| /* | 
 |  * Copyright 2001 MontaVista Software Inc. | 
 |  * Author: Jun Sun, jsun@mvista.com or jsun@junsun.net | 
 |  * Copyright (c) 2003, 2004  Maciej W. Rozycki | 
 |  * | 
 |  * Common time service routines for MIPS machines. See | 
 |  * Documentation/mips/time.README. | 
 |  * | 
 |  * This program is free software; you can redistribute  it and/or modify it | 
 |  * under  the terms of  the GNU General  Public License as published by the | 
 |  * Free Software Foundation;  either version 2 of the  License, or (at your | 
 |  * option) any later version. | 
 |  */ | 
 | #include <linux/config.h> | 
 | #include <linux/types.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/init.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/param.h> | 
 | #include <linux/time.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #include <asm/bootinfo.h> | 
 | #include <asm/cache.h> | 
 | #include <asm/compiler.h> | 
 | #include <asm/cpu.h> | 
 | #include <asm/cpu-features.h> | 
 | #include <asm/div64.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/time.h> | 
 |  | 
 | /* | 
 |  * The integer part of the number of usecs per jiffy is taken from tick, | 
 |  * but the fractional part is not recorded, so we calculate it using the | 
 |  * initial value of HZ.  This aids systems where tick isn't really an | 
 |  * integer (e.g. for HZ = 128). | 
 |  */ | 
 | #define USECS_PER_JIFFY		TICK_SIZE | 
 | #define USECS_PER_JIFFY_FRAC	((unsigned long)(u32)((1000000ULL << 32) / HZ)) | 
 |  | 
 | #define TICK_SIZE	(tick_nsec / 1000) | 
 |  | 
 | u64 jiffies_64 = INITIAL_JIFFIES; | 
 |  | 
 | EXPORT_SYMBOL(jiffies_64); | 
 |  | 
 | /* | 
 |  * forward reference | 
 |  */ | 
 | extern volatile unsigned long wall_jiffies; | 
 |  | 
 | DEFINE_SPINLOCK(rtc_lock); | 
 |  | 
 | /* | 
 |  * By default we provide the null RTC ops | 
 |  */ | 
 | static unsigned long null_rtc_get_time(void) | 
 | { | 
 | 	return mktime(2000, 1, 1, 0, 0, 0); | 
 | } | 
 |  | 
 | static int null_rtc_set_time(unsigned long sec) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long (*rtc_get_time)(void) = null_rtc_get_time; | 
 | int (*rtc_set_time)(unsigned long) = null_rtc_set_time; | 
 | int (*rtc_set_mmss)(unsigned long); | 
 |  | 
 |  | 
 | /* usecs per counter cycle, shifted to left by 32 bits */ | 
 | static unsigned int sll32_usecs_per_cycle; | 
 |  | 
 | /* how many counter cycles in a jiffy */ | 
 | static unsigned long cycles_per_jiffy __read_mostly; | 
 |  | 
 | /* Cycle counter value at the previous timer interrupt.. */ | 
 | static unsigned int timerhi, timerlo; | 
 |  | 
 | /* expirelo is the count value for next CPU timer interrupt */ | 
 | static unsigned int expirelo; | 
 |  | 
 |  | 
 | /* | 
 |  * Null timer ack for systems not needing one (e.g. i8254). | 
 |  */ | 
 | static void null_timer_ack(void) { /* nothing */ } | 
 |  | 
 | /* | 
 |  * Null high precision timer functions for systems lacking one. | 
 |  */ | 
 | static unsigned int null_hpt_read(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void null_hpt_init(unsigned int count) | 
 | { | 
 | 	/* nothing */ | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Timer ack for an R4k-compatible timer of a known frequency. | 
 |  */ | 
 | static void c0_timer_ack(void) | 
 | { | 
 | 	unsigned int count; | 
 |  | 
 | #ifndef CONFIG_SOC_PNX8550	/* pnx8550 resets to zero */ | 
 | 	/* Ack this timer interrupt and set the next one.  */ | 
 | 	expirelo += cycles_per_jiffy; | 
 | #endif | 
 | 	write_c0_compare(expirelo); | 
 |  | 
 | 	/* Check to see if we have missed any timer interrupts.  */ | 
 | 	count = read_c0_count(); | 
 | 	if ((count - expirelo) < 0x7fffffff) { | 
 | 		/* missed_timer_count++; */ | 
 | 		expirelo = count + cycles_per_jiffy; | 
 | 		write_c0_compare(expirelo); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * High precision timer functions for a R4k-compatible timer. | 
 |  */ | 
 | static unsigned int c0_hpt_read(void) | 
 | { | 
 | 	return read_c0_count(); | 
 | } | 
 |  | 
 | /* For use solely as a high precision timer.  */ | 
 | static void c0_hpt_init(unsigned int count) | 
 | { | 
 | 	write_c0_count(read_c0_count() - count); | 
 | } | 
 |  | 
 | /* For use both as a high precision timer and an interrupt source.  */ | 
 | static void c0_hpt_timer_init(unsigned int count) | 
 | { | 
 | 	count = read_c0_count() - count; | 
 | 	expirelo = (count / cycles_per_jiffy + 1) * cycles_per_jiffy; | 
 | 	write_c0_count(expirelo - cycles_per_jiffy); | 
 | 	write_c0_compare(expirelo); | 
 | 	write_c0_count(count); | 
 | } | 
 |  | 
 | int (*mips_timer_state)(void); | 
 | void (*mips_timer_ack)(void); | 
 | unsigned int (*mips_hpt_read)(void); | 
 | void (*mips_hpt_init)(unsigned int); | 
 |  | 
 |  | 
 | /* | 
 |  * This version of gettimeofday has microsecond resolution and better than | 
 |  * microsecond precision on fast machines with cycle counter. | 
 |  */ | 
 | void do_gettimeofday(struct timeval *tv) | 
 | { | 
 | 	unsigned long seq; | 
 | 	unsigned long lost; | 
 | 	unsigned long usec, sec; | 
 | 	unsigned long max_ntp_tick = tick_usec - tickadj; | 
 |  | 
 | 	do { | 
 | 		seq = read_seqbegin(&xtime_lock); | 
 |  | 
 | 		usec = do_gettimeoffset(); | 
 |  | 
 | 		lost = jiffies - wall_jiffies; | 
 |  | 
 | 		/* | 
 | 		 * If time_adjust is negative then NTP is slowing the clock | 
 | 		 * so make sure not to go into next possible interval. | 
 | 		 * Better to lose some accuracy than have time go backwards.. | 
 | 		 */ | 
 | 		if (unlikely(time_adjust < 0)) { | 
 | 			usec = min(usec, max_ntp_tick); | 
 |  | 
 | 			if (lost) | 
 | 				usec += lost * max_ntp_tick; | 
 | 		} else if (unlikely(lost)) | 
 | 			usec += lost * tick_usec; | 
 |  | 
 | 		sec = xtime.tv_sec; | 
 | 		usec += (xtime.tv_nsec / 1000); | 
 |  | 
 | 	} while (read_seqretry(&xtime_lock, seq)); | 
 |  | 
 | 	while (usec >= 1000000) { | 
 | 		usec -= 1000000; | 
 | 		sec++; | 
 | 	} | 
 |  | 
 | 	tv->tv_sec = sec; | 
 | 	tv->tv_usec = usec; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(do_gettimeofday); | 
 |  | 
 | int do_settimeofday(struct timespec *tv) | 
 | { | 
 | 	time_t wtm_sec, sec = tv->tv_sec; | 
 | 	long wtm_nsec, nsec = tv->tv_nsec; | 
 |  | 
 | 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
 | 		return -EINVAL; | 
 |  | 
 | 	write_seqlock_irq(&xtime_lock); | 
 |  | 
 | 	/* | 
 | 	 * This is revolting.  We need to set "xtime" correctly.  However, | 
 | 	 * the value in this location is the value at the most recent update | 
 | 	 * of wall time.  Discover what correction gettimeofday() would have | 
 | 	 * made, and then undo it! | 
 | 	 */ | 
 | 	nsec -= do_gettimeoffset() * NSEC_PER_USEC; | 
 | 	nsec -= (jiffies - wall_jiffies) * tick_nsec; | 
 |  | 
 | 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
 | 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
 |  | 
 | 	set_normalized_timespec(&xtime, sec, nsec); | 
 | 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
 |  | 
 | 	ntp_clear(); | 
 | 	write_sequnlock_irq(&xtime_lock); | 
 | 	clock_was_set(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(do_settimeofday); | 
 |  | 
 | /* | 
 |  * Gettimeoffset routines.  These routines returns the time duration | 
 |  * since last timer interrupt in usecs. | 
 |  * | 
 |  * If the exact CPU counter frequency is known, use fixed_rate_gettimeoffset. | 
 |  * Otherwise use calibrate_gettimeoffset() | 
 |  * | 
 |  * If the CPU does not have the counter register, you can either supply | 
 |  * your own gettimeoffset() routine, or use null_gettimeoffset(), which | 
 |  * gives the same resolution as HZ. | 
 |  */ | 
 |  | 
 | static unsigned long null_gettimeoffset(void) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* The function pointer to one of the gettimeoffset funcs.  */ | 
 | unsigned long (*do_gettimeoffset)(void) = null_gettimeoffset; | 
 |  | 
 |  | 
 | static unsigned long fixed_rate_gettimeoffset(void) | 
 | { | 
 | 	u32 count; | 
 | 	unsigned long res; | 
 |  | 
 | 	/* Get last timer tick in absolute kernel time */ | 
 | 	count = mips_hpt_read(); | 
 |  | 
 | 	/* .. relative to previous jiffy (32 bits is enough) */ | 
 | 	count -= timerlo; | 
 |  | 
 | 	__asm__("multu	%1,%2" | 
 | 		: "=h" (res) | 
 | 		: "r" (count), "r" (sll32_usecs_per_cycle) | 
 | 		: "lo", GCC_REG_ACCUM); | 
 |  | 
 | 	/* | 
 | 	 * Due to possible jiffies inconsistencies, we need to check | 
 | 	 * the result so that we'll get a timer that is monotonic. | 
 | 	 */ | 
 | 	if (res >= USECS_PER_JIFFY) | 
 | 		res = USECS_PER_JIFFY - 1; | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Cached "1/(clocks per usec) * 2^32" value. | 
 |  * It has to be recalculated once each jiffy. | 
 |  */ | 
 | static unsigned long cached_quotient; | 
 |  | 
 | /* Last jiffy when calibrate_divXX_gettimeoffset() was called. */ | 
 | static unsigned long last_jiffies; | 
 |  | 
 | /* | 
 |  * This is moved from dec/time.c:do_ioasic_gettimeoffset() by Maciej. | 
 |  */ | 
 | static unsigned long calibrate_div32_gettimeoffset(void) | 
 | { | 
 | 	u32 count; | 
 | 	unsigned long res, tmp; | 
 | 	unsigned long quotient; | 
 |  | 
 | 	tmp = jiffies; | 
 |  | 
 | 	quotient = cached_quotient; | 
 |  | 
 | 	if (last_jiffies != tmp) { | 
 | 		last_jiffies = tmp; | 
 | 		if (last_jiffies != 0) { | 
 | 			unsigned long r0; | 
 | 			do_div64_32(r0, timerhi, timerlo, tmp); | 
 | 			do_div64_32(quotient, USECS_PER_JIFFY, | 
 | 				    USECS_PER_JIFFY_FRAC, r0); | 
 | 			cached_quotient = quotient; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Get last timer tick in absolute kernel time */ | 
 | 	count = mips_hpt_read(); | 
 |  | 
 | 	/* .. relative to previous jiffy (32 bits is enough) */ | 
 | 	count -= timerlo; | 
 |  | 
 | 	__asm__("multu  %1,%2" | 
 | 		: "=h" (res) | 
 | 		: "r" (count), "r" (quotient) | 
 | 		: "lo", GCC_REG_ACCUM); | 
 |  | 
 | 	/* | 
 | 	 * Due to possible jiffies inconsistencies, we need to check | 
 | 	 * the result so that we'll get a timer that is monotonic. | 
 | 	 */ | 
 | 	if (res >= USECS_PER_JIFFY) | 
 | 		res = USECS_PER_JIFFY - 1; | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | static unsigned long calibrate_div64_gettimeoffset(void) | 
 | { | 
 | 	u32 count; | 
 | 	unsigned long res, tmp; | 
 | 	unsigned long quotient; | 
 |  | 
 | 	tmp = jiffies; | 
 |  | 
 | 	quotient = cached_quotient; | 
 |  | 
 | 	if (last_jiffies != tmp) { | 
 | 		last_jiffies = tmp; | 
 | 		if (last_jiffies) { | 
 | 			unsigned long r0; | 
 | 			__asm__(".set	push\n\t" | 
 | 				".set	mips3\n\t" | 
 | 				"lwu	%0,%3\n\t" | 
 | 				"dsll32	%1,%2,0\n\t" | 
 | 				"or	%1,%1,%0\n\t" | 
 | 				"ddivu	$0,%1,%4\n\t" | 
 | 				"mflo	%1\n\t" | 
 | 				"dsll32	%0,%5,0\n\t" | 
 | 				"or	%0,%0,%6\n\t" | 
 | 				"ddivu	$0,%0,%1\n\t" | 
 | 				"mflo	%0\n\t" | 
 | 				".set	pop" | 
 | 				: "=&r" (quotient), "=&r" (r0) | 
 | 				: "r" (timerhi), "m" (timerlo), | 
 | 				  "r" (tmp), "r" (USECS_PER_JIFFY), | 
 | 				  "r" (USECS_PER_JIFFY_FRAC) | 
 | 				: "hi", "lo", GCC_REG_ACCUM); | 
 | 			cached_quotient = quotient; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Get last timer tick in absolute kernel time */ | 
 | 	count = mips_hpt_read(); | 
 |  | 
 | 	/* .. relative to previous jiffy (32 bits is enough) */ | 
 | 	count -= timerlo; | 
 |  | 
 | 	__asm__("multu	%1,%2" | 
 | 		: "=h" (res) | 
 | 		: "r" (count), "r" (quotient) | 
 | 		: "lo", GCC_REG_ACCUM); | 
 |  | 
 | 	/* | 
 | 	 * Due to possible jiffies inconsistencies, we need to check | 
 | 	 * the result so that we'll get a timer that is monotonic. | 
 | 	 */ | 
 | 	if (res >= USECS_PER_JIFFY) | 
 | 		res = USECS_PER_JIFFY - 1; | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 |  | 
 | /* last time when xtime and rtc are sync'ed up */ | 
 | static long last_rtc_update; | 
 |  | 
 | /* | 
 |  * local_timer_interrupt() does profiling and process accounting | 
 |  * on a per-CPU basis. | 
 |  * | 
 |  * In UP mode, it is invoked from the (global) timer_interrupt. | 
 |  * | 
 |  * In SMP mode, it might invoked by per-CPU timer interrupt, or | 
 |  * a broadcasted inter-processor interrupt which itself is triggered | 
 |  * by the global timer interrupt. | 
 |  */ | 
 | void local_timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | { | 
 | 	if (current->pid) | 
 | 		profile_tick(CPU_PROFILING, regs); | 
 | 	update_process_times(user_mode(regs)); | 
 | } | 
 |  | 
 | /* | 
 |  * High-level timer interrupt service routines.  This function | 
 |  * is set as irqaction->handler and is invoked through do_IRQ. | 
 |  */ | 
 | irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long j; | 
 | 	unsigned int count; | 
 |  | 
 | 	count = mips_hpt_read(); | 
 | 	mips_timer_ack(); | 
 |  | 
 | 	/* Update timerhi/timerlo for intra-jiffy calibration. */ | 
 | 	timerhi += count < timerlo;			/* Wrap around */ | 
 | 	timerlo = count; | 
 |  | 
 | 	/* | 
 | 	 * call the generic timer interrupt handling | 
 | 	 */ | 
 | 	do_timer(regs); | 
 |  | 
 | 	/* | 
 | 	 * If we have an externally synchronized Linux clock, then update | 
 | 	 * CMOS clock accordingly every ~11 minutes. rtc_set_time() has to be | 
 | 	 * called as close as possible to 500 ms before the new second starts. | 
 | 	 */ | 
 | 	write_seqlock(&xtime_lock); | 
 | 	if (ntp_synced() && | 
 | 	    xtime.tv_sec > last_rtc_update + 660 && | 
 | 	    (xtime.tv_nsec / 1000) >= 500000 - ((unsigned) TICK_SIZE) / 2 && | 
 | 	    (xtime.tv_nsec / 1000) <= 500000 + ((unsigned) TICK_SIZE) / 2) { | 
 | 		if (rtc_set_mmss(xtime.tv_sec) == 0) { | 
 | 			last_rtc_update = xtime.tv_sec; | 
 | 		} else { | 
 | 			/* do it again in 60 s */ | 
 | 			last_rtc_update = xtime.tv_sec - 600; | 
 | 		} | 
 | 	} | 
 | 	write_sequnlock(&xtime_lock); | 
 |  | 
 | 	/* | 
 | 	 * If jiffies has overflown in this timer_interrupt, we must | 
 | 	 * update the timer[hi]/[lo] to make fast gettimeoffset funcs | 
 | 	 * quotient calc still valid. -arca | 
 | 	 * | 
 | 	 * The first timer interrupt comes late as interrupts are | 
 | 	 * enabled long after timers are initialized.  Therefore the | 
 | 	 * high precision timer is fast, leading to wrong gettimeoffset() | 
 | 	 * calculations.  We deal with it by setting it based on the | 
 | 	 * number of its ticks between the second and the third interrupt. | 
 | 	 * That is still somewhat imprecise, but it's a good estimate. | 
 | 	 * --macro | 
 | 	 */ | 
 | 	j = jiffies; | 
 | 	if (j < 4) { | 
 | 		static unsigned int prev_count; | 
 | 		static int hpt_initialized; | 
 |  | 
 | 		switch (j) { | 
 | 		case 0: | 
 | 			timerhi = timerlo = 0; | 
 | 			mips_hpt_init(count); | 
 | 			break; | 
 | 		case 2: | 
 | 			prev_count = count; | 
 | 			break; | 
 | 		case 3: | 
 | 			if (!hpt_initialized) { | 
 | 				unsigned int c3 = 3 * (count - prev_count); | 
 |  | 
 | 				timerhi = 0; | 
 | 				timerlo = c3; | 
 | 				mips_hpt_init(count - c3); | 
 | 				hpt_initialized = 1; | 
 | 			} | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * In UP mode, we call local_timer_interrupt() to do profiling | 
 | 	 * and process accouting. | 
 | 	 * | 
 | 	 * In SMP mode, local_timer_interrupt() is invoked by appropriate | 
 | 	 * low-level local timer interrupt handler. | 
 | 	 */ | 
 | 	local_timer_interrupt(irq, dev_id, regs); | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | asmlinkage void ll_timer_interrupt(int irq, struct pt_regs *regs) | 
 | { | 
 | 	irq_enter(); | 
 | 	kstat_this_cpu.irqs[irq]++; | 
 |  | 
 | 	/* we keep interrupt disabled all the time */ | 
 | 	timer_interrupt(irq, NULL, regs); | 
 |  | 
 | 	irq_exit(); | 
 | } | 
 |  | 
 | asmlinkage void ll_local_timer_interrupt(int irq, struct pt_regs *regs) | 
 | { | 
 | 	irq_enter(); | 
 | 	if (smp_processor_id() != 0) | 
 | 		kstat_this_cpu.irqs[irq]++; | 
 |  | 
 | 	/* we keep interrupt disabled all the time */ | 
 | 	local_timer_interrupt(irq, NULL, regs); | 
 |  | 
 | 	irq_exit(); | 
 | } | 
 |  | 
 | /* | 
 |  * time_init() - it does the following things. | 
 |  * | 
 |  * 1) board_time_init() - | 
 |  * 	a) (optional) set up RTC routines, | 
 |  *      b) (optional) calibrate and set the mips_hpt_frequency | 
 |  *	    (only needed if you intended to use fixed_rate_gettimeoffset | 
 |  *	     or use cpu counter as timer interrupt source) | 
 |  * 2) setup xtime based on rtc_get_time(). | 
 |  * 3) choose a appropriate gettimeoffset routine. | 
 |  * 4) calculate a couple of cached variables for later usage | 
 |  * 5) board_timer_setup() - | 
 |  *	a) (optional) over-write any choices made above by time_init(). | 
 |  *	b) machine specific code should setup the timer irqaction. | 
 |  *	c) enable the timer interrupt | 
 |  */ | 
 |  | 
 | void (*board_time_init)(void); | 
 | void (*board_timer_setup)(struct irqaction *irq); | 
 |  | 
 | unsigned int mips_hpt_frequency; | 
 |  | 
 | static struct irqaction timer_irqaction = { | 
 | 	.handler = timer_interrupt, | 
 | 	.flags = SA_INTERRUPT, | 
 | 	.name = "timer", | 
 | }; | 
 |  | 
 | static unsigned int __init calibrate_hpt(void) | 
 | { | 
 | 	u64 frequency; | 
 | 	u32 hpt_start, hpt_end, hpt_count, hz; | 
 |  | 
 | 	const int loops = HZ / 10; | 
 | 	int log_2_loops = 0; | 
 | 	int i; | 
 |  | 
 | 	/* | 
 | 	 * We want to calibrate for 0.1s, but to avoid a 64-bit | 
 | 	 * division we round the number of loops up to the nearest | 
 | 	 * power of 2. | 
 | 	 */ | 
 | 	while (loops > 1 << log_2_loops) | 
 | 		log_2_loops++; | 
 | 	i = 1 << log_2_loops; | 
 |  | 
 | 	/* | 
 | 	 * Wait for a rising edge of the timer interrupt. | 
 | 	 */ | 
 | 	while (mips_timer_state()); | 
 | 	while (!mips_timer_state()); | 
 |  | 
 | 	/* | 
 | 	 * Now see how many high precision timer ticks happen | 
 | 	 * during the calculated number of periods between timer | 
 | 	 * interrupts. | 
 | 	 */ | 
 | 	hpt_start = mips_hpt_read(); | 
 | 	do { | 
 | 		while (mips_timer_state()); | 
 | 		while (!mips_timer_state()); | 
 | 	} while (--i); | 
 | 	hpt_end = mips_hpt_read(); | 
 |  | 
 | 	hpt_count = hpt_end - hpt_start; | 
 | 	hz = HZ; | 
 | 	frequency = (u64)hpt_count * (u64)hz; | 
 |  | 
 | 	return frequency >> log_2_loops; | 
 | } | 
 |  | 
 | void __init time_init(void) | 
 | { | 
 | 	if (board_time_init) | 
 | 		board_time_init(); | 
 |  | 
 | 	if (!rtc_set_mmss) | 
 | 		rtc_set_mmss = rtc_set_time; | 
 |  | 
 | 	xtime.tv_sec = rtc_get_time(); | 
 | 	xtime.tv_nsec = 0; | 
 |  | 
 | 	set_normalized_timespec(&wall_to_monotonic, | 
 | 	                        -xtime.tv_sec, -xtime.tv_nsec); | 
 |  | 
 | 	/* Choose appropriate high precision timer routines.  */ | 
 | 	if (!cpu_has_counter && !mips_hpt_read) { | 
 | 		/* No high precision timer -- sorry.  */ | 
 | 		mips_hpt_read = null_hpt_read; | 
 | 		mips_hpt_init = null_hpt_init; | 
 | 	} else if (!mips_hpt_frequency && !mips_timer_state) { | 
 | 		/* A high precision timer of unknown frequency.  */ | 
 | 		if (!mips_hpt_read) { | 
 | 			/* No external high precision timer -- use R4k.  */ | 
 | 			mips_hpt_read = c0_hpt_read; | 
 | 			mips_hpt_init = c0_hpt_init; | 
 | 		} | 
 |  | 
 | 		if ((current_cpu_data.isa_level == MIPS_CPU_ISA_M32) || | 
 | 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_I) || | 
 | 			 (current_cpu_data.isa_level == MIPS_CPU_ISA_II)) | 
 | 			/* | 
 | 			 * We need to calibrate the counter but we don't have | 
 | 			 * 64-bit division. | 
 | 			 */ | 
 | 			do_gettimeoffset = calibrate_div32_gettimeoffset; | 
 | 		else | 
 | 			/* | 
 | 			 * We need to calibrate the counter but we *do* have | 
 | 			 * 64-bit division. | 
 | 			 */ | 
 | 			do_gettimeoffset = calibrate_div64_gettimeoffset; | 
 | 	} else { | 
 | 		/* We know counter frequency.  Or we can get it.  */ | 
 | 		if (!mips_hpt_read) { | 
 | 			/* No external high precision timer -- use R4k.  */ | 
 | 			mips_hpt_read = c0_hpt_read; | 
 |  | 
 | 			if (mips_timer_state) | 
 | 				mips_hpt_init = c0_hpt_init; | 
 | 			else { | 
 | 				/* No external timer interrupt -- use R4k.  */ | 
 | 				mips_hpt_init = c0_hpt_timer_init; | 
 | 				mips_timer_ack = c0_timer_ack; | 
 | 			} | 
 | 		} | 
 | 		if (!mips_hpt_frequency) | 
 | 			mips_hpt_frequency = calibrate_hpt(); | 
 |  | 
 | 		do_gettimeoffset = fixed_rate_gettimeoffset; | 
 |  | 
 | 		/* Calculate cache parameters.  */ | 
 | 		cycles_per_jiffy = (mips_hpt_frequency + HZ / 2) / HZ; | 
 |  | 
 | 		/* sll32_usecs_per_cycle = 10^6 * 2^32 / mips_counter_freq  */ | 
 | 		do_div64_32(sll32_usecs_per_cycle, | 
 | 			    1000000, mips_hpt_frequency / 2, | 
 | 			    mips_hpt_frequency); | 
 |  | 
 | 		/* Report the high precision timer rate for a reference.  */ | 
 | 		printk("Using %u.%03u MHz high precision timer.\n", | 
 | 		       ((mips_hpt_frequency + 500) / 1000) / 1000, | 
 | 		       ((mips_hpt_frequency + 500) / 1000) % 1000); | 
 | 	} | 
 |  | 
 | 	if (!mips_timer_ack) | 
 | 		/* No timer interrupt ack (e.g. i8254).  */ | 
 | 		mips_timer_ack = null_timer_ack; | 
 |  | 
 | 	/* This sets up the high precision timer for the first interrupt.  */ | 
 | 	mips_hpt_init(mips_hpt_read()); | 
 |  | 
 | 	/* | 
 | 	 * Call board specific timer interrupt setup. | 
 | 	 * | 
 | 	 * this pointer must be setup in machine setup routine. | 
 | 	 * | 
 | 	 * Even if a machine chooses to use a low-level timer interrupt, | 
 | 	 * it still needs to setup the timer_irqaction. | 
 | 	 * In that case, it might be better to set timer_irqaction.handler | 
 | 	 * to be NULL function so that we are sure the high-level code | 
 | 	 * is not invoked accidentally. | 
 | 	 */ | 
 | 	board_timer_setup(&timer_irqaction); | 
 | } | 
 |  | 
 | #define FEBRUARY		2 | 
 | #define STARTOFTIME		1970 | 
 | #define SECDAY			86400L | 
 | #define SECYR			(SECDAY * 365) | 
 | #define leapyear(y)		((!((y) % 4) && ((y) % 100)) || !((y) % 400)) | 
 | #define days_in_year(y)		(leapyear(y) ? 366 : 365) | 
 | #define days_in_month(m)	(month_days[(m) - 1]) | 
 |  | 
 | static int month_days[12] = { | 
 | 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
 | }; | 
 |  | 
 | void to_tm(unsigned long tim, struct rtc_time *tm) | 
 | { | 
 | 	long hms, day, gday; | 
 | 	int i; | 
 |  | 
 | 	gday = day = tim / SECDAY; | 
 | 	hms = tim % SECDAY; | 
 |  | 
 | 	/* Hours, minutes, seconds are easy */ | 
 | 	tm->tm_hour = hms / 3600; | 
 | 	tm->tm_min = (hms % 3600) / 60; | 
 | 	tm->tm_sec = (hms % 3600) % 60; | 
 |  | 
 | 	/* Number of years in days */ | 
 | 	for (i = STARTOFTIME; day >= days_in_year(i); i++) | 
 | 		day -= days_in_year(i); | 
 | 	tm->tm_year = i; | 
 |  | 
 | 	/* Number of months in days left */ | 
 | 	if (leapyear(tm->tm_year)) | 
 | 		days_in_month(FEBRUARY) = 29; | 
 | 	for (i = 1; day >= days_in_month(i); i++) | 
 | 		day -= days_in_month(i); | 
 | 	days_in_month(FEBRUARY) = 28; | 
 | 	tm->tm_mon = i - 1;		/* tm_mon starts from 0 to 11 */ | 
 |  | 
 | 	/* Days are what is left over (+1) from all that. */ | 
 | 	tm->tm_mday = day + 1; | 
 |  | 
 | 	/* | 
 | 	 * Determine the day of week | 
 | 	 */ | 
 | 	tm->tm_wday = (gday + 4) % 7;	/* 1970/1/1 was Thursday */ | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(rtc_lock); | 
 | EXPORT_SYMBOL(to_tm); | 
 | EXPORT_SYMBOL(rtc_set_time); | 
 | EXPORT_SYMBOL(rtc_get_time); | 
 |  | 
 | unsigned long long sched_clock(void) | 
 | { | 
 | 	return (unsigned long long)jiffies*(1000000000/HZ); | 
 | } |