|  | /* cyberstorm.c: Driver for CyberStorm SCSI Controller. | 
|  | * | 
|  | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | 
|  | * | 
|  | * The CyberStorm SCSI driver is based on David S. Miller's ESP driver | 
|  | * for the Sparc computers. | 
|  | * | 
|  | * This work was made possible by Phase5 who willingly (and most generously) | 
|  | * supported me with hardware and all the information I needed. | 
|  | */ | 
|  |  | 
|  | /* TODO: | 
|  | * | 
|  | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | 
|  | *    to the caches and the Sparc MMU mapping. | 
|  | * 2) Make as few routines required outside the generic driver. A lot of the | 
|  | *    routines in this file used to be inline! | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #include "scsi.h" | 
|  | #include <scsi/scsi_host.h> | 
|  | #include "NCR53C9x.h" | 
|  |  | 
|  | #include <linux/zorro.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/amigaints.h> | 
|  | #include <asm/amigahw.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | /* The controller registers can be found in the Z2 config area at these | 
|  | * offsets: | 
|  | */ | 
|  | #define CYBER_ESP_ADDR 0xf400 | 
|  | #define CYBER_DMA_ADDR 0xf800 | 
|  |  | 
|  |  | 
|  | /* The CyberStorm DMA interface */ | 
|  | struct cyber_dma_registers { | 
|  | volatile unsigned char dma_addr0;	/* DMA address (MSB) [0x000] */ | 
|  | unsigned char dmapad1[1]; | 
|  | volatile unsigned char dma_addr1;	/* DMA address       [0x002] */ | 
|  | unsigned char dmapad2[1]; | 
|  | volatile unsigned char dma_addr2;	/* DMA address       [0x004] */ | 
|  | unsigned char dmapad3[1]; | 
|  | volatile unsigned char dma_addr3;	/* DMA address (LSB) [0x006] */ | 
|  | unsigned char dmapad4[0x3fb]; | 
|  | volatile unsigned char cond_reg;        /* DMA cond    (ro)  [0x402] */ | 
|  | #define ctrl_reg  cond_reg			/* DMA control (wo)  [0x402] */ | 
|  | }; | 
|  |  | 
|  | /* DMA control bits */ | 
|  | #define CYBER_DMA_LED    0x80	/* HD led control 1 = on */ | 
|  | #define CYBER_DMA_WRITE  0x40	/* DMA direction. 1 = write */ | 
|  | #define CYBER_DMA_Z3     0x20	/* 16 (Z2) or 32 (CHIP/Z3) bit DMA transfer */ | 
|  |  | 
|  | /* DMA status bits */ | 
|  | #define CYBER_DMA_HNDL_INTR 0x80	/* DMA IRQ pending? */ | 
|  |  | 
|  | /* The bits below appears to be Phase5 Debug bits only; they were not | 
|  | * described by Phase5 so using them may seem a bit stupid... | 
|  | */ | 
|  | #define CYBER_HOST_ID 0x02	/* If set, host ID should be 7, otherwise | 
|  | * it should be 6. | 
|  | */ | 
|  | #define CYBER_SLOW_CABLE 0x08	/* If *not* set, assume SLOW_CABLE */ | 
|  |  | 
|  | static int  dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | 
|  | static int  dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | 
|  | static void dma_dump_state(struct NCR_ESP *esp); | 
|  | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | 
|  | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | 
|  | static void dma_ints_off(struct NCR_ESP *esp); | 
|  | static void dma_ints_on(struct NCR_ESP *esp); | 
|  | static int  dma_irq_p(struct NCR_ESP *esp); | 
|  | static void dma_led_off(struct NCR_ESP *esp); | 
|  | static void dma_led_on(struct NCR_ESP *esp); | 
|  | static int  dma_ports_p(struct NCR_ESP *esp); | 
|  | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | 
|  |  | 
|  | static unsigned char ctrl_data = 0;	/* Keep backup of the stuff written | 
|  | * to ctrl_reg. Always write a copy | 
|  | * to this register when writing to | 
|  | * the hardware register! | 
|  | */ | 
|  |  | 
|  | static volatile unsigned char cmd_buffer[16]; | 
|  | /* This is where all commands are put | 
|  | * before they are transferred to the ESP chip | 
|  | * via PIO. | 
|  | */ | 
|  |  | 
|  | /***************************************************************** Detection */ | 
|  | int __init cyber_esp_detect(struct scsi_host_template *tpnt) | 
|  | { | 
|  | struct NCR_ESP *esp; | 
|  | struct zorro_dev *z = NULL; | 
|  | unsigned long address; | 
|  |  | 
|  | while ((z = zorro_find_device(ZORRO_WILDCARD, z))) { | 
|  | unsigned long board = z->resource.start; | 
|  | if ((z->id == ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM || | 
|  | z->id == ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060) && | 
|  | request_mem_region(board+CYBER_ESP_ADDR, | 
|  | sizeof(struct ESP_regs), "NCR53C9x")) { | 
|  | /* Figure out if this is a CyberStorm or really a | 
|  | * Fastlane/Blizzard Mk II by looking at the board size. | 
|  | * CyberStorm maps 64kB | 
|  | * (ZORRO_PROD_PHASE5_BLIZZARD_1220_CYBERSTORM does anyway) | 
|  | */ | 
|  | if(z->resource.end-board != 0xffff) { | 
|  | release_mem_region(board+CYBER_ESP_ADDR, | 
|  | sizeof(struct ESP_regs)); | 
|  | return 0; | 
|  | } | 
|  | esp = esp_allocate(tpnt, (void *)board + CYBER_ESP_ADDR, 0); | 
|  |  | 
|  | /* Do command transfer with programmed I/O */ | 
|  | esp->do_pio_cmds = 1; | 
|  |  | 
|  | /* Required functions */ | 
|  | esp->dma_bytes_sent = &dma_bytes_sent; | 
|  | esp->dma_can_transfer = &dma_can_transfer; | 
|  | esp->dma_dump_state = &dma_dump_state; | 
|  | esp->dma_init_read = &dma_init_read; | 
|  | esp->dma_init_write = &dma_init_write; | 
|  | esp->dma_ints_off = &dma_ints_off; | 
|  | esp->dma_ints_on = &dma_ints_on; | 
|  | esp->dma_irq_p = &dma_irq_p; | 
|  | esp->dma_ports_p = &dma_ports_p; | 
|  | esp->dma_setup = &dma_setup; | 
|  |  | 
|  | /* Optional functions */ | 
|  | esp->dma_barrier = 0; | 
|  | esp->dma_drain = 0; | 
|  | esp->dma_invalidate = 0; | 
|  | esp->dma_irq_entry = 0; | 
|  | esp->dma_irq_exit = 0; | 
|  | esp->dma_led_on = &dma_led_on; | 
|  | esp->dma_led_off = &dma_led_off; | 
|  | esp->dma_poll = 0; | 
|  | esp->dma_reset = 0; | 
|  |  | 
|  | /* SCSI chip speed */ | 
|  | esp->cfreq = 40000000; | 
|  |  | 
|  | /* The DMA registers on the CyberStorm are mapped | 
|  | * relative to the device (i.e. in the same Zorro | 
|  | * I/O block). | 
|  | */ | 
|  | address = (unsigned long)ZTWO_VADDR(board); | 
|  | esp->dregs = (void *)(address + CYBER_DMA_ADDR); | 
|  |  | 
|  | /* ESP register base */ | 
|  | esp->eregs = (struct ESP_regs *)(address + CYBER_ESP_ADDR); | 
|  |  | 
|  | /* Set the command buffer */ | 
|  | esp->esp_command = cmd_buffer; | 
|  | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | 
|  |  | 
|  | esp->irq = IRQ_AMIGA_PORTS; | 
|  | request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | 
|  | "CyberStorm SCSI", esp->ehost); | 
|  | /* Figure out our scsi ID on the bus */ | 
|  | /* The DMA cond flag contains a hardcoded jumper bit | 
|  | * which can be used to select host number 6 or 7. | 
|  | * However, even though it may change, we use a hardcoded | 
|  | * value of 7. | 
|  | */ | 
|  | esp->scsi_id = 7; | 
|  |  | 
|  | /* We don't have a differential SCSI-bus. */ | 
|  | esp->diff = 0; | 
|  |  | 
|  | esp_initialize(esp); | 
|  |  | 
|  | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | 
|  | esps_running = esps_in_use; | 
|  | return esps_in_use; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************************************************************* DMA Functions */ | 
|  | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | 
|  | { | 
|  | /* Since the CyberStorm DMA is fully dedicated to the ESP chip, | 
|  | * the number of bytes sent (to the ESP chip) equals the number | 
|  | * of bytes in the FIFO - there is no buffering in the DMA controller. | 
|  | * XXXX Do I read this right? It is from host to ESP, right? | 
|  | */ | 
|  | return fifo_count; | 
|  | } | 
|  |  | 
|  | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | 
|  | { | 
|  | /* I don't think there's any limit on the CyberDMA. So we use what | 
|  | * the ESP chip can handle (24 bit). | 
|  | */ | 
|  | unsigned long sz = sp->SCp.this_residual; | 
|  | if(sz > 0x1000000) | 
|  | sz = 0x1000000; | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static void dma_dump_state(struct NCR_ESP *esp) | 
|  | { | 
|  | ESPLOG(("esp%d: dma -- cond_reg<%02x>\n", | 
|  | esp->esp_id, ((struct cyber_dma_registers *) | 
|  | (esp->dregs))->cond_reg)); | 
|  | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | 
|  | amiga_custom.intreqr, amiga_custom.intenar)); | 
|  | } | 
|  |  | 
|  | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | 
|  | { | 
|  | struct cyber_dma_registers *dregs = | 
|  | (struct cyber_dma_registers *) esp->dregs; | 
|  |  | 
|  | cache_clear(addr, length); | 
|  |  | 
|  | addr &= ~(1); | 
|  | dregs->dma_addr0 = (addr >> 24) & 0xff; | 
|  | dregs->dma_addr1 = (addr >> 16) & 0xff; | 
|  | dregs->dma_addr2 = (addr >>  8) & 0xff; | 
|  | dregs->dma_addr3 = (addr      ) & 0xff; | 
|  | ctrl_data &= ~(CYBER_DMA_WRITE); | 
|  |  | 
|  | /* Check if physical address is outside Z2 space and of | 
|  | * block length/block aligned in memory. If this is the | 
|  | * case, enable 32 bit transfer. In all other cases, fall back | 
|  | * to 16 bit transfer. | 
|  | * Obviously 32 bit transfer should be enabled if the DMA address | 
|  | * and length are 32 bit aligned. However, this leads to some | 
|  | * strange behavior. Even 64 bit aligned addr/length fails. | 
|  | * Until I've found a reason for this, 32 bit transfer is only | 
|  | * used for full-block transfers (1kB). | 
|  | *							-jskov | 
|  | */ | 
|  | #if 0 | 
|  | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && | 
|  | (addr < 0xff0000))) | 
|  | ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */ | 
|  | else | 
|  | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ | 
|  | #else | 
|  | ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */ | 
|  | #endif | 
|  | dregs->ctrl_reg = ctrl_data; | 
|  | } | 
|  |  | 
|  | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | 
|  | { | 
|  | struct cyber_dma_registers *dregs = | 
|  | (struct cyber_dma_registers *) esp->dregs; | 
|  |  | 
|  | cache_push(addr, length); | 
|  |  | 
|  | addr |= 1; | 
|  | dregs->dma_addr0 = (addr >> 24) & 0xff; | 
|  | dregs->dma_addr1 = (addr >> 16) & 0xff; | 
|  | dregs->dma_addr2 = (addr >>  8) & 0xff; | 
|  | dregs->dma_addr3 = (addr      ) & 0xff; | 
|  | ctrl_data |= CYBER_DMA_WRITE; | 
|  |  | 
|  | /* See comment above */ | 
|  | #if 0 | 
|  | if((addr & 0x3fc) || length & 0x3ff || ((addr > 0x200000) && | 
|  | (addr < 0xff0000))) | 
|  | ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */ | 
|  | else | 
|  | ctrl_data |= CYBER_DMA_Z3; /* CHIP/Z3, do 32 bit DMA */ | 
|  | #else | 
|  | ctrl_data &= ~(CYBER_DMA_Z3);	/* Z2, do 16 bit DMA */ | 
|  | #endif | 
|  | dregs->ctrl_reg = ctrl_data; | 
|  | } | 
|  |  | 
|  | static void dma_ints_off(struct NCR_ESP *esp) | 
|  | { | 
|  | disable_irq(esp->irq); | 
|  | } | 
|  |  | 
|  | static void dma_ints_on(struct NCR_ESP *esp) | 
|  | { | 
|  | enable_irq(esp->irq); | 
|  | } | 
|  |  | 
|  | static int dma_irq_p(struct NCR_ESP *esp) | 
|  | { | 
|  | /* It's important to check the DMA IRQ bit in the correct way! */ | 
|  | return ((esp_read(esp->eregs->esp_status) & ESP_STAT_INTR) && | 
|  | ((((struct cyber_dma_registers *)(esp->dregs))->cond_reg) & | 
|  | CYBER_DMA_HNDL_INTR)); | 
|  | } | 
|  |  | 
|  | static void dma_led_off(struct NCR_ESP *esp) | 
|  | { | 
|  | ctrl_data &= ~CYBER_DMA_LED; | 
|  | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | 
|  | } | 
|  |  | 
|  | static void dma_led_on(struct NCR_ESP *esp) | 
|  | { | 
|  | ctrl_data |= CYBER_DMA_LED; | 
|  | ((struct cyber_dma_registers *)(esp->dregs))->ctrl_reg = ctrl_data; | 
|  | } | 
|  |  | 
|  | static int dma_ports_p(struct NCR_ESP *esp) | 
|  | { | 
|  | return ((amiga_custom.intenar) & IF_PORTS); | 
|  | } | 
|  |  | 
|  | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | 
|  | { | 
|  | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | 
|  | * so when (write) is true, it actually means READ! | 
|  | */ | 
|  | if(write){ | 
|  | dma_init_read(esp, addr, count); | 
|  | } else { | 
|  | dma_init_write(esp, addr, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define HOSTS_C | 
|  |  | 
|  | int cyber_esp_release(struct Scsi_Host *instance) | 
|  | { | 
|  | #ifdef MODULE | 
|  | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | 
|  |  | 
|  | esp_deallocate((struct NCR_ESP *)instance->hostdata); | 
|  | esp_release(); | 
|  | release_mem_region(address, sizeof(struct ESP_regs)); | 
|  | free_irq(IRQ_AMIGA_PORTS, esp_intr); | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct scsi_host_template driver_template = { | 
|  | .proc_name		= "esp-cyberstorm", | 
|  | .proc_info		= esp_proc_info, | 
|  | .name			= "CyberStorm SCSI", | 
|  | .detect			= cyber_esp_detect, | 
|  | .slave_alloc		= esp_slave_alloc, | 
|  | .slave_destroy		= esp_slave_destroy, | 
|  | .release		= cyber_esp_release, | 
|  | .queuecommand		= esp_queue, | 
|  | .eh_abort_handler	= esp_abort, | 
|  | .eh_bus_reset_handler	= esp_reset, | 
|  | .can_queue		= 7, | 
|  | .this_id		= 7, | 
|  | .sg_tablesize		= SG_ALL, | 
|  | .cmd_per_lun		= 1, | 
|  | .use_clustering		= ENABLE_CLUSTERING | 
|  | }; | 
|  |  | 
|  |  | 
|  | #include "scsi_module.c" | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |