|  | /* | 
|  | * Copyright (c) 2000, 2003 Silicon Graphics, Inc.  All rights reserved. | 
|  | * Copyright (c) 2001 Intel Corp. | 
|  | * Copyright (c) 2001 Tony Luck <tony.luck@intel.com> | 
|  | * Copyright (c) 2002 NEC Corp. | 
|  | * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com> | 
|  | * Copyright (c) 2004 Silicon Graphics, Inc | 
|  | *	Russ Anderson <rja@sgi.com> | 
|  | *	Jesse Barnes <jbarnes@sgi.com> | 
|  | *	Jack Steiner <steiner@sgi.com> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Platform initialization for Discontig Memory | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/efi.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/meminit.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/sections.h> | 
|  |  | 
|  | /* | 
|  | * Track per-node information needed to setup the boot memory allocator, the | 
|  | * per-node areas, and the real VM. | 
|  | */ | 
|  | struct early_node_data { | 
|  | struct ia64_node_data *node_data; | 
|  | unsigned long pernode_addr; | 
|  | unsigned long pernode_size; | 
|  | unsigned long num_physpages; | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | unsigned long num_dma_physpages; | 
|  | #endif | 
|  | unsigned long min_pfn; | 
|  | unsigned long max_pfn; | 
|  | }; | 
|  |  | 
|  | static struct early_node_data mem_data[MAX_NUMNODES] __initdata; | 
|  | static nodemask_t memory_less_mask __initdata; | 
|  |  | 
|  | pg_data_t *pgdat_list[MAX_NUMNODES]; | 
|  |  | 
|  | /* | 
|  | * To prevent cache aliasing effects, align per-node structures so that they | 
|  | * start at addresses that are strided by node number. | 
|  | */ | 
|  | #define MAX_NODE_ALIGN_OFFSET	(32 * 1024 * 1024) | 
|  | #define NODEDATA_ALIGN(addr, node)						\ | 
|  | ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + 				\ | 
|  | (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1))) | 
|  |  | 
|  | /** | 
|  | * build_node_maps - callback to setup bootmem structs for each node | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * We allocate a struct bootmem_data for each piece of memory that we wish to | 
|  | * treat as a virtually contiguous block (i.e. each node). Each such block | 
|  | * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down | 
|  | * if necessary.  Any non-existent pages will simply be part of the virtual | 
|  | * memmap.  We also update min_low_pfn and max_low_pfn here as we receive | 
|  | * memory ranges from the caller. | 
|  | */ | 
|  | static int __init build_node_maps(unsigned long start, unsigned long len, | 
|  | int node) | 
|  | { | 
|  | unsigned long spfn, epfn, end = start + len; | 
|  | struct bootmem_data *bdp = &bootmem_node_data[node]; | 
|  |  | 
|  | epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT; | 
|  | spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT; | 
|  |  | 
|  | if (!bdp->node_low_pfn) { | 
|  | bdp->node_min_pfn = spfn; | 
|  | bdp->node_low_pfn = epfn; | 
|  | } else { | 
|  | bdp->node_min_pfn = min(spfn, bdp->node_min_pfn); | 
|  | bdp->node_low_pfn = max(epfn, bdp->node_low_pfn); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * early_nr_cpus_node - return number of cpus on a given node | 
|  | * @node: node to check | 
|  | * | 
|  | * Count the number of cpus on @node.  We can't use nr_cpus_node() yet because | 
|  | * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been | 
|  | * called yet.  Note that node 0 will also count all non-existent cpus. | 
|  | */ | 
|  | static int __meminit early_nr_cpus_node(int node) | 
|  | { | 
|  | int cpu, n = 0; | 
|  |  | 
|  | for_each_possible_early_cpu(cpu) | 
|  | if (node == node_cpuid[cpu].nid) | 
|  | n++; | 
|  |  | 
|  | return n; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * compute_pernodesize - compute size of pernode data | 
|  | * @node: the node id. | 
|  | */ | 
|  | static unsigned long __meminit compute_pernodesize(int node) | 
|  | { | 
|  | unsigned long pernodesize = 0, cpus; | 
|  |  | 
|  | cpus = early_nr_cpus_node(node); | 
|  | pernodesize += PERCPU_PAGE_SIZE * cpus; | 
|  | pernodesize += node * L1_CACHE_BYTES; | 
|  | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  | pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | 
|  | pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  | pernodesize = PAGE_ALIGN(pernodesize); | 
|  | return pernodesize; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * per_cpu_node_setup - setup per-cpu areas on each node | 
|  | * @cpu_data: per-cpu area on this node | 
|  | * @node: node to setup | 
|  | * | 
|  | * Copy the static per-cpu data into the region we just set aside and then | 
|  | * setup __per_cpu_offset for each CPU on this node.  Return a pointer to | 
|  | * the end of the area. | 
|  | */ | 
|  | static void *per_cpu_node_setup(void *cpu_data, int node) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_early_cpu(cpu) { | 
|  | void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start; | 
|  |  | 
|  | if (node != node_cpuid[cpu].nid) | 
|  | continue; | 
|  |  | 
|  | memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start); | 
|  | __per_cpu_offset[cpu] = (char *)__va(cpu_data) - | 
|  | __per_cpu_start; | 
|  |  | 
|  | /* | 
|  | * percpu area for cpu0 is moved from the __init area | 
|  | * which is setup by head.S and used till this point. | 
|  | * Update ar.k3.  This move is ensures that percpu | 
|  | * area for cpu0 is on the correct node and its | 
|  | * virtual address isn't insanely far from other | 
|  | * percpu areas which is important for congruent | 
|  | * percpu allocator. | 
|  | */ | 
|  | if (cpu == 0) | 
|  | ia64_set_kr(IA64_KR_PER_CPU_DATA, | 
|  | (unsigned long)cpu_data - | 
|  | (unsigned long)__per_cpu_start); | 
|  |  | 
|  | cpu_data += PERCPU_PAGE_SIZE; | 
|  | } | 
|  | #endif | 
|  | return cpu_data; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /** | 
|  | * setup_per_cpu_areas - setup percpu areas | 
|  | * | 
|  | * Arch code has already allocated and initialized percpu areas.  All | 
|  | * this function has to do is to teach the determined layout to the | 
|  | * dynamic percpu allocator, which happens to be more complex than | 
|  | * creating whole new ones using helpers. | 
|  | */ | 
|  | void __init setup_per_cpu_areas(void) | 
|  | { | 
|  | struct pcpu_alloc_info *ai; | 
|  | struct pcpu_group_info *uninitialized_var(gi); | 
|  | unsigned int *cpu_map; | 
|  | void *base; | 
|  | unsigned long base_offset; | 
|  | unsigned int cpu; | 
|  | ssize_t static_size, reserved_size, dyn_size; | 
|  | int node, prev_node, unit, nr_units, rc; | 
|  |  | 
|  | ai = pcpu_alloc_alloc_info(MAX_NUMNODES, nr_cpu_ids); | 
|  | if (!ai) | 
|  | panic("failed to allocate pcpu_alloc_info"); | 
|  | cpu_map = ai->groups[0].cpu_map; | 
|  |  | 
|  | /* determine base */ | 
|  | base = (void *)ULONG_MAX; | 
|  | for_each_possible_cpu(cpu) | 
|  | base = min(base, | 
|  | (void *)(__per_cpu_offset[cpu] + __per_cpu_start)); | 
|  | base_offset = (void *)__per_cpu_start - base; | 
|  |  | 
|  | /* build cpu_map, units are grouped by node */ | 
|  | unit = 0; | 
|  | for_each_node(node) | 
|  | for_each_possible_cpu(cpu) | 
|  | if (node == node_cpuid[cpu].nid) | 
|  | cpu_map[unit++] = cpu; | 
|  | nr_units = unit; | 
|  |  | 
|  | /* set basic parameters */ | 
|  | static_size = __per_cpu_end - __per_cpu_start; | 
|  | reserved_size = PERCPU_MODULE_RESERVE; | 
|  | dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size; | 
|  | if (dyn_size < 0) | 
|  | panic("percpu area overflow static=%zd reserved=%zd\n", | 
|  | static_size, reserved_size); | 
|  |  | 
|  | ai->static_size		= static_size; | 
|  | ai->reserved_size	= reserved_size; | 
|  | ai->dyn_size		= dyn_size; | 
|  | ai->unit_size		= PERCPU_PAGE_SIZE; | 
|  | ai->atom_size		= PAGE_SIZE; | 
|  | ai->alloc_size		= PERCPU_PAGE_SIZE; | 
|  |  | 
|  | /* | 
|  | * CPUs are put into groups according to node.  Walk cpu_map | 
|  | * and create new groups at node boundaries. | 
|  | */ | 
|  | prev_node = -1; | 
|  | ai->nr_groups = 0; | 
|  | for (unit = 0; unit < nr_units; unit++) { | 
|  | cpu = cpu_map[unit]; | 
|  | node = node_cpuid[cpu].nid; | 
|  |  | 
|  | if (node == prev_node) { | 
|  | gi->nr_units++; | 
|  | continue; | 
|  | } | 
|  | prev_node = node; | 
|  |  | 
|  | gi = &ai->groups[ai->nr_groups++]; | 
|  | gi->nr_units		= 1; | 
|  | gi->base_offset		= __per_cpu_offset[cpu] + base_offset; | 
|  | gi->cpu_map		= &cpu_map[unit]; | 
|  | } | 
|  |  | 
|  | rc = pcpu_setup_first_chunk(ai, base); | 
|  | if (rc) | 
|  | panic("failed to setup percpu area (err=%d)", rc); | 
|  |  | 
|  | pcpu_free_alloc_info(ai); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * fill_pernode - initialize pernode data. | 
|  | * @node: the node id. | 
|  | * @pernode: physical address of pernode data | 
|  | * @pernodesize: size of the pernode data | 
|  | */ | 
|  | static void __init fill_pernode(int node, unsigned long pernode, | 
|  | unsigned long pernodesize) | 
|  | { | 
|  | void *cpu_data; | 
|  | int cpus = early_nr_cpus_node(node); | 
|  | struct bootmem_data *bdp = &bootmem_node_data[node]; | 
|  |  | 
|  | mem_data[node].pernode_addr = pernode; | 
|  | mem_data[node].pernode_size = pernodesize; | 
|  | memset(__va(pernode), 0, pernodesize); | 
|  |  | 
|  | cpu_data = (void *)pernode; | 
|  | pernode += PERCPU_PAGE_SIZE * cpus; | 
|  | pernode += node * L1_CACHE_BYTES; | 
|  |  | 
|  | pgdat_list[node] = __va(pernode); | 
|  | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  |  | 
|  | mem_data[node].node_data = __va(pernode); | 
|  | pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data)); | 
|  |  | 
|  | pgdat_list[node]->bdata = bdp; | 
|  | pernode += L1_CACHE_ALIGN(sizeof(pg_data_t)); | 
|  |  | 
|  | cpu_data = per_cpu_node_setup(cpu_data, node); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_pernode_space - allocate memory for memory map and per-node structures | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * This routine reserves space for the per-cpu data struct, the list of | 
|  | * pg_data_ts and the per-node data struct.  Each node will have something like | 
|  | * the following in the first chunk of addr. space large enough to hold it. | 
|  | * | 
|  | *    ________________________ | 
|  | *   |                        | | 
|  | *   |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first | 
|  | *   |    PERCPU_PAGE_SIZE *  |     start and length big enough | 
|  | *   |    cpus_on_this_node   | Node 0 will also have entries for all non-existent cpus. | 
|  | *   |------------------------| | 
|  | *   |   local pg_data_t *    | | 
|  | *   |------------------------| | 
|  | *   |  local ia64_node_data  | | 
|  | *   |------------------------| | 
|  | *   |          ???           | | 
|  | *   |________________________| | 
|  | * | 
|  | * Once this space has been set aside, the bootmem maps are initialized.  We | 
|  | * could probably move the allocation of the per-cpu and ia64_node_data space | 
|  | * outside of this function and use alloc_bootmem_node(), but doing it here | 
|  | * is straightforward and we get the alignments we want so... | 
|  | */ | 
|  | static int __init find_pernode_space(unsigned long start, unsigned long len, | 
|  | int node) | 
|  | { | 
|  | unsigned long spfn, epfn; | 
|  | unsigned long pernodesize = 0, pernode, pages, mapsize; | 
|  | struct bootmem_data *bdp = &bootmem_node_data[node]; | 
|  |  | 
|  | spfn = start >> PAGE_SHIFT; | 
|  | epfn = (start + len) >> PAGE_SHIFT; | 
|  |  | 
|  | pages = bdp->node_low_pfn - bdp->node_min_pfn; | 
|  | mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | 
|  |  | 
|  | /* | 
|  | * Make sure this memory falls within this node's usable memory | 
|  | * since we may have thrown some away in build_maps(). | 
|  | */ | 
|  | if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn) | 
|  | return 0; | 
|  |  | 
|  | /* Don't setup this node's local space twice... */ | 
|  | if (mem_data[node].pernode_addr) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Calculate total size needed, incl. what's necessary | 
|  | * for good alignment and alias prevention. | 
|  | */ | 
|  | pernodesize = compute_pernodesize(node); | 
|  | pernode = NODEDATA_ALIGN(start, node); | 
|  |  | 
|  | /* Is this range big enough for what we want to store here? */ | 
|  | if (start + len > (pernode + pernodesize + mapsize)) | 
|  | fill_pernode(node, pernode, pernodesize); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * free_node_bootmem - free bootmem allocator memory for use | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * Simply calls the bootmem allocator to free the specified ranged from | 
|  | * the given pg_data_t's bdata struct.  After this function has been called | 
|  | * for all the entries in the EFI memory map, the bootmem allocator will | 
|  | * be ready to service allocation requests. | 
|  | */ | 
|  | static int __init free_node_bootmem(unsigned long start, unsigned long len, | 
|  | int node) | 
|  | { | 
|  | free_bootmem_node(pgdat_list[node], start, len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reserve_pernode_space - reserve memory for per-node space | 
|  | * | 
|  | * Reserve the space used by the bootmem maps & per-node space in the boot | 
|  | * allocator so that when we actually create the real mem maps we don't | 
|  | * use their memory. | 
|  | */ | 
|  | static void __init reserve_pernode_space(void) | 
|  | { | 
|  | unsigned long base, size, pages; | 
|  | struct bootmem_data *bdp; | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | pg_data_t *pdp = pgdat_list[node]; | 
|  |  | 
|  | if (node_isset(node, memory_less_mask)) | 
|  | continue; | 
|  |  | 
|  | bdp = pdp->bdata; | 
|  |  | 
|  | /* First the bootmem_map itself */ | 
|  | pages = bdp->node_low_pfn - bdp->node_min_pfn; | 
|  | size = bootmem_bootmap_pages(pages) << PAGE_SHIFT; | 
|  | base = __pa(bdp->node_bootmem_map); | 
|  | reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); | 
|  |  | 
|  | /* Now the per-node space */ | 
|  | size = mem_data[node].pernode_size; | 
|  | base = __pa(mem_data[node].pernode_addr); | 
|  | reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __meminit scatter_node_data(void) | 
|  | { | 
|  | pg_data_t **dst; | 
|  | int node; | 
|  |  | 
|  | /* | 
|  | * for_each_online_node() can't be used at here. | 
|  | * node_online_map is not set for hot-added nodes at this time, | 
|  | * because we are halfway through initialization of the new node's | 
|  | * structures.  If for_each_online_node() is used, a new node's | 
|  | * pg_data_ptrs will be not initialized. Instead of using it, | 
|  | * pgdat_list[] is checked. | 
|  | */ | 
|  | for_each_node(node) { | 
|  | if (pgdat_list[node]) { | 
|  | dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs; | 
|  | memcpy(dst, pgdat_list, sizeof(pgdat_list)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * initialize_pernode_data - fixup per-cpu & per-node pointers | 
|  | * | 
|  | * Each node's per-node area has a copy of the global pg_data_t list, so | 
|  | * we copy that to each node here, as well as setting the per-cpu pointer | 
|  | * to the local node data structure.  The active_cpus field of the per-node | 
|  | * structure gets setup by the platform_cpu_init() function later. | 
|  | */ | 
|  | static void __init initialize_pernode_data(void) | 
|  | { | 
|  | int cpu, node; | 
|  |  | 
|  | scatter_node_data(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* Set the node_data pointer for each per-cpu struct */ | 
|  | for_each_possible_early_cpu(cpu) { | 
|  | node = node_cpuid[cpu].nid; | 
|  | per_cpu(ia64_cpu_info, cpu).node_data = | 
|  | mem_data[node].node_data; | 
|  | } | 
|  | #else | 
|  | { | 
|  | struct cpuinfo_ia64 *cpu0_cpu_info; | 
|  | cpu = 0; | 
|  | node = node_cpuid[cpu].nid; | 
|  | cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start + | 
|  | ((char *)&ia64_cpu_info - __per_cpu_start)); | 
|  | cpu0_cpu_info->node_data = mem_data[node].node_data; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit | 
|  | * 	node but fall back to any other node when __alloc_bootmem_node fails | 
|  | *	for best. | 
|  | * @nid: node id | 
|  | * @pernodesize: size of this node's pernode data | 
|  | */ | 
|  | static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize) | 
|  | { | 
|  | void *ptr = NULL; | 
|  | u8 best = 0xff; | 
|  | int bestnode = -1, node, anynode = 0; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | if (node_isset(node, memory_less_mask)) | 
|  | continue; | 
|  | else if (node_distance(nid, node) < best) { | 
|  | best = node_distance(nid, node); | 
|  | bestnode = node; | 
|  | } | 
|  | anynode = node; | 
|  | } | 
|  |  | 
|  | if (bestnode == -1) | 
|  | bestnode = anynode; | 
|  |  | 
|  | ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize, | 
|  | PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); | 
|  |  | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * memory_less_nodes - allocate and initialize CPU only nodes pernode | 
|  | *	information. | 
|  | */ | 
|  | static void __init memory_less_nodes(void) | 
|  | { | 
|  | unsigned long pernodesize; | 
|  | void *pernode; | 
|  | int node; | 
|  |  | 
|  | for_each_node_mask(node, memory_less_mask) { | 
|  | pernodesize = compute_pernodesize(node); | 
|  | pernode = memory_less_node_alloc(node, pernodesize); | 
|  | fill_pernode(node, __pa(pernode), pernodesize); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_memory - walk the EFI memory map and setup the bootmem allocator | 
|  | * | 
|  | * Called early in boot to setup the bootmem allocator, and to | 
|  | * allocate the per-cpu and per-node structures. | 
|  | */ | 
|  | void __init find_memory(void) | 
|  | { | 
|  | int node; | 
|  |  | 
|  | reserve_memory(); | 
|  |  | 
|  | if (num_online_nodes() == 0) { | 
|  | printk(KERN_ERR "node info missing!\n"); | 
|  | node_set_online(0); | 
|  | } | 
|  |  | 
|  | nodes_or(memory_less_mask, memory_less_mask, node_online_map); | 
|  | min_low_pfn = -1; | 
|  | max_low_pfn = 0; | 
|  |  | 
|  | /* These actually end up getting called by call_pernode_memory() */ | 
|  | efi_memmap_walk(filter_rsvd_memory, build_node_maps); | 
|  | efi_memmap_walk(filter_rsvd_memory, find_pernode_space); | 
|  | efi_memmap_walk(find_max_min_low_pfn, NULL); | 
|  |  | 
|  | for_each_online_node(node) | 
|  | if (bootmem_node_data[node].node_low_pfn) { | 
|  | node_clear(node, memory_less_mask); | 
|  | mem_data[node].min_pfn = ~0UL; | 
|  | } | 
|  |  | 
|  | efi_memmap_walk(filter_memory, register_active_ranges); | 
|  |  | 
|  | /* | 
|  | * Initialize the boot memory maps in reverse order since that's | 
|  | * what the bootmem allocator expects | 
|  | */ | 
|  | for (node = MAX_NUMNODES - 1; node >= 0; node--) { | 
|  | unsigned long pernode, pernodesize, map; | 
|  | struct bootmem_data *bdp; | 
|  |  | 
|  | if (!node_online(node)) | 
|  | continue; | 
|  | else if (node_isset(node, memory_less_mask)) | 
|  | continue; | 
|  |  | 
|  | bdp = &bootmem_node_data[node]; | 
|  | pernode = mem_data[node].pernode_addr; | 
|  | pernodesize = mem_data[node].pernode_size; | 
|  | map = pernode + pernodesize; | 
|  |  | 
|  | init_bootmem_node(pgdat_list[node], | 
|  | map>>PAGE_SHIFT, | 
|  | bdp->node_min_pfn, | 
|  | bdp->node_low_pfn); | 
|  | } | 
|  |  | 
|  | efi_memmap_walk(filter_rsvd_memory, free_node_bootmem); | 
|  |  | 
|  | reserve_pernode_space(); | 
|  | memory_less_nodes(); | 
|  | initialize_pernode_data(); | 
|  |  | 
|  | max_pfn = max_low_pfn; | 
|  |  | 
|  | find_initrd(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /** | 
|  | * per_cpu_init - setup per-cpu variables | 
|  | * | 
|  | * find_pernode_space() does most of this already, we just need to set | 
|  | * local_per_cpu_offset | 
|  | */ | 
|  | void __cpuinit *per_cpu_init(void) | 
|  | { | 
|  | int cpu; | 
|  | static int first_time = 1; | 
|  |  | 
|  | if (first_time) { | 
|  | first_time = 0; | 
|  | for_each_possible_early_cpu(cpu) | 
|  | per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu]; | 
|  | } | 
|  |  | 
|  | return __per_cpu_start + __per_cpu_offset[smp_processor_id()]; | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /** | 
|  | * show_mem - give short summary of memory stats | 
|  | * | 
|  | * Shows a simple page count of reserved and used pages in the system. | 
|  | * For discontig machines, it does this on a per-pgdat basis. | 
|  | */ | 
|  | void show_mem(unsigned int filter) | 
|  | { | 
|  | int i, total_reserved = 0; | 
|  | int total_shared = 0, total_cached = 0; | 
|  | unsigned long total_present = 0; | 
|  | pg_data_t *pgdat; | 
|  |  | 
|  | printk(KERN_INFO "Mem-info:\n"); | 
|  | show_free_areas(); | 
|  | printk(KERN_INFO "Node memory in pages:\n"); | 
|  | for_each_online_pgdat(pgdat) { | 
|  | unsigned long present; | 
|  | unsigned long flags; | 
|  | int shared = 0, cached = 0, reserved = 0; | 
|  |  | 
|  | pgdat_resize_lock(pgdat, &flags); | 
|  | present = pgdat->node_present_pages; | 
|  | for(i = 0; i < pgdat->node_spanned_pages; i++) { | 
|  | struct page *page; | 
|  | if (unlikely(i % MAX_ORDER_NR_PAGES == 0)) | 
|  | touch_nmi_watchdog(); | 
|  | if (pfn_valid(pgdat->node_start_pfn + i)) | 
|  | page = pfn_to_page(pgdat->node_start_pfn + i); | 
|  | else { | 
|  | i = vmemmap_find_next_valid_pfn(pgdat->node_id, | 
|  | i) - 1; | 
|  | continue; | 
|  | } | 
|  | if (PageReserved(page)) | 
|  | reserved++; | 
|  | else if (PageSwapCache(page)) | 
|  | cached++; | 
|  | else if (page_count(page)) | 
|  | shared += page_count(page)-1; | 
|  | } | 
|  | pgdat_resize_unlock(pgdat, &flags); | 
|  | total_present += present; | 
|  | total_reserved += reserved; | 
|  | total_cached += cached; | 
|  | total_shared += shared; | 
|  | printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, " | 
|  | "shrd: %10d, swpd: %10d\n", pgdat->node_id, | 
|  | present, reserved, shared, cached); | 
|  | } | 
|  | printk(KERN_INFO "%ld pages of RAM\n", total_present); | 
|  | printk(KERN_INFO "%d reserved pages\n", total_reserved); | 
|  | printk(KERN_INFO "%d pages shared\n", total_shared); | 
|  | printk(KERN_INFO "%d pages swap cached\n", total_cached); | 
|  | printk(KERN_INFO "Total of %ld pages in page table cache\n", | 
|  | quicklist_total_size()); | 
|  | printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages()); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * call_pernode_memory - use SRAT to call callback functions with node info | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @arg: function to call for each range | 
|  | * | 
|  | * efi_memmap_walk() knows nothing about layout of memory across nodes. Find | 
|  | * out to which node a block of memory belongs.  Ignore memory that we cannot | 
|  | * identify, and split blocks that run across multiple nodes. | 
|  | * | 
|  | * Take this opportunity to round the start address up and the end address | 
|  | * down to page boundaries. | 
|  | */ | 
|  | void call_pernode_memory(unsigned long start, unsigned long len, void *arg) | 
|  | { | 
|  | unsigned long rs, re, end = start + len; | 
|  | void (*func)(unsigned long, unsigned long, int); | 
|  | int i; | 
|  |  | 
|  | start = PAGE_ALIGN(start); | 
|  | end &= PAGE_MASK; | 
|  | if (start >= end) | 
|  | return; | 
|  |  | 
|  | func = arg; | 
|  |  | 
|  | if (!num_node_memblks) { | 
|  | /* No SRAT table, so assume one node (node 0) */ | 
|  | if (start < end) | 
|  | (*func)(start, end - start, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_node_memblks; i++) { | 
|  | rs = max(start, node_memblk[i].start_paddr); | 
|  | re = min(end, node_memblk[i].start_paddr + | 
|  | node_memblk[i].size); | 
|  |  | 
|  | if (rs < re) | 
|  | (*func)(rs, re - rs, node_memblk[i].nid); | 
|  |  | 
|  | if (re == end) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * count_node_pages - callback to build per-node memory info structures | 
|  | * @start: physical start of range | 
|  | * @len: length of range | 
|  | * @node: node where this range resides | 
|  | * | 
|  | * Each node has it's own number of physical pages, DMAable pages, start, and | 
|  | * end page frame number.  This routine will be called by call_pernode_memory() | 
|  | * for each piece of usable memory and will setup these values for each node. | 
|  | * Very similar to build_maps(). | 
|  | */ | 
|  | static __init int count_node_pages(unsigned long start, unsigned long len, int node) | 
|  | { | 
|  | unsigned long end = start + len; | 
|  |  | 
|  | mem_data[node].num_physpages += len >> PAGE_SHIFT; | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | if (start <= __pa(MAX_DMA_ADDRESS)) | 
|  | mem_data[node].num_dma_physpages += | 
|  | (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT; | 
|  | #endif | 
|  | start = GRANULEROUNDDOWN(start); | 
|  | end = GRANULEROUNDUP(end); | 
|  | mem_data[node].max_pfn = max(mem_data[node].max_pfn, | 
|  | end >> PAGE_SHIFT); | 
|  | mem_data[node].min_pfn = min(mem_data[node].min_pfn, | 
|  | start >> PAGE_SHIFT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * paging_init - setup page tables | 
|  | * | 
|  | * paging_init() sets up the page tables for each node of the system and frees | 
|  | * the bootmem allocator memory for general use. | 
|  | */ | 
|  | void __init paging_init(void) | 
|  | { | 
|  | unsigned long max_dma; | 
|  | unsigned long pfn_offset = 0; | 
|  | unsigned long max_pfn = 0; | 
|  | int node; | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  |  | 
|  | max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  |  | 
|  | efi_memmap_walk(filter_rsvd_memory, count_node_pages); | 
|  |  | 
|  | sparse_memory_present_with_active_regions(MAX_NUMNODES); | 
|  | sparse_init(); | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * | 
|  | sizeof(struct page)); | 
|  | vmem_map = (struct page *) VMALLOC_END; | 
|  | efi_memmap_walk(create_mem_map_page_table, NULL); | 
|  | printk("Virtual mem_map starts at 0x%p\n", vmem_map); | 
|  | #endif | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | num_physpages += mem_data[node].num_physpages; | 
|  | pfn_offset = mem_data[node].min_pfn; | 
|  |  | 
|  | #ifdef CONFIG_VIRTUAL_MEM_MAP | 
|  | NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset; | 
|  | #endif | 
|  | if (mem_data[node].max_pfn > max_pfn) | 
|  | max_pfn = mem_data[node].max_pfn; | 
|  | } | 
|  |  | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  | #ifdef CONFIG_ZONE_DMA | 
|  | max_zone_pfns[ZONE_DMA] = max_dma; | 
|  | #endif | 
|  | max_zone_pfns[ZONE_NORMAL] = max_pfn; | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  |  | 
|  | zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page)); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | pg_data_t *arch_alloc_nodedata(int nid) | 
|  | { | 
|  | unsigned long size = compute_pernodesize(nid); | 
|  |  | 
|  | return kzalloc(size, GFP_KERNEL); | 
|  | } | 
|  |  | 
|  | void arch_free_nodedata(pg_data_t *pgdat) | 
|  | { | 
|  | kfree(pgdat); | 
|  | } | 
|  |  | 
|  | void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat) | 
|  | { | 
|  | pgdat_list[update_node] = update_pgdat; | 
|  | scatter_node_data(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SPARSEMEM_VMEMMAP | 
|  | int __meminit vmemmap_populate(struct page *start_page, | 
|  | unsigned long size, int node) | 
|  | { | 
|  | return vmemmap_populate_basepages(start_page, size, node); | 
|  | } | 
|  | #endif |