|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/homecache.h> | 
|  |  | 
|  | /* Generic DMA mapping functions: */ | 
|  |  | 
|  | /* | 
|  | * Allocate what Linux calls "coherent" memory, which for us just | 
|  | * means uncached. | 
|  | */ | 
|  | void *dma_alloc_coherent(struct device *dev, | 
|  | size_t size, | 
|  | dma_addr_t *dma_handle, | 
|  | gfp_t gfp) | 
|  | { | 
|  | u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32); | 
|  | int node = dev_to_node(dev); | 
|  | int order = get_order(size); | 
|  | struct page *pg; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | gfp |= __GFP_ZERO; | 
|  |  | 
|  | /* | 
|  | * By forcing NUMA node 0 for 32-bit masks we ensure that the | 
|  | * high 32 bits of the resulting PA will be zero.  If the mask | 
|  | * size is, e.g., 24, we may still not be able to guarantee a | 
|  | * suitable memory address, in which case we will return NULL. | 
|  | * But such devices are uncommon. | 
|  | */ | 
|  | if (dma_mask <= DMA_BIT_MASK(32)) | 
|  | node = 0; | 
|  |  | 
|  | pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED); | 
|  | if (pg == NULL) | 
|  | return NULL; | 
|  |  | 
|  | addr = page_to_phys(pg); | 
|  | if (addr + size > dma_mask) { | 
|  | homecache_free_pages(addr, order); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | *dma_handle = addr; | 
|  | return page_address(pg); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_alloc_coherent); | 
|  |  | 
|  | /* | 
|  | * Free memory that was allocated with dma_alloc_coherent. | 
|  | */ | 
|  | void dma_free_coherent(struct device *dev, size_t size, | 
|  | void *vaddr, dma_addr_t dma_handle) | 
|  | { | 
|  | homecache_free_pages((unsigned long)vaddr, get_order(size)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_free_coherent); | 
|  |  | 
|  | /* | 
|  | * The map routines "map" the specified address range for DMA | 
|  | * accesses.  The memory belongs to the device after this call is | 
|  | * issued, until it is unmapped with dma_unmap_single. | 
|  | * | 
|  | * We don't need to do any mapping, we just flush the address range | 
|  | * out of the cache and return a DMA address. | 
|  | * | 
|  | * The unmap routines do whatever is necessary before the processor | 
|  | * accesses the memory again, and must be called before the driver | 
|  | * touches the memory.  We can get away with a cache invalidate if we | 
|  | * can count on nothing having been touched. | 
|  | */ | 
|  |  | 
|  | /* Flush a PA range from cache page by page. */ | 
|  | static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size) | 
|  | { | 
|  | struct page *page = pfn_to_page(PFN_DOWN(dma_addr)); | 
|  | size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1)); | 
|  |  | 
|  | while ((ssize_t)size > 0) { | 
|  | /* Flush the page. */ | 
|  | homecache_flush_cache(page++, 0); | 
|  |  | 
|  | /* Figure out if we need to continue on the next page. */ | 
|  | size -= bytesleft; | 
|  | bytesleft = PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * dma_map_single can be passed any memory address, and there appear | 
|  | * to be no alignment constraints. | 
|  | * | 
|  | * There is a chance that the start of the buffer will share a cache | 
|  | * line with some other data that has been touched in the meantime. | 
|  | */ | 
|  | dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | dma_addr_t dma_addr = __pa(ptr); | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(size == 0); | 
|  |  | 
|  | __dma_map_pa_range(dma_addr, size); | 
|  |  | 
|  | return dma_addr; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_map_single); | 
|  |  | 
|  | void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_unmap_single); | 
|  |  | 
|  | int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | WARN_ON(nents == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nents, i) { | 
|  | sg->dma_address = sg_phys(sg); | 
|  | __dma_map_pa_range(sg->dma_address, sg->length); | 
|  | } | 
|  |  | 
|  | return nents; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_map_sg); | 
|  |  | 
|  | void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_unmap_sg); | 
|  |  | 
|  | dma_addr_t dma_map_page(struct device *dev, struct page *page, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  |  | 
|  | BUG_ON(offset + size > PAGE_SIZE); | 
|  | homecache_flush_cache(page, 0); | 
|  |  | 
|  | return page_to_pa(page) + offset; | 
|  | } | 
|  | EXPORT_SYMBOL(dma_map_page); | 
|  |  | 
|  | void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_unmap_page); | 
|  |  | 
|  | void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, | 
|  | size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_single_for_cpu); | 
|  |  | 
|  | void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle, | 
|  | size_t size, enum dma_data_direction direction) | 
|  | { | 
|  | unsigned long start = PFN_DOWN(dma_handle); | 
|  | unsigned long end = PFN_DOWN(dma_handle + size - 1); | 
|  | unsigned long i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | for (i = start; i <= end; ++i) | 
|  | homecache_flush_cache(pfn_to_page(i), 0); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_single_for_device); | 
|  |  | 
|  | void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(nelems == 0 || sg[0].length == 0); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_cpu); | 
|  |  | 
|  | /* | 
|  | * Flush and invalidate cache for scatterlist. | 
|  | */ | 
|  | void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist, | 
|  | int nelems, enum dma_data_direction direction) | 
|  | { | 
|  | struct scatterlist *sg; | 
|  | int i; | 
|  |  | 
|  | BUG_ON(!valid_dma_direction(direction)); | 
|  | WARN_ON(nelems == 0 || sglist->length == 0); | 
|  |  | 
|  | for_each_sg(sglist, sg, nelems, i) { | 
|  | dma_sync_single_for_device(dev, sg->dma_address, | 
|  | sg_dma_len(sg), direction); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_sg_for_device); | 
|  |  | 
|  | void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_single_range_for_cpu); | 
|  |  | 
|  | void dma_sync_single_range_for_device(struct device *dev, | 
|  | dma_addr_t dma_handle, | 
|  | unsigned long offset, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | dma_sync_single_for_device(dev, dma_handle + offset, size, direction); | 
|  | } | 
|  | EXPORT_SYMBOL(dma_sync_single_range_for_device); | 
|  |  | 
|  | /* | 
|  | * dma_alloc_noncoherent() returns non-cacheable memory, so there's no | 
|  | * need to do any flushing here. | 
|  | */ | 
|  | void dma_cache_sync(void *vaddr, size_t size, | 
|  | enum dma_data_direction direction) | 
|  | { | 
|  | } | 
|  | EXPORT_SYMBOL(dma_cache_sync); |