V4L/DVB (13583): DiB8090: Add the DiB0090 tuner driver and STK8096GP-board

This patchs adds support for the DiBcom DiB0090 RF tuner and for
DiBcom's reference design STK8096GP. Small extracts of the DiB0070 and
the DiB8000-driver into a common codebase.

Signed-off-by: Patrick Boettcher <pboettcher@kernellabs.com>
Signed-off-by: Olivier Grenie <Olivier.Grenie@dibcom.fr>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
diff --git a/drivers/media/dvb/frontends/dib0090.c b/drivers/media/dvb/frontends/dib0090.c
new file mode 100644
index 0000000..e37d32d
--- /dev/null
+++ b/drivers/media/dvb/frontends/dib0090.c
@@ -0,0 +1,1525 @@
+/*
+ * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
+ *
+ * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of the
+ * License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ *
+ *
+ * This code is more or less generated from another driver, please
+ * excuse some codingstyle oddities.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/i2c.h>
+
+#include "dvb_frontend.h"
+
+#include "dib0090.h"
+#include "dibx000_common.h"
+
+static int debug;
+module_param(debug, int, 0644);
+MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
+
+#define dprintk(args...) do { \
+	if (debug) { \
+		printk(KERN_DEBUG "DiB0090: "); \
+		printk(args); \
+		printk("\n"); \
+	} \
+} while (0)
+
+#define CONFIG_SYS_ISDBT
+#define CONFIG_BAND_CBAND
+#define CONFIG_BAND_VHF
+#define CONFIG_BAND_UHF
+#define CONFIG_DIB0090_USE_PWM_AGC
+
+#define EN_LNA0      0x8000
+#define EN_LNA1      0x4000
+#define EN_LNA2      0x2000
+#define EN_LNA3      0x1000
+#define EN_MIX0      0x0800
+#define EN_MIX1      0x0400
+#define EN_MIX2      0x0200
+#define EN_MIX3      0x0100
+#define EN_IQADC     0x0040
+#define EN_PLL       0x0020
+#define EN_TX        0x0010
+#define EN_BB        0x0008
+#define EN_LO        0x0004
+#define EN_BIAS      0x0001
+
+#define EN_IQANA     0x0002
+#define EN_DIGCLK    0x0080	/* not in the 0x24 reg, only in 0x1b */
+#define EN_CRYSTAL   0x0002
+
+#define EN_UHF		 0x22E9
+#define EN_VHF		 0x44E9
+#define EN_LBD		 0x11E9
+#define EN_SBD		 0x44E9
+#define EN_CAB		 0x88E9
+
+#define pgm_read_word(w) (*w)
+
+struct dc_calibration;
+
+struct dib0090_tuning {
+	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
+	u8 switch_trim;
+	u8 lna_tune;
+	u8 lna_bias;
+	u16 v2i;
+	u16 mix;
+	u16 load;
+	u16 tuner_enable;
+};
+
+struct dib0090_pll {
+	u32 max_freq;		/* for every frequency less than or equal to that field: this information is correct */
+	u8 vco_band;
+	u8 hfdiv_code;
+	u8 hfdiv;
+	u8 topresc;
+};
+
+struct dib0090_state {
+	struct i2c_adapter *i2c;
+	struct dvb_frontend *fe;
+	const struct dib0090_config *config;
+
+	u8 current_band;
+	u16 revision;
+	enum frontend_tune_state tune_state;
+	u32 current_rf;
+
+	u16 wbd_offset;
+	s16 wbd_target;		/* in dB */
+
+	s16 rf_gain_limit;	/* take-over-point: where to split between bb and rf gain */
+	s16 current_gain;	/* keeps the currently programmed gain */
+	u8 agc_step;		/* new binary search */
+
+	u16 gain[2];		/* for channel monitoring */
+
+	const u16 *rf_ramp;
+	const u16 *bb_ramp;
+
+	/* for the software AGC ramps */
+	u16 bb_1_def;
+	u16 rf_lt_def;
+	u16 gain_reg[4];
+
+	/* for the captrim/dc-offset search */
+	s8 step;
+	s16 adc_diff;
+	s16 min_adc_diff;
+
+	s8 captrim;
+	s8 fcaptrim;
+
+	const struct dc_calibration *dc;
+	u16 bb6, bb7;
+
+	const struct dib0090_tuning *current_tune_table_index;
+	const struct dib0090_pll *current_pll_table_index;
+
+	u8 tuner_is_tuned;
+	u8 agc_freeze;
+
+	u8 reset;
+};
+
+static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg)
+{
+	u8 b[2];
+	struct i2c_msg msg[2] = {
+		{.addr = state->config->i2c_address,.flags = 0,.buf = &reg,.len = 1},
+		{.addr = state->config->i2c_address,.flags = I2C_M_RD,.buf = b,.len = 2},
+	};
+	if (i2c_transfer(state->i2c, msg, 2) != 2) {
+		printk(KERN_WARNING "DiB0090 I2C read failed\n");
+		return 0;
+	}
+	return (b[0] << 8) | b[1];
+}
+
+static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val)
+{
+	u8 b[3] = { reg & 0xff, val >> 8, val & 0xff };
+	struct i2c_msg msg = {.addr = state->config->i2c_address,.flags = 0,.buf = b,.len = 3 };
+	if (i2c_transfer(state->i2c, &msg, 1) != 1) {
+		printk(KERN_WARNING "DiB0090 I2C write failed\n");
+		return -EREMOTEIO;
+	}
+	return 0;
+}
+
+#define HARD_RESET(state) do {  if (cfg->reset) {  if (cfg->sleep) cfg->sleep(fe, 0); msleep(10);  cfg->reset(fe, 1); msleep(10);  cfg->reset(fe, 0); msleep(10);  }  } while (0)
+#define ADC_TARGET -220
+#define GAIN_ALPHA 5
+#define WBD_ALPHA 6
+#define LPF	100
+static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c)
+{
+	do {
+		dib0090_write_reg(state, r++, *b++);
+	} while (--c);
+}
+
+static u16 dib0090_identify(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	u16 v;
+
+	v = dib0090_read_reg(state, 0x1a);
+
+#ifdef FIRMWARE_FIREFLY
+	/* pll is not locked locked */
+	if (!(v & 0x800))
+		dprintk("FE%d : Identification : pll is not yet locked", fe->id);
+#endif
+
+	/* without PLL lock info */
+	v &= 0x3ff;
+	dprintk("P/V: %04x:", v);
+
+	if ((v >> 8) & 0xf)
+		dprintk("FE%d : Product ID = 0x%x : KROSUS", fe->id, (v >> 8) & 0xf);
+	else
+		return 0xff;
+
+	v &= 0xff;
+	if (((v >> 5) & 0x7) == 0x1)
+		dprintk("FE%d : MP001 : 9090/8096", fe->id);
+	else if (((v >> 5) & 0x7) == 0x4)
+		dprintk("FE%d : MP005 : Single Sband", fe->id);
+	else if (((v >> 5) & 0x7) == 0x6)
+		dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe->id);
+	else if (((v >> 5) & 0x7) == 0x7)
+		dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe->id);
+	else
+		return 0xff;
+
+	/* revision only */
+	if ((v & 0x1f) == 0x3)
+		dprintk("FE%d : P1-D/E/F detected", fe->id);
+	else if ((v & 0x1f) == 0x1)
+		dprintk("FE%d : P1C detected", fe->id);
+	else if ((v & 0x1f) == 0x0) {
+#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
+		dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe->id);
+		dib0090_p1b_register(fe);
+#else
+		dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe->id);
+		return 0xff;
+#endif
+	}
+
+	return v;
+}
+
+static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+
+	HARD_RESET(state);
+
+	dib0090_write_reg(state, 0x24, EN_PLL);
+	dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL);	/* PLL, DIG_CLK and CRYSTAL remain */
+
+	/* adcClkOutRatio=8->7, release reset */
+	dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
+	if (cfg->clkoutdrive != 0)
+		dib0090_write_reg(state, 0x23,
+				  (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg->
+																	   clkouttobamse
+																	   << 4) | (0
+																		    <<
+																		    2)
+				  | (0));
+	else
+		dib0090_write_reg(state, 0x23,
+				  (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg->
+															    clkouttobamse << 4) | (0
+																		   <<
+																		   2)
+				  | (0));
+
+	/* enable pll, de-activate reset, ratio: 2/1 = 60MHz */
+	dib0090_write_reg(state, 0x21,
+			  (cfg->io.pll_bypass << 15) | (1 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv));
+
+}
+
+static int dib0090_wakeup(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	if (state->config->sleep)
+		state->config->sleep(fe, 0);
+	return 0;
+}
+
+static int dib0090_sleep(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	if (state->config->sleep)
+		state->config->sleep(fe, 1);
+	return 0;
+}
+
+extern void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	if (fast)
+		dib0090_write_reg(state, 0x04, 0);	//1kHz
+	else
+		dib0090_write_reg(state, 0x04, 1);	//almost frozen
+}
+
+EXPORT_SYMBOL(dib0090_dcc_freq);
+static const u16 rf_ramp_pwm_cband[] = {
+	0,			/* max RF gain in 10th of dB */
+	0,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
+	0,			/* ramp_max = maximum X used on the ramp */
+	(0 << 10) | 0,		/* 0x2c, LNA 1 = 0dB */
+	(0 << 10) | 0,		/* 0x2d, LNA 1 */
+	(0 << 10) | 0,		/* 0x2e, LNA 2 = 0dB */
+	(0 << 10) | 0,		/* 0x2f, LNA 2 */
+	(0 << 10) | 0,		/* 0x30, LNA 3 = 0dB */
+	(0 << 10) | 0,		/* 0x31, LNA 3 */
+	(0 << 10) | 0,		/* GAIN_4_1, LNA 4 = 0dB */
+	(0 << 10) | 0,		/* GAIN_4_2, LNA 4 */
+};
+
+static const u16 rf_ramp_vhf[] = {
+	412,			/* max RF gain in 10th of dB */
+	132, 307, 127,		/* LNA1,  13.2dB */
+	105, 412, 255,		/* LNA2,  10.5dB */
+	50, 50, 127,		/* LNA3,  5dB */
+	125, 175, 127,		/* LNA4,  12.5dB */
+	0, 0, 127,		/* CBAND, 0dB */
+};
+
+static const u16 rf_ramp_uhf[] = {
+	412,			/* max RF gain in 10th of dB */
+	132, 307, 127,		/* LNA1  : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
+	105, 412, 255,		/* LNA2  : 10.5 dB */
+	50, 50, 127,		/* LNA3  :  5.0 dB */
+	125, 175, 127,		/* LNA4  : 12.5 dB */
+	0, 0, 127,		/* CBAND :  0.0 dB */
+};
+
+static const u16 rf_ramp_cband[] = {
+	332,			/* max RF gain in 10th of dB */
+	132, 252, 127,		/* LNA1,  dB */
+	80, 332, 255,		/* LNA2,  dB */
+	0, 0, 127,		/* LNA3,  dB */
+	0, 0, 127,		/* LNA4,  dB */
+	120, 120, 127,		/* LT1 CBAND */
+};
+
+static const u16 rf_ramp_pwm_vhf[] = {
+	404,			/* max RF gain in 10th of dB */
+	25,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
+	1011,			/* ramp_max = maximum X used on the ramp */
+	(6 << 10) | 417,	/* 0x2c, LNA 1 = 13.2dB */
+	(0 << 10) | 756,	/* 0x2d, LNA 1 */
+	(16 << 10) | 756,	/* 0x2e, LNA 2 = 10.5dB */
+	(0 << 10) | 1011,	/* 0x2f, LNA 2 */
+	(16 << 10) | 290,	/* 0x30, LNA 3 = 5dB */
+	(0 << 10) | 417,	/* 0x31, LNA 3 */
+	(7 << 10) | 0,		/* GAIN_4_1, LNA 4 = 12.5dB */
+	(0 << 10) | 290,	/* GAIN_4_2, LNA 4 */
+};
+
+static const u16 rf_ramp_pwm_uhf[] = {
+	404,			/* max RF gain in 10th of dB */
+	25,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
+	1011,			/* ramp_max = maximum X used on the ramp */
+	(6 << 10) | 417,	/* 0x2c, LNA 1 = 13.2dB */
+	(0 << 10) | 756,	/* 0x2d, LNA 1 */
+	(16 << 10) | 756,	/* 0x2e, LNA 2 = 10.5dB */
+	(0 << 10) | 1011,	/* 0x2f, LNA 2 */
+	(16 << 10) | 0,		/* 0x30, LNA 3 = 5dB */
+	(0 << 10) | 127,	/* 0x31, LNA 3 */
+	(7 << 10) | 127,	/* GAIN_4_1, LNA 4 = 12.5dB */
+	(0 << 10) | 417,	/* GAIN_4_2, LNA 4 */
+};
+
+static const u16 bb_ramp_boost[] = {
+	550,			/* max BB gain in 10th of dB */
+	260, 260, 26,		/* BB1, 26dB */
+	290, 550, 29,		/* BB2, 29dB */
+};
+
+static const u16 bb_ramp_pwm_normal[] = {
+	500,			/* max RF gain in 10th of dB */
+	8,			/* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
+	400,
+	(2 << 9) | 0,		/* 0x35 = 21dB */
+	(0 << 9) | 168,		/* 0x36 */
+	(2 << 9) | 168,		/* 0x37 = 29dB */
+	(0 << 9) | 400,		/* 0x38 */
+};
+
+struct slope {
+	int16_t range;
+	int16_t slope;
+};
+static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val)
+{
+	u8 i;
+	u16 rest;
+	u16 ret = 0;
+	for (i = 0; i < num; i++) {
+		if (val > slopes[i].range)
+			rest = slopes[i].range;
+		else
+			rest = val;
+		ret += (rest * slopes[i].slope) / slopes[i].range;
+		val -= rest;
+	}
+	return ret;
+}
+
+static const struct slope dib0090_wbd_slopes[3] = {
+	{66, 120},		/* -64,-52: offset -   65 */
+	{600, 170},		/* -52,-35: 65     -  665 */
+	{170, 250},		/* -45,-10: 665    - 835 */
+};
+
+static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd)
+{
+	wbd &= 0x3ff;
+	if (wbd < state->wbd_offset)
+		wbd = 0;
+	else
+		wbd -= state->wbd_offset;
+	/* -64dB is the floor */
+	return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd);
+}
+
+static void dib0090_wbd_target(struct dib0090_state *state, u32 rf)
+{
+	u16 offset = 250;
+
+	/* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
+
+	if (state->current_band == BAND_VHF)
+		offset = 650;
+#ifndef FIRMWARE_FIREFLY
+	if (state->current_band == BAND_VHF)
+		offset = state->config->wbd_vhf_offset;
+	if (state->current_band == BAND_CBAND)
+		offset = state->config->wbd_cband_offset;
+#endif
+
+	state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset);
+	dprintk("wbd-target: %d dB", (u32) state->wbd_target);
+}
+
+static const int gain_reg_addr[4] = {
+	0x08, 0x0a, 0x0f, 0x01
+};
+
+static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force)
+{
+	u16 rf, bb, ref;
+	u16 i, v, gain_reg[4] = { 0 }, gain;
+	const u16 *g;
+
+	if (top_delta < -511)
+		top_delta = -511;
+	if (top_delta > 511)
+		top_delta = 511;
+
+	if (force) {
+		top_delta *= (1 << WBD_ALPHA);
+		gain_delta *= (1 << GAIN_ALPHA);
+	}
+
+	if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit))	/* overflow */
+		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
+	else
+		state->rf_gain_limit += top_delta;
+
+	if (state->rf_gain_limit < 0)	/*underflow */
+		state->rf_gain_limit = 0;
+
+	/* use gain as a temporary variable and correct current_gain */
+	gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA;
+	if (gain_delta >= ((s16) gain - state->current_gain))	/* overflow */
+		state->current_gain = gain;
+	else
+		state->current_gain += gain_delta;
+	/* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
+	if (state->current_gain < 0)
+		state->current_gain = 0;
+
+	/* now split total gain to rf and bb gain */
+	gain = state->current_gain >> GAIN_ALPHA;
+
+	/* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
+	if (gain > (state->rf_gain_limit >> WBD_ALPHA)) {
+		rf = state->rf_gain_limit >> WBD_ALPHA;
+		bb = gain - rf;
+		if (bb > state->bb_ramp[0])
+			bb = state->bb_ramp[0];
+	} else {		/* high signal level -> all gains put on RF */
+		rf = gain;
+		bb = 0;
+	}
+
+	state->gain[0] = rf;
+	state->gain[1] = bb;
+
+	/* software ramp */
+	/* Start with RF gains */
+	g = state->rf_ramp + 1;	/* point on RF LNA1 max gain */
+	ref = rf;
+	for (i = 0; i < 7; i++) {	/* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
+		if (g[0] == 0 || ref < (g[1] - g[0]))	/* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
+			v = 0;	/* force the gain to write for the current amp to be null */
+		else if (ref >= g[1])	/* Gain to set is higher than the high working point of this amp */
+			v = g[2];	/* force this amp to be full gain */
+		else		/* compute the value to set to this amp because we are somewhere in his range */
+			v = ((ref - (g[1] - g[0])) * g[2]) / g[0];
+
+		if (i == 0)	/* LNA 1 reg mapping */
+			gain_reg[0] = v;
+		else if (i == 1)	/* LNA 2 reg mapping */
+			gain_reg[0] |= v << 7;
+		else if (i == 2)	/* LNA 3 reg mapping */
+			gain_reg[1] = v;
+		else if (i == 3)	/* LNA 4 reg mapping */
+			gain_reg[1] |= v << 7;
+		else if (i == 4)	/* CBAND LNA reg mapping */
+			gain_reg[2] = v | state->rf_lt_def;
+		else if (i == 5)	/* BB gain 1 reg mapping */
+			gain_reg[3] = v << 3;
+		else if (i == 6)	/* BB gain 2 reg mapping */
+			gain_reg[3] |= v << 8;
+
+		g += 3;		/* go to next gain bloc */
+
+		/* When RF is finished, start with BB */
+		if (i == 4) {
+			g = state->bb_ramp + 1;	/* point on BB gain 1 max gain */
+			ref = bb;
+		}
+	}
+	gain_reg[3] |= state->bb_1_def;
+	gain_reg[3] |= ((bb % 10) * 100) / 125;
+
+#ifdef DEBUG_AGC
+	dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb,
+		gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]);
+#endif
+
+	/* Write the amplifier regs */
+	for (i = 0; i < 4; i++) {
+		v = gain_reg[i];
+		if (force || state->gain_reg[i] != v) {
+			state->gain_reg[i] = v;
+			dib0090_write_reg(state, gain_reg_addr[i], v);
+		}
+	}
+}
+
+static void dib0090_set_boost(struct dib0090_state *state, int onoff)
+{
+	state->bb_1_def &= 0xdfff;
+	state->bb_1_def |= onoff << 13;
+}
+
+static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg)
+{
+	state->rf_ramp = cfg;
+}
+
+static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg)
+{
+	state->rf_ramp = cfg;
+
+	dib0090_write_reg(state, 0x2a, 0xffff);
+
+	dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a));
+
+	dib0090_write_regs(state, 0x2c, cfg + 3, 6);
+	dib0090_write_regs(state, 0x3e, cfg + 9, 2);
+}
+
+static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg)
+{
+	state->bb_ramp = cfg;
+	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */
+}
+
+static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg)
+{
+	state->bb_ramp = cfg;
+
+	dib0090_set_boost(state, cfg[0] > 500);	/* we want the boost if the gain is higher that 50dB */
+
+	dib0090_write_reg(state, 0x33, 0xffff);
+	dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33));
+	dib0090_write_regs(state, 0x35, cfg + 3, 4);
+}
+
+void dib0090_pwm_gain_reset(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	/* reset the AGC */
+
+	if (state->config->use_pwm_agc) {
+#ifdef CONFIG_BAND_SBAND
+		if (state->current_band == BAND_SBAND) {
+			dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband);
+			dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost);
+		} else
+#endif
+#ifdef CONFIG_BAND_CBAND
+		if (state->current_band == BAND_CBAND) {
+			dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband);
+			dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
+		} else
+#endif
+#ifdef CONFIG_BAND_VHF
+		if (state->current_band == BAND_VHF) {
+			dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf);
+			dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
+		} else
+#endif
+		{
+			dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf);
+			dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal);
+		}
+
+		if (state->rf_ramp[0] != 0)
+			dib0090_write_reg(state, 0x32, (3 << 11));
+		else
+			dib0090_write_reg(state, 0x32, (0 << 11));
+
+		dib0090_write_reg(state, 0x39, (1 << 10));	// 0 gain by default
+	}
+}
+
+EXPORT_SYMBOL(dib0090_pwm_gain_reset);
+int dib0090_gain_control(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	enum frontend_tune_state *tune_state = &state->tune_state;
+	int ret = 10;
+
+	u16 wbd_val = 0;
+	u8 apply_gain_immediatly = 1;
+	s16 wbd_error = 0, adc_error = 0;
+
+	if (*tune_state == CT_AGC_START) {
+		state->agc_freeze = 0;
+		dib0090_write_reg(state, 0x04, 0x0);
+
+#ifdef CONFIG_BAND_SBAND
+		if (state->current_band == BAND_SBAND) {
+			dib0090_set_rframp(state, rf_ramp_sband);
+			dib0090_set_bbramp(state, bb_ramp_boost);
+		} else
+#endif
+#ifdef CONFIG_BAND_VHF
+		if (state->current_band == BAND_VHF) {
+			dib0090_set_rframp(state, rf_ramp_vhf);
+			dib0090_set_bbramp(state, bb_ramp_boost);
+		} else
+#endif
+#ifdef CONFIG_BAND_CBAND
+		if (state->current_band == BAND_CBAND) {
+			dib0090_set_rframp(state, rf_ramp_cband);
+			dib0090_set_bbramp(state, bb_ramp_boost);
+		} else
+#endif
+		{
+			dib0090_set_rframp(state, rf_ramp_uhf);
+			dib0090_set_bbramp(state, bb_ramp_boost);
+		}
+
+		dib0090_write_reg(state, 0x32, 0);
+		dib0090_write_reg(state, 0x39, 0);
+
+		dib0090_wbd_target(state, state->current_rf);
+
+		state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA;
+		state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA;
+
+		*tune_state = CT_AGC_STEP_0;
+	} else if (!state->agc_freeze) {
+		s16 wbd;
+
+		int adc;
+		wbd_val = dib0090_read_reg(state, 0x1d);
+
+		/* read and calc the wbd power */
+		wbd = dib0090_wbd_to_db(state, wbd_val);
+		wbd_error = state->wbd_target - wbd;
+
+		if (*tune_state == CT_AGC_STEP_0) {
+			if (wbd_error < 0 && state->rf_gain_limit > 0) {
+#ifdef CONFIG_BAND_CBAND
+				/* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
+				u8 ltg2 = (state->rf_lt_def >> 10) & 0x7;
+				if (state->current_band == BAND_CBAND && ltg2) {
+					ltg2 >>= 1;
+					state->rf_lt_def &= ltg2 << 10;	/* reduce in 3 steps from 7 to 0 */
+				}
+#endif
+			} else {
+				state->agc_step = 0;
+				*tune_state = CT_AGC_STEP_1;
+			}
+		} else {
+			/* calc the adc power */
+			adc = state->config->get_adc_power(fe);
+			adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21;	/* included in [0:-700] */
+
+			adc_error = (s16) (((s32) ADC_TARGET) - adc);
+#ifdef CONFIG_STANDARD_DAB
+			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB)
+				adc_error += 130;
+#endif
+#ifdef CONFIG_STANDARD_DVBT
+			if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT &&
+			    (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16))
+				adc_error += 60;
+#endif
+#ifdef CONFIG_SYS_ISDBT
+			if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count >
+											       0)
+											      &&
+											      ((state->fe->dtv_property_cache.layer[0].modulation ==
+												QAM_64)
+											       || (state->fe->dtv_property_cache.layer[0].
+												   modulation == QAM_16)))
+											     ||
+											     ((state->fe->dtv_property_cache.layer[1].segment_count >
+											       0)
+											      &&
+											      ((state->fe->dtv_property_cache.layer[1].modulation ==
+												QAM_64)
+											       || (state->fe->dtv_property_cache.layer[1].
+												   modulation == QAM_16)))
+											     ||
+											     ((state->fe->dtv_property_cache.layer[2].segment_count >
+											       0)
+											      &&
+											      ((state->fe->dtv_property_cache.layer[2].modulation ==
+												QAM_64)
+											       || (state->fe->dtv_property_cache.layer[2].
+												   modulation == QAM_16)))
+			    )
+			    )
+				adc_error += 60;
+#endif
+
+			if (*tune_state == CT_AGC_STEP_1) {	/* quickly go to the correct range of the ADC power */
+				if (ABS(adc_error) < 50 || state->agc_step++ > 5) {
+
+#ifdef CONFIG_STANDARD_DAB
+					if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) {
+						dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63));	/* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
+						dib0090_write_reg(state, 0x04, 0x0);
+					} else
+#endif
+					{
+						dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
+						dib0090_write_reg(state, 0x04, 0x01);	/*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
+					}
+
+					*tune_state = CT_AGC_STOP;
+				}
+			} else {
+				/* everything higher than or equal to CT_AGC_STOP means tracking */
+				ret = 100;	/* 10ms interval */
+				apply_gain_immediatly = 0;
+			}
+		}
+#ifdef DEBUG_AGC
+		dprintk
+		    ("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
+		     (u32) fe->id, (u32) * tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val,
+		     (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA));
+#endif
+	}
+
+	/* apply gain */
+	if (!state->agc_freeze)
+		dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly);
+	return ret;
+}
+
+EXPORT_SYMBOL(dib0090_gain_control);
+void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	if (rf)
+		*rf = state->gain[0];
+	if (bb)
+		*bb = state->gain[1];
+	if (rf_gain_limit)
+		*rf_gain_limit = state->rf_gain_limit;
+	if (rflt)
+		*rflt = (state->rf_lt_def >> 10) & 0x7;
+}
+
+EXPORT_SYMBOL(dib0090_get_current_gain);
+u16 dib0090_get_wbd_offset(struct dvb_frontend *tuner)
+{
+	struct dib0090_state *st = tuner->tuner_priv;
+	return st->wbd_offset;
+}
+
+EXPORT_SYMBOL(dib0090_get_wbd_offset);
+static const u16 dib0090_defaults[] = {
+
+	25, 0x01,
+	0x0000,
+	0x99a0,
+	0x6008,
+	0x0000,
+	0x8acb,
+	0x0000,
+	0x0405,
+	0x0000,
+	0x0000,
+	0x0000,
+	0xb802,
+	0x0300,
+	0x2d12,
+	0xbac0,
+	0x7c00,
+	0xdbb9,
+	0x0954,
+	0x0743,
+	0x8000,
+	0x0001,
+	0x0040,
+	0x0100,
+	0x0000,
+	0xe910,
+	0x149e,
+
+	1, 0x1c,
+	0xff2d,
+
+	1, 0x39,
+	0x0000,
+
+	1, 0x1b,
+	EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL,
+	2, 0x1e,
+	0x07FF,
+	0x0007,
+
+	1, 0x24,
+	EN_UHF | EN_CRYSTAL,
+
+	2, 0x3c,
+	0x3ff,
+	0x111,
+	0
+};
+
+static int dib0090_reset(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	u16 l, r, *n;
+
+	dib0090_reset_digital(fe, state->config);
+	state->revision = dib0090_identify(fe);
+
+	/* Revision definition */
+	if (state->revision == 0xff)
+		return -EINVAL;
+#ifdef EFUSE
+	else if ((state->revision & 0x1f) >= 3)	/* Update the efuse : Only available for KROSUS > P1C */
+		dib0090_set_EFUSE(state);
+#endif
+
+#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
+	if (!(state->revision & 0x1))	/* it is P1B - reset is already done */
+		return 0;
+#endif
+
+	/* Upload the default values */
+	n = (u16 *) dib0090_defaults;
+	l = pgm_read_word(n++);
+	while (l) {
+		r = pgm_read_word(n++);
+		do {
+			/* DEBUG_TUNER */
+			/* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */
+			dib0090_write_reg(state, r, pgm_read_word(n++));
+			r++;
+		} while (--l);
+		l = pgm_read_word(n++);
+	}
+
+	/* Congigure in function of the crystal */
+	if (state->config->io.clock_khz >= 24000)
+		l = 1;
+	else
+		l = 2;
+	dib0090_write_reg(state, 0x14, l);
+	dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1);
+
+	state->reset = 3;	/* enable iq-offset-calibration and wbd-calibration when tuning next time */
+
+	return 0;
+}
+
+#define steps(u) (((u)>15)?((u)-16):(u))
+#define INTERN_WAIT 10
+static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state)
+{
+	int ret = INTERN_WAIT * 10;
+
+	switch (*tune_state) {
+	case CT_TUNER_STEP_2:
+		/* Turns to positive */
+		dib0090_write_reg(state, 0x1f, 0x7);
+		*tune_state = CT_TUNER_STEP_3;
+		break;
+
+	case CT_TUNER_STEP_3:
+		state->adc_diff = dib0090_read_reg(state, 0x1d);
+
+		/* Turns to negative */
+		dib0090_write_reg(state, 0x1f, 0x4);
+		*tune_state = CT_TUNER_STEP_4;
+		break;
+
+	case CT_TUNER_STEP_4:
+		state->adc_diff -= dib0090_read_reg(state, 0x1d);
+		*tune_state = CT_TUNER_STEP_5;
+		ret = 0;
+		break;
+
+	default:
+		break;
+	}
+
+	return ret;
+}
+
+struct dc_calibration {
+	uint8_t addr;
+	uint8_t offset;
+	uint8_t pga:1;
+	uint16_t bb1;
+	uint8_t i:1;
+};
+
+static const struct dc_calibration dc_table[] = {
+	/* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
+	{0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
+	{0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
+	/* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
+	{0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
+	{0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
+	{0},
+};
+
+static void dib0090_set_trim(struct dib0090_state *state)
+{
+	u16 *val;
+
+	if (state->dc->addr == 0x07)
+		val = &state->bb7;
+	else
+		val = &state->bb6;
+
+	*val &= ~(0x1f << state->dc->offset);
+	*val |= state->step << state->dc->offset;
+
+	dib0090_write_reg(state, state->dc->addr, *val);
+}
+
+static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
+{
+	int ret = 0;
+
+	switch (*tune_state) {
+
+	case CT_TUNER_START:
+		/* init */
+		dprintk("Internal DC calibration");
+
+		/* the LNA is off */
+		dib0090_write_reg(state, 0x24, 0x02ed);
+
+		/* force vcm2 = 0.8V */
+		state->bb6 = 0;
+		state->bb7 = 0x040d;
+
+		state->dc = dc_table;
+
+		*tune_state = CT_TUNER_STEP_0;
+
+		/* fall through */
+
+	case CT_TUNER_STEP_0:
+		dib0090_write_reg(state, 0x01, state->dc->bb1);
+		dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7));
+
+		state->step = 0;
+
+		state->min_adc_diff = 1023;
+
+		*tune_state = CT_TUNER_STEP_1;
+		ret = 50;
+		break;
+
+	case CT_TUNER_STEP_1:
+		dib0090_set_trim(state);
+
+		*tune_state = CT_TUNER_STEP_2;
+		break;
+
+	case CT_TUNER_STEP_2:
+	case CT_TUNER_STEP_3:
+	case CT_TUNER_STEP_4:
+		ret = dib0090_get_offset(state, tune_state);
+		break;
+
+	case CT_TUNER_STEP_5:	/* found an offset */
+		dprintk("FE%d: IQC read=%d, current=%x", state->fe->id, (u32) state->adc_diff, state->step);
+
+		/* first turn for this frequency */
+		if (state->step == 0) {
+			if (state->dc->pga && state->adc_diff < 0)
+				state->step = 0x10;
+			if (state->dc->pga == 0 && state->adc_diff > 0)
+				state->step = 0x10;
+		}
+
+		state->adc_diff = ABS(state->adc_diff);
+
+		if (state->adc_diff < state->min_adc_diff && steps(state->step) < 15) {	/* stop search when the delta to 0 is increasing */
+			state->step++;
+			state->min_adc_diff = state->adc_diff;
+			*tune_state = CT_TUNER_STEP_1;
+		} else {
+
+			/* the minimum was what we have seen in the step before */
+			state->step--;
+			dib0090_set_trim(state);
+
+			dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->fe->id, state->dc->addr, state->adc_diff,
+				state->step);
+
+			state->dc++;
+			if (state->dc->addr == 0)	/* done */
+				*tune_state = CT_TUNER_STEP_6;
+			else
+				*tune_state = CT_TUNER_STEP_0;
+
+		}
+		break;
+
+	case CT_TUNER_STEP_6:
+		dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008);
+		dib0090_write_reg(state, 0x1f, 0x7);
+		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
+		state->reset &= ~0x1;
+	default:
+		break;
+	}
+	return ret;
+}
+
+static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state)
+{
+	switch (*tune_state) {
+	case CT_TUNER_START:
+		/* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */
+		dib0090_write_reg(state, 0x10, 0xdb09 | (1 << 10));
+		dib0090_write_reg(state, 0x24, EN_UHF & 0x0fff);
+
+		*tune_state = CT_TUNER_STEP_0;
+		return 90;	/* wait for the WBDMUX to switch and for the ADC to sample */
+	case CT_TUNER_STEP_0:
+		state->wbd_offset = dib0090_read_reg(state, 0x1d);
+		dprintk("WBD calibration offset = %d", state->wbd_offset);
+
+		*tune_state = CT_TUNER_START;	/* reset done -> real tuning can now begin */
+		state->reset &= ~0x2;
+		break;
+	default:
+		break;
+	}
+	return 0;
+}
+
+static void dib0090_set_bandwidth(struct dib0090_state *state)
+{
+	u16 tmp;
+
+	if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000)
+		tmp = (3 << 14);
+	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000)
+		tmp = (2 << 14);
+	else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000)
+		tmp = (1 << 14);
+	else
+		tmp = (0 << 14);
+
+	state->bb_1_def &= 0x3fff;
+	state->bb_1_def |= tmp;
+
+	dib0090_write_reg(state, 0x01, state->bb_1_def);	/* be sure that we have the right bb-filter */
+}
+
+static const struct dib0090_pll dib0090_pll_table[] = {
+#ifdef CONFIG_BAND_CBAND
+	{56000, 0, 9, 48, 6},
+	{70000, 1, 9, 48, 6},
+	{87000, 0, 8, 32, 4},
+	{105000, 1, 8, 32, 4},
+	{115000, 0, 7, 24, 6},
+	{140000, 1, 7, 24, 6},
+	{170000, 0, 6, 16, 4},
+#endif
+#ifdef CONFIG_BAND_VHF
+	{200000, 1, 6, 16, 4},
+	{230000, 0, 5, 12, 6},
+	{280000, 1, 5, 12, 6},
+	{340000, 0, 4, 8, 4},
+	{380000, 1, 4, 8, 4},
+	{450000, 0, 3, 6, 6},
+#endif
+#ifdef CONFIG_BAND_UHF
+	{580000, 1, 3, 6, 6},
+	{700000, 0, 2, 4, 4},
+	{860000, 1, 2, 4, 4},
+#endif
+#ifdef CONFIG_BAND_LBAND
+	{1800000, 1, 0, 2, 4},
+#endif
+#ifdef CONFIG_BAND_SBAND
+	{2900000, 0, 14, 1, 4},
+#endif
+};
+
+static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = {
+
+#ifdef CONFIG_BAND_CBAND
+	{184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
+	{227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
+	{380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
+#endif
+#ifdef CONFIG_BAND_UHF
+	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+#endif
+#ifdef CONFIG_BAND_LBAND
+	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+#endif
+#ifdef CONFIG_BAND_SBAND
+	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
+	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
+#endif
+};
+
+static const struct dib0090_tuning dib0090_tuning_table[] = {
+
+#ifdef CONFIG_BAND_CBAND
+	{170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB},
+#endif
+#ifdef CONFIG_BAND_VHF
+	{184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
+	{227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
+	{380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF},
+#endif
+#ifdef CONFIG_BAND_UHF
+	{520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+	{900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF},
+#endif
+#ifdef CONFIG_BAND_LBAND
+	{1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+	{1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+	{1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD},
+#endif
+#ifdef CONFIG_BAND_SBAND
+	{2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD},
+	{2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD},
+#endif
+};
+
+#define WBD     0x781		/* 1 1 1 1 0000 0 0 1 */
+static int dib0090_tune(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	const struct dib0090_tuning *tune = state->current_tune_table_index;
+	const struct dib0090_pll *pll = state->current_pll_table_index;
+	enum frontend_tune_state *tune_state = &state->tune_state;
+
+	u32 rf;
+	u16 lo4 = 0xe900, lo5, lo6, Den;
+	u32 FBDiv, Rest, FREF, VCOF_kHz = 0;
+	u16 tmp, adc;
+	int8_t step_sign;
+	int ret = 10;		/* 1ms is the default delay most of the time */
+	u8 c, i;
+
+	state->current_band = (u8) BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000);
+	rf = fe->dtv_property_cache.frequency / 1000 + (state->current_band ==
+							BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->freq_offset_khz_vhf);
+	/* in any case we first need to do a reset if needed */
+	if (state->reset & 0x1)
+		return dib0090_dc_offset_calibration(state, tune_state);
+	else if (state->reset & 0x2)
+		return dib0090_wbd_calibration(state, tune_state);
+
+    /************************* VCO ***************************/
+	/* Default values for FG                                 */
+	/* from these are needed :                               */
+	/* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv             */
+
+#ifdef CONFIG_SYS_ISDBT
+	if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1)
+		rf += 850;
+#endif
+
+	if (state->current_rf != rf) {
+		state->tuner_is_tuned = 0;
+
+		tune = dib0090_tuning_table;
+
+		tmp = (state->revision >> 5) & 0x7;
+		if (tmp == 0x4 || tmp == 0x7) {
+			/* CBAND tuner version for VHF */
+			if (state->current_band == BAND_FM || state->current_band == BAND_VHF) {
+				/* Force CBAND */
+				state->current_band = BAND_CBAND;
+				tune = dib0090_tuning_table_fm_vhf_on_cband;
+			}
+		}
+
+		pll = dib0090_pll_table;
+		/* Look for the interval */
+		while (rf > tune->max_freq)
+			tune++;
+		while (rf > pll->max_freq)
+			pll++;
+		state->current_tune_table_index = tune;
+		state->current_pll_table_index = pll;
+	}
+
+	if (*tune_state == CT_TUNER_START) {
+
+		if (state->tuner_is_tuned == 0)
+			state->current_rf = 0;
+
+		if (state->current_rf != rf) {
+
+			dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim));
+
+			/* external loop filter, otherwise:
+			 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
+			 * lo6 = 0x0e34 */
+			if (pll->vco_band)
+				lo5 = 0x049e;
+			else if (state->config->analog_output)
+				lo5 = 0x041d;
+			else
+				lo5 = 0x041c;
+
+			lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7);	/* bit 15 is the split to the slave, we do not do it here */
+
+			if (!state->config->io.pll_int_loop_filt)
+				lo6 = 0xff28;
+			else
+				lo6 = (state->config->io.pll_int_loop_filt << 3);
+
+			VCOF_kHz = (pll->hfdiv * rf) * 2;
+
+			FREF = state->config->io.clock_khz;
+
+			FBDiv = (VCOF_kHz / pll->topresc / FREF);
+			Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF;
+
+			if (Rest < LPF)
+				Rest = 0;
+			else if (Rest < 2 * LPF)
+				Rest = 2 * LPF;
+			else if (Rest > (FREF - LPF)) {
+				Rest = 0;
+				FBDiv += 1;
+			} else if (Rest > (FREF - 2 * LPF))
+				Rest = FREF - 2 * LPF;
+			Rest = (Rest * 6528) / (FREF / 10);
+
+			Den = 1;
+
+			dprintk(" *****  ******* Rest value = %d", Rest);
+
+			if (Rest > 0) {
+				if (state->config->analog_output)
+					lo6 |= (1 << 2) | 2;
+				else
+					lo6 |= (1 << 2) | 1;
+				Den = 255;
+			}
+#ifdef CONFIG_BAND_SBAND
+			if (state->current_band == BAND_SBAND)
+				lo6 &= 0xfffb;
+#endif
+
+			dib0090_write_reg(state, 0x15, (u16) FBDiv);
+
+			dib0090_write_reg(state, 0x16, (Den << 8) | 1);
+
+			dib0090_write_reg(state, 0x17, (u16) Rest);
+
+			dib0090_write_reg(state, 0x19, lo5);
+
+			dib0090_write_reg(state, 0x1c, lo6);
+
+			lo6 = tune->tuner_enable;
+			if (state->config->analog_output)
+				lo6 = (lo6 & 0xff9f) | 0x2;
+
+			dib0090_write_reg(state, 0x24, lo6 | EN_LO
+#ifdef CONFIG_DIB0090_USE_PWM_AGC
+					  | state->config->use_pwm_agc * EN_CRYSTAL
+#endif
+			    );
+
+			state->current_rf = rf;
+
+			/* prepare a complete captrim */
+			state->step = state->captrim = state->fcaptrim = 64;
+
+		} else {	/* we are already tuned to this frequency - the configuration is correct  */
+
+			/* do a minimal captrim even if the frequency has not changed */
+			state->step = 4;
+			state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f;
+		}
+		state->adc_diff = 3000;
+
+		dib0090_write_reg(state, 0x10, 0x2B1);
+
+		dib0090_write_reg(state, 0x1e, 0x0032);
+
+		ret = 20;
+		*tune_state = CT_TUNER_STEP_1;
+	} else if (*tune_state == CT_TUNER_STEP_0) {
+		/* nothing */
+	} else if (*tune_state == CT_TUNER_STEP_1) {
+		state->step /= 2;
+		dib0090_write_reg(state, 0x18, lo4 | state->captrim);
+		*tune_state = CT_TUNER_STEP_2;
+	} else if (*tune_state == CT_TUNER_STEP_2) {
+
+		adc = dib0090_read_reg(state, 0x1d);
+		dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) fe->id, (u32) state->captrim, (u32) adc,
+			(u32) (adc) * (u32) 1800 / (u32) 1024);
+
+		if (adc >= 400) {
+			adc -= 400;
+			step_sign = -1;
+		} else {
+			adc = 400 - adc;
+			step_sign = 1;
+		}
+
+		if (adc < state->adc_diff) {
+			dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) state->adc_diff);
+			state->adc_diff = adc;
+			state->fcaptrim = state->captrim;
+
+		}
+
+		state->captrim += step_sign * state->step;
+		if (state->step >= 1)
+			*tune_state = CT_TUNER_STEP_1;
+		else
+			*tune_state = CT_TUNER_STEP_3;
+
+		ret = 15;
+	} else if (*tune_state == CT_TUNER_STEP_3) {
+		/*write the final cptrim config */
+		dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim);
+
+#ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY
+		state->memory[state->memory_index].cap = state->fcaptrim;
+#endif
+
+		*tune_state = CT_TUNER_STEP_4;
+	} else if (*tune_state == CT_TUNER_STEP_4) {
+		dib0090_write_reg(state, 0x1e, 0x07ff);
+
+		dprintk("FE %d Final Captrim: %d", (u32) fe->id, (u32) state->fcaptrim);
+		dprintk("FE %d HFDIV code: %d", (u32) fe->id, (u32) pll->hfdiv_code);
+		dprintk("FE %d VCO = %d", (u32) fe->id, (u32) pll->vco_band);
+		dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32) fe->id, (u32) ((pll->hfdiv * rf) * 2), (u32) pll->hfdiv, (u32) rf);
+		dprintk("FE %d REFDIV: %d, FREF: %d", (u32) fe->id, (u32) 1, (u32) state->config->io.clock_khz);
+		dprintk("FE %d FBDIV: %d, Rest: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17));
+		dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x17),
+			(u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3);
+
+		c = 4;
+		i = 3;
+#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
+		if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) {
+			c = 2;
+			i = 2;
+		}
+#endif
+		dib0090_write_reg(state, 0x10, (c << 13) | (i << 11) | (WBD
+#ifdef CONFIG_DIB0090_USE_PWM_AGC
+									| (state->config->use_pwm_agc << 1)
+#endif
+				  ));
+		dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | (tune->lna_bias << 0));
+		dib0090_write_reg(state, 0x0c, tune->v2i);
+		dib0090_write_reg(state, 0x0d, tune->mix);
+		dib0090_write_reg(state, 0x0e, tune->load);
+
+		*tune_state = CT_TUNER_STEP_5;
+	} else if (*tune_state == CT_TUNER_STEP_5) {
+
+		/* initialize the lt gain register */
+		state->rf_lt_def = 0x7c00;
+		dib0090_write_reg(state, 0x0f, state->rf_lt_def);
+
+		dib0090_set_bandwidth(state);
+		state->tuner_is_tuned = 1;
+		*tune_state = CT_TUNER_STOP;
+	} else
+		ret = FE_CALLBACK_TIME_NEVER;
+	return ret;
+}
+
+static int dib0090_release(struct dvb_frontend *fe)
+{
+	kfree(fe->tuner_priv);
+	fe->tuner_priv = NULL;
+	return 0;
+}
+
+enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+
+	return state->tune_state;
+}
+
+EXPORT_SYMBOL(dib0090_get_tune_state);
+
+int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+
+	state->tune_state = tune_state;
+	return 0;
+}
+
+EXPORT_SYMBOL(dib0090_set_tune_state);
+
+static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+
+	*frequency = 1000 * state->current_rf;
+	return 0;
+}
+
+static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p)
+{
+	struct dib0090_state *state = fe->tuner_priv;
+	uint32_t ret;
+
+	state->tune_state = CT_TUNER_START;
+
+	do {
+		ret = dib0090_tune(fe);
+		if (ret != FE_CALLBACK_TIME_NEVER)
+			msleep(ret / 10);
+		else
+			break;
+	} while (state->tune_state != CT_TUNER_STOP);
+
+	return 0;
+}
+
+static const struct dvb_tuner_ops dib0090_ops = {
+	.info = {
+		 .name = "DiBcom DiB0090",
+		 .frequency_min = 45000000,
+		 .frequency_max = 860000000,
+		 .frequency_step = 1000,
+		 },
+	.release = dib0090_release,
+
+	.init = dib0090_wakeup,
+	.sleep = dib0090_sleep,
+	.set_params = dib0090_set_params,
+	.get_frequency = dib0090_get_frequency,
+};
+
+struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config)
+{
+	struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL);
+	if (st == NULL)
+		return NULL;
+
+	st->config = config;
+	st->i2c = i2c;
+	st->fe = fe;
+	fe->tuner_priv = st;
+
+	if (dib0090_reset(fe) != 0)
+		goto free_mem;
+
+	printk(KERN_INFO "DiB0090: successfully identified\n");
+	memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops));
+
+	return fe;
+ free_mem:
+	kfree(st);
+	fe->tuner_priv = NULL;
+	return NULL;
+}
+
+EXPORT_SYMBOL(dib0090_register);
+
+MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
+MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
+MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
+MODULE_LICENSE("GPL");