|  | /* | 
|  | * sata_mv.c - Marvell SATA support | 
|  | * | 
|  | * Copyright 2008-2009: Marvell Corporation, all rights reserved. | 
|  | * Copyright 2005: EMC Corporation, all rights reserved. | 
|  | * Copyright 2005 Red Hat, Inc.  All rights reserved. | 
|  | * | 
|  | * Originally written by Brett Russ. | 
|  | * Extensive overhaul and enhancement by Mark Lord <mlord@pobox.com>. | 
|  | * | 
|  | * Please ALWAYS copy linux-ide@vger.kernel.org on emails. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; version 2 of the License. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * sata_mv TODO list: | 
|  | * | 
|  | * --> Develop a low-power-consumption strategy, and implement it. | 
|  | * | 
|  | * --> Add sysfs attributes for per-chip / per-HC IRQ coalescing thresholds. | 
|  | * | 
|  | * --> [Experiment, Marvell value added] Is it possible to use target | 
|  | *       mode to cross-connect two Linux boxes with Marvell cards?  If so, | 
|  | *       creating LibATA target mode support would be very interesting. | 
|  | * | 
|  | *       Target mode, for those without docs, is the ability to directly | 
|  | *       connect two SATA ports. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 80x1-B2 errata PCI#11: | 
|  | * | 
|  | * Users of the 6041/6081 Rev.B2 chips (current is C0) | 
|  | * should be careful to insert those cards only onto PCI-X bus #0, | 
|  | * and only in device slots 0..7, not higher.  The chips may not | 
|  | * work correctly otherwise  (note: this is a pretty rare condition). | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/clk.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/ata_platform.h> | 
|  | #include <linux/mbus.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/gfp.h> | 
|  | #include <scsi/scsi_host.h> | 
|  | #include <scsi/scsi_cmnd.h> | 
|  | #include <scsi/scsi_device.h> | 
|  | #include <linux/libata.h> | 
|  |  | 
|  | #define DRV_NAME	"sata_mv" | 
|  | #define DRV_VERSION	"1.28" | 
|  |  | 
|  | /* | 
|  | * module options | 
|  | */ | 
|  |  | 
|  | static int msi; | 
|  | #ifdef CONFIG_PCI | 
|  | module_param(msi, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)"); | 
|  | #endif | 
|  |  | 
|  | static int irq_coalescing_io_count; | 
|  | module_param(irq_coalescing_io_count, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(irq_coalescing_io_count, | 
|  | "IRQ coalescing I/O count threshold (0..255)"); | 
|  |  | 
|  | static int irq_coalescing_usecs; | 
|  | module_param(irq_coalescing_usecs, int, S_IRUGO); | 
|  | MODULE_PARM_DESC(irq_coalescing_usecs, | 
|  | "IRQ coalescing time threshold in usecs"); | 
|  |  | 
|  | enum { | 
|  | /* BAR's are enumerated in terms of pci_resource_start() terms */ | 
|  | MV_PRIMARY_BAR		= 0,	/* offset 0x10: memory space */ | 
|  | MV_IO_BAR		= 2,	/* offset 0x18: IO space */ | 
|  | MV_MISC_BAR		= 3,	/* offset 0x1c: FLASH, NVRAM, SRAM */ | 
|  |  | 
|  | MV_MAJOR_REG_AREA_SZ	= 0x10000,	/* 64KB */ | 
|  | MV_MINOR_REG_AREA_SZ	= 0x2000,	/* 8KB */ | 
|  |  | 
|  | /* For use with both IRQ coalescing methods ("all ports" or "per-HC" */ | 
|  | COAL_CLOCKS_PER_USEC	= 150,		/* for calculating COAL_TIMEs */ | 
|  | MAX_COAL_TIME_THRESHOLD	= ((1 << 24) - 1), /* internal clocks count */ | 
|  | MAX_COAL_IO_COUNT	= 255,		/* completed I/O count */ | 
|  |  | 
|  | MV_PCI_REG_BASE		= 0, | 
|  |  | 
|  | /* | 
|  | * Per-chip ("all ports") interrupt coalescing feature. | 
|  | * This is only for GEN_II / GEN_IIE hardware. | 
|  | * | 
|  | * Coalescing defers the interrupt until either the IO_THRESHOLD | 
|  | * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. | 
|  | */ | 
|  | COAL_REG_BASE		= 0x18000, | 
|  | IRQ_COAL_CAUSE		= (COAL_REG_BASE + 0x08), | 
|  | ALL_PORTS_COAL_IRQ	= (1 << 4),	/* all ports irq event */ | 
|  |  | 
|  | IRQ_COAL_IO_THRESHOLD   = (COAL_REG_BASE + 0xcc), | 
|  | IRQ_COAL_TIME_THRESHOLD = (COAL_REG_BASE + 0xd0), | 
|  |  | 
|  | /* | 
|  | * Registers for the (unused here) transaction coalescing feature: | 
|  | */ | 
|  | TRAN_COAL_CAUSE_LO	= (COAL_REG_BASE + 0x88), | 
|  | TRAN_COAL_CAUSE_HI	= (COAL_REG_BASE + 0x8c), | 
|  |  | 
|  | SATAHC0_REG_BASE	= 0x20000, | 
|  | FLASH_CTL		= 0x1046c, | 
|  | GPIO_PORT_CTL		= 0x104f0, | 
|  | RESET_CFG		= 0x180d8, | 
|  |  | 
|  | MV_PCI_REG_SZ		= MV_MAJOR_REG_AREA_SZ, | 
|  | MV_SATAHC_REG_SZ	= MV_MAJOR_REG_AREA_SZ, | 
|  | MV_SATAHC_ARBTR_REG_SZ	= MV_MINOR_REG_AREA_SZ,		/* arbiter */ | 
|  | MV_PORT_REG_SZ		= MV_MINOR_REG_AREA_SZ, | 
|  |  | 
|  | MV_MAX_Q_DEPTH		= 32, | 
|  | MV_MAX_Q_DEPTH_MASK	= MV_MAX_Q_DEPTH - 1, | 
|  |  | 
|  | /* CRQB needs alignment on a 1KB boundary. Size == 1KB | 
|  | * CRPB needs alignment on a 256B boundary. Size == 256B | 
|  | * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B | 
|  | */ | 
|  | MV_CRQB_Q_SZ		= (32 * MV_MAX_Q_DEPTH), | 
|  | MV_CRPB_Q_SZ		= (8 * MV_MAX_Q_DEPTH), | 
|  | MV_MAX_SG_CT		= 256, | 
|  | MV_SG_TBL_SZ		= (16 * MV_MAX_SG_CT), | 
|  |  | 
|  | /* Determine hc from 0-7 port: hc = port >> MV_PORT_HC_SHIFT */ | 
|  | MV_PORT_HC_SHIFT	= 2, | 
|  | MV_PORTS_PER_HC		= (1 << MV_PORT_HC_SHIFT), /* 4 */ | 
|  | /* Determine hc port from 0-7 port: hardport = port & MV_PORT_MASK */ | 
|  | MV_PORT_MASK		= (MV_PORTS_PER_HC - 1),   /* 3 */ | 
|  |  | 
|  | /* Host Flags */ | 
|  | MV_FLAG_DUAL_HC		= (1 << 30),  /* two SATA Host Controllers */ | 
|  |  | 
|  | MV_COMMON_FLAGS		= ATA_FLAG_SATA | ATA_FLAG_PIO_POLLING, | 
|  |  | 
|  | MV_GEN_I_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NO_ATAPI, | 
|  |  | 
|  | MV_GEN_II_FLAGS		= MV_COMMON_FLAGS | ATA_FLAG_NCQ | | 
|  | ATA_FLAG_PMP | ATA_FLAG_ACPI_SATA, | 
|  |  | 
|  | MV_GEN_IIE_FLAGS	= MV_GEN_II_FLAGS | ATA_FLAG_AN, | 
|  |  | 
|  | CRQB_FLAG_READ		= (1 << 0), | 
|  | CRQB_TAG_SHIFT		= 1, | 
|  | CRQB_IOID_SHIFT		= 6,	/* CRQB Gen-II/IIE IO Id shift */ | 
|  | CRQB_PMP_SHIFT		= 12,	/* CRQB Gen-II/IIE PMP shift */ | 
|  | CRQB_HOSTQ_SHIFT	= 17,	/* CRQB Gen-II/IIE HostQueTag shift */ | 
|  | CRQB_CMD_ADDR_SHIFT	= 8, | 
|  | CRQB_CMD_CS		= (0x2 << 11), | 
|  | CRQB_CMD_LAST		= (1 << 15), | 
|  |  | 
|  | CRPB_FLAG_STATUS_SHIFT	= 8, | 
|  | CRPB_IOID_SHIFT_6	= 5,	/* CRPB Gen-II IO Id shift */ | 
|  | CRPB_IOID_SHIFT_7	= 7,	/* CRPB Gen-IIE IO Id shift */ | 
|  |  | 
|  | EPRD_FLAG_END_OF_TBL	= (1 << 31), | 
|  |  | 
|  | /* PCI interface registers */ | 
|  |  | 
|  | MV_PCI_COMMAND		= 0xc00, | 
|  | MV_PCI_COMMAND_MWRCOM	= (1 << 4),	/* PCI Master Write Combining */ | 
|  | MV_PCI_COMMAND_MRDTRIG	= (1 << 7),	/* PCI Master Read Trigger */ | 
|  |  | 
|  | PCI_MAIN_CMD_STS	= 0xd30, | 
|  | STOP_PCI_MASTER		= (1 << 2), | 
|  | PCI_MASTER_EMPTY	= (1 << 3), | 
|  | GLOB_SFT_RST		= (1 << 4), | 
|  |  | 
|  | MV_PCI_MODE		= 0xd00, | 
|  | MV_PCI_MODE_MASK	= 0x30, | 
|  |  | 
|  | MV_PCI_EXP_ROM_BAR_CTL	= 0xd2c, | 
|  | MV_PCI_DISC_TIMER	= 0xd04, | 
|  | MV_PCI_MSI_TRIGGER	= 0xc38, | 
|  | MV_PCI_SERR_MASK	= 0xc28, | 
|  | MV_PCI_XBAR_TMOUT	= 0x1d04, | 
|  | MV_PCI_ERR_LOW_ADDRESS	= 0x1d40, | 
|  | MV_PCI_ERR_HIGH_ADDRESS	= 0x1d44, | 
|  | MV_PCI_ERR_ATTRIBUTE	= 0x1d48, | 
|  | MV_PCI_ERR_COMMAND	= 0x1d50, | 
|  |  | 
|  | PCI_IRQ_CAUSE		= 0x1d58, | 
|  | PCI_IRQ_MASK		= 0x1d5c, | 
|  | PCI_UNMASK_ALL_IRQS	= 0x7fffff,	/* bits 22-0 */ | 
|  |  | 
|  | PCIE_IRQ_CAUSE		= 0x1900, | 
|  | PCIE_IRQ_MASK		= 0x1910, | 
|  | PCIE_UNMASK_ALL_IRQS	= 0x40a,	/* assorted bits */ | 
|  |  | 
|  | /* Host Controller Main Interrupt Cause/Mask registers (1 per-chip) */ | 
|  | PCI_HC_MAIN_IRQ_CAUSE	= 0x1d60, | 
|  | PCI_HC_MAIN_IRQ_MASK	= 0x1d64, | 
|  | SOC_HC_MAIN_IRQ_CAUSE	= 0x20020, | 
|  | SOC_HC_MAIN_IRQ_MASK	= 0x20024, | 
|  | ERR_IRQ			= (1 << 0),	/* shift by (2 * port #) */ | 
|  | DONE_IRQ		= (1 << 1),	/* shift by (2 * port #) */ | 
|  | HC0_IRQ_PEND		= 0x1ff,	/* bits 0-8 = HC0's ports */ | 
|  | HC_SHIFT		= 9,		/* bits 9-17 = HC1's ports */ | 
|  | DONE_IRQ_0_3		= 0x000000aa,	/* DONE_IRQ ports 0,1,2,3 */ | 
|  | DONE_IRQ_4_7		= (DONE_IRQ_0_3 << HC_SHIFT),  /* 4,5,6,7 */ | 
|  | PCI_ERR			= (1 << 18), | 
|  | TRAN_COAL_LO_DONE	= (1 << 19),	/* transaction coalescing */ | 
|  | TRAN_COAL_HI_DONE	= (1 << 20),	/* transaction coalescing */ | 
|  | PORTS_0_3_COAL_DONE	= (1 << 8),	/* HC0 IRQ coalescing */ | 
|  | PORTS_4_7_COAL_DONE	= (1 << 17),	/* HC1 IRQ coalescing */ | 
|  | ALL_PORTS_COAL_DONE	= (1 << 21),	/* GEN_II(E) IRQ coalescing */ | 
|  | GPIO_INT		= (1 << 22), | 
|  | SELF_INT		= (1 << 23), | 
|  | TWSI_INT		= (1 << 24), | 
|  | HC_MAIN_RSVD		= (0x7f << 25),	/* bits 31-25 */ | 
|  | HC_MAIN_RSVD_5		= (0x1fff << 19), /* bits 31-19 */ | 
|  | HC_MAIN_RSVD_SOC	= (0x3fffffb << 6),     /* bits 31-9, 7-6 */ | 
|  |  | 
|  | /* SATAHC registers */ | 
|  | HC_CFG			= 0x00, | 
|  |  | 
|  | HC_IRQ_CAUSE		= 0x14, | 
|  | DMA_IRQ			= (1 << 0),	/* shift by port # */ | 
|  | HC_COAL_IRQ		= (1 << 4),	/* IRQ coalescing */ | 
|  | DEV_IRQ			= (1 << 8),	/* shift by port # */ | 
|  |  | 
|  | /* | 
|  | * Per-HC (Host-Controller) interrupt coalescing feature. | 
|  | * This is present on all chip generations. | 
|  | * | 
|  | * Coalescing defers the interrupt until either the IO_THRESHOLD | 
|  | * (count of completed I/Os) is met, or the TIME_THRESHOLD is met. | 
|  | */ | 
|  | HC_IRQ_COAL_IO_THRESHOLD	= 0x000c, | 
|  | HC_IRQ_COAL_TIME_THRESHOLD	= 0x0010, | 
|  |  | 
|  | SOC_LED_CTRL		= 0x2c, | 
|  | SOC_LED_CTRL_BLINK	= (1 << 0),	/* Active LED blink */ | 
|  | SOC_LED_CTRL_ACT_PRESENCE = (1 << 2),	/* Multiplex dev presence */ | 
|  | /*  with dev activity LED */ | 
|  |  | 
|  | /* Shadow block registers */ | 
|  | SHD_BLK			= 0x100, | 
|  | SHD_CTL_AST		= 0x20,		/* ofs from SHD_BLK */ | 
|  |  | 
|  | /* SATA registers */ | 
|  | SATA_STATUS		= 0x300,  /* ctrl, err regs follow status */ | 
|  | SATA_ACTIVE		= 0x350, | 
|  | FIS_IRQ_CAUSE		= 0x364, | 
|  | FIS_IRQ_CAUSE_AN	= (1 << 9),	/* async notification */ | 
|  |  | 
|  | LTMODE			= 0x30c,	/* requires read-after-write */ | 
|  | LTMODE_BIT8		= (1 << 8),	/* unknown, but necessary */ | 
|  |  | 
|  | PHY_MODE2		= 0x330, | 
|  | PHY_MODE3		= 0x310, | 
|  |  | 
|  | PHY_MODE4		= 0x314,	/* requires read-after-write */ | 
|  | PHY_MODE4_CFG_MASK	= 0x00000003,	/* phy internal config field */ | 
|  | PHY_MODE4_CFG_VALUE	= 0x00000001,	/* phy internal config field */ | 
|  | PHY_MODE4_RSVD_ZEROS	= 0x5de3fffa,	/* Gen2e always write zeros */ | 
|  | PHY_MODE4_RSVD_ONES	= 0x00000005,	/* Gen2e always write ones */ | 
|  |  | 
|  | SATA_IFCTL		= 0x344, | 
|  | SATA_TESTCTL		= 0x348, | 
|  | SATA_IFSTAT		= 0x34c, | 
|  | VENDOR_UNIQUE_FIS	= 0x35c, | 
|  |  | 
|  | FISCFG			= 0x360, | 
|  | FISCFG_WAIT_DEV_ERR	= (1 << 8),	/* wait for host on DevErr */ | 
|  | FISCFG_SINGLE_SYNC	= (1 << 16),	/* SYNC on DMA activation */ | 
|  |  | 
|  | PHY_MODE9_GEN2		= 0x398, | 
|  | PHY_MODE9_GEN1		= 0x39c, | 
|  | PHYCFG_OFS		= 0x3a0,	/* only in 65n devices */ | 
|  |  | 
|  | MV5_PHY_MODE		= 0x74, | 
|  | MV5_LTMODE		= 0x30, | 
|  | MV5_PHY_CTL		= 0x0C, | 
|  | SATA_IFCFG		= 0x050, | 
|  |  | 
|  | MV_M2_PREAMP_MASK	= 0x7e0, | 
|  |  | 
|  | /* Port registers */ | 
|  | EDMA_CFG		= 0, | 
|  | EDMA_CFG_Q_DEPTH	= 0x1f,		/* max device queue depth */ | 
|  | EDMA_CFG_NCQ		= (1 << 5),	/* for R/W FPDMA queued */ | 
|  | EDMA_CFG_NCQ_GO_ON_ERR	= (1 << 14),	/* continue on error */ | 
|  | EDMA_CFG_RD_BRST_EXT	= (1 << 11),	/* read burst 512B */ | 
|  | EDMA_CFG_WR_BUFF_LEN	= (1 << 13),	/* write buffer 512B */ | 
|  | EDMA_CFG_EDMA_FBS	= (1 << 16),	/* EDMA FIS-Based Switching */ | 
|  | EDMA_CFG_FBS		= (1 << 26),	/* FIS-Based Switching */ | 
|  |  | 
|  | EDMA_ERR_IRQ_CAUSE	= 0x8, | 
|  | EDMA_ERR_IRQ_MASK	= 0xc, | 
|  | EDMA_ERR_D_PAR		= (1 << 0),	/* UDMA data parity err */ | 
|  | EDMA_ERR_PRD_PAR	= (1 << 1),	/* UDMA PRD parity err */ | 
|  | EDMA_ERR_DEV		= (1 << 2),	/* device error */ | 
|  | EDMA_ERR_DEV_DCON	= (1 << 3),	/* device disconnect */ | 
|  | EDMA_ERR_DEV_CON	= (1 << 4),	/* device connected */ | 
|  | EDMA_ERR_SERR		= (1 << 5),	/* SError bits [WBDST] raised */ | 
|  | EDMA_ERR_SELF_DIS	= (1 << 7),	/* Gen II/IIE self-disable */ | 
|  | EDMA_ERR_SELF_DIS_5	= (1 << 8),	/* Gen I self-disable */ | 
|  | EDMA_ERR_BIST_ASYNC	= (1 << 8),	/* BIST FIS or Async Notify */ | 
|  | EDMA_ERR_TRANS_IRQ_7	= (1 << 8),	/* Gen IIE transprt layer irq */ | 
|  | EDMA_ERR_CRQB_PAR	= (1 << 9),	/* CRQB parity error */ | 
|  | EDMA_ERR_CRPB_PAR	= (1 << 10),	/* CRPB parity error */ | 
|  | EDMA_ERR_INTRL_PAR	= (1 << 11),	/* internal parity error */ | 
|  | EDMA_ERR_IORDY		= (1 << 12),	/* IORdy timeout */ | 
|  |  | 
|  | EDMA_ERR_LNK_CTRL_RX	= (0xf << 13),	/* link ctrl rx error */ | 
|  | EDMA_ERR_LNK_CTRL_RX_0	= (1 << 13),	/* transient: CRC err */ | 
|  | EDMA_ERR_LNK_CTRL_RX_1	= (1 << 14),	/* transient: FIFO err */ | 
|  | EDMA_ERR_LNK_CTRL_RX_2	= (1 << 15),	/* fatal: caught SYNC */ | 
|  | EDMA_ERR_LNK_CTRL_RX_3	= (1 << 16),	/* transient: FIS rx err */ | 
|  |  | 
|  | EDMA_ERR_LNK_DATA_RX	= (0xf << 17),	/* link data rx error */ | 
|  |  | 
|  | EDMA_ERR_LNK_CTRL_TX	= (0x1f << 21),	/* link ctrl tx error */ | 
|  | EDMA_ERR_LNK_CTRL_TX_0	= (1 << 21),	/* transient: CRC err */ | 
|  | EDMA_ERR_LNK_CTRL_TX_1	= (1 << 22),	/* transient: FIFO err */ | 
|  | EDMA_ERR_LNK_CTRL_TX_2	= (1 << 23),	/* transient: caught SYNC */ | 
|  | EDMA_ERR_LNK_CTRL_TX_3	= (1 << 24),	/* transient: caught DMAT */ | 
|  | EDMA_ERR_LNK_CTRL_TX_4	= (1 << 25),	/* transient: FIS collision */ | 
|  |  | 
|  | EDMA_ERR_LNK_DATA_TX	= (0x1f << 26),	/* link data tx error */ | 
|  |  | 
|  | EDMA_ERR_TRANS_PROTO	= (1 << 31),	/* transport protocol error */ | 
|  | EDMA_ERR_OVERRUN_5	= (1 << 5), | 
|  | EDMA_ERR_UNDERRUN_5	= (1 << 6), | 
|  |  | 
|  | EDMA_ERR_IRQ_TRANSIENT  = EDMA_ERR_LNK_CTRL_RX_0 | | 
|  | EDMA_ERR_LNK_CTRL_RX_1 | | 
|  | EDMA_ERR_LNK_CTRL_RX_3 | | 
|  | EDMA_ERR_LNK_CTRL_TX, | 
|  |  | 
|  | EDMA_EH_FREEZE		= EDMA_ERR_D_PAR | | 
|  | EDMA_ERR_PRD_PAR | | 
|  | EDMA_ERR_DEV_DCON | | 
|  | EDMA_ERR_DEV_CON | | 
|  | EDMA_ERR_SERR | | 
|  | EDMA_ERR_SELF_DIS | | 
|  | EDMA_ERR_CRQB_PAR | | 
|  | EDMA_ERR_CRPB_PAR | | 
|  | EDMA_ERR_INTRL_PAR | | 
|  | EDMA_ERR_IORDY | | 
|  | EDMA_ERR_LNK_CTRL_RX_2 | | 
|  | EDMA_ERR_LNK_DATA_RX | | 
|  | EDMA_ERR_LNK_DATA_TX | | 
|  | EDMA_ERR_TRANS_PROTO, | 
|  |  | 
|  | EDMA_EH_FREEZE_5	= EDMA_ERR_D_PAR | | 
|  | EDMA_ERR_PRD_PAR | | 
|  | EDMA_ERR_DEV_DCON | | 
|  | EDMA_ERR_DEV_CON | | 
|  | EDMA_ERR_OVERRUN_5 | | 
|  | EDMA_ERR_UNDERRUN_5 | | 
|  | EDMA_ERR_SELF_DIS_5 | | 
|  | EDMA_ERR_CRQB_PAR | | 
|  | EDMA_ERR_CRPB_PAR | | 
|  | EDMA_ERR_INTRL_PAR | | 
|  | EDMA_ERR_IORDY, | 
|  |  | 
|  | EDMA_REQ_Q_BASE_HI	= 0x10, | 
|  | EDMA_REQ_Q_IN_PTR	= 0x14,		/* also contains BASE_LO */ | 
|  |  | 
|  | EDMA_REQ_Q_OUT_PTR	= 0x18, | 
|  | EDMA_REQ_Q_PTR_SHIFT	= 5, | 
|  |  | 
|  | EDMA_RSP_Q_BASE_HI	= 0x1c, | 
|  | EDMA_RSP_Q_IN_PTR	= 0x20, | 
|  | EDMA_RSP_Q_OUT_PTR	= 0x24,		/* also contains BASE_LO */ | 
|  | EDMA_RSP_Q_PTR_SHIFT	= 3, | 
|  |  | 
|  | EDMA_CMD		= 0x28,		/* EDMA command register */ | 
|  | EDMA_EN			= (1 << 0),	/* enable EDMA */ | 
|  | EDMA_DS			= (1 << 1),	/* disable EDMA; self-negated */ | 
|  | EDMA_RESET		= (1 << 2),	/* reset eng/trans/link/phy */ | 
|  |  | 
|  | EDMA_STATUS		= 0x30,		/* EDMA engine status */ | 
|  | EDMA_STATUS_CACHE_EMPTY	= (1 << 6),	/* GenIIe command cache empty */ | 
|  | EDMA_STATUS_IDLE	= (1 << 7),	/* GenIIe EDMA enabled/idle */ | 
|  |  | 
|  | EDMA_IORDY_TMOUT	= 0x34, | 
|  | EDMA_ARB_CFG		= 0x38, | 
|  |  | 
|  | EDMA_HALTCOND		= 0x60,		/* GenIIe halt conditions */ | 
|  | EDMA_UNKNOWN_RSVD	= 0x6C,		/* GenIIe unknown/reserved */ | 
|  |  | 
|  | BMDMA_CMD		= 0x224,	/* bmdma command register */ | 
|  | BMDMA_STATUS		= 0x228,	/* bmdma status register */ | 
|  | BMDMA_PRD_LOW		= 0x22c,	/* bmdma PRD addr 31:0 */ | 
|  | BMDMA_PRD_HIGH		= 0x230,	/* bmdma PRD addr 63:32 */ | 
|  |  | 
|  | /* Host private flags (hp_flags) */ | 
|  | MV_HP_FLAG_MSI		= (1 << 0), | 
|  | MV_HP_ERRATA_50XXB0	= (1 << 1), | 
|  | MV_HP_ERRATA_50XXB2	= (1 << 2), | 
|  | MV_HP_ERRATA_60X1B2	= (1 << 3), | 
|  | MV_HP_ERRATA_60X1C0	= (1 << 4), | 
|  | MV_HP_GEN_I		= (1 << 6),	/* Generation I: 50xx */ | 
|  | MV_HP_GEN_II		= (1 << 7),	/* Generation II: 60xx */ | 
|  | MV_HP_GEN_IIE		= (1 << 8),	/* Generation IIE: 6042/7042 */ | 
|  | MV_HP_PCIE		= (1 << 9),	/* PCIe bus/regs: 7042 */ | 
|  | MV_HP_CUT_THROUGH	= (1 << 10),	/* can use EDMA cut-through */ | 
|  | MV_HP_FLAG_SOC		= (1 << 11),	/* SystemOnChip, no PCI */ | 
|  | MV_HP_QUIRK_LED_BLINK_EN = (1 << 12),	/* is led blinking enabled? */ | 
|  |  | 
|  | /* Port private flags (pp_flags) */ | 
|  | MV_PP_FLAG_EDMA_EN	= (1 << 0),	/* is EDMA engine enabled? */ | 
|  | MV_PP_FLAG_NCQ_EN	= (1 << 1),	/* is EDMA set up for NCQ? */ | 
|  | MV_PP_FLAG_FBS_EN	= (1 << 2),	/* is EDMA set up for FBS? */ | 
|  | MV_PP_FLAG_DELAYED_EH	= (1 << 3),	/* delayed dev err handling */ | 
|  | MV_PP_FLAG_FAKE_ATA_BUSY = (1 << 4),	/* ignore initial ATA_DRDY */ | 
|  | }; | 
|  |  | 
|  | #define IS_GEN_I(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_I) | 
|  | #define IS_GEN_II(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_II) | 
|  | #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE) | 
|  | #define IS_PCIE(hpriv) ((hpriv)->hp_flags & MV_HP_PCIE) | 
|  | #define IS_SOC(hpriv) ((hpriv)->hp_flags & MV_HP_FLAG_SOC) | 
|  |  | 
|  | #define WINDOW_CTRL(i)		(0x20030 + ((i) << 4)) | 
|  | #define WINDOW_BASE(i)		(0x20034 + ((i) << 4)) | 
|  |  | 
|  | enum { | 
|  | /* DMA boundary 0xffff is required by the s/g splitting | 
|  | * we need on /length/ in mv_fill-sg(). | 
|  | */ | 
|  | MV_DMA_BOUNDARY		= 0xffffU, | 
|  |  | 
|  | /* mask of register bits containing lower 32 bits | 
|  | * of EDMA request queue DMA address | 
|  | */ | 
|  | EDMA_REQ_Q_BASE_LO_MASK	= 0xfffffc00U, | 
|  |  | 
|  | /* ditto, for response queue */ | 
|  | EDMA_RSP_Q_BASE_LO_MASK	= 0xffffff00U, | 
|  | }; | 
|  |  | 
|  | enum chip_type { | 
|  | chip_504x, | 
|  | chip_508x, | 
|  | chip_5080, | 
|  | chip_604x, | 
|  | chip_608x, | 
|  | chip_6042, | 
|  | chip_7042, | 
|  | chip_soc, | 
|  | }; | 
|  |  | 
|  | /* Command ReQuest Block: 32B */ | 
|  | struct mv_crqb { | 
|  | __le32			sg_addr; | 
|  | __le32			sg_addr_hi; | 
|  | __le16			ctrl_flags; | 
|  | __le16			ata_cmd[11]; | 
|  | }; | 
|  |  | 
|  | struct mv_crqb_iie { | 
|  | __le32			addr; | 
|  | __le32			addr_hi; | 
|  | __le32			flags; | 
|  | __le32			len; | 
|  | __le32			ata_cmd[4]; | 
|  | }; | 
|  |  | 
|  | /* Command ResPonse Block: 8B */ | 
|  | struct mv_crpb { | 
|  | __le16			id; | 
|  | __le16			flags; | 
|  | __le32			tmstmp; | 
|  | }; | 
|  |  | 
|  | /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */ | 
|  | struct mv_sg { | 
|  | __le32			addr; | 
|  | __le32			flags_size; | 
|  | __le32			addr_hi; | 
|  | __le32			reserved; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * We keep a local cache of a few frequently accessed port | 
|  | * registers here, to avoid having to read them (very slow) | 
|  | * when switching between EDMA and non-EDMA modes. | 
|  | */ | 
|  | struct mv_cached_regs { | 
|  | u32			fiscfg; | 
|  | u32			ltmode; | 
|  | u32			haltcond; | 
|  | u32			unknown_rsvd; | 
|  | }; | 
|  |  | 
|  | struct mv_port_priv { | 
|  | struct mv_crqb		*crqb; | 
|  | dma_addr_t		crqb_dma; | 
|  | struct mv_crpb		*crpb; | 
|  | dma_addr_t		crpb_dma; | 
|  | struct mv_sg		*sg_tbl[MV_MAX_Q_DEPTH]; | 
|  | dma_addr_t		sg_tbl_dma[MV_MAX_Q_DEPTH]; | 
|  |  | 
|  | unsigned int		req_idx; | 
|  | unsigned int		resp_idx; | 
|  |  | 
|  | u32			pp_flags; | 
|  | struct mv_cached_regs	cached; | 
|  | unsigned int		delayed_eh_pmp_map; | 
|  | }; | 
|  |  | 
|  | struct mv_port_signal { | 
|  | u32			amps; | 
|  | u32			pre; | 
|  | }; | 
|  |  | 
|  | struct mv_host_priv { | 
|  | u32			hp_flags; | 
|  | unsigned int 		board_idx; | 
|  | u32			main_irq_mask; | 
|  | struct mv_port_signal	signal[8]; | 
|  | const struct mv_hw_ops	*ops; | 
|  | int			n_ports; | 
|  | void __iomem		*base; | 
|  | void __iomem		*main_irq_cause_addr; | 
|  | void __iomem		*main_irq_mask_addr; | 
|  | u32			irq_cause_offset; | 
|  | u32			irq_mask_offset; | 
|  | u32			unmask_all_irqs; | 
|  |  | 
|  | #if defined(CONFIG_HAVE_CLK) | 
|  | struct clk		*clk; | 
|  | #endif | 
|  | /* | 
|  | * These consistent DMA memory pools give us guaranteed | 
|  | * alignment for hardware-accessed data structures, | 
|  | * and less memory waste in accomplishing the alignment. | 
|  | */ | 
|  | struct dma_pool		*crqb_pool; | 
|  | struct dma_pool		*crpb_pool; | 
|  | struct dma_pool		*sg_tbl_pool; | 
|  | }; | 
|  |  | 
|  | struct mv_hw_ops { | 
|  | void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port); | 
|  | void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio); | 
|  | void (*read_preamp)(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio); | 
|  | int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int n_hc); | 
|  | void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio); | 
|  | void (*reset_bus)(struct ata_host *host, void __iomem *mmio); | 
|  | }; | 
|  |  | 
|  | static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); | 
|  | static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); | 
|  | static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val); | 
|  | static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val); | 
|  | static int mv_port_start(struct ata_port *ap); | 
|  | static void mv_port_stop(struct ata_port *ap); | 
|  | static int mv_qc_defer(struct ata_queued_cmd *qc); | 
|  | static void mv_qc_prep(struct ata_queued_cmd *qc); | 
|  | static void mv_qc_prep_iie(struct ata_queued_cmd *qc); | 
|  | static unsigned int mv_qc_issue(struct ata_queued_cmd *qc); | 
|  | static int mv_hardreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline); | 
|  | static void mv_eh_freeze(struct ata_port *ap); | 
|  | static void mv_eh_thaw(struct ata_port *ap); | 
|  | static void mv6_dev_config(struct ata_device *dev); | 
|  |  | 
|  | static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port); | 
|  | static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); | 
|  | static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio); | 
|  | static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int n_hc); | 
|  | static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); | 
|  | static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio); | 
|  |  | 
|  | static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port); | 
|  | static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio); | 
|  | static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio); | 
|  | static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int n_hc); | 
|  | static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio); | 
|  | static void mv_soc_enable_leds(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio); | 
|  | static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio); | 
|  | static int mv_soc_reset_hc(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio, unsigned int n_hc); | 
|  | static void mv_soc_reset_flash(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio); | 
|  | static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio); | 
|  | static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio, unsigned int port); | 
|  | static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio); | 
|  | static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port_no); | 
|  | static int mv_stop_edma(struct ata_port *ap); | 
|  | static int mv_stop_edma_engine(void __iomem *port_mmio); | 
|  | static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma); | 
|  |  | 
|  | static void mv_pmp_select(struct ata_port *ap, int pmp); | 
|  | static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline); | 
|  | static int  mv_softreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline); | 
|  | static void mv_pmp_error_handler(struct ata_port *ap); | 
|  | static void mv_process_crpb_entries(struct ata_port *ap, | 
|  | struct mv_port_priv *pp); | 
|  |  | 
|  | static void mv_sff_irq_clear(struct ata_port *ap); | 
|  | static int mv_check_atapi_dma(struct ata_queued_cmd *qc); | 
|  | static void mv_bmdma_setup(struct ata_queued_cmd *qc); | 
|  | static void mv_bmdma_start(struct ata_queued_cmd *qc); | 
|  | static void mv_bmdma_stop(struct ata_queued_cmd *qc); | 
|  | static u8   mv_bmdma_status(struct ata_port *ap); | 
|  | static u8 mv_sff_check_status(struct ata_port *ap); | 
|  |  | 
|  | /* .sg_tablesize is (MV_MAX_SG_CT / 2) in the structures below | 
|  | * because we have to allow room for worst case splitting of | 
|  | * PRDs for 64K boundaries in mv_fill_sg(). | 
|  | */ | 
|  | static struct scsi_host_template mv5_sht = { | 
|  | ATA_BASE_SHT(DRV_NAME), | 
|  | .sg_tablesize		= MV_MAX_SG_CT / 2, | 
|  | .dma_boundary		= MV_DMA_BOUNDARY, | 
|  | }; | 
|  |  | 
|  | static struct scsi_host_template mv6_sht = { | 
|  | ATA_NCQ_SHT(DRV_NAME), | 
|  | .can_queue		= MV_MAX_Q_DEPTH - 1, | 
|  | .sg_tablesize		= MV_MAX_SG_CT / 2, | 
|  | .dma_boundary		= MV_DMA_BOUNDARY, | 
|  | }; | 
|  |  | 
|  | static struct ata_port_operations mv5_ops = { | 
|  | .inherits		= &ata_sff_port_ops, | 
|  |  | 
|  | .lost_interrupt		= ATA_OP_NULL, | 
|  |  | 
|  | .qc_defer		= mv_qc_defer, | 
|  | .qc_prep		= mv_qc_prep, | 
|  | .qc_issue		= mv_qc_issue, | 
|  |  | 
|  | .freeze			= mv_eh_freeze, | 
|  | .thaw			= mv_eh_thaw, | 
|  | .hardreset		= mv_hardreset, | 
|  |  | 
|  | .scr_read		= mv5_scr_read, | 
|  | .scr_write		= mv5_scr_write, | 
|  |  | 
|  | .port_start		= mv_port_start, | 
|  | .port_stop		= mv_port_stop, | 
|  | }; | 
|  |  | 
|  | static struct ata_port_operations mv6_ops = { | 
|  | .inherits		= &ata_bmdma_port_ops, | 
|  |  | 
|  | .lost_interrupt		= ATA_OP_NULL, | 
|  |  | 
|  | .qc_defer		= mv_qc_defer, | 
|  | .qc_prep		= mv_qc_prep, | 
|  | .qc_issue		= mv_qc_issue, | 
|  |  | 
|  | .dev_config             = mv6_dev_config, | 
|  |  | 
|  | .freeze			= mv_eh_freeze, | 
|  | .thaw			= mv_eh_thaw, | 
|  | .hardreset		= mv_hardreset, | 
|  | .softreset		= mv_softreset, | 
|  | .pmp_hardreset		= mv_pmp_hardreset, | 
|  | .pmp_softreset		= mv_softreset, | 
|  | .error_handler		= mv_pmp_error_handler, | 
|  |  | 
|  | .scr_read		= mv_scr_read, | 
|  | .scr_write		= mv_scr_write, | 
|  |  | 
|  | .sff_check_status	= mv_sff_check_status, | 
|  | .sff_irq_clear		= mv_sff_irq_clear, | 
|  | .check_atapi_dma	= mv_check_atapi_dma, | 
|  | .bmdma_setup		= mv_bmdma_setup, | 
|  | .bmdma_start		= mv_bmdma_start, | 
|  | .bmdma_stop		= mv_bmdma_stop, | 
|  | .bmdma_status		= mv_bmdma_status, | 
|  |  | 
|  | .port_start		= mv_port_start, | 
|  | .port_stop		= mv_port_stop, | 
|  | }; | 
|  |  | 
|  | static struct ata_port_operations mv_iie_ops = { | 
|  | .inherits		= &mv6_ops, | 
|  | .dev_config		= ATA_OP_NULL, | 
|  | .qc_prep		= mv_qc_prep_iie, | 
|  | }; | 
|  |  | 
|  | static const struct ata_port_info mv_port_info[] = { | 
|  | {  /* chip_504x */ | 
|  | .flags		= MV_GEN_I_FLAGS, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv5_ops, | 
|  | }, | 
|  | {  /* chip_508x */ | 
|  | .flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv5_ops, | 
|  | }, | 
|  | {  /* chip_5080 */ | 
|  | .flags		= MV_GEN_I_FLAGS | MV_FLAG_DUAL_HC, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv5_ops, | 
|  | }, | 
|  | {  /* chip_604x */ | 
|  | .flags		= MV_GEN_II_FLAGS, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv6_ops, | 
|  | }, | 
|  | {  /* chip_608x */ | 
|  | .flags		= MV_GEN_II_FLAGS | MV_FLAG_DUAL_HC, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv6_ops, | 
|  | }, | 
|  | {  /* chip_6042 */ | 
|  | .flags		= MV_GEN_IIE_FLAGS, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv_iie_ops, | 
|  | }, | 
|  | {  /* chip_7042 */ | 
|  | .flags		= MV_GEN_IIE_FLAGS, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv_iie_ops, | 
|  | }, | 
|  | {  /* chip_soc */ | 
|  | .flags		= MV_GEN_IIE_FLAGS, | 
|  | .pio_mask	= ATA_PIO4, | 
|  | .udma_mask	= ATA_UDMA6, | 
|  | .port_ops	= &mv_iie_ops, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct pci_device_id mv_pci_tbl[] = { | 
|  | { PCI_VDEVICE(MARVELL, 0x5040), chip_504x }, | 
|  | { PCI_VDEVICE(MARVELL, 0x5041), chip_504x }, | 
|  | { PCI_VDEVICE(MARVELL, 0x5080), chip_5080 }, | 
|  | { PCI_VDEVICE(MARVELL, 0x5081), chip_508x }, | 
|  | /* RocketRAID 1720/174x have different identifiers */ | 
|  | { PCI_VDEVICE(TTI, 0x1720), chip_6042 }, | 
|  | { PCI_VDEVICE(TTI, 0x1740), chip_6042 }, | 
|  | { PCI_VDEVICE(TTI, 0x1742), chip_6042 }, | 
|  |  | 
|  | { PCI_VDEVICE(MARVELL, 0x6040), chip_604x }, | 
|  | { PCI_VDEVICE(MARVELL, 0x6041), chip_604x }, | 
|  | { PCI_VDEVICE(MARVELL, 0x6042), chip_6042 }, | 
|  | { PCI_VDEVICE(MARVELL, 0x6080), chip_608x }, | 
|  | { PCI_VDEVICE(MARVELL, 0x6081), chip_608x }, | 
|  |  | 
|  | { PCI_VDEVICE(ADAPTEC2, 0x0241), chip_604x }, | 
|  |  | 
|  | /* Adaptec 1430SA */ | 
|  | { PCI_VDEVICE(ADAPTEC2, 0x0243), chip_7042 }, | 
|  |  | 
|  | /* Marvell 7042 support */ | 
|  | { PCI_VDEVICE(MARVELL, 0x7042), chip_7042 }, | 
|  |  | 
|  | /* Highpoint RocketRAID PCIe series */ | 
|  | { PCI_VDEVICE(TTI, 0x2300), chip_7042 }, | 
|  | { PCI_VDEVICE(TTI, 0x2310), chip_7042 }, | 
|  |  | 
|  | { }			/* terminate list */ | 
|  | }; | 
|  |  | 
|  | static const struct mv_hw_ops mv5xxx_ops = { | 
|  | .phy_errata		= mv5_phy_errata, | 
|  | .enable_leds		= mv5_enable_leds, | 
|  | .read_preamp		= mv5_read_preamp, | 
|  | .reset_hc		= mv5_reset_hc, | 
|  | .reset_flash		= mv5_reset_flash, | 
|  | .reset_bus		= mv5_reset_bus, | 
|  | }; | 
|  |  | 
|  | static const struct mv_hw_ops mv6xxx_ops = { | 
|  | .phy_errata		= mv6_phy_errata, | 
|  | .enable_leds		= mv6_enable_leds, | 
|  | .read_preamp		= mv6_read_preamp, | 
|  | .reset_hc		= mv6_reset_hc, | 
|  | .reset_flash		= mv6_reset_flash, | 
|  | .reset_bus		= mv_reset_pci_bus, | 
|  | }; | 
|  |  | 
|  | static const struct mv_hw_ops mv_soc_ops = { | 
|  | .phy_errata		= mv6_phy_errata, | 
|  | .enable_leds		= mv_soc_enable_leds, | 
|  | .read_preamp		= mv_soc_read_preamp, | 
|  | .reset_hc		= mv_soc_reset_hc, | 
|  | .reset_flash		= mv_soc_reset_flash, | 
|  | .reset_bus		= mv_soc_reset_bus, | 
|  | }; | 
|  |  | 
|  | static const struct mv_hw_ops mv_soc_65n_ops = { | 
|  | .phy_errata		= mv_soc_65n_phy_errata, | 
|  | .enable_leds		= mv_soc_enable_leds, | 
|  | .reset_hc		= mv_soc_reset_hc, | 
|  | .reset_flash		= mv_soc_reset_flash, | 
|  | .reset_bus		= mv_soc_reset_bus, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Functions | 
|  | */ | 
|  |  | 
|  | static inline void writelfl(unsigned long data, void __iomem *addr) | 
|  | { | 
|  | writel(data, addr); | 
|  | (void) readl(addr);	/* flush to avoid PCI posted write */ | 
|  | } | 
|  |  | 
|  | static inline unsigned int mv_hc_from_port(unsigned int port) | 
|  | { | 
|  | return port >> MV_PORT_HC_SHIFT; | 
|  | } | 
|  |  | 
|  | static inline unsigned int mv_hardport_from_port(unsigned int port) | 
|  | { | 
|  | return port & MV_PORT_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Consolidate some rather tricky bit shift calculations. | 
|  | * This is hot-path stuff, so not a function. | 
|  | * Simple code, with two return values, so macro rather than inline. | 
|  | * | 
|  | * port is the sole input, in range 0..7. | 
|  | * shift is one output, for use with main_irq_cause / main_irq_mask registers. | 
|  | * hardport is the other output, in range 0..3. | 
|  | * | 
|  | * Note that port and hardport may be the same variable in some cases. | 
|  | */ | 
|  | #define MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport)	\ | 
|  | {								\ | 
|  | shift    = mv_hc_from_port(port) * HC_SHIFT;		\ | 
|  | hardport = mv_hardport_from_port(port);			\ | 
|  | shift   += hardport * 2;				\ | 
|  | } | 
|  |  | 
|  | static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) | 
|  | { | 
|  | return (base + SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); | 
|  | } | 
|  |  | 
|  | static inline void __iomem *mv_hc_base_from_port(void __iomem *base, | 
|  | unsigned int port) | 
|  | { | 
|  | return mv_hc_base(base, mv_hc_from_port(port)); | 
|  | } | 
|  |  | 
|  | static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port) | 
|  | { | 
|  | return  mv_hc_base_from_port(base, port) + | 
|  | MV_SATAHC_ARBTR_REG_SZ + | 
|  | (mv_hardport_from_port(port) * MV_PORT_REG_SZ); | 
|  | } | 
|  |  | 
|  | static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port) | 
|  | { | 
|  | void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port); | 
|  | unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL; | 
|  |  | 
|  | return hc_mmio + ofs; | 
|  | } | 
|  |  | 
|  | static inline void __iomem *mv_host_base(struct ata_host *host) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | return hpriv->base; | 
|  | } | 
|  |  | 
|  | static inline void __iomem *mv_ap_base(struct ata_port *ap) | 
|  | { | 
|  | return mv_port_base(mv_host_base(ap->host), ap->port_no); | 
|  | } | 
|  |  | 
|  | static inline int mv_get_hc_count(unsigned long port_flags) | 
|  | { | 
|  | return ((port_flags & MV_FLAG_DUAL_HC) ? 2 : 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_save_cached_regs - (re-)initialize cached port registers | 
|  | *      @ap: the port whose registers we are caching | 
|  | * | 
|  | *	Initialize the local cache of port registers, | 
|  | *	so that reading them over and over again can | 
|  | *	be avoided on the hotter paths of this driver. | 
|  | *	This saves a few microseconds each time we switch | 
|  | *	to/from EDMA mode to perform (eg.) a drive cache flush. | 
|  | */ | 
|  | static void mv_save_cached_regs(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  |  | 
|  | pp->cached.fiscfg = readl(port_mmio + FISCFG); | 
|  | pp->cached.ltmode = readl(port_mmio + LTMODE); | 
|  | pp->cached.haltcond = readl(port_mmio + EDMA_HALTCOND); | 
|  | pp->cached.unknown_rsvd = readl(port_mmio + EDMA_UNKNOWN_RSVD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_write_cached_reg - write to a cached port register | 
|  | *      @addr: hardware address of the register | 
|  | *      @old: pointer to cached value of the register | 
|  | *      @new: new value for the register | 
|  | * | 
|  | *	Write a new value to a cached register, | 
|  | *	but only if the value is different from before. | 
|  | */ | 
|  | static inline void mv_write_cached_reg(void __iomem *addr, u32 *old, u32 new) | 
|  | { | 
|  | if (new != *old) { | 
|  | unsigned long laddr; | 
|  | *old = new; | 
|  | /* | 
|  | * Workaround for 88SX60x1-B2 FEr SATA#13: | 
|  | * Read-after-write is needed to prevent generating 64-bit | 
|  | * write cycles on the PCI bus for SATA interface registers | 
|  | * at offsets ending in 0x4 or 0xc. | 
|  | * | 
|  | * Looks like a lot of fuss, but it avoids an unnecessary | 
|  | * +1 usec read-after-write delay for unaffected registers. | 
|  | */ | 
|  | laddr = (long)addr & 0xffff; | 
|  | if (laddr >= 0x300 && laddr <= 0x33c) { | 
|  | laddr &= 0x000f; | 
|  | if (laddr == 0x4 || laddr == 0xc) { | 
|  | writelfl(new, addr); /* read after write */ | 
|  | return; | 
|  | } | 
|  | } | 
|  | writel(new, addr); /* unaffected by the errata */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mv_set_edma_ptrs(void __iomem *port_mmio, | 
|  | struct mv_host_priv *hpriv, | 
|  | struct mv_port_priv *pp) | 
|  | { | 
|  | u32 index; | 
|  |  | 
|  | /* | 
|  | * initialize request queue | 
|  | */ | 
|  | pp->req_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */ | 
|  | index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; | 
|  |  | 
|  | WARN_ON(pp->crqb_dma & 0x3ff); | 
|  | writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI); | 
|  | writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | index, | 
|  | port_mmio + EDMA_REQ_Q_IN_PTR); | 
|  | writelfl(index, port_mmio + EDMA_REQ_Q_OUT_PTR); | 
|  |  | 
|  | /* | 
|  | * initialize response queue | 
|  | */ | 
|  | pp->resp_idx &= MV_MAX_Q_DEPTH_MASK;	/* paranoia */ | 
|  | index = pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT; | 
|  |  | 
|  | WARN_ON(pp->crpb_dma & 0xff); | 
|  | writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI); | 
|  | writelfl(index, port_mmio + EDMA_RSP_Q_IN_PTR); | 
|  | writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | index, | 
|  | port_mmio + EDMA_RSP_Q_OUT_PTR); | 
|  | } | 
|  |  | 
|  | static void mv_write_main_irq_mask(u32 mask, struct mv_host_priv *hpriv) | 
|  | { | 
|  | /* | 
|  | * When writing to the main_irq_mask in hardware, | 
|  | * we must ensure exclusivity between the interrupt coalescing bits | 
|  | * and the corresponding individual port DONE_IRQ bits. | 
|  | * | 
|  | * Note that this register is really an "IRQ enable" register, | 
|  | * not an "IRQ mask" register as Marvell's naming might suggest. | 
|  | */ | 
|  | if (mask & (ALL_PORTS_COAL_DONE | PORTS_0_3_COAL_DONE)) | 
|  | mask &= ~DONE_IRQ_0_3; | 
|  | if (mask & (ALL_PORTS_COAL_DONE | PORTS_4_7_COAL_DONE)) | 
|  | mask &= ~DONE_IRQ_4_7; | 
|  | writelfl(mask, hpriv->main_irq_mask_addr); | 
|  | } | 
|  |  | 
|  | static void mv_set_main_irq_mask(struct ata_host *host, | 
|  | u32 disable_bits, u32 enable_bits) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | u32 old_mask, new_mask; | 
|  |  | 
|  | old_mask = hpriv->main_irq_mask; | 
|  | new_mask = (old_mask & ~disable_bits) | enable_bits; | 
|  | if (new_mask != old_mask) { | 
|  | hpriv->main_irq_mask = new_mask; | 
|  | mv_write_main_irq_mask(new_mask, hpriv); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mv_enable_port_irqs(struct ata_port *ap, | 
|  | unsigned int port_bits) | 
|  | { | 
|  | unsigned int shift, hardport, port = ap->port_no; | 
|  | u32 disable_bits, enable_bits; | 
|  |  | 
|  | MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); | 
|  |  | 
|  | disable_bits = (DONE_IRQ | ERR_IRQ) << shift; | 
|  | enable_bits  = port_bits << shift; | 
|  | mv_set_main_irq_mask(ap->host, disable_bits, enable_bits); | 
|  | } | 
|  |  | 
|  | static void mv_clear_and_enable_port_irqs(struct ata_port *ap, | 
|  | void __iomem *port_mmio, | 
|  | unsigned int port_irqs) | 
|  | { | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | int hardport = mv_hardport_from_port(ap->port_no); | 
|  | void __iomem *hc_mmio = mv_hc_base_from_port( | 
|  | mv_host_base(ap->host), ap->port_no); | 
|  | u32 hc_irq_cause; | 
|  |  | 
|  | /* clear EDMA event indicators, if any */ | 
|  | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); | 
|  |  | 
|  | /* clear pending irq events */ | 
|  | hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); | 
|  | writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); | 
|  |  | 
|  | /* clear FIS IRQ Cause */ | 
|  | if (IS_GEN_IIE(hpriv)) | 
|  | writelfl(0, port_mmio + FIS_IRQ_CAUSE); | 
|  |  | 
|  | mv_enable_port_irqs(ap, port_irqs); | 
|  | } | 
|  |  | 
|  | static void mv_set_irq_coalescing(struct ata_host *host, | 
|  | unsigned int count, unsigned int usecs) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *mmio = hpriv->base, *hc_mmio; | 
|  | u32 coal_enable = 0; | 
|  | unsigned long flags; | 
|  | unsigned int clks, is_dual_hc = hpriv->n_ports > MV_PORTS_PER_HC; | 
|  | const u32 coal_disable = PORTS_0_3_COAL_DONE | PORTS_4_7_COAL_DONE | | 
|  | ALL_PORTS_COAL_DONE; | 
|  |  | 
|  | /* Disable IRQ coalescing if either threshold is zero */ | 
|  | if (!usecs || !count) { | 
|  | clks = count = 0; | 
|  | } else { | 
|  | /* Respect maximum limits of the hardware */ | 
|  | clks = usecs * COAL_CLOCKS_PER_USEC; | 
|  | if (clks > MAX_COAL_TIME_THRESHOLD) | 
|  | clks = MAX_COAL_TIME_THRESHOLD; | 
|  | if (count > MAX_COAL_IO_COUNT) | 
|  | count = MAX_COAL_IO_COUNT; | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&host->lock, flags); | 
|  | mv_set_main_irq_mask(host, coal_disable, 0); | 
|  |  | 
|  | if (is_dual_hc && !IS_GEN_I(hpriv)) { | 
|  | /* | 
|  | * GEN_II/GEN_IIE with dual host controllers: | 
|  | * one set of global thresholds for the entire chip. | 
|  | */ | 
|  | writel(clks,  mmio + IRQ_COAL_TIME_THRESHOLD); | 
|  | writel(count, mmio + IRQ_COAL_IO_THRESHOLD); | 
|  | /* clear leftover coal IRQ bit */ | 
|  | writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); | 
|  | if (count) | 
|  | coal_enable = ALL_PORTS_COAL_DONE; | 
|  | clks = count = 0; /* force clearing of regular regs below */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All chips: independent thresholds for each HC on the chip. | 
|  | */ | 
|  | hc_mmio = mv_hc_base_from_port(mmio, 0); | 
|  | writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); | 
|  | writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); | 
|  | writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); | 
|  | if (count) | 
|  | coal_enable |= PORTS_0_3_COAL_DONE; | 
|  | if (is_dual_hc) { | 
|  | hc_mmio = mv_hc_base_from_port(mmio, MV_PORTS_PER_HC); | 
|  | writel(clks,  hc_mmio + HC_IRQ_COAL_TIME_THRESHOLD); | 
|  | writel(count, hc_mmio + HC_IRQ_COAL_IO_THRESHOLD); | 
|  | writel(~HC_COAL_IRQ, hc_mmio + HC_IRQ_CAUSE); | 
|  | if (count) | 
|  | coal_enable |= PORTS_4_7_COAL_DONE; | 
|  | } | 
|  |  | 
|  | mv_set_main_irq_mask(host, 0, coal_enable); | 
|  | spin_unlock_irqrestore(&host->lock, flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_start_edma - Enable eDMA engine | 
|  | *      @base: port base address | 
|  | *      @pp: port private data | 
|  | * | 
|  | *      Verify the local cache of the eDMA state is accurate with a | 
|  | *      WARN_ON. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_start_edma(struct ata_port *ap, void __iomem *port_mmio, | 
|  | struct mv_port_priv *pp, u8 protocol) | 
|  | { | 
|  | int want_ncq = (protocol == ATA_PROT_NCQ); | 
|  |  | 
|  | if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) { | 
|  | int using_ncq = ((pp->pp_flags & MV_PP_FLAG_NCQ_EN) != 0); | 
|  | if (want_ncq != using_ncq) | 
|  | mv_stop_edma(ap); | 
|  | } | 
|  | if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) { | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  |  | 
|  | mv_edma_cfg(ap, want_ncq, 1); | 
|  |  | 
|  | mv_set_edma_ptrs(port_mmio, hpriv, pp); | 
|  | mv_clear_and_enable_port_irqs(ap, port_mmio, DONE_IRQ|ERR_IRQ); | 
|  |  | 
|  | writelfl(EDMA_EN, port_mmio + EDMA_CMD); | 
|  | pp->pp_flags |= MV_PP_FLAG_EDMA_EN; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mv_wait_for_edma_empty_idle(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | const u32 empty_idle = (EDMA_STATUS_CACHE_EMPTY | EDMA_STATUS_IDLE); | 
|  | const int per_loop = 5, timeout = (15 * 1000 / per_loop); | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Wait for the EDMA engine to finish transactions in progress. | 
|  | * No idea what a good "timeout" value might be, but measurements | 
|  | * indicate that it often requires hundreds of microseconds | 
|  | * with two drives in-use.  So we use the 15msec value above | 
|  | * as a rough guess at what even more drives might require. | 
|  | */ | 
|  | for (i = 0; i < timeout; ++i) { | 
|  | u32 edma_stat = readl(port_mmio + EDMA_STATUS); | 
|  | if ((edma_stat & empty_idle) == empty_idle) | 
|  | break; | 
|  | udelay(per_loop); | 
|  | } | 
|  | /* ata_port_info(ap, "%s: %u+ usecs\n", __func__, i); */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_stop_edma_engine - Disable eDMA engine | 
|  | *      @port_mmio: io base address | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv_stop_edma_engine(void __iomem *port_mmio) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Disable eDMA.  The disable bit auto clears. */ | 
|  | writelfl(EDMA_DS, port_mmio + EDMA_CMD); | 
|  |  | 
|  | /* Wait for the chip to confirm eDMA is off. */ | 
|  | for (i = 10000; i > 0; i--) { | 
|  | u32 reg = readl(port_mmio + EDMA_CMD); | 
|  | if (!(reg & EDMA_EN)) | 
|  | return 0; | 
|  | udelay(10); | 
|  | } | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | static int mv_stop_edma(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | int err = 0; | 
|  |  | 
|  | if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) | 
|  | return 0; | 
|  | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; | 
|  | mv_wait_for_edma_empty_idle(ap); | 
|  | if (mv_stop_edma_engine(port_mmio)) { | 
|  | ata_port_err(ap, "Unable to stop eDMA\n"); | 
|  | err = -EIO; | 
|  | } | 
|  | mv_edma_cfg(ap, 0, 0); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #ifdef ATA_DEBUG | 
|  | static void mv_dump_mem(void __iomem *start, unsigned bytes) | 
|  | { | 
|  | int b, w; | 
|  | for (b = 0; b < bytes; ) { | 
|  | DPRINTK("%p: ", start + b); | 
|  | for (w = 0; b < bytes && w < 4; w++) { | 
|  | printk("%08x ", readl(start + b)); | 
|  | b += sizeof(u32); | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes) | 
|  | { | 
|  | #ifdef ATA_DEBUG | 
|  | int b, w; | 
|  | u32 dw; | 
|  | for (b = 0; b < bytes; ) { | 
|  | DPRINTK("%02x: ", b); | 
|  | for (w = 0; b < bytes && w < 4; w++) { | 
|  | (void) pci_read_config_dword(pdev, b, &dw); | 
|  | printk("%08x ", dw); | 
|  | b += sizeof(u32); | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | static void mv_dump_all_regs(void __iomem *mmio_base, int port, | 
|  | struct pci_dev *pdev) | 
|  | { | 
|  | #ifdef ATA_DEBUG | 
|  | void __iomem *hc_base = mv_hc_base(mmio_base, | 
|  | port >> MV_PORT_HC_SHIFT); | 
|  | void __iomem *port_base; | 
|  | int start_port, num_ports, p, start_hc, num_hcs, hc; | 
|  |  | 
|  | if (0 > port) { | 
|  | start_hc = start_port = 0; | 
|  | num_ports = 8;		/* shld be benign for 4 port devs */ | 
|  | num_hcs = 2; | 
|  | } else { | 
|  | start_hc = port >> MV_PORT_HC_SHIFT; | 
|  | start_port = port; | 
|  | num_ports = num_hcs = 1; | 
|  | } | 
|  | DPRINTK("All registers for port(s) %u-%u:\n", start_port, | 
|  | num_ports > 1 ? num_ports - 1 : start_port); | 
|  |  | 
|  | if (NULL != pdev) { | 
|  | DPRINTK("PCI config space regs:\n"); | 
|  | mv_dump_pci_cfg(pdev, 0x68); | 
|  | } | 
|  | DPRINTK("PCI regs:\n"); | 
|  | mv_dump_mem(mmio_base+0xc00, 0x3c); | 
|  | mv_dump_mem(mmio_base+0xd00, 0x34); | 
|  | mv_dump_mem(mmio_base+0xf00, 0x4); | 
|  | mv_dump_mem(mmio_base+0x1d00, 0x6c); | 
|  | for (hc = start_hc; hc < start_hc + num_hcs; hc++) { | 
|  | hc_base = mv_hc_base(mmio_base, hc); | 
|  | DPRINTK("HC regs (HC %i):\n", hc); | 
|  | mv_dump_mem(hc_base, 0x1c); | 
|  | } | 
|  | for (p = start_port; p < start_port + num_ports; p++) { | 
|  | port_base = mv_port_base(mmio_base, p); | 
|  | DPRINTK("EDMA regs (port %i):\n", p); | 
|  | mv_dump_mem(port_base, 0x54); | 
|  | DPRINTK("SATA regs (port %i):\n", p); | 
|  | mv_dump_mem(port_base+0x300, 0x60); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static unsigned int mv_scr_offset(unsigned int sc_reg_in) | 
|  | { | 
|  | unsigned int ofs; | 
|  |  | 
|  | switch (sc_reg_in) { | 
|  | case SCR_STATUS: | 
|  | case SCR_CONTROL: | 
|  | case SCR_ERROR: | 
|  | ofs = SATA_STATUS + (sc_reg_in * sizeof(u32)); | 
|  | break; | 
|  | case SCR_ACTIVE: | 
|  | ofs = SATA_ACTIVE;   /* active is not with the others */ | 
|  | break; | 
|  | default: | 
|  | ofs = 0xffffffffU; | 
|  | break; | 
|  | } | 
|  | return ofs; | 
|  | } | 
|  |  | 
|  | static int mv_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) | 
|  | { | 
|  | unsigned int ofs = mv_scr_offset(sc_reg_in); | 
|  |  | 
|  | if (ofs != 0xffffffffU) { | 
|  | *val = readl(mv_ap_base(link->ap) + ofs); | 
|  | return 0; | 
|  | } else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int mv_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) | 
|  | { | 
|  | unsigned int ofs = mv_scr_offset(sc_reg_in); | 
|  |  | 
|  | if (ofs != 0xffffffffU) { | 
|  | void __iomem *addr = mv_ap_base(link->ap) + ofs; | 
|  | if (sc_reg_in == SCR_CONTROL) { | 
|  | /* | 
|  | * Workaround for 88SX60x1 FEr SATA#26: | 
|  | * | 
|  | * COMRESETs have to take care not to accidentally | 
|  | * put the drive to sleep when writing SCR_CONTROL. | 
|  | * Setting bits 12..15 prevents this problem. | 
|  | * | 
|  | * So if we see an outbound COMMRESET, set those bits. | 
|  | * Ditto for the followup write that clears the reset. | 
|  | * | 
|  | * The proprietary driver does this for | 
|  | * all chip versions, and so do we. | 
|  | */ | 
|  | if ((val & 0xf) == 1 || (readl(addr) & 0xf) == 1) | 
|  | val |= 0xf000; | 
|  | } | 
|  | writelfl(val, addr); | 
|  | return 0; | 
|  | } else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void mv6_dev_config(struct ata_device *adev) | 
|  | { | 
|  | /* | 
|  | * Deal with Gen-II ("mv6") hardware quirks/restrictions: | 
|  | * | 
|  | * Gen-II does not support NCQ over a port multiplier | 
|  | *  (no FIS-based switching). | 
|  | */ | 
|  | if (adev->flags & ATA_DFLAG_NCQ) { | 
|  | if (sata_pmp_attached(adev->link->ap)) { | 
|  | adev->flags &= ~ATA_DFLAG_NCQ; | 
|  | ata_dev_info(adev, | 
|  | "NCQ disabled for command-based switching\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mv_qc_defer(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_link *link = qc->dev->link; | 
|  | struct ata_port *ap = link->ap; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  |  | 
|  | /* | 
|  | * Don't allow new commands if we're in a delayed EH state | 
|  | * for NCQ and/or FIS-based switching. | 
|  | */ | 
|  | if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) | 
|  | return ATA_DEFER_PORT; | 
|  |  | 
|  | /* PIO commands need exclusive link: no other commands [DMA or PIO] | 
|  | * can run concurrently. | 
|  | * set excl_link when we want to send a PIO command in DMA mode | 
|  | * or a non-NCQ command in NCQ mode. | 
|  | * When we receive a command from that link, and there are no | 
|  | * outstanding commands, mark a flag to clear excl_link and let | 
|  | * the command go through. | 
|  | */ | 
|  | if (unlikely(ap->excl_link)) { | 
|  | if (link == ap->excl_link) { | 
|  | if (ap->nr_active_links) | 
|  | return ATA_DEFER_PORT; | 
|  | qc->flags |= ATA_QCFLAG_CLEAR_EXCL; | 
|  | return 0; | 
|  | } else | 
|  | return ATA_DEFER_PORT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the port is completely idle, then allow the new qc. | 
|  | */ | 
|  | if (ap->nr_active_links == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * The port is operating in host queuing mode (EDMA) with NCQ | 
|  | * enabled, allow multiple NCQ commands.  EDMA also allows | 
|  | * queueing multiple DMA commands but libata core currently | 
|  | * doesn't allow it. | 
|  | */ | 
|  | if ((pp->pp_flags & MV_PP_FLAG_EDMA_EN) && | 
|  | (pp->pp_flags & MV_PP_FLAG_NCQ_EN)) { | 
|  | if (ata_is_ncq(qc->tf.protocol)) | 
|  | return 0; | 
|  | else { | 
|  | ap->excl_link = link; | 
|  | return ATA_DEFER_PORT; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ATA_DEFER_PORT; | 
|  | } | 
|  |  | 
|  | static void mv_config_fbs(struct ata_port *ap, int want_ncq, int want_fbs) | 
|  | { | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | void __iomem *port_mmio; | 
|  |  | 
|  | u32 fiscfg,   *old_fiscfg   = &pp->cached.fiscfg; | 
|  | u32 ltmode,   *old_ltmode   = &pp->cached.ltmode; | 
|  | u32 haltcond, *old_haltcond = &pp->cached.haltcond; | 
|  |  | 
|  | ltmode   = *old_ltmode & ~LTMODE_BIT8; | 
|  | haltcond = *old_haltcond | EDMA_ERR_DEV; | 
|  |  | 
|  | if (want_fbs) { | 
|  | fiscfg = *old_fiscfg | FISCFG_SINGLE_SYNC; | 
|  | ltmode = *old_ltmode | LTMODE_BIT8; | 
|  | if (want_ncq) | 
|  | haltcond &= ~EDMA_ERR_DEV; | 
|  | else | 
|  | fiscfg |=  FISCFG_WAIT_DEV_ERR; | 
|  | } else { | 
|  | fiscfg = *old_fiscfg & ~(FISCFG_SINGLE_SYNC | FISCFG_WAIT_DEV_ERR); | 
|  | } | 
|  |  | 
|  | port_mmio = mv_ap_base(ap); | 
|  | mv_write_cached_reg(port_mmio + FISCFG, old_fiscfg, fiscfg); | 
|  | mv_write_cached_reg(port_mmio + LTMODE, old_ltmode, ltmode); | 
|  | mv_write_cached_reg(port_mmio + EDMA_HALTCOND, old_haltcond, haltcond); | 
|  | } | 
|  |  | 
|  | static void mv_60x1_errata_sata25(struct ata_port *ap, int want_ncq) | 
|  | { | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | u32 old, new; | 
|  |  | 
|  | /* workaround for 88SX60x1 FEr SATA#25 (part 1) */ | 
|  | old = readl(hpriv->base + GPIO_PORT_CTL); | 
|  | if (want_ncq) | 
|  | new = old | (1 << 22); | 
|  | else | 
|  | new = old & ~(1 << 22); | 
|  | if (new != old) | 
|  | writel(new, hpriv->base + GPIO_PORT_CTL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_bmdma_enable - set a magic bit on GEN_IIE to allow bmdma | 
|  | *	@ap: Port being initialized | 
|  | * | 
|  | *	There are two DMA modes on these chips:  basic DMA, and EDMA. | 
|  | * | 
|  | *	Bit-0 of the "EDMA RESERVED" register enables/disables use | 
|  | *	of basic DMA on the GEN_IIE versions of the chips. | 
|  | * | 
|  | *	This bit survives EDMA resets, and must be set for basic DMA | 
|  | *	to function, and should be cleared when EDMA is active. | 
|  | */ | 
|  | static void mv_bmdma_enable_iie(struct ata_port *ap, int enable_bmdma) | 
|  | { | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | u32 new, *old = &pp->cached.unknown_rsvd; | 
|  |  | 
|  | if (enable_bmdma) | 
|  | new = *old | 1; | 
|  | else | 
|  | new = *old & ~1; | 
|  | mv_write_cached_reg(mv_ap_base(ap) + EDMA_UNKNOWN_RSVD, old, new); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SOC chips have an issue whereby the HDD LEDs don't always blink | 
|  | * during I/O when NCQ is enabled. Enabling a special "LED blink" mode | 
|  | * of the SOC takes care of it, generating a steady blink rate when | 
|  | * any drive on the chip is active. | 
|  | * | 
|  | * Unfortunately, the blink mode is a global hardware setting for the SOC, | 
|  | * so we must use it whenever at least one port on the SOC has NCQ enabled. | 
|  | * | 
|  | * We turn "LED blink" off when NCQ is not in use anywhere, because the normal | 
|  | * LED operation works then, and provides better (more accurate) feedback. | 
|  | * | 
|  | * Note that this code assumes that an SOC never has more than one HC onboard. | 
|  | */ | 
|  | static void mv_soc_led_blink_enable(struct ata_port *ap) | 
|  | { | 
|  | struct ata_host *host = ap->host; | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *hc_mmio; | 
|  | u32 led_ctrl; | 
|  |  | 
|  | if (hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN) | 
|  | return; | 
|  | hpriv->hp_flags |= MV_HP_QUIRK_LED_BLINK_EN; | 
|  | hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); | 
|  | led_ctrl = readl(hc_mmio + SOC_LED_CTRL); | 
|  | writel(led_ctrl | SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); | 
|  | } | 
|  |  | 
|  | static void mv_soc_led_blink_disable(struct ata_port *ap) | 
|  | { | 
|  | struct ata_host *host = ap->host; | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *hc_mmio; | 
|  | u32 led_ctrl; | 
|  | unsigned int port; | 
|  |  | 
|  | if (!(hpriv->hp_flags & MV_HP_QUIRK_LED_BLINK_EN)) | 
|  | return; | 
|  |  | 
|  | /* disable led-blink only if no ports are using NCQ */ | 
|  | for (port = 0; port < hpriv->n_ports; port++) { | 
|  | struct ata_port *this_ap = host->ports[port]; | 
|  | struct mv_port_priv *pp = this_ap->private_data; | 
|  |  | 
|  | if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) | 
|  | return; | 
|  | } | 
|  |  | 
|  | hpriv->hp_flags &= ~MV_HP_QUIRK_LED_BLINK_EN; | 
|  | hc_mmio = mv_hc_base_from_port(mv_host_base(host), ap->port_no); | 
|  | led_ctrl = readl(hc_mmio + SOC_LED_CTRL); | 
|  | writel(led_ctrl & ~SOC_LED_CTRL_BLINK, hc_mmio + SOC_LED_CTRL); | 
|  | } | 
|  |  | 
|  | static void mv_edma_cfg(struct ata_port *ap, int want_ncq, int want_edma) | 
|  | { | 
|  | u32 cfg; | 
|  | struct mv_port_priv *pp    = ap->private_data; | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | void __iomem *port_mmio    = mv_ap_base(ap); | 
|  |  | 
|  | /* set up non-NCQ EDMA configuration */ | 
|  | cfg = EDMA_CFG_Q_DEPTH;		/* always 0x1f for *all* chips */ | 
|  | pp->pp_flags &= | 
|  | ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); | 
|  |  | 
|  | if (IS_GEN_I(hpriv)) | 
|  | cfg |= (1 << 8);	/* enab config burst size mask */ | 
|  |  | 
|  | else if (IS_GEN_II(hpriv)) { | 
|  | cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN; | 
|  | mv_60x1_errata_sata25(ap, want_ncq); | 
|  |  | 
|  | } else if (IS_GEN_IIE(hpriv)) { | 
|  | int want_fbs = sata_pmp_attached(ap); | 
|  | /* | 
|  | * Possible future enhancement: | 
|  | * | 
|  | * The chip can use FBS with non-NCQ, if we allow it, | 
|  | * But first we need to have the error handling in place | 
|  | * for this mode (datasheet section 7.3.15.4.2.3). | 
|  | * So disallow non-NCQ FBS for now. | 
|  | */ | 
|  | want_fbs &= want_ncq; | 
|  |  | 
|  | mv_config_fbs(ap, want_ncq, want_fbs); | 
|  |  | 
|  | if (want_fbs) { | 
|  | pp->pp_flags |= MV_PP_FLAG_FBS_EN; | 
|  | cfg |= EDMA_CFG_EDMA_FBS; /* FIS-based switching */ | 
|  | } | 
|  |  | 
|  | cfg |= (1 << 23);	/* do not mask PM field in rx'd FIS */ | 
|  | if (want_edma) { | 
|  | cfg |= (1 << 22); /* enab 4-entry host queue cache */ | 
|  | if (!IS_SOC(hpriv)) | 
|  | cfg |= (1 << 18); /* enab early completion */ | 
|  | } | 
|  | if (hpriv->hp_flags & MV_HP_CUT_THROUGH) | 
|  | cfg |= (1 << 17); /* enab cut-thru (dis stor&forwrd) */ | 
|  | mv_bmdma_enable_iie(ap, !want_edma); | 
|  |  | 
|  | if (IS_SOC(hpriv)) { | 
|  | if (want_ncq) | 
|  | mv_soc_led_blink_enable(ap); | 
|  | else | 
|  | mv_soc_led_blink_disable(ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (want_ncq) { | 
|  | cfg |= EDMA_CFG_NCQ; | 
|  | pp->pp_flags |=  MV_PP_FLAG_NCQ_EN; | 
|  | } | 
|  |  | 
|  | writelfl(cfg, port_mmio + EDMA_CFG); | 
|  | } | 
|  |  | 
|  | static void mv_port_free_dma_mem(struct ata_port *ap) | 
|  | { | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | int tag; | 
|  |  | 
|  | if (pp->crqb) { | 
|  | dma_pool_free(hpriv->crqb_pool, pp->crqb, pp->crqb_dma); | 
|  | pp->crqb = NULL; | 
|  | } | 
|  | if (pp->crpb) { | 
|  | dma_pool_free(hpriv->crpb_pool, pp->crpb, pp->crpb_dma); | 
|  | pp->crpb = NULL; | 
|  | } | 
|  | /* | 
|  | * For GEN_I, there's no NCQ, so we have only a single sg_tbl. | 
|  | * For later hardware, we have one unique sg_tbl per NCQ tag. | 
|  | */ | 
|  | for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { | 
|  | if (pp->sg_tbl[tag]) { | 
|  | if (tag == 0 || !IS_GEN_I(hpriv)) | 
|  | dma_pool_free(hpriv->sg_tbl_pool, | 
|  | pp->sg_tbl[tag], | 
|  | pp->sg_tbl_dma[tag]); | 
|  | pp->sg_tbl[tag] = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_port_start - Port specific init/start routine. | 
|  | *      @ap: ATA channel to manipulate | 
|  | * | 
|  | *      Allocate and point to DMA memory, init port private memory, | 
|  | *      zero indices. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv_port_start(struct ata_port *ap) | 
|  | { | 
|  | struct device *dev = ap->host->dev; | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | struct mv_port_priv *pp; | 
|  | unsigned long flags; | 
|  | int tag; | 
|  |  | 
|  | pp = devm_kzalloc(dev, sizeof(*pp), GFP_KERNEL); | 
|  | if (!pp) | 
|  | return -ENOMEM; | 
|  | ap->private_data = pp; | 
|  |  | 
|  | pp->crqb = dma_pool_alloc(hpriv->crqb_pool, GFP_KERNEL, &pp->crqb_dma); | 
|  | if (!pp->crqb) | 
|  | return -ENOMEM; | 
|  | memset(pp->crqb, 0, MV_CRQB_Q_SZ); | 
|  |  | 
|  | pp->crpb = dma_pool_alloc(hpriv->crpb_pool, GFP_KERNEL, &pp->crpb_dma); | 
|  | if (!pp->crpb) | 
|  | goto out_port_free_dma_mem; | 
|  | memset(pp->crpb, 0, MV_CRPB_Q_SZ); | 
|  |  | 
|  | /* 6041/6081 Rev. "C0" (and newer) are okay with async notify */ | 
|  | if (hpriv->hp_flags & MV_HP_ERRATA_60X1C0) | 
|  | ap->flags |= ATA_FLAG_AN; | 
|  | /* | 
|  | * For GEN_I, there's no NCQ, so we only allocate a single sg_tbl. | 
|  | * For later hardware, we need one unique sg_tbl per NCQ tag. | 
|  | */ | 
|  | for (tag = 0; tag < MV_MAX_Q_DEPTH; ++tag) { | 
|  | if (tag == 0 || !IS_GEN_I(hpriv)) { | 
|  | pp->sg_tbl[tag] = dma_pool_alloc(hpriv->sg_tbl_pool, | 
|  | GFP_KERNEL, &pp->sg_tbl_dma[tag]); | 
|  | if (!pp->sg_tbl[tag]) | 
|  | goto out_port_free_dma_mem; | 
|  | } else { | 
|  | pp->sg_tbl[tag]     = pp->sg_tbl[0]; | 
|  | pp->sg_tbl_dma[tag] = pp->sg_tbl_dma[0]; | 
|  | } | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  | mv_save_cached_regs(ap); | 
|  | mv_edma_cfg(ap, 0, 0); | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_port_free_dma_mem: | 
|  | mv_port_free_dma_mem(ap); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_port_stop - Port specific cleanup/stop routine. | 
|  | *      @ap: ATA channel to manipulate | 
|  | * | 
|  | *      Stop DMA, cleanup port memory. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      This routine uses the host lock to protect the DMA stop. | 
|  | */ | 
|  | static void mv_port_stop(struct ata_port *ap) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(ap->lock, flags); | 
|  | mv_stop_edma(ap); | 
|  | mv_enable_port_irqs(ap, 0); | 
|  | spin_unlock_irqrestore(ap->lock, flags); | 
|  | mv_port_free_dma_mem(ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries | 
|  | *      @qc: queued command whose SG list to source from | 
|  | * | 
|  | *      Populate the SG list and mark the last entry. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_fill_sg(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct mv_port_priv *pp = qc->ap->private_data; | 
|  | struct scatterlist *sg; | 
|  | struct mv_sg *mv_sg, *last_sg = NULL; | 
|  | unsigned int si; | 
|  |  | 
|  | mv_sg = pp->sg_tbl[qc->tag]; | 
|  | for_each_sg(qc->sg, sg, qc->n_elem, si) { | 
|  | dma_addr_t addr = sg_dma_address(sg); | 
|  | u32 sg_len = sg_dma_len(sg); | 
|  |  | 
|  | while (sg_len) { | 
|  | u32 offset = addr & 0xffff; | 
|  | u32 len = sg_len; | 
|  |  | 
|  | if (offset + len > 0x10000) | 
|  | len = 0x10000 - offset; | 
|  |  | 
|  | mv_sg->addr = cpu_to_le32(addr & 0xffffffff); | 
|  | mv_sg->addr_hi = cpu_to_le32((addr >> 16) >> 16); | 
|  | mv_sg->flags_size = cpu_to_le32(len & 0xffff); | 
|  | mv_sg->reserved = 0; | 
|  |  | 
|  | sg_len -= len; | 
|  | addr += len; | 
|  |  | 
|  | last_sg = mv_sg; | 
|  | mv_sg++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (likely(last_sg)) | 
|  | last_sg->flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL); | 
|  | mb(); /* ensure data structure is visible to the chipset */ | 
|  | } | 
|  |  | 
|  | static void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last) | 
|  | { | 
|  | u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS | | 
|  | (last ? CRQB_CMD_LAST : 0); | 
|  | *cmdw = cpu_to_le16(tmp); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_sff_irq_clear - Clear hardware interrupt after DMA. | 
|  | *	@ap: Port associated with this ATA transaction. | 
|  | * | 
|  | *	We need this only for ATAPI bmdma transactions, | 
|  | *	as otherwise we experience spurious interrupts | 
|  | *	after libata-sff handles the bmdma interrupts. | 
|  | */ | 
|  | static void mv_sff_irq_clear(struct ata_port *ap) | 
|  | { | 
|  | mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), ERR_IRQ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_check_atapi_dma - Filter ATAPI cmds which are unsuitable for DMA. | 
|  | *	@qc: queued command to check for chipset/DMA compatibility. | 
|  | * | 
|  | *	The bmdma engines cannot handle speculative data sizes | 
|  | *	(bytecount under/over flow).  So only allow DMA for | 
|  | *	data transfer commands with known data sizes. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static int mv_check_atapi_dma(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct scsi_cmnd *scmd = qc->scsicmd; | 
|  |  | 
|  | if (scmd) { | 
|  | switch (scmd->cmnd[0]) { | 
|  | case READ_6: | 
|  | case READ_10: | 
|  | case READ_12: | 
|  | case WRITE_6: | 
|  | case WRITE_10: | 
|  | case WRITE_12: | 
|  | case GPCMD_READ_CD: | 
|  | case GPCMD_SEND_DVD_STRUCTURE: | 
|  | case GPCMD_SEND_CUE_SHEET: | 
|  | return 0; /* DMA is safe */ | 
|  | } | 
|  | } | 
|  | return -EOPNOTSUPP; /* use PIO instead */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_bmdma_setup - Set up BMDMA transaction | 
|  | *	@qc: queued command to prepare DMA for. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void mv_bmdma_setup(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  |  | 
|  | mv_fill_sg(qc); | 
|  |  | 
|  | /* clear all DMA cmd bits */ | 
|  | writel(0, port_mmio + BMDMA_CMD); | 
|  |  | 
|  | /* load PRD table addr. */ | 
|  | writel((pp->sg_tbl_dma[qc->tag] >> 16) >> 16, | 
|  | port_mmio + BMDMA_PRD_HIGH); | 
|  | writelfl(pp->sg_tbl_dma[qc->tag], | 
|  | port_mmio + BMDMA_PRD_LOW); | 
|  |  | 
|  | /* issue r/w command */ | 
|  | ap->ops->sff_exec_command(ap, &qc->tf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_bmdma_start - Start a BMDMA transaction | 
|  | *	@qc: queued command to start DMA on. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void mv_bmdma_start(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE); | 
|  | u32 cmd = (rw ? 0 : ATA_DMA_WR) | ATA_DMA_START; | 
|  |  | 
|  | /* start host DMA transaction */ | 
|  | writelfl(cmd, port_mmio + BMDMA_CMD); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_bmdma_stop - Stop BMDMA transfer | 
|  | *	@qc: queued command to stop DMA on. | 
|  | * | 
|  | *	Clears the ATA_DMA_START flag in the bmdma control register | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static void mv_bmdma_stop_ap(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 cmd; | 
|  |  | 
|  | /* clear start/stop bit */ | 
|  | cmd = readl(port_mmio + BMDMA_CMD); | 
|  | if (cmd & ATA_DMA_START) { | 
|  | cmd &= ~ATA_DMA_START; | 
|  | writelfl(cmd, port_mmio + BMDMA_CMD); | 
|  |  | 
|  | /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */ | 
|  | ata_sff_dma_pause(ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mv_bmdma_stop(struct ata_queued_cmd *qc) | 
|  | { | 
|  | mv_bmdma_stop_ap(qc->ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_bmdma_status - Read BMDMA status | 
|  | *	@ap: port for which to retrieve DMA status. | 
|  | * | 
|  | *	Read and return equivalent of the sff BMDMA status register. | 
|  | * | 
|  | *	LOCKING: | 
|  | *	Inherited from caller. | 
|  | */ | 
|  | static u8 mv_bmdma_status(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 reg, status; | 
|  |  | 
|  | /* | 
|  | * Other bits are valid only if ATA_DMA_ACTIVE==0, | 
|  | * and the ATA_DMA_INTR bit doesn't exist. | 
|  | */ | 
|  | reg = readl(port_mmio + BMDMA_STATUS); | 
|  | if (reg & ATA_DMA_ACTIVE) | 
|  | status = ATA_DMA_ACTIVE; | 
|  | else if (reg & ATA_DMA_ERR) | 
|  | status = (reg & ATA_DMA_ERR) | ATA_DMA_INTR; | 
|  | else { | 
|  | /* | 
|  | * Just because DMA_ACTIVE is 0 (DMA completed), | 
|  | * this does _not_ mean the device is "done". | 
|  | * So we should not yet be signalling ATA_DMA_INTR | 
|  | * in some cases.  Eg. DSM/TRIM, and perhaps others. | 
|  | */ | 
|  | mv_bmdma_stop_ap(ap); | 
|  | if (ioread8(ap->ioaddr.altstatus_addr) & ATA_BUSY) | 
|  | status = 0; | 
|  | else | 
|  | status = ATA_DMA_INTR; | 
|  | } | 
|  | return status; | 
|  | } | 
|  |  | 
|  | static void mv_rw_multi_errata_sata24(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_taskfile *tf = &qc->tf; | 
|  | /* | 
|  | * Workaround for 88SX60x1 FEr SATA#24. | 
|  | * | 
|  | * Chip may corrupt WRITEs if multi_count >= 4kB. | 
|  | * Note that READs are unaffected. | 
|  | * | 
|  | * It's not clear if this errata really means "4K bytes", | 
|  | * or if it always happens for multi_count > 7 | 
|  | * regardless of device sector_size. | 
|  | * | 
|  | * So, for safety, any write with multi_count > 7 | 
|  | * gets converted here into a regular PIO write instead: | 
|  | */ | 
|  | if ((tf->flags & ATA_TFLAG_WRITE) && is_multi_taskfile(tf)) { | 
|  | if (qc->dev->multi_count > 7) { | 
|  | switch (tf->command) { | 
|  | case ATA_CMD_WRITE_MULTI: | 
|  | tf->command = ATA_CMD_PIO_WRITE; | 
|  | break; | 
|  | case ATA_CMD_WRITE_MULTI_FUA_EXT: | 
|  | tf->flags &= ~ATA_TFLAG_FUA; /* ugh */ | 
|  | /* fall through */ | 
|  | case ATA_CMD_WRITE_MULTI_EXT: | 
|  | tf->command = ATA_CMD_PIO_WRITE_EXT; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_qc_prep - Host specific command preparation. | 
|  | *      @qc: queued command to prepare | 
|  | * | 
|  | *      This routine simply redirects to the general purpose routine | 
|  | *      if command is not DMA.  Else, it handles prep of the CRQB | 
|  | *      (command request block), does some sanity checking, and calls | 
|  | *      the SG load routine. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_qc_prep(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | __le16 *cw; | 
|  | struct ata_taskfile *tf = &qc->tf; | 
|  | u16 flags = 0; | 
|  | unsigned in_index; | 
|  |  | 
|  | switch (tf->protocol) { | 
|  | case ATA_PROT_DMA: | 
|  | if (tf->command == ATA_CMD_DSM) | 
|  | return; | 
|  | /* fall-thru */ | 
|  | case ATA_PROT_NCQ: | 
|  | break;	/* continue below */ | 
|  | case ATA_PROT_PIO: | 
|  | mv_rw_multi_errata_sata24(qc); | 
|  | return; | 
|  | default: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Fill in command request block | 
|  | */ | 
|  | if (!(tf->flags & ATA_TFLAG_WRITE)) | 
|  | flags |= CRQB_FLAG_READ; | 
|  | WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); | 
|  | flags |= qc->tag << CRQB_TAG_SHIFT; | 
|  | flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; | 
|  |  | 
|  | /* get current queue index from software */ | 
|  | in_index = pp->req_idx; | 
|  |  | 
|  | pp->crqb[in_index].sg_addr = | 
|  | cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); | 
|  | pp->crqb[in_index].sg_addr_hi = | 
|  | cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); | 
|  | pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags); | 
|  |  | 
|  | cw = &pp->crqb[in_index].ata_cmd[0]; | 
|  |  | 
|  | /* Sadly, the CRQB cannot accommodate all registers--there are | 
|  | * only 11 bytes...so we must pick and choose required | 
|  | * registers based on the command.  So, we drop feature and | 
|  | * hob_feature for [RW] DMA commands, but they are needed for | 
|  | * NCQ.  NCQ will drop hob_nsect, which is not needed there | 
|  | * (nsect is used only for the tag; feat/hob_feat hold true nsect). | 
|  | */ | 
|  | switch (tf->command) { | 
|  | case ATA_CMD_READ: | 
|  | case ATA_CMD_READ_EXT: | 
|  | case ATA_CMD_WRITE: | 
|  | case ATA_CMD_WRITE_EXT: | 
|  | case ATA_CMD_WRITE_FUA_EXT: | 
|  | mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0); | 
|  | break; | 
|  | case ATA_CMD_FPDMA_READ: | 
|  | case ATA_CMD_FPDMA_WRITE: | 
|  | mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0); | 
|  | break; | 
|  | default: | 
|  | /* The only other commands EDMA supports in non-queued and | 
|  | * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none | 
|  | * of which are defined/used by Linux.  If we get here, this | 
|  | * driver needs work. | 
|  | * | 
|  | * FIXME: modify libata to give qc_prep a return value and | 
|  | * return error here. | 
|  | */ | 
|  | BUG_ON(tf->command); | 
|  | break; | 
|  | } | 
|  | mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0); | 
|  | mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1);	/* last */ | 
|  |  | 
|  | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
|  | return; | 
|  | mv_fill_sg(qc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_qc_prep_iie - Host specific command preparation. | 
|  | *      @qc: queued command to prepare | 
|  | * | 
|  | *      This routine simply redirects to the general purpose routine | 
|  | *      if command is not DMA.  Else, it handles prep of the CRQB | 
|  | *      (command request block), does some sanity checking, and calls | 
|  | *      the SG load routine. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_qc_prep_iie(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | struct mv_crqb_iie *crqb; | 
|  | struct ata_taskfile *tf = &qc->tf; | 
|  | unsigned in_index; | 
|  | u32 flags = 0; | 
|  |  | 
|  | if ((tf->protocol != ATA_PROT_DMA) && | 
|  | (tf->protocol != ATA_PROT_NCQ)) | 
|  | return; | 
|  | if (tf->command == ATA_CMD_DSM) | 
|  | return;  /* use bmdma for this */ | 
|  |  | 
|  | /* Fill in Gen IIE command request block */ | 
|  | if (!(tf->flags & ATA_TFLAG_WRITE)) | 
|  | flags |= CRQB_FLAG_READ; | 
|  |  | 
|  | WARN_ON(MV_MAX_Q_DEPTH <= qc->tag); | 
|  | flags |= qc->tag << CRQB_TAG_SHIFT; | 
|  | flags |= qc->tag << CRQB_HOSTQ_SHIFT; | 
|  | flags |= (qc->dev->link->pmp & 0xf) << CRQB_PMP_SHIFT; | 
|  |  | 
|  | /* get current queue index from software */ | 
|  | in_index = pp->req_idx; | 
|  |  | 
|  | crqb = (struct mv_crqb_iie *) &pp->crqb[in_index]; | 
|  | crqb->addr = cpu_to_le32(pp->sg_tbl_dma[qc->tag] & 0xffffffff); | 
|  | crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma[qc->tag] >> 16) >> 16); | 
|  | crqb->flags = cpu_to_le32(flags); | 
|  |  | 
|  | crqb->ata_cmd[0] = cpu_to_le32( | 
|  | (tf->command << 16) | | 
|  | (tf->feature << 24) | 
|  | ); | 
|  | crqb->ata_cmd[1] = cpu_to_le32( | 
|  | (tf->lbal << 0) | | 
|  | (tf->lbam << 8) | | 
|  | (tf->lbah << 16) | | 
|  | (tf->device << 24) | 
|  | ); | 
|  | crqb->ata_cmd[2] = cpu_to_le32( | 
|  | (tf->hob_lbal << 0) | | 
|  | (tf->hob_lbam << 8) | | 
|  | (tf->hob_lbah << 16) | | 
|  | (tf->hob_feature << 24) | 
|  | ); | 
|  | crqb->ata_cmd[3] = cpu_to_le32( | 
|  | (tf->nsect << 0) | | 
|  | (tf->hob_nsect << 8) | 
|  | ); | 
|  |  | 
|  | if (!(qc->flags & ATA_QCFLAG_DMAMAP)) | 
|  | return; | 
|  | mv_fill_sg(qc); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_sff_check_status - fetch device status, if valid | 
|  | *	@ap: ATA port to fetch status from | 
|  | * | 
|  | *	When using command issue via mv_qc_issue_fis(), | 
|  | *	the initial ATA_BUSY state does not show up in the | 
|  | *	ATA status (shadow) register.  This can confuse libata! | 
|  | * | 
|  | *	So we have a hook here to fake ATA_BUSY for that situation, | 
|  | *	until the first time a BUSY, DRQ, or ERR bit is seen. | 
|  | * | 
|  | *	The rest of the time, it simply returns the ATA status register. | 
|  | */ | 
|  | static u8 mv_sff_check_status(struct ata_port *ap) | 
|  | { | 
|  | u8 stat = ioread8(ap->ioaddr.status_addr); | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  |  | 
|  | if (pp->pp_flags & MV_PP_FLAG_FAKE_ATA_BUSY) { | 
|  | if (stat & (ATA_BUSY | ATA_DRQ | ATA_ERR)) | 
|  | pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; | 
|  | else | 
|  | stat = ATA_BUSY; | 
|  | } | 
|  | return stat; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_send_fis - Send a FIS, using the "Vendor-Unique FIS" register | 
|  | *	@fis: fis to be sent | 
|  | *	@nwords: number of 32-bit words in the fis | 
|  | */ | 
|  | static unsigned int mv_send_fis(struct ata_port *ap, u32 *fis, int nwords) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 ifctl, old_ifctl, ifstat; | 
|  | int i, timeout = 200, final_word = nwords - 1; | 
|  |  | 
|  | /* Initiate FIS transmission mode */ | 
|  | old_ifctl = readl(port_mmio + SATA_IFCTL); | 
|  | ifctl = 0x100 | (old_ifctl & 0xf); | 
|  | writelfl(ifctl, port_mmio + SATA_IFCTL); | 
|  |  | 
|  | /* Send all words of the FIS except for the final word */ | 
|  | for (i = 0; i < final_word; ++i) | 
|  | writel(fis[i], port_mmio + VENDOR_UNIQUE_FIS); | 
|  |  | 
|  | /* Flag end-of-transmission, and then send the final word */ | 
|  | writelfl(ifctl | 0x200, port_mmio + SATA_IFCTL); | 
|  | writelfl(fis[final_word], port_mmio + VENDOR_UNIQUE_FIS); | 
|  |  | 
|  | /* | 
|  | * Wait for FIS transmission to complete. | 
|  | * This typically takes just a single iteration. | 
|  | */ | 
|  | do { | 
|  | ifstat = readl(port_mmio + SATA_IFSTAT); | 
|  | } while (!(ifstat & 0x1000) && --timeout); | 
|  |  | 
|  | /* Restore original port configuration */ | 
|  | writelfl(old_ifctl, port_mmio + SATA_IFCTL); | 
|  |  | 
|  | /* See if it worked */ | 
|  | if ((ifstat & 0x3000) != 0x1000) { | 
|  | ata_port_warn(ap, "%s transmission error, ifstat=%08x\n", | 
|  | __func__, ifstat); | 
|  | return AC_ERR_OTHER; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	mv_qc_issue_fis - Issue a command directly as a FIS | 
|  | *	@qc: queued command to start | 
|  | * | 
|  | *	Note that the ATA shadow registers are not updated | 
|  | *	after command issue, so the device will appear "READY" | 
|  | *	if polled, even while it is BUSY processing the command. | 
|  | * | 
|  | *	So we use a status hook to fake ATA_BUSY until the drive changes state. | 
|  | * | 
|  | *	Note: we don't get updated shadow regs on *completion* | 
|  | *	of non-data commands. So avoid sending them via this function, | 
|  | *	as they will appear to have completed immediately. | 
|  | * | 
|  | *	GEN_IIE has special registers that we could get the result tf from, | 
|  | *	but earlier chipsets do not.  For now, we ignore those registers. | 
|  | */ | 
|  | static unsigned int mv_qc_issue_fis(struct ata_queued_cmd *qc) | 
|  | { | 
|  | struct ata_port *ap = qc->ap; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | struct ata_link *link = qc->dev->link; | 
|  | u32 fis[5]; | 
|  | int err = 0; | 
|  |  | 
|  | ata_tf_to_fis(&qc->tf, link->pmp, 1, (void *)fis); | 
|  | err = mv_send_fis(ap, fis, ARRAY_SIZE(fis)); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | switch (qc->tf.protocol) { | 
|  | case ATAPI_PROT_PIO: | 
|  | pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; | 
|  | /* fall through */ | 
|  | case ATAPI_PROT_NODATA: | 
|  | ap->hsm_task_state = HSM_ST_FIRST; | 
|  | break; | 
|  | case ATA_PROT_PIO: | 
|  | pp->pp_flags |= MV_PP_FLAG_FAKE_ATA_BUSY; | 
|  | if (qc->tf.flags & ATA_TFLAG_WRITE) | 
|  | ap->hsm_task_state = HSM_ST_FIRST; | 
|  | else | 
|  | ap->hsm_task_state = HSM_ST; | 
|  | break; | 
|  | default: | 
|  | ap->hsm_task_state = HSM_ST_LAST; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | ata_sff_queue_pio_task(link, 0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_qc_issue - Initiate a command to the host | 
|  | *      @qc: queued command to start | 
|  | * | 
|  | *      This routine simply redirects to the general purpose routine | 
|  | *      if command is not DMA.  Else, it sanity checks our local | 
|  | *      caches of the request producer/consumer indices then enables | 
|  | *      DMA and bumps the request producer index. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static unsigned int mv_qc_issue(struct ata_queued_cmd *qc) | 
|  | { | 
|  | static int limit_warnings = 10; | 
|  | struct ata_port *ap = qc->ap; | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | u32 in_index; | 
|  | unsigned int port_irqs; | 
|  |  | 
|  | pp->pp_flags &= ~MV_PP_FLAG_FAKE_ATA_BUSY; /* paranoia */ | 
|  |  | 
|  | switch (qc->tf.protocol) { | 
|  | case ATA_PROT_DMA: | 
|  | if (qc->tf.command == ATA_CMD_DSM) { | 
|  | if (!ap->ops->bmdma_setup)  /* no bmdma on GEN_I */ | 
|  | return AC_ERR_OTHER; | 
|  | break;  /* use bmdma for this */ | 
|  | } | 
|  | /* fall thru */ | 
|  | case ATA_PROT_NCQ: | 
|  | mv_start_edma(ap, port_mmio, pp, qc->tf.protocol); | 
|  | pp->req_idx = (pp->req_idx + 1) & MV_MAX_Q_DEPTH_MASK; | 
|  | in_index = pp->req_idx << EDMA_REQ_Q_PTR_SHIFT; | 
|  |  | 
|  | /* Write the request in pointer to kick the EDMA to life */ | 
|  | writelfl((pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK) | in_index, | 
|  | port_mmio + EDMA_REQ_Q_IN_PTR); | 
|  | return 0; | 
|  |  | 
|  | case ATA_PROT_PIO: | 
|  | /* | 
|  | * Errata SATA#16, SATA#24: warn if multiple DRQs expected. | 
|  | * | 
|  | * Someday, we might implement special polling workarounds | 
|  | * for these, but it all seems rather unnecessary since we | 
|  | * normally use only DMA for commands which transfer more | 
|  | * than a single block of data. | 
|  | * | 
|  | * Much of the time, this could just work regardless. | 
|  | * So for now, just log the incident, and allow the attempt. | 
|  | */ | 
|  | if (limit_warnings > 0 && (qc->nbytes / qc->sect_size) > 1) { | 
|  | --limit_warnings; | 
|  | ata_link_warn(qc->dev->link, DRV_NAME | 
|  | ": attempting PIO w/multiple DRQ: " | 
|  | "this may fail due to h/w errata\n"); | 
|  | } | 
|  | /* drop through */ | 
|  | case ATA_PROT_NODATA: | 
|  | case ATAPI_PROT_PIO: | 
|  | case ATAPI_PROT_NODATA: | 
|  | if (ap->flags & ATA_FLAG_PIO_POLLING) | 
|  | qc->tf.flags |= ATA_TFLAG_POLLING; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (qc->tf.flags & ATA_TFLAG_POLLING) | 
|  | port_irqs = ERR_IRQ;	/* mask device interrupt when polling */ | 
|  | else | 
|  | port_irqs = ERR_IRQ | DONE_IRQ;	/* unmask all interrupts */ | 
|  |  | 
|  | /* | 
|  | * We're about to send a non-EDMA capable command to the | 
|  | * port.  Turn off EDMA so there won't be problems accessing | 
|  | * shadow block, etc registers. | 
|  | */ | 
|  | mv_stop_edma(ap); | 
|  | mv_clear_and_enable_port_irqs(ap, mv_ap_base(ap), port_irqs); | 
|  | mv_pmp_select(ap, qc->dev->link->pmp); | 
|  |  | 
|  | if (qc->tf.command == ATA_CMD_READ_LOG_EXT) { | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | /* | 
|  | * Workaround for 88SX60x1 FEr SATA#25 (part 2). | 
|  | * | 
|  | * After any NCQ error, the READ_LOG_EXT command | 
|  | * from libata-eh *must* use mv_qc_issue_fis(). | 
|  | * Otherwise it might fail, due to chip errata. | 
|  | * | 
|  | * Rather than special-case it, we'll just *always* | 
|  | * use this method here for READ_LOG_EXT, making for | 
|  | * easier testing. | 
|  | */ | 
|  | if (IS_GEN_II(hpriv)) | 
|  | return mv_qc_issue_fis(qc); | 
|  | } | 
|  | return ata_bmdma_qc_issue(qc); | 
|  | } | 
|  |  | 
|  | static struct ata_queued_cmd *mv_get_active_qc(struct ata_port *ap) | 
|  | { | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | struct ata_queued_cmd *qc; | 
|  |  | 
|  | if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) | 
|  | return NULL; | 
|  | qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | if (qc && !(qc->tf.flags & ATA_TFLAG_POLLING)) | 
|  | return qc; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void mv_pmp_error_handler(struct ata_port *ap) | 
|  | { | 
|  | unsigned int pmp, pmp_map; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  |  | 
|  | if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) { | 
|  | /* | 
|  | * Perform NCQ error analysis on failed PMPs | 
|  | * before we freeze the port entirely. | 
|  | * | 
|  | * The failed PMPs are marked earlier by mv_pmp_eh_prep(). | 
|  | */ | 
|  | pmp_map = pp->delayed_eh_pmp_map; | 
|  | pp->pp_flags &= ~MV_PP_FLAG_DELAYED_EH; | 
|  | for (pmp = 0; pmp_map != 0; pmp++) { | 
|  | unsigned int this_pmp = (1 << pmp); | 
|  | if (pmp_map & this_pmp) { | 
|  | struct ata_link *link = &ap->pmp_link[pmp]; | 
|  | pmp_map &= ~this_pmp; | 
|  | ata_eh_analyze_ncq_error(link); | 
|  | } | 
|  | } | 
|  | ata_port_freeze(ap); | 
|  | } | 
|  | sata_pmp_error_handler(ap); | 
|  | } | 
|  |  | 
|  | static unsigned int mv_get_err_pmp_map(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  |  | 
|  | return readl(port_mmio + SATA_TESTCTL) >> 16; | 
|  | } | 
|  |  | 
|  | static void mv_pmp_eh_prep(struct ata_port *ap, unsigned int pmp_map) | 
|  | { | 
|  | struct ata_eh_info *ehi; | 
|  | unsigned int pmp; | 
|  |  | 
|  | /* | 
|  | * Initialize EH info for PMPs which saw device errors | 
|  | */ | 
|  | ehi = &ap->link.eh_info; | 
|  | for (pmp = 0; pmp_map != 0; pmp++) { | 
|  | unsigned int this_pmp = (1 << pmp); | 
|  | if (pmp_map & this_pmp) { | 
|  | struct ata_link *link = &ap->pmp_link[pmp]; | 
|  |  | 
|  | pmp_map &= ~this_pmp; | 
|  | ehi = &link->eh_info; | 
|  | ata_ehi_clear_desc(ehi); | 
|  | ata_ehi_push_desc(ehi, "dev err"); | 
|  | ehi->err_mask |= AC_ERR_DEV; | 
|  | ehi->action |= ATA_EH_RESET; | 
|  | ata_link_abort(link); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mv_req_q_empty(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 in_ptr, out_ptr; | 
|  |  | 
|  | in_ptr  = (readl(port_mmio + EDMA_REQ_Q_IN_PTR) | 
|  | >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; | 
|  | out_ptr = (readl(port_mmio + EDMA_REQ_Q_OUT_PTR) | 
|  | >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; | 
|  | return (in_ptr == out_ptr);	/* 1 == queue_is_empty */ | 
|  | } | 
|  |  | 
|  | static int mv_handle_fbs_ncq_dev_err(struct ata_port *ap) | 
|  | { | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | int failed_links; | 
|  | unsigned int old_map, new_map; | 
|  |  | 
|  | /* | 
|  | * Device error during FBS+NCQ operation: | 
|  | * | 
|  | * Set a port flag to prevent further I/O being enqueued. | 
|  | * Leave the EDMA running to drain outstanding commands from this port. | 
|  | * Perform the post-mortem/EH only when all responses are complete. | 
|  | * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.2). | 
|  | */ | 
|  | if (!(pp->pp_flags & MV_PP_FLAG_DELAYED_EH)) { | 
|  | pp->pp_flags |= MV_PP_FLAG_DELAYED_EH; | 
|  | pp->delayed_eh_pmp_map = 0; | 
|  | } | 
|  | old_map = pp->delayed_eh_pmp_map; | 
|  | new_map = old_map | mv_get_err_pmp_map(ap); | 
|  |  | 
|  | if (old_map != new_map) { | 
|  | pp->delayed_eh_pmp_map = new_map; | 
|  | mv_pmp_eh_prep(ap, new_map & ~old_map); | 
|  | } | 
|  | failed_links = hweight16(new_map); | 
|  |  | 
|  | ata_port_info(ap, | 
|  | "%s: pmp_map=%04x qc_map=%04x failed_links=%d nr_active_links=%d\n", | 
|  | __func__, pp->delayed_eh_pmp_map, | 
|  | ap->qc_active, failed_links, | 
|  | ap->nr_active_links); | 
|  |  | 
|  | if (ap->nr_active_links <= failed_links && mv_req_q_empty(ap)) { | 
|  | mv_process_crpb_entries(ap, pp); | 
|  | mv_stop_edma(ap); | 
|  | mv_eh_freeze(ap); | 
|  | ata_port_info(ap, "%s: done\n", __func__); | 
|  | return 1;	/* handled */ | 
|  | } | 
|  | ata_port_info(ap, "%s: waiting\n", __func__); | 
|  | return 1;	/* handled */ | 
|  | } | 
|  |  | 
|  | static int mv_handle_fbs_non_ncq_dev_err(struct ata_port *ap) | 
|  | { | 
|  | /* | 
|  | * Possible future enhancement: | 
|  | * | 
|  | * FBS+non-NCQ operation is not yet implemented. | 
|  | * See related notes in mv_edma_cfg(). | 
|  | * | 
|  | * Device error during FBS+non-NCQ operation: | 
|  | * | 
|  | * We need to snapshot the shadow registers for each failed command. | 
|  | * Follow recovery sequence from 6042/7042 datasheet (7.3.15.4.2.3). | 
|  | */ | 
|  | return 0;	/* not handled */ | 
|  | } | 
|  |  | 
|  | static int mv_handle_dev_err(struct ata_port *ap, u32 edma_err_cause) | 
|  | { | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  |  | 
|  | if (!(pp->pp_flags & MV_PP_FLAG_EDMA_EN)) | 
|  | return 0;	/* EDMA was not active: not handled */ | 
|  | if (!(pp->pp_flags & MV_PP_FLAG_FBS_EN)) | 
|  | return 0;	/* FBS was not active: not handled */ | 
|  |  | 
|  | if (!(edma_err_cause & EDMA_ERR_DEV)) | 
|  | return 0;	/* non DEV error: not handled */ | 
|  | edma_err_cause &= ~EDMA_ERR_IRQ_TRANSIENT; | 
|  | if (edma_err_cause & ~(EDMA_ERR_DEV | EDMA_ERR_SELF_DIS)) | 
|  | return 0;	/* other problems: not handled */ | 
|  |  | 
|  | if (pp->pp_flags & MV_PP_FLAG_NCQ_EN) { | 
|  | /* | 
|  | * EDMA should NOT have self-disabled for this case. | 
|  | * If it did, then something is wrong elsewhere, | 
|  | * and we cannot handle it here. | 
|  | */ | 
|  | if (edma_err_cause & EDMA_ERR_SELF_DIS) { | 
|  | ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", | 
|  | __func__, edma_err_cause, pp->pp_flags); | 
|  | return 0; /* not handled */ | 
|  | } | 
|  | return mv_handle_fbs_ncq_dev_err(ap); | 
|  | } else { | 
|  | /* | 
|  | * EDMA should have self-disabled for this case. | 
|  | * If it did not, then something is wrong elsewhere, | 
|  | * and we cannot handle it here. | 
|  | */ | 
|  | if (!(edma_err_cause & EDMA_ERR_SELF_DIS)) { | 
|  | ata_port_warn(ap, "%s: err_cause=0x%x pp_flags=0x%x\n", | 
|  | __func__, edma_err_cause, pp->pp_flags); | 
|  | return 0; /* not handled */ | 
|  | } | 
|  | return mv_handle_fbs_non_ncq_dev_err(ap); | 
|  | } | 
|  | return 0;	/* not handled */ | 
|  | } | 
|  |  | 
|  | static void mv_unexpected_intr(struct ata_port *ap, int edma_was_enabled) | 
|  | { | 
|  | struct ata_eh_info *ehi = &ap->link.eh_info; | 
|  | char *when = "idle"; | 
|  |  | 
|  | ata_ehi_clear_desc(ehi); | 
|  | if (edma_was_enabled) { | 
|  | when = "EDMA enabled"; | 
|  | } else { | 
|  | struct ata_queued_cmd *qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | if (qc && (qc->tf.flags & ATA_TFLAG_POLLING)) | 
|  | when = "polling"; | 
|  | } | 
|  | ata_ehi_push_desc(ehi, "unexpected device interrupt while %s", when); | 
|  | ehi->err_mask |= AC_ERR_OTHER; | 
|  | ehi->action   |= ATA_EH_RESET; | 
|  | ata_port_freeze(ap); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_err_intr - Handle error interrupts on the port | 
|  | *      @ap: ATA channel to manipulate | 
|  | * | 
|  | *      Most cases require a full reset of the chip's state machine, | 
|  | *      which also performs a COMRESET. | 
|  | *      Also, if the port disabled DMA, update our cached copy to match. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_err_intr(struct ata_port *ap) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 edma_err_cause, eh_freeze_mask, serr = 0; | 
|  | u32 fis_cause = 0; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | unsigned int action = 0, err_mask = 0; | 
|  | struct ata_eh_info *ehi = &ap->link.eh_info; | 
|  | struct ata_queued_cmd *qc; | 
|  | int abort = 0; | 
|  |  | 
|  | /* | 
|  | * Read and clear the SError and err_cause bits. | 
|  | * For GenIIe, if EDMA_ERR_TRANS_IRQ_7 is set, we also must read/clear | 
|  | * the FIS_IRQ_CAUSE register before clearing edma_err_cause. | 
|  | */ | 
|  | sata_scr_read(&ap->link, SCR_ERROR, &serr); | 
|  | sata_scr_write_flush(&ap->link, SCR_ERROR, serr); | 
|  |  | 
|  | edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE); | 
|  | if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { | 
|  | fis_cause = readl(port_mmio + FIS_IRQ_CAUSE); | 
|  | writelfl(~fis_cause, port_mmio + FIS_IRQ_CAUSE); | 
|  | } | 
|  | writelfl(~edma_err_cause, port_mmio + EDMA_ERR_IRQ_CAUSE); | 
|  |  | 
|  | if (edma_err_cause & EDMA_ERR_DEV) { | 
|  | /* | 
|  | * Device errors during FIS-based switching operation | 
|  | * require special handling. | 
|  | */ | 
|  | if (mv_handle_dev_err(ap, edma_err_cause)) | 
|  | return; | 
|  | } | 
|  |  | 
|  | qc = mv_get_active_qc(ap); | 
|  | ata_ehi_clear_desc(ehi); | 
|  | ata_ehi_push_desc(ehi, "edma_err_cause=%08x pp_flags=%08x", | 
|  | edma_err_cause, pp->pp_flags); | 
|  |  | 
|  | if (IS_GEN_IIE(hpriv) && (edma_err_cause & EDMA_ERR_TRANS_IRQ_7)) { | 
|  | ata_ehi_push_desc(ehi, "fis_cause=%08x", fis_cause); | 
|  | if (fis_cause & FIS_IRQ_CAUSE_AN) { | 
|  | u32 ec = edma_err_cause & | 
|  | ~(EDMA_ERR_TRANS_IRQ_7 | EDMA_ERR_IRQ_TRANSIENT); | 
|  | sata_async_notification(ap); | 
|  | if (!ec) | 
|  | return; /* Just an AN; no need for the nukes */ | 
|  | ata_ehi_push_desc(ehi, "SDB notify"); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * All generations share these EDMA error cause bits: | 
|  | */ | 
|  | if (edma_err_cause & EDMA_ERR_DEV) { | 
|  | err_mask |= AC_ERR_DEV; | 
|  | action |= ATA_EH_RESET; | 
|  | ata_ehi_push_desc(ehi, "dev error"); | 
|  | } | 
|  | if (edma_err_cause & (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR | | 
|  | EDMA_ERR_CRQB_PAR | EDMA_ERR_CRPB_PAR | | 
|  | EDMA_ERR_INTRL_PAR)) { | 
|  | err_mask |= AC_ERR_ATA_BUS; | 
|  | action |= ATA_EH_RESET; | 
|  | ata_ehi_push_desc(ehi, "parity error"); | 
|  | } | 
|  | if (edma_err_cause & (EDMA_ERR_DEV_DCON | EDMA_ERR_DEV_CON)) { | 
|  | ata_ehi_hotplugged(ehi); | 
|  | ata_ehi_push_desc(ehi, edma_err_cause & EDMA_ERR_DEV_DCON ? | 
|  | "dev disconnect" : "dev connect"); | 
|  | action |= ATA_EH_RESET; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gen-I has a different SELF_DIS bit, | 
|  | * different FREEZE bits, and no SERR bit: | 
|  | */ | 
|  | if (IS_GEN_I(hpriv)) { | 
|  | eh_freeze_mask = EDMA_EH_FREEZE_5; | 
|  | if (edma_err_cause & EDMA_ERR_SELF_DIS_5) { | 
|  | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; | 
|  | ata_ehi_push_desc(ehi, "EDMA self-disable"); | 
|  | } | 
|  | } else { | 
|  | eh_freeze_mask = EDMA_EH_FREEZE; | 
|  | if (edma_err_cause & EDMA_ERR_SELF_DIS) { | 
|  | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; | 
|  | ata_ehi_push_desc(ehi, "EDMA self-disable"); | 
|  | } | 
|  | if (edma_err_cause & EDMA_ERR_SERR) { | 
|  | ata_ehi_push_desc(ehi, "SError=%08x", serr); | 
|  | err_mask |= AC_ERR_ATA_BUS; | 
|  | action |= ATA_EH_RESET; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!err_mask) { | 
|  | err_mask = AC_ERR_OTHER; | 
|  | action |= ATA_EH_RESET; | 
|  | } | 
|  |  | 
|  | ehi->serror |= serr; | 
|  | ehi->action |= action; | 
|  |  | 
|  | if (qc) | 
|  | qc->err_mask |= err_mask; | 
|  | else | 
|  | ehi->err_mask |= err_mask; | 
|  |  | 
|  | if (err_mask == AC_ERR_DEV) { | 
|  | /* | 
|  | * Cannot do ata_port_freeze() here, | 
|  | * because it would kill PIO access, | 
|  | * which is needed for further diagnosis. | 
|  | */ | 
|  | mv_eh_freeze(ap); | 
|  | abort = 1; | 
|  | } else if (edma_err_cause & eh_freeze_mask) { | 
|  | /* | 
|  | * Note to self: ata_port_freeze() calls ata_port_abort() | 
|  | */ | 
|  | ata_port_freeze(ap); | 
|  | } else { | 
|  | abort = 1; | 
|  | } | 
|  |  | 
|  | if (abort) { | 
|  | if (qc) | 
|  | ata_link_abort(qc->dev->link); | 
|  | else | 
|  | ata_port_abort(ap); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool mv_process_crpb_response(struct ata_port *ap, | 
|  | struct mv_crpb *response, unsigned int tag, int ncq_enabled) | 
|  | { | 
|  | u8 ata_status; | 
|  | u16 edma_status = le16_to_cpu(response->flags); | 
|  |  | 
|  | /* | 
|  | * edma_status from a response queue entry: | 
|  | *   LSB is from EDMA_ERR_IRQ_CAUSE (non-NCQ only). | 
|  | *   MSB is saved ATA status from command completion. | 
|  | */ | 
|  | if (!ncq_enabled) { | 
|  | u8 err_cause = edma_status & 0xff & ~EDMA_ERR_DEV; | 
|  | if (err_cause) { | 
|  | /* | 
|  | * Error will be seen/handled by | 
|  | * mv_err_intr().  So do nothing at all here. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  | } | 
|  | ata_status = edma_status >> CRPB_FLAG_STATUS_SHIFT; | 
|  | if (!ac_err_mask(ata_status)) | 
|  | return true; | 
|  | /* else: leave it for mv_err_intr() */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void mv_process_crpb_entries(struct ata_port *ap, struct mv_port_priv *pp) | 
|  | { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | u32 in_index; | 
|  | bool work_done = false; | 
|  | u32 done_mask = 0; | 
|  | int ncq_enabled = (pp->pp_flags & MV_PP_FLAG_NCQ_EN); | 
|  |  | 
|  | /* Get the hardware queue position index */ | 
|  | in_index = (readl(port_mmio + EDMA_RSP_Q_IN_PTR) | 
|  | >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK; | 
|  |  | 
|  | /* Process new responses from since the last time we looked */ | 
|  | while (in_index != pp->resp_idx) { | 
|  | unsigned int tag; | 
|  | struct mv_crpb *response = &pp->crpb[pp->resp_idx]; | 
|  |  | 
|  | pp->resp_idx = (pp->resp_idx + 1) & MV_MAX_Q_DEPTH_MASK; | 
|  |  | 
|  | if (IS_GEN_I(hpriv)) { | 
|  | /* 50xx: no NCQ, only one command active at a time */ | 
|  | tag = ap->link.active_tag; | 
|  | } else { | 
|  | /* Gen II/IIE: get command tag from CRPB entry */ | 
|  | tag = le16_to_cpu(response->id) & 0x1f; | 
|  | } | 
|  | if (mv_process_crpb_response(ap, response, tag, ncq_enabled)) | 
|  | done_mask |= 1 << tag; | 
|  | work_done = true; | 
|  | } | 
|  |  | 
|  | if (work_done) { | 
|  | ata_qc_complete_multiple(ap, ap->qc_active ^ done_mask); | 
|  |  | 
|  | /* Update the software queue position index in hardware */ | 
|  | writelfl((pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK) | | 
|  | (pp->resp_idx << EDMA_RSP_Q_PTR_SHIFT), | 
|  | port_mmio + EDMA_RSP_Q_OUT_PTR); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void mv_port_intr(struct ata_port *ap, u32 port_cause) | 
|  | { | 
|  | struct mv_port_priv *pp; | 
|  | int edma_was_enabled; | 
|  |  | 
|  | /* | 
|  | * Grab a snapshot of the EDMA_EN flag setting, | 
|  | * so that we have a consistent view for this port, | 
|  | * even if something we call of our routines changes it. | 
|  | */ | 
|  | pp = ap->private_data; | 
|  | edma_was_enabled = (pp->pp_flags & MV_PP_FLAG_EDMA_EN); | 
|  | /* | 
|  | * Process completed CRPB response(s) before other events. | 
|  | */ | 
|  | if (edma_was_enabled && (port_cause & DONE_IRQ)) { | 
|  | mv_process_crpb_entries(ap, pp); | 
|  | if (pp->pp_flags & MV_PP_FLAG_DELAYED_EH) | 
|  | mv_handle_fbs_ncq_dev_err(ap); | 
|  | } | 
|  | /* | 
|  | * Handle chip-reported errors, or continue on to handle PIO. | 
|  | */ | 
|  | if (unlikely(port_cause & ERR_IRQ)) { | 
|  | mv_err_intr(ap); | 
|  | } else if (!edma_was_enabled) { | 
|  | struct ata_queued_cmd *qc = mv_get_active_qc(ap); | 
|  | if (qc) | 
|  | ata_bmdma_port_intr(ap, qc); | 
|  | else | 
|  | mv_unexpected_intr(ap, edma_was_enabled); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_host_intr - Handle all interrupts on the given host controller | 
|  | *      @host: host specific structure | 
|  | *      @main_irq_cause: Main interrupt cause register for the chip. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv_host_intr(struct ata_host *host, u32 main_irq_cause) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *mmio = hpriv->base, *hc_mmio; | 
|  | unsigned int handled = 0, port; | 
|  |  | 
|  | /* If asserted, clear the "all ports" IRQ coalescing bit */ | 
|  | if (main_irq_cause & ALL_PORTS_COAL_DONE) | 
|  | writel(~ALL_PORTS_COAL_IRQ, mmio + IRQ_COAL_CAUSE); | 
|  |  | 
|  | for (port = 0; port < hpriv->n_ports; port++) { | 
|  | struct ata_port *ap = host->ports[port]; | 
|  | unsigned int p, shift, hardport, port_cause; | 
|  |  | 
|  | MV_PORT_TO_SHIFT_AND_HARDPORT(port, shift, hardport); | 
|  | /* | 
|  | * Each hc within the host has its own hc_irq_cause register, | 
|  | * where the interrupting ports bits get ack'd. | 
|  | */ | 
|  | if (hardport == 0) {	/* first port on this hc ? */ | 
|  | u32 hc_cause = (main_irq_cause >> shift) & HC0_IRQ_PEND; | 
|  | u32 port_mask, ack_irqs; | 
|  | /* | 
|  | * Skip this entire hc if nothing pending for any ports | 
|  | */ | 
|  | if (!hc_cause) { | 
|  | port += MV_PORTS_PER_HC - 1; | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * We don't need/want to read the hc_irq_cause register, | 
|  | * because doing so hurts performance, and | 
|  | * main_irq_cause already gives us everything we need. | 
|  | * | 
|  | * But we do have to *write* to the hc_irq_cause to ack | 
|  | * the ports that we are handling this time through. | 
|  | * | 
|  | * This requires that we create a bitmap for those | 
|  | * ports which interrupted us, and use that bitmap | 
|  | * to ack (only) those ports via hc_irq_cause. | 
|  | */ | 
|  | ack_irqs = 0; | 
|  | if (hc_cause & PORTS_0_3_COAL_DONE) | 
|  | ack_irqs = HC_COAL_IRQ; | 
|  | for (p = 0; p < MV_PORTS_PER_HC; ++p) { | 
|  | if ((port + p) >= hpriv->n_ports) | 
|  | break; | 
|  | port_mask = (DONE_IRQ | ERR_IRQ) << (p * 2); | 
|  | if (hc_cause & port_mask) | 
|  | ack_irqs |= (DMA_IRQ | DEV_IRQ) << p; | 
|  | } | 
|  | hc_mmio = mv_hc_base_from_port(mmio, port); | 
|  | writelfl(~ack_irqs, hc_mmio + HC_IRQ_CAUSE); | 
|  | handled = 1; | 
|  | } | 
|  | /* | 
|  | * Handle interrupts signalled for this port: | 
|  | */ | 
|  | port_cause = (main_irq_cause >> shift) & (DONE_IRQ | ERR_IRQ); | 
|  | if (port_cause) | 
|  | mv_port_intr(ap, port_cause); | 
|  | } | 
|  | return handled; | 
|  | } | 
|  |  | 
|  | static int mv_pci_error(struct ata_host *host, void __iomem *mmio) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | struct ata_port *ap; | 
|  | struct ata_queued_cmd *qc; | 
|  | struct ata_eh_info *ehi; | 
|  | unsigned int i, err_mask, printed = 0; | 
|  | u32 err_cause; | 
|  |  | 
|  | err_cause = readl(mmio + hpriv->irq_cause_offset); | 
|  |  | 
|  | dev_err(host->dev, "PCI ERROR; PCI IRQ cause=0x%08x\n", err_cause); | 
|  |  | 
|  | DPRINTK("All regs @ PCI error\n"); | 
|  | mv_dump_all_regs(mmio, -1, to_pci_dev(host->dev)); | 
|  |  | 
|  | writelfl(0, mmio + hpriv->irq_cause_offset); | 
|  |  | 
|  | for (i = 0; i < host->n_ports; i++) { | 
|  | ap = host->ports[i]; | 
|  | if (!ata_link_offline(&ap->link)) { | 
|  | ehi = &ap->link.eh_info; | 
|  | ata_ehi_clear_desc(ehi); | 
|  | if (!printed++) | 
|  | ata_ehi_push_desc(ehi, | 
|  | "PCI err cause 0x%08x", err_cause); | 
|  | err_mask = AC_ERR_HOST_BUS; | 
|  | ehi->action = ATA_EH_RESET; | 
|  | qc = ata_qc_from_tag(ap, ap->link.active_tag); | 
|  | if (qc) | 
|  | qc->err_mask |= err_mask; | 
|  | else | 
|  | ehi->err_mask |= err_mask; | 
|  |  | 
|  | ata_port_freeze(ap); | 
|  | } | 
|  | } | 
|  | return 1;	/* handled */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_interrupt - Main interrupt event handler | 
|  | *      @irq: unused | 
|  | *      @dev_instance: private data; in this case the host structure | 
|  | * | 
|  | *      Read the read only register to determine if any host | 
|  | *      controllers have pending interrupts.  If so, call lower level | 
|  | *      routine to handle.  Also check for PCI errors which are only | 
|  | *      reported here. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      This routine holds the host lock while processing pending | 
|  | *      interrupts. | 
|  | */ | 
|  | static irqreturn_t mv_interrupt(int irq, void *dev_instance) | 
|  | { | 
|  | struct ata_host *host = dev_instance; | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | unsigned int handled = 0; | 
|  | int using_msi = hpriv->hp_flags & MV_HP_FLAG_MSI; | 
|  | u32 main_irq_cause, pending_irqs; | 
|  |  | 
|  | spin_lock(&host->lock); | 
|  |  | 
|  | /* for MSI:  block new interrupts while in here */ | 
|  | if (using_msi) | 
|  | mv_write_main_irq_mask(0, hpriv); | 
|  |  | 
|  | main_irq_cause = readl(hpriv->main_irq_cause_addr); | 
|  | pending_irqs   = main_irq_cause & hpriv->main_irq_mask; | 
|  | /* | 
|  | * Deal with cases where we either have nothing pending, or have read | 
|  | * a bogus register value which can indicate HW removal or PCI fault. | 
|  | */ | 
|  | if (pending_irqs && main_irq_cause != 0xffffffffU) { | 
|  | if (unlikely((pending_irqs & PCI_ERR) && !IS_SOC(hpriv))) | 
|  | handled = mv_pci_error(host, hpriv->base); | 
|  | else | 
|  | handled = mv_host_intr(host, pending_irqs); | 
|  | } | 
|  |  | 
|  | /* for MSI: unmask; interrupt cause bits will retrigger now */ | 
|  | if (using_msi) | 
|  | mv_write_main_irq_mask(hpriv->main_irq_mask, hpriv); | 
|  |  | 
|  | spin_unlock(&host->lock); | 
|  |  | 
|  | return IRQ_RETVAL(handled); | 
|  | } | 
|  |  | 
|  | static unsigned int mv5_scr_offset(unsigned int sc_reg_in) | 
|  | { | 
|  | unsigned int ofs; | 
|  |  | 
|  | switch (sc_reg_in) { | 
|  | case SCR_STATUS: | 
|  | case SCR_ERROR: | 
|  | case SCR_CONTROL: | 
|  | ofs = sc_reg_in * sizeof(u32); | 
|  | break; | 
|  | default: | 
|  | ofs = 0xffffffffU; | 
|  | break; | 
|  | } | 
|  | return ofs; | 
|  | } | 
|  |  | 
|  | static int mv5_scr_read(struct ata_link *link, unsigned int sc_reg_in, u32 *val) | 
|  | { | 
|  | struct mv_host_priv *hpriv = link->ap->host->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  | void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); | 
|  | unsigned int ofs = mv5_scr_offset(sc_reg_in); | 
|  |  | 
|  | if (ofs != 0xffffffffU) { | 
|  | *val = readl(addr + ofs); | 
|  | return 0; | 
|  | } else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int mv5_scr_write(struct ata_link *link, unsigned int sc_reg_in, u32 val) | 
|  | { | 
|  | struct mv_host_priv *hpriv = link->ap->host->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  | void __iomem *addr = mv5_phy_base(mmio, link->ap->port_no); | 
|  | unsigned int ofs = mv5_scr_offset(sc_reg_in); | 
|  |  | 
|  | if (ofs != 0xffffffffU) { | 
|  | writelfl(val, addr + ofs); | 
|  | return 0; | 
|  | } else | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static void mv5_reset_bus(struct ata_host *host, void __iomem *mmio) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(host->dev); | 
|  | int early_5080; | 
|  |  | 
|  | early_5080 = (pdev->device == 0x5080) && (pdev->revision == 0); | 
|  |  | 
|  | if (!early_5080) { | 
|  | u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); | 
|  | tmp |= (1 << 0); | 
|  | writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); | 
|  | } | 
|  |  | 
|  | mv_reset_pci_bus(host, mmio); | 
|  | } | 
|  |  | 
|  | static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) | 
|  | { | 
|  | writel(0x0fcfffff, mmio + FLASH_CTL); | 
|  | } | 
|  |  | 
|  | static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio) | 
|  | { | 
|  | void __iomem *phy_mmio = mv5_phy_base(mmio, idx); | 
|  | u32 tmp; | 
|  |  | 
|  | tmp = readl(phy_mmio + MV5_PHY_MODE); | 
|  |  | 
|  | hpriv->signal[idx].pre = tmp & 0x1800;	/* bits 12:11 */ | 
|  | hpriv->signal[idx].amps = tmp & 0xe0;	/* bits 7:5 */ | 
|  | } | 
|  |  | 
|  | static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | writel(0, mmio + GPIO_PORT_CTL); | 
|  |  | 
|  | /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */ | 
|  |  | 
|  | tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL); | 
|  | tmp |= ~(1 << 0); | 
|  | writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL); | 
|  | } | 
|  |  | 
|  | static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port) | 
|  | { | 
|  | void __iomem *phy_mmio = mv5_phy_base(mmio, port); | 
|  | const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5); | 
|  | u32 tmp; | 
|  | int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0); | 
|  |  | 
|  | if (fix_apm_sq) { | 
|  | tmp = readl(phy_mmio + MV5_LTMODE); | 
|  | tmp |= (1 << 19); | 
|  | writel(tmp, phy_mmio + MV5_LTMODE); | 
|  |  | 
|  | tmp = readl(phy_mmio + MV5_PHY_CTL); | 
|  | tmp &= ~0x3; | 
|  | tmp |= 0x1; | 
|  | writel(tmp, phy_mmio + MV5_PHY_CTL); | 
|  | } | 
|  |  | 
|  | tmp = readl(phy_mmio + MV5_PHY_MODE); | 
|  | tmp &= ~mask; | 
|  | tmp |= hpriv->signal[port].pre; | 
|  | tmp |= hpriv->signal[port].amps; | 
|  | writel(tmp, phy_mmio + MV5_PHY_MODE); | 
|  | } | 
|  |  | 
|  |  | 
|  | #undef ZERO | 
|  | #define ZERO(reg) writel(0, port_mmio + (reg)) | 
|  | static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port) | 
|  | { | 
|  | void __iomem *port_mmio = mv_port_base(mmio, port); | 
|  |  | 
|  | mv_reset_channel(hpriv, mmio, port); | 
|  |  | 
|  | ZERO(0x028);	/* command */ | 
|  | writel(0x11f, port_mmio + EDMA_CFG); | 
|  | ZERO(0x004);	/* timer */ | 
|  | ZERO(0x008);	/* irq err cause */ | 
|  | ZERO(0x00c);	/* irq err mask */ | 
|  | ZERO(0x010);	/* rq bah */ | 
|  | ZERO(0x014);	/* rq inp */ | 
|  | ZERO(0x018);	/* rq outp */ | 
|  | ZERO(0x01c);	/* respq bah */ | 
|  | ZERO(0x024);	/* respq outp */ | 
|  | ZERO(0x020);	/* respq inp */ | 
|  | ZERO(0x02c);	/* test control */ | 
|  | writel(0xbc, port_mmio + EDMA_IORDY_TMOUT); | 
|  | } | 
|  | #undef ZERO | 
|  |  | 
|  | #define ZERO(reg) writel(0, hc_mmio + (reg)) | 
|  | static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int hc) | 
|  | { | 
|  | void __iomem *hc_mmio = mv_hc_base(mmio, hc); | 
|  | u32 tmp; | 
|  |  | 
|  | ZERO(0x00c); | 
|  | ZERO(0x010); | 
|  | ZERO(0x014); | 
|  | ZERO(0x018); | 
|  |  | 
|  | tmp = readl(hc_mmio + 0x20); | 
|  | tmp &= 0x1c1c1c1c; | 
|  | tmp |= 0x03030303; | 
|  | writel(tmp, hc_mmio + 0x20); | 
|  | } | 
|  | #undef ZERO | 
|  |  | 
|  | static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int n_hc) | 
|  | { | 
|  | unsigned int hc, port; | 
|  |  | 
|  | for (hc = 0; hc < n_hc; hc++) { | 
|  | for (port = 0; port < MV_PORTS_PER_HC; port++) | 
|  | mv5_reset_hc_port(hpriv, mmio, | 
|  | (hc * MV_PORTS_PER_HC) + port); | 
|  |  | 
|  | mv5_reset_one_hc(hpriv, mmio, hc); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #undef ZERO | 
|  | #define ZERO(reg) writel(0, mmio + (reg)) | 
|  | static void mv_reset_pci_bus(struct ata_host *host, void __iomem *mmio) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | u32 tmp; | 
|  |  | 
|  | tmp = readl(mmio + MV_PCI_MODE); | 
|  | tmp &= 0xff00ffff; | 
|  | writel(tmp, mmio + MV_PCI_MODE); | 
|  |  | 
|  | ZERO(MV_PCI_DISC_TIMER); | 
|  | ZERO(MV_PCI_MSI_TRIGGER); | 
|  | writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT); | 
|  | ZERO(MV_PCI_SERR_MASK); | 
|  | ZERO(hpriv->irq_cause_offset); | 
|  | ZERO(hpriv->irq_mask_offset); | 
|  | ZERO(MV_PCI_ERR_LOW_ADDRESS); | 
|  | ZERO(MV_PCI_ERR_HIGH_ADDRESS); | 
|  | ZERO(MV_PCI_ERR_ATTRIBUTE); | 
|  | ZERO(MV_PCI_ERR_COMMAND); | 
|  | } | 
|  | #undef ZERO | 
|  |  | 
|  | static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio) | 
|  | { | 
|  | u32 tmp; | 
|  |  | 
|  | mv5_reset_flash(hpriv, mmio); | 
|  |  | 
|  | tmp = readl(mmio + GPIO_PORT_CTL); | 
|  | tmp &= 0x3; | 
|  | tmp |= (1 << 5) | (1 << 6); | 
|  | writel(tmp, mmio + GPIO_PORT_CTL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv6_reset_hc - Perform the 6xxx global soft reset | 
|  | *      @mmio: base address of the HBA | 
|  | * | 
|  | *      This routine only applies to 6xxx parts. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int n_hc) | 
|  | { | 
|  | void __iomem *reg = mmio + PCI_MAIN_CMD_STS; | 
|  | int i, rc = 0; | 
|  | u32 t; | 
|  |  | 
|  | /* Following procedure defined in PCI "main command and status | 
|  | * register" table. | 
|  | */ | 
|  | t = readl(reg); | 
|  | writel(t | STOP_PCI_MASTER, reg); | 
|  |  | 
|  | for (i = 0; i < 1000; i++) { | 
|  | udelay(1); | 
|  | t = readl(reg); | 
|  | if (PCI_MASTER_EMPTY & t) | 
|  | break; | 
|  | } | 
|  | if (!(PCI_MASTER_EMPTY & t)) { | 
|  | printk(KERN_ERR DRV_NAME ": PCI master won't flush\n"); | 
|  | rc = 1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* set reset */ | 
|  | i = 5; | 
|  | do { | 
|  | writel(t | GLOB_SFT_RST, reg); | 
|  | t = readl(reg); | 
|  | udelay(1); | 
|  | } while (!(GLOB_SFT_RST & t) && (i-- > 0)); | 
|  |  | 
|  | if (!(GLOB_SFT_RST & t)) { | 
|  | printk(KERN_ERR DRV_NAME ": can't set global reset\n"); | 
|  | rc = 1; | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* clear reset and *reenable the PCI master* (not mentioned in spec) */ | 
|  | i = 5; | 
|  | do { | 
|  | writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg); | 
|  | t = readl(reg); | 
|  | udelay(1); | 
|  | } while ((GLOB_SFT_RST & t) && (i-- > 0)); | 
|  |  | 
|  | if (GLOB_SFT_RST & t) { | 
|  | printk(KERN_ERR DRV_NAME ": can't clear global reset\n"); | 
|  | rc = 1; | 
|  | } | 
|  | done: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio) | 
|  | { | 
|  | void __iomem *port_mmio; | 
|  | u32 tmp; | 
|  |  | 
|  | tmp = readl(mmio + RESET_CFG); | 
|  | if ((tmp & (1 << 0)) == 0) { | 
|  | hpriv->signal[idx].amps = 0x7 << 8; | 
|  | hpriv->signal[idx].pre = 0x1 << 5; | 
|  | return; | 
|  | } | 
|  |  | 
|  | port_mmio = mv_port_base(mmio, idx); | 
|  | tmp = readl(port_mmio + PHY_MODE2); | 
|  |  | 
|  | hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */ | 
|  | hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */ | 
|  | } | 
|  |  | 
|  | static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio) | 
|  | { | 
|  | writel(0x00000060, mmio + GPIO_PORT_CTL); | 
|  | } | 
|  |  | 
|  | static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port) | 
|  | { | 
|  | void __iomem *port_mmio = mv_port_base(mmio, port); | 
|  |  | 
|  | u32 hp_flags = hpriv->hp_flags; | 
|  | int fix_phy_mode2 = | 
|  | hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); | 
|  | int fix_phy_mode4 = | 
|  | hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0); | 
|  | u32 m2, m3; | 
|  |  | 
|  | if (fix_phy_mode2) { | 
|  | m2 = readl(port_mmio + PHY_MODE2); | 
|  | m2 &= ~(1 << 16); | 
|  | m2 |= (1 << 31); | 
|  | writel(m2, port_mmio + PHY_MODE2); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | m2 = readl(port_mmio + PHY_MODE2); | 
|  | m2 &= ~((1 << 16) | (1 << 31)); | 
|  | writel(m2, port_mmio + PHY_MODE2); | 
|  |  | 
|  | udelay(200); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Gen-II/IIe PHY_MODE3 errata RM#2: | 
|  | * Achieves better receiver noise performance than the h/w default: | 
|  | */ | 
|  | m3 = readl(port_mmio + PHY_MODE3); | 
|  | m3 = (m3 & 0x1f) | (0x5555601 << 5); | 
|  |  | 
|  | /* Guideline 88F5182 (GL# SATA-S11) */ | 
|  | if (IS_SOC(hpriv)) | 
|  | m3 &= ~0x1c; | 
|  |  | 
|  | if (fix_phy_mode4) { | 
|  | u32 m4 = readl(port_mmio + PHY_MODE4); | 
|  | /* | 
|  | * Enforce reserved-bit restrictions on GenIIe devices only. | 
|  | * For earlier chipsets, force only the internal config field | 
|  | *  (workaround for errata FEr SATA#10 part 1). | 
|  | */ | 
|  | if (IS_GEN_IIE(hpriv)) | 
|  | m4 = (m4 & ~PHY_MODE4_RSVD_ZEROS) | PHY_MODE4_RSVD_ONES; | 
|  | else | 
|  | m4 = (m4 & ~PHY_MODE4_CFG_MASK) | PHY_MODE4_CFG_VALUE; | 
|  | writel(m4, port_mmio + PHY_MODE4); | 
|  | } | 
|  | /* | 
|  | * Workaround for 60x1-B2 errata SATA#13: | 
|  | * Any write to PHY_MODE4 (above) may corrupt PHY_MODE3, | 
|  | * so we must always rewrite PHY_MODE3 after PHY_MODE4. | 
|  | * Or ensure we use writelfl() when writing PHY_MODE4. | 
|  | */ | 
|  | writel(m3, port_mmio + PHY_MODE3); | 
|  |  | 
|  | /* Revert values of pre-emphasis and signal amps to the saved ones */ | 
|  | m2 = readl(port_mmio + PHY_MODE2); | 
|  |  | 
|  | m2 &= ~MV_M2_PREAMP_MASK; | 
|  | m2 |= hpriv->signal[port].amps; | 
|  | m2 |= hpriv->signal[port].pre; | 
|  | m2 &= ~(1 << 16); | 
|  |  | 
|  | /* according to mvSata 3.6.1, some IIE values are fixed */ | 
|  | if (IS_GEN_IIE(hpriv)) { | 
|  | m2 &= ~0xC30FF01F; | 
|  | m2 |= 0x0000900F; | 
|  | } | 
|  |  | 
|  | writel(m2, port_mmio + PHY_MODE2); | 
|  | } | 
|  |  | 
|  | /* TODO: use the generic LED interface to configure the SATA Presence */ | 
|  | /* & Acitivy LEDs on the board */ | 
|  | static void mv_soc_enable_leds(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void mv_soc_read_preamp(struct mv_host_priv *hpriv, int idx, | 
|  | void __iomem *mmio) | 
|  | { | 
|  | void __iomem *port_mmio; | 
|  | u32 tmp; | 
|  |  | 
|  | port_mmio = mv_port_base(mmio, idx); | 
|  | tmp = readl(port_mmio + PHY_MODE2); | 
|  |  | 
|  | hpriv->signal[idx].amps = tmp & 0x700;	/* bits 10:8 */ | 
|  | hpriv->signal[idx].pre = tmp & 0xe0;	/* bits 7:5 */ | 
|  | } | 
|  |  | 
|  | #undef ZERO | 
|  | #define ZERO(reg) writel(0, port_mmio + (reg)) | 
|  | static void mv_soc_reset_hc_port(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio, unsigned int port) | 
|  | { | 
|  | void __iomem *port_mmio = mv_port_base(mmio, port); | 
|  |  | 
|  | mv_reset_channel(hpriv, mmio, port); | 
|  |  | 
|  | ZERO(0x028);		/* command */ | 
|  | writel(0x101f, port_mmio + EDMA_CFG); | 
|  | ZERO(0x004);		/* timer */ | 
|  | ZERO(0x008);		/* irq err cause */ | 
|  | ZERO(0x00c);		/* irq err mask */ | 
|  | ZERO(0x010);		/* rq bah */ | 
|  | ZERO(0x014);		/* rq inp */ | 
|  | ZERO(0x018);		/* rq outp */ | 
|  | ZERO(0x01c);		/* respq bah */ | 
|  | ZERO(0x024);		/* respq outp */ | 
|  | ZERO(0x020);		/* respq inp */ | 
|  | ZERO(0x02c);		/* test control */ | 
|  | writel(0x800, port_mmio + EDMA_IORDY_TMOUT); | 
|  | } | 
|  |  | 
|  | #undef ZERO | 
|  |  | 
|  | #define ZERO(reg) writel(0, hc_mmio + (reg)) | 
|  | static void mv_soc_reset_one_hc(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio) | 
|  | { | 
|  | void __iomem *hc_mmio = mv_hc_base(mmio, 0); | 
|  |  | 
|  | ZERO(0x00c); | 
|  | ZERO(0x010); | 
|  | ZERO(0x014); | 
|  |  | 
|  | } | 
|  |  | 
|  | #undef ZERO | 
|  |  | 
|  | static int mv_soc_reset_hc(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio, unsigned int n_hc) | 
|  | { | 
|  | unsigned int port; | 
|  |  | 
|  | for (port = 0; port < hpriv->n_ports; port++) | 
|  | mv_soc_reset_hc_port(hpriv, mmio, port); | 
|  |  | 
|  | mv_soc_reset_one_hc(hpriv, mmio); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mv_soc_reset_flash(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void mv_soc_reset_bus(struct ata_host *host, void __iomem *mmio) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void mv_soc_65n_phy_errata(struct mv_host_priv *hpriv, | 
|  | void __iomem *mmio, unsigned int port) | 
|  | { | 
|  | void __iomem *port_mmio = mv_port_base(mmio, port); | 
|  | u32	reg; | 
|  |  | 
|  | reg = readl(port_mmio + PHY_MODE3); | 
|  | reg &= ~(0x3 << 27);	/* SELMUPF (bits 28:27) to 1 */ | 
|  | reg |= (0x1 << 27); | 
|  | reg &= ~(0x3 << 29);	/* SELMUPI (bits 30:29) to 1 */ | 
|  | reg |= (0x1 << 29); | 
|  | writel(reg, port_mmio + PHY_MODE3); | 
|  |  | 
|  | reg = readl(port_mmio + PHY_MODE4); | 
|  | reg &= ~0x1;	/* SATU_OD8 (bit 0) to 0, reserved bit 16 must be set */ | 
|  | reg |= (0x1 << 16); | 
|  | writel(reg, port_mmio + PHY_MODE4); | 
|  |  | 
|  | reg = readl(port_mmio + PHY_MODE9_GEN2); | 
|  | reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */ | 
|  | reg |= 0x8; | 
|  | reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */ | 
|  | writel(reg, port_mmio + PHY_MODE9_GEN2); | 
|  |  | 
|  | reg = readl(port_mmio + PHY_MODE9_GEN1); | 
|  | reg &= ~0xf;	/* TXAMP[3:0] (bits 3:0) to 8 */ | 
|  | reg |= 0x8; | 
|  | reg &= ~(0x1 << 14);	/* TXAMP[4] (bit 14) to 0 */ | 
|  | writel(reg, port_mmio + PHY_MODE9_GEN1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	soc_is_65 - check if the soc is 65 nano device | 
|  | * | 
|  | *	Detect the type of the SoC, this is done by reading the PHYCFG_OFS | 
|  | *	register, this register should contain non-zero value and it exists only | 
|  | *	in the 65 nano devices, when reading it from older devices we get 0. | 
|  | */ | 
|  | static bool soc_is_65n(struct mv_host_priv *hpriv) | 
|  | { | 
|  | void __iomem *port0_mmio = mv_port_base(hpriv->base, 0); | 
|  |  | 
|  | if (readl(port0_mmio + PHYCFG_OFS)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void mv_setup_ifcfg(void __iomem *port_mmio, int want_gen2i) | 
|  | { | 
|  | u32 ifcfg = readl(port_mmio + SATA_IFCFG); | 
|  |  | 
|  | ifcfg = (ifcfg & 0xf7f) | 0x9b1000;	/* from chip spec */ | 
|  | if (want_gen2i) | 
|  | ifcfg |= (1 << 7);		/* enable gen2i speed */ | 
|  | writelfl(ifcfg, port_mmio + SATA_IFCFG); | 
|  | } | 
|  |  | 
|  | static void mv_reset_channel(struct mv_host_priv *hpriv, void __iomem *mmio, | 
|  | unsigned int port_no) | 
|  | { | 
|  | void __iomem *port_mmio = mv_port_base(mmio, port_no); | 
|  |  | 
|  | /* | 
|  | * The datasheet warns against setting EDMA_RESET when EDMA is active | 
|  | * (but doesn't say what the problem might be).  So we first try | 
|  | * to disable the EDMA engine before doing the EDMA_RESET operation. | 
|  | */ | 
|  | mv_stop_edma_engine(port_mmio); | 
|  | writelfl(EDMA_RESET, port_mmio + EDMA_CMD); | 
|  |  | 
|  | if (!IS_GEN_I(hpriv)) { | 
|  | /* Enable 3.0gb/s link speed: this survives EDMA_RESET */ | 
|  | mv_setup_ifcfg(port_mmio, 1); | 
|  | } | 
|  | /* | 
|  | * Strobing EDMA_RESET here causes a hard reset of the SATA transport, | 
|  | * link, and physical layers.  It resets all SATA interface registers | 
|  | * (except for SATA_IFCFG), and issues a COMRESET to the dev. | 
|  | */ | 
|  | writelfl(EDMA_RESET, port_mmio + EDMA_CMD); | 
|  | udelay(25);	/* allow reset propagation */ | 
|  | writelfl(0, port_mmio + EDMA_CMD); | 
|  |  | 
|  | hpriv->ops->phy_errata(hpriv, mmio, port_no); | 
|  |  | 
|  | if (IS_GEN_I(hpriv)) | 
|  | mdelay(1); | 
|  | } | 
|  |  | 
|  | static void mv_pmp_select(struct ata_port *ap, int pmp) | 
|  | { | 
|  | if (sata_pmp_supported(ap)) { | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 reg = readl(port_mmio + SATA_IFCTL); | 
|  | int old = reg & 0xf; | 
|  |  | 
|  | if (old != pmp) { | 
|  | reg = (reg & ~0xf) | pmp; | 
|  | writelfl(reg, port_mmio + SATA_IFCTL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mv_pmp_hardreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline) | 
|  | { | 
|  | mv_pmp_select(link->ap, sata_srst_pmp(link)); | 
|  | return sata_std_hardreset(link, class, deadline); | 
|  | } | 
|  |  | 
|  | static int mv_softreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline) | 
|  | { | 
|  | mv_pmp_select(link->ap, sata_srst_pmp(link)); | 
|  | return ata_sff_softreset(link, class, deadline); | 
|  | } | 
|  |  | 
|  | static int mv_hardreset(struct ata_link *link, unsigned int *class, | 
|  | unsigned long deadline) | 
|  | { | 
|  | struct ata_port *ap = link->ap; | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | struct mv_port_priv *pp = ap->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  | int rc, attempts = 0, extra = 0; | 
|  | u32 sstatus; | 
|  | bool online; | 
|  |  | 
|  | mv_reset_channel(hpriv, mmio, ap->port_no); | 
|  | pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN; | 
|  | pp->pp_flags &= | 
|  | ~(MV_PP_FLAG_FBS_EN | MV_PP_FLAG_NCQ_EN | MV_PP_FLAG_FAKE_ATA_BUSY); | 
|  |  | 
|  | /* Workaround for errata FEr SATA#10 (part 2) */ | 
|  | do { | 
|  | const unsigned long *timing = | 
|  | sata_ehc_deb_timing(&link->eh_context); | 
|  |  | 
|  | rc = sata_link_hardreset(link, timing, deadline + extra, | 
|  | &online, NULL); | 
|  | rc = online ? -EAGAIN : rc; | 
|  | if (rc) | 
|  | return rc; | 
|  | sata_scr_read(link, SCR_STATUS, &sstatus); | 
|  | if (!IS_GEN_I(hpriv) && ++attempts >= 5 && sstatus == 0x121) { | 
|  | /* Force 1.5gb/s link speed and try again */ | 
|  | mv_setup_ifcfg(mv_ap_base(ap), 0); | 
|  | if (time_after(jiffies + HZ, deadline)) | 
|  | extra = HZ; /* only extend it once, max */ | 
|  | } | 
|  | } while (sstatus != 0x0 && sstatus != 0x113 && sstatus != 0x123); | 
|  | mv_save_cached_regs(ap); | 
|  | mv_edma_cfg(ap, 0, 0); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void mv_eh_freeze(struct ata_port *ap) | 
|  | { | 
|  | mv_stop_edma(ap); | 
|  | mv_enable_port_irqs(ap, 0); | 
|  | } | 
|  |  | 
|  | static void mv_eh_thaw(struct ata_port *ap) | 
|  | { | 
|  | struct mv_host_priv *hpriv = ap->host->private_data; | 
|  | unsigned int port = ap->port_no; | 
|  | unsigned int hardport = mv_hardport_from_port(port); | 
|  | void __iomem *hc_mmio = mv_hc_base_from_port(hpriv->base, port); | 
|  | void __iomem *port_mmio = mv_ap_base(ap); | 
|  | u32 hc_irq_cause; | 
|  |  | 
|  | /* clear EDMA errors on this port */ | 
|  | writel(0, port_mmio + EDMA_ERR_IRQ_CAUSE); | 
|  |  | 
|  | /* clear pending irq events */ | 
|  | hc_irq_cause = ~((DEV_IRQ | DMA_IRQ) << hardport); | 
|  | writelfl(hc_irq_cause, hc_mmio + HC_IRQ_CAUSE); | 
|  |  | 
|  | mv_enable_port_irqs(ap, ERR_IRQ); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_port_init - Perform some early initialization on a single port. | 
|  | *      @port: libata data structure storing shadow register addresses | 
|  | *      @port_mmio: base address of the port | 
|  | * | 
|  | *      Initialize shadow register mmio addresses, clear outstanding | 
|  | *      interrupts on the port, and unmask interrupts for the future | 
|  | *      start of the port. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_port_init(struct ata_ioports *port,  void __iomem *port_mmio) | 
|  | { | 
|  | void __iomem *serr, *shd_base = port_mmio + SHD_BLK; | 
|  |  | 
|  | /* PIO related setup | 
|  | */ | 
|  | port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA); | 
|  | port->error_addr = | 
|  | port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR); | 
|  | port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT); | 
|  | port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL); | 
|  | port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM); | 
|  | port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH); | 
|  | port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE); | 
|  | port->status_addr = | 
|  | port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS); | 
|  | /* special case: control/altstatus doesn't have ATA_REG_ address */ | 
|  | port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST; | 
|  |  | 
|  | /* Clear any currently outstanding port interrupt conditions */ | 
|  | serr = port_mmio + mv_scr_offset(SCR_ERROR); | 
|  | writelfl(readl(serr), serr); | 
|  | writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE); | 
|  |  | 
|  | /* unmask all non-transient EDMA error interrupts */ | 
|  | writelfl(~EDMA_ERR_IRQ_TRANSIENT, port_mmio + EDMA_ERR_IRQ_MASK); | 
|  |  | 
|  | VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", | 
|  | readl(port_mmio + EDMA_CFG), | 
|  | readl(port_mmio + EDMA_ERR_IRQ_CAUSE), | 
|  | readl(port_mmio + EDMA_ERR_IRQ_MASK)); | 
|  | } | 
|  |  | 
|  | static unsigned int mv_in_pcix_mode(struct ata_host *host) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  | u32 reg; | 
|  |  | 
|  | if (IS_SOC(hpriv) || !IS_PCIE(hpriv)) | 
|  | return 0;	/* not PCI-X capable */ | 
|  | reg = readl(mmio + MV_PCI_MODE); | 
|  | if ((reg & MV_PCI_MODE_MASK) == 0) | 
|  | return 0;	/* conventional PCI mode */ | 
|  | return 1;	/* chip is in PCI-X mode */ | 
|  | } | 
|  |  | 
|  | static int mv_pci_cut_through_okay(struct ata_host *host) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  | u32 reg; | 
|  |  | 
|  | if (!mv_in_pcix_mode(host)) { | 
|  | reg = readl(mmio + MV_PCI_COMMAND); | 
|  | if (reg & MV_PCI_COMMAND_MRDTRIG) | 
|  | return 0; /* not okay */ | 
|  | } | 
|  | return 1; /* okay */ | 
|  | } | 
|  |  | 
|  | static void mv_60x1b2_errata_pci7(struct ata_host *host) | 
|  | { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  |  | 
|  | /* workaround for 60x1-B2 errata PCI#7 */ | 
|  | if (mv_in_pcix_mode(host)) { | 
|  | u32 reg = readl(mmio + MV_PCI_COMMAND); | 
|  | writelfl(reg & ~MV_PCI_COMMAND_MWRCOM, mmio + MV_PCI_COMMAND); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int mv_chip_id(struct ata_host *host, unsigned int board_idx) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(host->dev); | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | u32 hp_flags = hpriv->hp_flags; | 
|  |  | 
|  | switch (board_idx) { | 
|  | case chip_5080: | 
|  | hpriv->ops = &mv5xxx_ops; | 
|  | hp_flags |= MV_HP_GEN_I; | 
|  |  | 
|  | switch (pdev->revision) { | 
|  | case 0x1: | 
|  | hp_flags |= MV_HP_ERRATA_50XXB0; | 
|  | break; | 
|  | case 0x3: | 
|  | hp_flags |= MV_HP_ERRATA_50XXB2; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&pdev->dev, | 
|  | "Applying 50XXB2 workarounds to unknown rev\n"); | 
|  | hp_flags |= MV_HP_ERRATA_50XXB2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case chip_504x: | 
|  | case chip_508x: | 
|  | hpriv->ops = &mv5xxx_ops; | 
|  | hp_flags |= MV_HP_GEN_I; | 
|  |  | 
|  | switch (pdev->revision) { | 
|  | case 0x0: | 
|  | hp_flags |= MV_HP_ERRATA_50XXB0; | 
|  | break; | 
|  | case 0x3: | 
|  | hp_flags |= MV_HP_ERRATA_50XXB2; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&pdev->dev, | 
|  | "Applying B2 workarounds to unknown rev\n"); | 
|  | hp_flags |= MV_HP_ERRATA_50XXB2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case chip_604x: | 
|  | case chip_608x: | 
|  | hpriv->ops = &mv6xxx_ops; | 
|  | hp_flags |= MV_HP_GEN_II; | 
|  |  | 
|  | switch (pdev->revision) { | 
|  | case 0x7: | 
|  | mv_60x1b2_errata_pci7(host); | 
|  | hp_flags |= MV_HP_ERRATA_60X1B2; | 
|  | break; | 
|  | case 0x9: | 
|  | hp_flags |= MV_HP_ERRATA_60X1C0; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&pdev->dev, | 
|  | "Applying B2 workarounds to unknown rev\n"); | 
|  | hp_flags |= MV_HP_ERRATA_60X1B2; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case chip_7042: | 
|  | hp_flags |= MV_HP_PCIE | MV_HP_CUT_THROUGH; | 
|  | if (pdev->vendor == PCI_VENDOR_ID_TTI && | 
|  | (pdev->device == 0x2300 || pdev->device == 0x2310)) | 
|  | { | 
|  | /* | 
|  | * Highpoint RocketRAID PCIe 23xx series cards: | 
|  | * | 
|  | * Unconfigured drives are treated as "Legacy" | 
|  | * by the BIOS, and it overwrites sector 8 with | 
|  | * a "Lgcy" metadata block prior to Linux boot. | 
|  | * | 
|  | * Configured drives (RAID or JBOD) leave sector 8 | 
|  | * alone, but instead overwrite a high numbered | 
|  | * sector for the RAID metadata.  This sector can | 
|  | * be determined exactly, by truncating the physical | 
|  | * drive capacity to a nice even GB value. | 
|  | * | 
|  | * RAID metadata is at: (dev->n_sectors & ~0xfffff) | 
|  | * | 
|  | * Warn the user, lest they think we're just buggy. | 
|  | */ | 
|  | printk(KERN_WARNING DRV_NAME ": Highpoint RocketRAID" | 
|  | " BIOS CORRUPTS DATA on all attached drives," | 
|  | " regardless of if/how they are configured." | 
|  | " BEWARE!\n"); | 
|  | printk(KERN_WARNING DRV_NAME ": For data safety, do not" | 
|  | " use sectors 8-9 on \"Legacy\" drives," | 
|  | " and avoid the final two gigabytes on" | 
|  | " all RocketRAID BIOS initialized drives.\n"); | 
|  | } | 
|  | /* drop through */ | 
|  | case chip_6042: | 
|  | hpriv->ops = &mv6xxx_ops; | 
|  | hp_flags |= MV_HP_GEN_IIE; | 
|  | if (board_idx == chip_6042 && mv_pci_cut_through_okay(host)) | 
|  | hp_flags |= MV_HP_CUT_THROUGH; | 
|  |  | 
|  | switch (pdev->revision) { | 
|  | case 0x2: /* Rev.B0: the first/only public release */ | 
|  | hp_flags |= MV_HP_ERRATA_60X1C0; | 
|  | break; | 
|  | default: | 
|  | dev_warn(&pdev->dev, | 
|  | "Applying 60X1C0 workarounds to unknown rev\n"); | 
|  | hp_flags |= MV_HP_ERRATA_60X1C0; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | case chip_soc: | 
|  | if (soc_is_65n(hpriv)) | 
|  | hpriv->ops = &mv_soc_65n_ops; | 
|  | else | 
|  | hpriv->ops = &mv_soc_ops; | 
|  | hp_flags |= MV_HP_FLAG_SOC | MV_HP_GEN_IIE | | 
|  | MV_HP_ERRATA_60X1C0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | dev_err(host->dev, "BUG: invalid board index %u\n", board_idx); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | hpriv->hp_flags = hp_flags; | 
|  | if (hp_flags & MV_HP_PCIE) { | 
|  | hpriv->irq_cause_offset	= PCIE_IRQ_CAUSE; | 
|  | hpriv->irq_mask_offset	= PCIE_IRQ_MASK; | 
|  | hpriv->unmask_all_irqs	= PCIE_UNMASK_ALL_IRQS; | 
|  | } else { | 
|  | hpriv->irq_cause_offset	= PCI_IRQ_CAUSE; | 
|  | hpriv->irq_mask_offset	= PCI_IRQ_MASK; | 
|  | hpriv->unmask_all_irqs	= PCI_UNMASK_ALL_IRQS; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_init_host - Perform some early initialization of the host. | 
|  | *	@host: ATA host to initialize | 
|  | * | 
|  | *      If possible, do an early global reset of the host.  Then do | 
|  | *      our port init and clear/unmask all/relevant host interrupts. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv_init_host(struct ata_host *host) | 
|  | { | 
|  | int rc = 0, n_hc, port, hc; | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | void __iomem *mmio = hpriv->base; | 
|  |  | 
|  | rc = mv_chip_id(host, hpriv->board_idx); | 
|  | if (rc) | 
|  | goto done; | 
|  |  | 
|  | if (IS_SOC(hpriv)) { | 
|  | hpriv->main_irq_cause_addr = mmio + SOC_HC_MAIN_IRQ_CAUSE; | 
|  | hpriv->main_irq_mask_addr  = mmio + SOC_HC_MAIN_IRQ_MASK; | 
|  | } else { | 
|  | hpriv->main_irq_cause_addr = mmio + PCI_HC_MAIN_IRQ_CAUSE; | 
|  | hpriv->main_irq_mask_addr  = mmio + PCI_HC_MAIN_IRQ_MASK; | 
|  | } | 
|  |  | 
|  | /* initialize shadow irq mask with register's value */ | 
|  | hpriv->main_irq_mask = readl(hpriv->main_irq_mask_addr); | 
|  |  | 
|  | /* global interrupt mask: 0 == mask everything */ | 
|  | mv_set_main_irq_mask(host, ~0, 0); | 
|  |  | 
|  | n_hc = mv_get_hc_count(host->ports[0]->flags); | 
|  |  | 
|  | for (port = 0; port < host->n_ports; port++) | 
|  | if (hpriv->ops->read_preamp) | 
|  | hpriv->ops->read_preamp(hpriv, port, mmio); | 
|  |  | 
|  | rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc); | 
|  | if (rc) | 
|  | goto done; | 
|  |  | 
|  | hpriv->ops->reset_flash(hpriv, mmio); | 
|  | hpriv->ops->reset_bus(host, mmio); | 
|  | hpriv->ops->enable_leds(hpriv, mmio); | 
|  |  | 
|  | for (port = 0; port < host->n_ports; port++) { | 
|  | struct ata_port *ap = host->ports[port]; | 
|  | void __iomem *port_mmio = mv_port_base(mmio, port); | 
|  |  | 
|  | mv_port_init(&ap->ioaddr, port_mmio); | 
|  | } | 
|  |  | 
|  | for (hc = 0; hc < n_hc; hc++) { | 
|  | void __iomem *hc_mmio = mv_hc_base(mmio, hc); | 
|  |  | 
|  | VPRINTK("HC%i: HC config=0x%08x HC IRQ cause " | 
|  | "(before clear)=0x%08x\n", hc, | 
|  | readl(hc_mmio + HC_CFG), | 
|  | readl(hc_mmio + HC_IRQ_CAUSE)); | 
|  |  | 
|  | /* Clear any currently outstanding hc interrupt conditions */ | 
|  | writelfl(0, hc_mmio + HC_IRQ_CAUSE); | 
|  | } | 
|  |  | 
|  | if (!IS_SOC(hpriv)) { | 
|  | /* Clear any currently outstanding host interrupt conditions */ | 
|  | writelfl(0, mmio + hpriv->irq_cause_offset); | 
|  |  | 
|  | /* and unmask interrupt generation for host regs */ | 
|  | writelfl(hpriv->unmask_all_irqs, mmio + hpriv->irq_mask_offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * enable only global host interrupts for now. | 
|  | * The per-port interrupts get done later as ports are set up. | 
|  | */ | 
|  | mv_set_main_irq_mask(host, 0, PCI_ERR); | 
|  | mv_set_irq_coalescing(host, irq_coalescing_io_count, | 
|  | irq_coalescing_usecs); | 
|  | done: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int mv_create_dma_pools(struct mv_host_priv *hpriv, struct device *dev) | 
|  | { | 
|  | hpriv->crqb_pool   = dmam_pool_create("crqb_q", dev, MV_CRQB_Q_SZ, | 
|  | MV_CRQB_Q_SZ, 0); | 
|  | if (!hpriv->crqb_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | hpriv->crpb_pool   = dmam_pool_create("crpb_q", dev, MV_CRPB_Q_SZ, | 
|  | MV_CRPB_Q_SZ, 0); | 
|  | if (!hpriv->crpb_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | hpriv->sg_tbl_pool = dmam_pool_create("sg_tbl", dev, MV_SG_TBL_SZ, | 
|  | MV_SG_TBL_SZ, 0); | 
|  | if (!hpriv->sg_tbl_pool) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void mv_conf_mbus_windows(struct mv_host_priv *hpriv, | 
|  | const struct mbus_dram_target_info *dram) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | writel(0, hpriv->base + WINDOW_CTRL(i)); | 
|  | writel(0, hpriv->base + WINDOW_BASE(i)); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < dram->num_cs; i++) { | 
|  | const struct mbus_dram_window *cs = dram->cs + i; | 
|  |  | 
|  | writel(((cs->size - 1) & 0xffff0000) | | 
|  | (cs->mbus_attr << 8) | | 
|  | (dram->mbus_dram_target_id << 4) | 1, | 
|  | hpriv->base + WINDOW_CTRL(i)); | 
|  | writel(cs->base, hpriv->base + WINDOW_BASE(i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_platform_probe - handle a positive probe of an soc Marvell | 
|  | *      host | 
|  | *      @pdev: platform device found | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv_platform_probe(struct platform_device *pdev) | 
|  | { | 
|  | const struct mv_sata_platform_data *mv_platform_data; | 
|  | const struct mbus_dram_target_info *dram; | 
|  | const struct ata_port_info *ppi[] = | 
|  | { &mv_port_info[chip_soc], NULL }; | 
|  | struct ata_host *host; | 
|  | struct mv_host_priv *hpriv; | 
|  | struct resource *res; | 
|  | int n_ports, rc; | 
|  |  | 
|  | ata_print_version_once(&pdev->dev, DRV_VERSION); | 
|  |  | 
|  | /* | 
|  | * Simple resource validation .. | 
|  | */ | 
|  | if (unlikely(pdev->num_resources != 2)) { | 
|  | dev_err(&pdev->dev, "invalid number of resources\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the register base first | 
|  | */ | 
|  | res = platform_get_resource(pdev, IORESOURCE_MEM, 0); | 
|  | if (res == NULL) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* allocate host */ | 
|  | mv_platform_data = pdev->dev.platform_data; | 
|  | n_ports = mv_platform_data->n_ports; | 
|  |  | 
|  | host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); | 
|  | hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); | 
|  |  | 
|  | if (!host || !hpriv) | 
|  | return -ENOMEM; | 
|  | host->private_data = hpriv; | 
|  | hpriv->n_ports = n_ports; | 
|  | hpriv->board_idx = chip_soc; | 
|  |  | 
|  | host->iomap = NULL; | 
|  | hpriv->base = devm_ioremap(&pdev->dev, res->start, | 
|  | resource_size(res)); | 
|  | hpriv->base -= SATAHC0_REG_BASE; | 
|  |  | 
|  | #if defined(CONFIG_HAVE_CLK) | 
|  | hpriv->clk = clk_get(&pdev->dev, NULL); | 
|  | if (IS_ERR(hpriv->clk)) | 
|  | dev_notice(&pdev->dev, "cannot get clkdev\n"); | 
|  | else | 
|  | clk_enable(hpriv->clk); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * (Re-)program MBUS remapping windows if we are asked to. | 
|  | */ | 
|  | dram = mv_mbus_dram_info(); | 
|  | if (dram) | 
|  | mv_conf_mbus_windows(hpriv, dram); | 
|  |  | 
|  | rc = mv_create_dma_pools(hpriv, &pdev->dev); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | /* initialize adapter */ | 
|  | rc = mv_init_host(host); | 
|  | if (rc) | 
|  | goto err; | 
|  |  | 
|  | dev_info(&pdev->dev, "slots %u ports %d\n", | 
|  | (unsigned)MV_MAX_Q_DEPTH, host->n_ports); | 
|  |  | 
|  | rc = ata_host_activate(host, platform_get_irq(pdev, 0), mv_interrupt, | 
|  | IRQF_SHARED, &mv6_sht); | 
|  | if (!rc) | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | #if defined(CONFIG_HAVE_CLK) | 
|  | if (!IS_ERR(hpriv->clk)) { | 
|  | clk_disable(hpriv->clk); | 
|  | clk_put(hpriv->clk); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * | 
|  | *      mv_platform_remove    -       unplug a platform interface | 
|  | *      @pdev: platform device | 
|  | * | 
|  | *      A platform bus SATA device has been unplugged. Perform the needed | 
|  | *      cleanup. Also called on module unload for any active devices. | 
|  | */ | 
|  | static int __devexit mv_platform_remove(struct platform_device *pdev) | 
|  | { | 
|  | struct ata_host *host = platform_get_drvdata(pdev); | 
|  | #if defined(CONFIG_HAVE_CLK) | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | #endif | 
|  | ata_host_detach(host); | 
|  |  | 
|  | #if defined(CONFIG_HAVE_CLK) | 
|  | if (!IS_ERR(hpriv->clk)) { | 
|  | clk_disable(hpriv->clk); | 
|  | clk_put(hpriv->clk); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int mv_platform_suspend(struct platform_device *pdev, pm_message_t state) | 
|  | { | 
|  | struct ata_host *host = platform_get_drvdata(pdev); | 
|  | if (host) | 
|  | return ata_host_suspend(host, state); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int mv_platform_resume(struct platform_device *pdev) | 
|  | { | 
|  | struct ata_host *host = platform_get_drvdata(pdev); | 
|  | const struct mbus_dram_target_info *dram; | 
|  | int ret; | 
|  |  | 
|  | if (host) { | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  |  | 
|  | /* | 
|  | * (Re-)program MBUS remapping windows if we are asked to. | 
|  | */ | 
|  | dram = mv_mbus_dram_info(); | 
|  | if (dram) | 
|  | mv_conf_mbus_windows(hpriv, dram); | 
|  |  | 
|  | /* initialize adapter */ | 
|  | ret = mv_init_host(host); | 
|  | if (ret) { | 
|  | printk(KERN_ERR DRV_NAME ": Error during HW init\n"); | 
|  | return ret; | 
|  | } | 
|  | ata_host_resume(host); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | #define mv_platform_suspend NULL | 
|  | #define mv_platform_resume NULL | 
|  | #endif | 
|  |  | 
|  | static struct platform_driver mv_platform_driver = { | 
|  | .probe			= mv_platform_probe, | 
|  | .remove			= __devexit_p(mv_platform_remove), | 
|  | .suspend		= mv_platform_suspend, | 
|  | .resume			= mv_platform_resume, | 
|  | .driver			= { | 
|  | .name = DRV_NAME, | 
|  | .owner = THIS_MODULE, | 
|  | }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | static int mv_pci_init_one(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent); | 
|  | #ifdef CONFIG_PM | 
|  | static int mv_pci_device_resume(struct pci_dev *pdev); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static struct pci_driver mv_pci_driver = { | 
|  | .name			= DRV_NAME, | 
|  | .id_table		= mv_pci_tbl, | 
|  | .probe			= mv_pci_init_one, | 
|  | .remove			= ata_pci_remove_one, | 
|  | #ifdef CONFIG_PM | 
|  | .suspend		= ata_pci_device_suspend, | 
|  | .resume			= mv_pci_device_resume, | 
|  | #endif | 
|  |  | 
|  | }; | 
|  |  | 
|  | /* move to PCI layer or libata core? */ | 
|  | static int pci_go_64(struct pci_dev *pdev) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { | 
|  | rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); | 
|  | if (rc) { | 
|  | rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | 
|  | if (rc) { | 
|  | dev_err(&pdev->dev, | 
|  | "64-bit DMA enable failed\n"); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | 
|  | if (rc) { | 
|  | dev_err(&pdev->dev, "32-bit DMA enable failed\n"); | 
|  | return rc; | 
|  | } | 
|  | rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); | 
|  | if (rc) { | 
|  | dev_err(&pdev->dev, | 
|  | "32-bit consistent DMA enable failed\n"); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_print_info - Dump key info to kernel log for perusal. | 
|  | *      @host: ATA host to print info about | 
|  | * | 
|  | *      FIXME: complete this. | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static void mv_print_info(struct ata_host *host) | 
|  | { | 
|  | struct pci_dev *pdev = to_pci_dev(host->dev); | 
|  | struct mv_host_priv *hpriv = host->private_data; | 
|  | u8 scc; | 
|  | const char *scc_s, *gen; | 
|  |  | 
|  | /* Use this to determine the HW stepping of the chip so we know | 
|  | * what errata to workaround | 
|  | */ | 
|  | pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc); | 
|  | if (scc == 0) | 
|  | scc_s = "SCSI"; | 
|  | else if (scc == 0x01) | 
|  | scc_s = "RAID"; | 
|  | else | 
|  | scc_s = "?"; | 
|  |  | 
|  | if (IS_GEN_I(hpriv)) | 
|  | gen = "I"; | 
|  | else if (IS_GEN_II(hpriv)) | 
|  | gen = "II"; | 
|  | else if (IS_GEN_IIE(hpriv)) | 
|  | gen = "IIE"; | 
|  | else | 
|  | gen = "?"; | 
|  |  | 
|  | dev_info(&pdev->dev, "Gen-%s %u slots %u ports %s mode IRQ via %s\n", | 
|  | gen, (unsigned)MV_MAX_Q_DEPTH, host->n_ports, | 
|  | scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *      mv_pci_init_one - handle a positive probe of a PCI Marvell host | 
|  | *      @pdev: PCI device found | 
|  | *      @ent: PCI device ID entry for the matched host | 
|  | * | 
|  | *      LOCKING: | 
|  | *      Inherited from caller. | 
|  | */ | 
|  | static int mv_pci_init_one(struct pci_dev *pdev, | 
|  | const struct pci_device_id *ent) | 
|  | { | 
|  | unsigned int board_idx = (unsigned int)ent->driver_data; | 
|  | const struct ata_port_info *ppi[] = { &mv_port_info[board_idx], NULL }; | 
|  | struct ata_host *host; | 
|  | struct mv_host_priv *hpriv; | 
|  | int n_ports, port, rc; | 
|  |  | 
|  | ata_print_version_once(&pdev->dev, DRV_VERSION); | 
|  |  | 
|  | /* allocate host */ | 
|  | n_ports = mv_get_hc_count(ppi[0]->flags) * MV_PORTS_PER_HC; | 
|  |  | 
|  | host = ata_host_alloc_pinfo(&pdev->dev, ppi, n_ports); | 
|  | hpriv = devm_kzalloc(&pdev->dev, sizeof(*hpriv), GFP_KERNEL); | 
|  | if (!host || !hpriv) | 
|  | return -ENOMEM; | 
|  | host->private_data = hpriv; | 
|  | hpriv->n_ports = n_ports; | 
|  | hpriv->board_idx = board_idx; | 
|  |  | 
|  | /* acquire resources */ | 
|  | rc = pcim_enable_device(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = pcim_iomap_regions(pdev, 1 << MV_PRIMARY_BAR, DRV_NAME); | 
|  | if (rc == -EBUSY) | 
|  | pcim_pin_device(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  | host->iomap = pcim_iomap_table(pdev); | 
|  | hpriv->base = host->iomap[MV_PRIMARY_BAR]; | 
|  |  | 
|  | rc = pci_go_64(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = mv_create_dma_pools(hpriv, &pdev->dev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | for (port = 0; port < host->n_ports; port++) { | 
|  | struct ata_port *ap = host->ports[port]; | 
|  | void __iomem *port_mmio = mv_port_base(hpriv->base, port); | 
|  | unsigned int offset = port_mmio - hpriv->base; | 
|  |  | 
|  | ata_port_pbar_desc(ap, MV_PRIMARY_BAR, -1, "mmio"); | 
|  | ata_port_pbar_desc(ap, MV_PRIMARY_BAR, offset, "port"); | 
|  | } | 
|  |  | 
|  | /* initialize adapter */ | 
|  | rc = mv_init_host(host); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* Enable message-switched interrupts, if requested */ | 
|  | if (msi && pci_enable_msi(pdev) == 0) | 
|  | hpriv->hp_flags |= MV_HP_FLAG_MSI; | 
|  |  | 
|  | mv_dump_pci_cfg(pdev, 0x68); | 
|  | mv_print_info(host); | 
|  |  | 
|  | pci_set_master(pdev); | 
|  | pci_try_set_mwi(pdev); | 
|  | return ata_host_activate(host, pdev->irq, mv_interrupt, IRQF_SHARED, | 
|  | IS_GEN_I(hpriv) ? &mv5_sht : &mv6_sht); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM | 
|  | static int mv_pci_device_resume(struct pci_dev *pdev) | 
|  | { | 
|  | struct ata_host *host = pci_get_drvdata(pdev); | 
|  | int rc; | 
|  |  | 
|  | rc = ata_pci_device_do_resume(pdev); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* initialize adapter */ | 
|  | rc = mv_init_host(host); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | ata_host_resume(host); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | static int mv_platform_probe(struct platform_device *pdev); | 
|  | static int __devexit mv_platform_remove(struct platform_device *pdev); | 
|  |  | 
|  | static int __init mv_init(void) | 
|  | { | 
|  | int rc = -ENODEV; | 
|  | #ifdef CONFIG_PCI | 
|  | rc = pci_register_driver(&mv_pci_driver); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | #endif | 
|  | rc = platform_driver_register(&mv_platform_driver); | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | if (rc < 0) | 
|  | pci_unregister_driver(&mv_pci_driver); | 
|  | #endif | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static void __exit mv_exit(void) | 
|  | { | 
|  | #ifdef CONFIG_PCI | 
|  | pci_unregister_driver(&mv_pci_driver); | 
|  | #endif | 
|  | platform_driver_unregister(&mv_platform_driver); | 
|  | } | 
|  |  | 
|  | MODULE_AUTHOR("Brett Russ"); | 
|  | MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers"); | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_DEVICE_TABLE(pci, mv_pci_tbl); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_ALIAS("platform:" DRV_NAME); | 
|  |  | 
|  | module_init(mv_init); | 
|  | module_exit(mv_exit); |