(commands, asoc, cmd->obj.state); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_REPORT_TSN: | 
|  | /* Record the arrival of a TSN.  */ | 
|  | error = sctp_tsnmap_mark(&asoc->peer.tsn_map, | 
|  | cmd->obj.u32); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_REPORT_FWDTSN: | 
|  | /* Move the Cumulattive TSN Ack ahead. */ | 
|  | sctp_tsnmap_skip(&asoc->peer.tsn_map, cmd->obj.u32); | 
|  |  | 
|  | /* purge the fragmentation queue */ | 
|  | sctp_ulpq_reasm_flushtsn(&asoc->ulpq, cmd->obj.u32); | 
|  |  | 
|  | /* Abort any in progress partial delivery. */ | 
|  | sctp_ulpq_abort_pd(&asoc->ulpq, GFP_ATOMIC); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PROCESS_FWDTSN: | 
|  | sctp_cmd_process_fwdtsn(&asoc->ulpq, cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_GEN_SACK: | 
|  | /* Generate a Selective ACK. | 
|  | * The argument tells us whether to just count | 
|  | * the packet and MAYBE generate a SACK, or | 
|  | * force a SACK out. | 
|  | */ | 
|  | force = cmd->obj.i32; | 
|  | error = sctp_gen_sack(asoc, force, commands); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PROCESS_SACK: | 
|  | /* Process an inbound SACK.  */ | 
|  | error = sctp_cmd_process_sack(commands, asoc, | 
|  | cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_GEN_INIT_ACK: | 
|  | /* Generate an INIT ACK chunk.  */ | 
|  | new_obj = sctp_make_init_ack(asoc, chunk, GFP_ATOMIC, | 
|  | 0); | 
|  | if (!new_obj) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(new_obj)); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PEER_INIT: | 
|  | /* Process a unified INIT from the peer. | 
|  | * Note: Only used during INIT-ACK processing.  If | 
|  | * there is an error just return to the outter | 
|  | * layer which will bail. | 
|  | */ | 
|  | error = sctp_cmd_process_init(commands, asoc, chunk, | 
|  | cmd->obj.ptr, gfp); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_GEN_COOKIE_ECHO: | 
|  | /* Generate a COOKIE ECHO chunk.  */ | 
|  | new_obj = sctp_make_cookie_echo(asoc, chunk); | 
|  | if (!new_obj) { | 
|  | if (cmd->obj.ptr) | 
|  | sctp_chunk_free(cmd->obj.ptr); | 
|  | goto nomem; | 
|  | } | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(new_obj)); | 
|  |  | 
|  | /* If there is an ERROR chunk to be sent along with | 
|  | * the COOKIE_ECHO, send it, too. | 
|  | */ | 
|  | if (cmd->obj.ptr) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(cmd->obj.ptr)); | 
|  |  | 
|  | if (new_obj->transport) { | 
|  | new_obj->transport->init_sent_count++; | 
|  | asoc->init_last_sent_to = new_obj->transport; | 
|  | } | 
|  |  | 
|  | /* FIXME - Eventually come up with a cleaner way to | 
|  | * enabling COOKIE-ECHO + DATA bundling during | 
|  | * multihoming stale cookie scenarios, the following | 
|  | * command plays with asoc->peer.retran_path to | 
|  | * avoid the problem of sending the COOKIE-ECHO and | 
|  | * DATA in different paths, which could result | 
|  | * in the association being ABORTed if the DATA chunk | 
|  | * is processed first by the server.  Checking the | 
|  | * init error counter simply causes this command | 
|  | * to be executed only during failed attempts of | 
|  | * association establishment. | 
|  | */ | 
|  | if ((asoc->peer.retran_path != | 
|  | asoc->peer.primary_path) && | 
|  | (asoc->init_err_counter > 0)) { | 
|  | sctp_add_cmd_sf(commands, | 
|  | SCTP_CMD_FORCE_PRIM_RETRAN, | 
|  | SCTP_NULL()); | 
|  | } | 
|  |  | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_GEN_SHUTDOWN: | 
|  | /* Generate SHUTDOWN when in SHUTDOWN_SENT state. | 
|  | * Reset error counts. | 
|  | */ | 
|  | asoc->overall_error_count = 0; | 
|  |  | 
|  | /* Generate a SHUTDOWN chunk.  */ | 
|  | new_obj = sctp_make_shutdown(asoc, chunk); | 
|  | if (!new_obj) | 
|  | goto nomem; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(new_obj)); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_CHUNK_ULP: | 
|  | /* Send a chunk to the sockets layer.  */ | 
|  | SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", | 
|  | "chunk_up:", cmd->obj.ptr, | 
|  | "ulpq:", &asoc->ulpq); | 
|  | sctp_ulpq_tail_data(&asoc->ulpq, cmd->obj.ptr, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_EVENT_ULP: | 
|  | /* Send a notification to the sockets layer.  */ | 
|  | SCTP_DEBUG_PRINTK("sm_sideff: %s %p, %s %p.\n", | 
|  | "event_up:",cmd->obj.ptr, | 
|  | "ulpq:",&asoc->ulpq); | 
|  | sctp_ulpq_tail_event(&asoc->ulpq, cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_REPLY: | 
|  | /* If an caller has not already corked, do cork. */ | 
|  | if (!asoc->outqueue.cork) { | 
|  | sctp_outq_cork(&asoc->outqueue); | 
|  | local_cork = 1; | 
|  | } | 
|  | /* Send a chunk to our peer.  */ | 
|  | error = sctp_outq_tail(&asoc->outqueue, cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_SEND_PKT: | 
|  | /* Send a full packet to our peer.  */ | 
|  | packet = cmd->obj.ptr; | 
|  | sctp_packet_transmit(packet); | 
|  | sctp_ootb_pkt_free(packet); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_T1_RETRAN: | 
|  | /* Mark a transport for retransmission.  */ | 
|  | sctp_retransmit(&asoc->outqueue, cmd->obj.transport, | 
|  | SCTP_RTXR_T1_RTX); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_RETRAN: | 
|  | /* Mark a transport for retransmission.  */ | 
|  | sctp_retransmit(&asoc->outqueue, cmd->obj.transport, | 
|  | SCTP_RTXR_T3_RTX); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_TRANSMIT: | 
|  | /* Kick start transmission. */ | 
|  | error = sctp_outq_uncork(&asoc->outqueue); | 
|  | local_cork = 0; | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_ECN_CE: | 
|  | /* Do delayed CE processing.   */ | 
|  | sctp_do_ecn_ce_work(asoc, cmd->obj.u32); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_ECN_ECNE: | 
|  | /* Do delayed ECNE processing. */ | 
|  | new_obj = sctp_do_ecn_ecne_work(asoc, cmd->obj.u32, | 
|  | chunk); | 
|  | if (new_obj) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(new_obj)); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_ECN_CWR: | 
|  | /* Do delayed CWR processing.  */ | 
|  | sctp_do_ecn_cwr_work(asoc, cmd->obj.u32); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_SETUP_T2: | 
|  | sctp_cmd_setup_t2(commands, asoc, cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_TIMER_START: | 
|  | timer = &asoc->timers[cmd->obj.to]; | 
|  | timeout = asoc->timeouts[cmd->obj.to]; | 
|  | BUG_ON(!timeout); | 
|  |  | 
|  | timer->expires = jiffies + timeout; | 
|  | sctp_association_hold(asoc); | 
|  | add_timer(timer); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_TIMER_RESTART: | 
|  | timer = &asoc->timers[cmd->obj.to]; | 
|  | timeout = asoc->timeouts[cmd->obj.to]; | 
|  | if (!mod_timer(timer, jiffies + timeout)) | 
|  | sctp_association_hold(asoc); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_TIMER_STOP: | 
|  | timer = &asoc->timers[cmd->obj.to]; | 
|  | if (timer_pending(timer) && del_timer(timer)) | 
|  | sctp_association_put(asoc); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_INIT_CHOOSE_TRANSPORT: | 
|  | chunk = cmd->obj.ptr; | 
|  | t = sctp_assoc_choose_init_transport(asoc); | 
|  | asoc->init_last_sent_to = t; | 
|  | chunk->transport = t; | 
|  | t->init_sent_count++; | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_INIT_RESTART: | 
|  | /* Do the needed accounting and updates | 
|  | * associated with restarting an initialization | 
|  | * timer. Only multiply the timeout by two if | 
|  | * all transports have been tried at the current | 
|  | * timeout. | 
|  | */ | 
|  | sctp_cmd_t1_timer_update(asoc, | 
|  | SCTP_EVENT_TIMEOUT_T1_INIT, | 
|  | "INIT"); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_COOKIEECHO_RESTART: | 
|  | /* Do the needed accounting and updates | 
|  | * associated with restarting an initialization | 
|  | * timer. Only multiply the timeout by two if | 
|  | * all transports have been tried at the current | 
|  | * timeout. | 
|  | */ | 
|  | sctp_cmd_t1_timer_update(asoc, | 
|  | SCTP_EVENT_TIMEOUT_T1_COOKIE, | 
|  | "COOKIE"); | 
|  |  | 
|  | /* If we've sent any data bundled with | 
|  | * COOKIE-ECHO we need to resend. | 
|  | */ | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | sctp_retransmit_mark(&asoc->outqueue, t, | 
|  | SCTP_RTXR_T1_RTX); | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, | 
|  | SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_INIT_FAILED: | 
|  | sctp_cmd_init_failed(commands, asoc, cmd->obj.err); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_ASSOC_FAILED: | 
|  | sctp_cmd_assoc_failed(commands, asoc, event_type, | 
|  | subtype, chunk, cmd->obj.err); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_INIT_COUNTER_INC: | 
|  | asoc->init_err_counter++; | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_INIT_COUNTER_RESET: | 
|  | asoc->init_err_counter = 0; | 
|  | asoc->init_cycle = 0; | 
|  | list_for_each_entry(t, &asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | t->init_sent_count = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_REPORT_DUP: | 
|  | sctp_tsnmap_mark_dup(&asoc->peer.tsn_map, | 
|  | cmd->obj.u32); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_REPORT_BAD_TAG: | 
|  | SCTP_DEBUG_PRINTK("vtag mismatch!\n"); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_STRIKE: | 
|  | /* Mark one strike against a transport.  */ | 
|  | sctp_do_8_2_transport_strike(asoc, cmd->obj.transport); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_TRANSPORT_RESET: | 
|  | t = cmd->obj.transport; | 
|  | sctp_cmd_transport_reset(commands, asoc, t); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_TRANSPORT_ON: | 
|  | t = cmd->obj.transport; | 
|  | sctp_cmd_transport_on(commands, asoc, t, chunk); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_HB_TIMERS_START: | 
|  | sctp_cmd_hb_timers_start(commands, asoc); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_HB_TIMER_UPDATE: | 
|  | t = cmd->obj.transport; | 
|  | sctp_cmd_hb_timer_update(commands, t); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_HB_TIMERS_STOP: | 
|  | sctp_cmd_hb_timers_stop(commands, asoc); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_REPORT_ERROR: | 
|  | error = cmd->obj.error; | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PROCESS_CTSN: | 
|  | /* Dummy up a SACK for processing. */ | 
|  | sackh.cum_tsn_ack = cmd->obj.be32; | 
|  | sackh.a_rwnd = 0; | 
|  | sackh.num_gap_ack_blocks = 0; | 
|  | sackh.num_dup_tsns = 0; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, | 
|  | SCTP_SACKH(&sackh)); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_DISCARD_PACKET: | 
|  | /* We need to discard the whole packet. | 
|  | * Uncork the queue since there might be | 
|  | * responses pending | 
|  | */ | 
|  | chunk->pdiscard = 1; | 
|  | if (asoc) { | 
|  | sctp_outq_uncork(&asoc->outqueue); | 
|  | local_cork = 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_RTO_PENDING: | 
|  | t = cmd->obj.transport; | 
|  | t->rto_pending = 1; | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PART_DELIVER: | 
|  | sctp_ulpq_partial_delivery(&asoc->ulpq, cmd->obj.ptr, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_RENEGE: | 
|  | sctp_ulpq_renege(&asoc->ulpq, cmd->obj.ptr, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_SETUP_T4: | 
|  | sctp_cmd_setup_t4(commands, asoc, cmd->obj.ptr); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_PROCESS_OPERR: | 
|  | sctp_cmd_process_operr(commands, asoc, chunk); | 
|  | break; | 
|  | case SCTP_CMD_CLEAR_INIT_TAG: | 
|  | asoc->peer.i.init_tag = 0; | 
|  | break; | 
|  | case SCTP_CMD_DEL_NON_PRIMARY: | 
|  | sctp_cmd_del_non_primary(asoc); | 
|  | break; | 
|  | case SCTP_CMD_T3_RTX_TIMERS_STOP: | 
|  | sctp_cmd_t3_rtx_timers_stop(commands, asoc); | 
|  | break; | 
|  | case SCTP_CMD_FORCE_PRIM_RETRAN: | 
|  | t = asoc->peer.retran_path; | 
|  | asoc->peer.retran_path = asoc->peer.primary_path; | 
|  | error = sctp_outq_uncork(&asoc->outqueue); | 
|  | local_cork = 0; | 
|  | asoc->peer.retran_path = t; | 
|  | break; | 
|  | case SCTP_CMD_SET_SK_ERR: | 
|  | sctp_cmd_set_sk_err(asoc, cmd->obj.error); | 
|  | break; | 
|  | case SCTP_CMD_ASSOC_CHANGE: | 
|  | sctp_cmd_assoc_change(commands, asoc, | 
|  | cmd->obj.u8); | 
|  | break; | 
|  | case SCTP_CMD_ADAPTATION_IND: | 
|  | sctp_cmd_adaptation_ind(commands, asoc); | 
|  | break; | 
|  |  | 
|  | case SCTP_CMD_ASSOC_SHKEY: | 
|  | error = sctp_auth_asoc_init_active_key(asoc, | 
|  | GFP_ATOMIC); | 
|  | break; | 
|  | case SCTP_CMD_UPDATE_INITTAG: | 
|  | asoc->peer.i.init_tag = cmd->obj.u32; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk(KERN_WARNING "Impossible command: %u, %p\n", | 
|  | cmd->verb, cmd->obj.ptr); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (error) | 
|  | break; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* If this is in response to a received chunk, wait until | 
|  | * we are done with the packet to open the queue so that we don't | 
|  | * send multiple packets in response to a single request. | 
|  | */ | 
|  | if (asoc && SCTP_EVENT_T_CHUNK == event_type && chunk) { | 
|  | if (chunk->end_of_packet || chunk->singleton) | 
|  | sctp_outq_uncork(&asoc->outqueue); | 
|  | } else if (local_cork) | 
|  | sctp_outq_uncork(&asoc->outqueue); | 
|  | return error; | 
|  | nomem: | 
|  | error = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  |