|  | #ifndef _ASM_X86_SYSTEM_H | 
|  | #define _ASM_X86_SYSTEM_H | 
|  |  | 
|  | #include <asm/asm.h> | 
|  | #include <asm/segment.h> | 
|  | #include <asm/cpufeature.h> | 
|  | #include <asm/cmpxchg.h> | 
|  | #include <asm/nops.h> | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/irqflags.h> | 
|  |  | 
|  | /* entries in ARCH_DLINFO: */ | 
|  | #if defined(CONFIG_IA32_EMULATION) || !defined(CONFIG_X86_64) | 
|  | # define AT_VECTOR_SIZE_ARCH 2 | 
|  | #else /* else it's non-compat x86-64 */ | 
|  | # define AT_VECTOR_SIZE_ARCH 1 | 
|  | #endif | 
|  |  | 
|  | struct task_struct; /* one of the stranger aspects of C forward declarations */ | 
|  | struct task_struct *__switch_to(struct task_struct *prev, | 
|  | struct task_struct *next); | 
|  | struct tss_struct; | 
|  | void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, | 
|  | struct tss_struct *tss); | 
|  | extern void show_regs_common(void); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  |  | 
|  | #ifdef CONFIG_CC_STACKPROTECTOR | 
|  | #define __switch_canary							\ | 
|  | "movl %P[task_canary](%[next]), %%ebx\n\t"			\ | 
|  | "movl %%ebx, "__percpu_arg([stack_canary])"\n\t" | 
|  | #define __switch_canary_oparam						\ | 
|  | , [stack_canary] "=m" (stack_canary.canary) | 
|  | #define __switch_canary_iparam						\ | 
|  | , [task_canary] "i" (offsetof(struct task_struct, stack_canary)) | 
|  | #else	/* CC_STACKPROTECTOR */ | 
|  | #define __switch_canary | 
|  | #define __switch_canary_oparam | 
|  | #define __switch_canary_iparam | 
|  | #endif	/* CC_STACKPROTECTOR */ | 
|  |  | 
|  | /* | 
|  | * Saving eflags is important. It switches not only IOPL between tasks, | 
|  | * it also protects other tasks from NT leaking through sysenter etc. | 
|  | */ | 
|  | #define switch_to(prev, next, last)					\ | 
|  | do {									\ | 
|  | /*								\ | 
|  | * Context-switching clobbers all registers, so we clobber	\ | 
|  | * them explicitly, via unused output variables.		\ | 
|  | * (EAX and EBP is not listed because EBP is saved/restored	\ | 
|  | * explicitly for wchan access and EAX is the return value of	\ | 
|  | * __switch_to())						\ | 
|  | */								\ | 
|  | unsigned long ebx, ecx, edx, esi, edi;				\ | 
|  | \ | 
|  | asm volatile("pushfl\n\t"		/* save    flags */	\ | 
|  | "pushl %%ebp\n\t"		/* save    EBP   */	\ | 
|  | "movl %%esp,%[prev_sp]\n\t"	/* save    ESP   */ \ | 
|  | "movl %[next_sp],%%esp\n\t"	/* restore ESP   */ \ | 
|  | "movl $1f,%[prev_ip]\n\t"	/* save    EIP   */	\ | 
|  | "pushl %[next_ip]\n\t"	/* restore EIP   */	\ | 
|  | __switch_canary					\ | 
|  | "jmp __switch_to\n"	/* regparm call  */	\ | 
|  | "1:\t"						\ | 
|  | "popl %%ebp\n\t"		/* restore EBP   */	\ | 
|  | "popfl\n"			/* restore flags */	\ | 
|  | \ | 
|  | /* output parameters */				\ | 
|  | : [prev_sp] "=m" (prev->thread.sp),		\ | 
|  | [prev_ip] "=m" (prev->thread.ip),		\ | 
|  | "=a" (last),					\ | 
|  | \ | 
|  | /* clobbered output registers: */		\ | 
|  | "=b" (ebx), "=c" (ecx), "=d" (edx),		\ | 
|  | "=S" (esi), "=D" (edi)				\ | 
|  | \ | 
|  | __switch_canary_oparam				\ | 
|  | \ | 
|  | /* input parameters: */				\ | 
|  | : [next_sp]  "m" (next->thread.sp),		\ | 
|  | [next_ip]  "m" (next->thread.ip),		\ | 
|  | \ | 
|  | /* regparm parameters for __switch_to(): */	\ | 
|  | [prev]     "a" (prev),				\ | 
|  | [next]     "d" (next)				\ | 
|  | \ | 
|  | __switch_canary_iparam				\ | 
|  | \ | 
|  | : /* reloaded segment registers */			\ | 
|  | "memory");					\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * disable hlt during certain critical i/o operations | 
|  | */ | 
|  | #define HAVE_DISABLE_HLT | 
|  | #else | 
|  |  | 
|  | /* frame pointer must be last for get_wchan */ | 
|  | #define SAVE_CONTEXT    "pushf ; pushq %%rbp ; movq %%rsi,%%rbp\n\t" | 
|  | #define RESTORE_CONTEXT "movq %%rbp,%%rsi ; popq %%rbp ; popf\t" | 
|  |  | 
|  | #define __EXTRA_CLOBBER  \ | 
|  | , "rcx", "rbx", "rdx", "r8", "r9", "r10", "r11", \ | 
|  | "r12", "r13", "r14", "r15" | 
|  |  | 
|  | #ifdef CONFIG_CC_STACKPROTECTOR | 
|  | #define __switch_canary							  \ | 
|  | "movq %P[task_canary](%%rsi),%%r8\n\t"				  \ | 
|  | "movq %%r8,"__percpu_arg([gs_canary])"\n\t" | 
|  | #define __switch_canary_oparam						  \ | 
|  | , [gs_canary] "=m" (irq_stack_union.stack_canary) | 
|  | #define __switch_canary_iparam						  \ | 
|  | , [task_canary] "i" (offsetof(struct task_struct, stack_canary)) | 
|  | #else	/* CC_STACKPROTECTOR */ | 
|  | #define __switch_canary | 
|  | #define __switch_canary_oparam | 
|  | #define __switch_canary_iparam | 
|  | #endif	/* CC_STACKPROTECTOR */ | 
|  |  | 
|  | /* Save restore flags to clear handle leaking NT */ | 
|  | #define switch_to(prev, next, last) \ | 
|  | asm volatile(SAVE_CONTEXT					  \ | 
|  | "movq %%rsp,%P[threadrsp](%[prev])\n\t" /* save RSP */	  \ | 
|  | "movq %P[threadrsp](%[next]),%%rsp\n\t" /* restore RSP */	  \ | 
|  | "call __switch_to\n\t"					  \ | 
|  | "movq "__percpu_arg([current_task])",%%rsi\n\t"		  \ | 
|  | __switch_canary						  \ | 
|  | "movq %P[thread_info](%%rsi),%%r8\n\t"			  \ | 
|  | "movq %%rax,%%rdi\n\t" 					  \ | 
|  | "testl  %[_tif_fork],%P[ti_flags](%%r8)\n\t"		  \ | 
|  | "jnz   ret_from_fork\n\t"					  \ | 
|  | RESTORE_CONTEXT						  \ | 
|  | : "=a" (last)					  	  \ | 
|  | __switch_canary_oparam					  \ | 
|  | : [next] "S" (next), [prev] "D" (prev),			  \ | 
|  | [threadrsp] "i" (offsetof(struct task_struct, thread.sp)), \ | 
|  | [ti_flags] "i" (offsetof(struct thread_info, flags)),	  \ | 
|  | [_tif_fork] "i" (_TIF_FORK),			  	  \ | 
|  | [thread_info] "i" (offsetof(struct task_struct, stack)),   \ | 
|  | [current_task] "m" (current_task)			  \ | 
|  | __switch_canary_iparam					  \ | 
|  | : "memory", "cc" __EXTRA_CLOBBER) | 
|  | #endif | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | extern void native_load_gs_index(unsigned); | 
|  |  | 
|  | /* | 
|  | * Load a segment. Fall back on loading the zero | 
|  | * segment if something goes wrong.. | 
|  | */ | 
|  | #define loadsegment(seg, value)						\ | 
|  | do {									\ | 
|  | unsigned short __val = (value);					\ | 
|  | \ | 
|  | asm volatile("						\n"	\ | 
|  | "1:	movl %k0,%%" #seg "		\n"	\ | 
|  | \ | 
|  | ".section .fixup,\"ax\"			\n"	\ | 
|  | "2:	xorl %k0,%k0			\n"	\ | 
|  | "		jmp 1b				\n"	\ | 
|  | ".previous					\n"	\ | 
|  | \ | 
|  | _ASM_EXTABLE(1b, 2b)				\ | 
|  | \ | 
|  | : "+r" (__val) : : "memory");			\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Save a segment register away | 
|  | */ | 
|  | #define savesegment(seg, value)				\ | 
|  | asm("mov %%" #seg ",%0":"=r" (value) : : "memory") | 
|  |  | 
|  | /* | 
|  | * x86_32 user gs accessors. | 
|  | */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | #ifdef CONFIG_X86_32_LAZY_GS | 
|  | #define get_user_gs(regs)	(u16)({unsigned long v; savesegment(gs, v); v;}) | 
|  | #define set_user_gs(regs, v)	loadsegment(gs, (unsigned long)(v)) | 
|  | #define task_user_gs(tsk)	((tsk)->thread.gs) | 
|  | #define lazy_save_gs(v)		savesegment(gs, (v)) | 
|  | #define lazy_load_gs(v)		loadsegment(gs, (v)) | 
|  | #else	/* X86_32_LAZY_GS */ | 
|  | #define get_user_gs(regs)	(u16)((regs)->gs) | 
|  | #define set_user_gs(regs, v)	do { (regs)->gs = (v); } while (0) | 
|  | #define task_user_gs(tsk)	(task_pt_regs(tsk)->gs) | 
|  | #define lazy_save_gs(v)		do { } while (0) | 
|  | #define lazy_load_gs(v)		do { } while (0) | 
|  | #endif	/* X86_32_LAZY_GS */ | 
|  | #endif	/* X86_32 */ | 
|  |  | 
|  | static inline unsigned long get_limit(unsigned long segment) | 
|  | { | 
|  | unsigned long __limit; | 
|  | asm("lsll %1,%0" : "=r" (__limit) : "r" (segment)); | 
|  | return __limit + 1; | 
|  | } | 
|  |  | 
|  | static inline void native_clts(void) | 
|  | { | 
|  | asm volatile("clts"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Volatile isn't enough to prevent the compiler from reordering the | 
|  | * read/write functions for the control registers and messing everything up. | 
|  | * A memory clobber would solve the problem, but would prevent reordering of | 
|  | * all loads stores around it, which can hurt performance. Solution is to | 
|  | * use a variable and mimic reads and writes to it to enforce serialization | 
|  | */ | 
|  | static unsigned long __force_order; | 
|  |  | 
|  | static inline unsigned long native_read_cr0(void) | 
|  | { | 
|  | unsigned long val; | 
|  | asm volatile("mov %%cr0,%0\n\t" : "=r" (val), "=m" (__force_order)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline void native_write_cr0(unsigned long val) | 
|  | { | 
|  | asm volatile("mov %0,%%cr0": : "r" (val), "m" (__force_order)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long native_read_cr2(void) | 
|  | { | 
|  | unsigned long val; | 
|  | asm volatile("mov %%cr2,%0\n\t" : "=r" (val), "=m" (__force_order)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline void native_write_cr2(unsigned long val) | 
|  | { | 
|  | asm volatile("mov %0,%%cr2": : "r" (val), "m" (__force_order)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long native_read_cr3(void) | 
|  | { | 
|  | unsigned long val; | 
|  | asm volatile("mov %%cr3,%0\n\t" : "=r" (val), "=m" (__force_order)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline void native_write_cr3(unsigned long val) | 
|  | { | 
|  | asm volatile("mov %0,%%cr3": : "r" (val), "m" (__force_order)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long native_read_cr4(void) | 
|  | { | 
|  | unsigned long val; | 
|  | asm volatile("mov %%cr4,%0\n\t" : "=r" (val), "=m" (__force_order)); | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline unsigned long native_read_cr4_safe(void) | 
|  | { | 
|  | unsigned long val; | 
|  | /* This could fault if %cr4 does not exist. In x86_64, a cr4 always | 
|  | * exists, so it will never fail. */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | asm volatile("1: mov %%cr4, %0\n" | 
|  | "2:\n" | 
|  | _ASM_EXTABLE(1b, 2b) | 
|  | : "=r" (val), "=m" (__force_order) : "0" (0)); | 
|  | #else | 
|  | val = native_read_cr4(); | 
|  | #endif | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static inline void native_write_cr4(unsigned long val) | 
|  | { | 
|  | asm volatile("mov %0,%%cr4": : "r" (val), "m" (__force_order)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static inline unsigned long native_read_cr8(void) | 
|  | { | 
|  | unsigned long cr8; | 
|  | asm volatile("movq %%cr8,%0" : "=r" (cr8)); | 
|  | return cr8; | 
|  | } | 
|  |  | 
|  | static inline void native_write_cr8(unsigned long val) | 
|  | { | 
|  | asm volatile("movq %0,%%cr8" :: "r" (val) : "memory"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void native_wbinvd(void) | 
|  | { | 
|  | asm volatile("wbinvd": : :"memory"); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PARAVIRT | 
|  | #include <asm/paravirt.h> | 
|  | #else | 
|  |  | 
|  | static inline unsigned long read_cr0(void) | 
|  | { | 
|  | return native_read_cr0(); | 
|  | } | 
|  |  | 
|  | static inline void write_cr0(unsigned long x) | 
|  | { | 
|  | native_write_cr0(x); | 
|  | } | 
|  |  | 
|  | static inline unsigned long read_cr2(void) | 
|  | { | 
|  | return native_read_cr2(); | 
|  | } | 
|  |  | 
|  | static inline void write_cr2(unsigned long x) | 
|  | { | 
|  | native_write_cr2(x); | 
|  | } | 
|  |  | 
|  | static inline unsigned long read_cr3(void) | 
|  | { | 
|  | return native_read_cr3(); | 
|  | } | 
|  |  | 
|  | static inline void write_cr3(unsigned long x) | 
|  | { | 
|  | native_write_cr3(x); | 
|  | } | 
|  |  | 
|  | static inline unsigned long read_cr4(void) | 
|  | { | 
|  | return native_read_cr4(); | 
|  | } | 
|  |  | 
|  | static inline unsigned long read_cr4_safe(void) | 
|  | { | 
|  | return native_read_cr4_safe(); | 
|  | } | 
|  |  | 
|  | static inline void write_cr4(unsigned long x) | 
|  | { | 
|  | native_write_cr4(x); | 
|  | } | 
|  |  | 
|  | static inline void wbinvd(void) | 
|  | { | 
|  | native_wbinvd(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  |  | 
|  | static inline unsigned long read_cr8(void) | 
|  | { | 
|  | return native_read_cr8(); | 
|  | } | 
|  |  | 
|  | static inline void write_cr8(unsigned long x) | 
|  | { | 
|  | native_write_cr8(x); | 
|  | } | 
|  |  | 
|  | static inline void load_gs_index(unsigned selector) | 
|  | { | 
|  | native_load_gs_index(selector); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* Clear the 'TS' bit */ | 
|  | static inline void clts(void) | 
|  | { | 
|  | native_clts(); | 
|  | } | 
|  |  | 
|  | #endif/* CONFIG_PARAVIRT */ | 
|  |  | 
|  | #define stts() write_cr0(read_cr0() | X86_CR0_TS) | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | static inline void clflush(volatile void *__p) | 
|  | { | 
|  | asm volatile("clflush %0" : "+m" (*(volatile char __force *)__p)); | 
|  | } | 
|  |  | 
|  | #define nop() asm volatile ("nop") | 
|  |  | 
|  | void disable_hlt(void); | 
|  | void enable_hlt(void); | 
|  |  | 
|  | void cpu_idle_wait(void); | 
|  |  | 
|  | extern unsigned long arch_align_stack(unsigned long sp); | 
|  | extern void free_init_pages(char *what, unsigned long begin, unsigned long end); | 
|  |  | 
|  | void default_idle(void); | 
|  |  | 
|  | void stop_this_cpu(void *dummy); | 
|  |  | 
|  | /* | 
|  | * Force strict CPU ordering. | 
|  | * And yes, this is required on UP too when we're talking | 
|  | * to devices. | 
|  | */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* | 
|  | * Some non-Intel clones support out of order store. wmb() ceases to be a | 
|  | * nop for these. | 
|  | */ | 
|  | #define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2) | 
|  | #define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2) | 
|  | #define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM) | 
|  | #else | 
|  | #define mb() 	asm volatile("mfence":::"memory") | 
|  | #define rmb()	asm volatile("lfence":::"memory") | 
|  | #define wmb()	asm volatile("sfence" ::: "memory") | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * read_barrier_depends - Flush all pending reads that subsequents reads | 
|  | * depend on. | 
|  | * | 
|  | * No data-dependent reads from memory-like regions are ever reordered | 
|  | * over this barrier.  All reads preceding this primitive are guaranteed | 
|  | * to access memory (but not necessarily other CPUs' caches) before any | 
|  | * reads following this primitive that depend on the data return by | 
|  | * any of the preceding reads.  This primitive is much lighter weight than | 
|  | * rmb() on most CPUs, and is never heavier weight than is | 
|  | * rmb(). | 
|  | * | 
|  | * These ordering constraints are respected by both the local CPU | 
|  | * and the compiler. | 
|  | * | 
|  | * Ordering is not guaranteed by anything other than these primitives, | 
|  | * not even by data dependencies.  See the documentation for | 
|  | * memory_barrier() for examples and URLs to more information. | 
|  | * | 
|  | * For example, the following code would force ordering (the initial | 
|  | * value of "a" is zero, "b" is one, and "p" is "&a"): | 
|  | * | 
|  | * <programlisting> | 
|  | *	CPU 0				CPU 1 | 
|  | * | 
|  | *	b = 2; | 
|  | *	memory_barrier(); | 
|  | *	p = &b;				q = p; | 
|  | *					read_barrier_depends(); | 
|  | *					d = *q; | 
|  | * </programlisting> | 
|  | * | 
|  | * because the read of "*q" depends on the read of "p" and these | 
|  | * two reads are separated by a read_barrier_depends().  However, | 
|  | * the following code, with the same initial values for "a" and "b": | 
|  | * | 
|  | * <programlisting> | 
|  | *	CPU 0				CPU 1 | 
|  | * | 
|  | *	a = 2; | 
|  | *	memory_barrier(); | 
|  | *	b = 3;				y = b; | 
|  | *					read_barrier_depends(); | 
|  | *					x = a; | 
|  | * </programlisting> | 
|  | * | 
|  | * does not enforce ordering, since there is no data dependency between | 
|  | * the read of "a" and the read of "b".  Therefore, on some CPUs, such | 
|  | * as Alpha, "y" could be set to 3 and "x" to 0.  Use rmb() | 
|  | * in cases like this where there are no data dependencies. | 
|  | **/ | 
|  |  | 
|  | #define read_barrier_depends()	do { } while (0) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define smp_mb()	mb() | 
|  | #ifdef CONFIG_X86_PPRO_FENCE | 
|  | # define smp_rmb()	rmb() | 
|  | #else | 
|  | # define smp_rmb()	barrier() | 
|  | #endif | 
|  | #ifdef CONFIG_X86_OOSTORE | 
|  | # define smp_wmb() 	wmb() | 
|  | #else | 
|  | # define smp_wmb()	barrier() | 
|  | #endif | 
|  | #define smp_read_barrier_depends()	read_barrier_depends() | 
|  | #define set_mb(var, value) do { (void)xchg(&var, value); } while (0) | 
|  | #else | 
|  | #define smp_mb()	barrier() | 
|  | #define smp_rmb()	barrier() | 
|  | #define smp_wmb()	barrier() | 
|  | #define smp_read_barrier_depends()	do { } while (0) | 
|  | #define set_mb(var, value) do { var = value; barrier(); } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Stop RDTSC speculation. This is needed when you need to use RDTSC | 
|  | * (or get_cycles or vread that possibly accesses the TSC) in a defined | 
|  | * code region. | 
|  | * | 
|  | * (Could use an alternative three way for this if there was one.) | 
|  | */ | 
|  | static __always_inline void rdtsc_barrier(void) | 
|  | { | 
|  | alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC); | 
|  | alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We handle most unaligned accesses in hardware.  On the other hand | 
|  | * unaligned DMA can be quite expensive on some Nehalem processors. | 
|  | * | 
|  | * Based on this we disable the IP header alignment in network drivers. | 
|  | */ | 
|  | #define NET_IP_ALIGN	0 | 
|  | #endif /* _ASM_X86_SYSTEM_H */ |