|  | /* | 
|  | *  drivers/cpufreq/cpufreq_conservative.c | 
|  | * | 
|  | *  Copyright (C)  2001 Russell King | 
|  | *            (C)  2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>. | 
|  | *                      Jun Nakajima <jun.nakajima@intel.com> | 
|  | *            (C)  2004 Alexander Clouter <alex-kernel@digriz.org.uk> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/cpufreq.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/sysfs.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/jiffies.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/mutex.h> | 
|  | /* | 
|  | * dbs is used in this file as a shortform for demandbased switching | 
|  | * It helps to keep variable names smaller, simpler | 
|  | */ | 
|  |  | 
|  | #define DEF_FREQUENCY_UP_THRESHOLD		(80) | 
|  | #define MIN_FREQUENCY_UP_THRESHOLD		(0) | 
|  | #define MAX_FREQUENCY_UP_THRESHOLD		(100) | 
|  |  | 
|  | #define DEF_FREQUENCY_DOWN_THRESHOLD		(20) | 
|  | #define MIN_FREQUENCY_DOWN_THRESHOLD		(0) | 
|  | #define MAX_FREQUENCY_DOWN_THRESHOLD		(100) | 
|  |  | 
|  | /* | 
|  | * The polling frequency of this governor depends on the capability of | 
|  | * the processor. Default polling frequency is 1000 times the transition | 
|  | * latency of the processor. The governor will work on any processor with | 
|  | * transition latency <= 10mS, using appropriate sampling | 
|  | * rate. | 
|  | * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL) | 
|  | * this governor will not work. | 
|  | * All times here are in uS. | 
|  | */ | 
|  | static unsigned int 				def_sampling_rate; | 
|  | #define MIN_SAMPLING_RATE			(def_sampling_rate / 2) | 
|  | #define MAX_SAMPLING_RATE			(500 * def_sampling_rate) | 
|  | #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER	(100000) | 
|  | #define DEF_SAMPLING_DOWN_FACTOR		(5) | 
|  | #define TRANSITION_LATENCY_LIMIT		(10 * 1000) | 
|  |  | 
|  | static void do_dbs_timer(void *data); | 
|  |  | 
|  | struct cpu_dbs_info_s { | 
|  | struct cpufreq_policy 	*cur_policy; | 
|  | unsigned int 		prev_cpu_idle_up; | 
|  | unsigned int 		prev_cpu_idle_down; | 
|  | unsigned int 		enable; | 
|  | }; | 
|  | static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info); | 
|  |  | 
|  | static unsigned int dbs_enable;	/* number of CPUs using this policy */ | 
|  |  | 
|  | static DEFINE_MUTEX 	(dbs_mutex); | 
|  | static DECLARE_WORK	(dbs_work, do_dbs_timer, NULL); | 
|  |  | 
|  | struct dbs_tuners { | 
|  | unsigned int 		sampling_rate; | 
|  | unsigned int		sampling_down_factor; | 
|  | unsigned int		up_threshold; | 
|  | unsigned int		down_threshold; | 
|  | unsigned int		ignore_nice; | 
|  | unsigned int		freq_step; | 
|  | }; | 
|  |  | 
|  | static struct dbs_tuners dbs_tuners_ins = { | 
|  | .up_threshold 		= DEF_FREQUENCY_UP_THRESHOLD, | 
|  | .down_threshold 	= DEF_FREQUENCY_DOWN_THRESHOLD, | 
|  | .sampling_down_factor 	= DEF_SAMPLING_DOWN_FACTOR, | 
|  | }; | 
|  |  | 
|  | static inline unsigned int get_cpu_idle_time(unsigned int cpu) | 
|  | { | 
|  | return	kstat_cpu(cpu).cpustat.idle + | 
|  | kstat_cpu(cpu).cpustat.iowait + | 
|  | ( dbs_tuners_ins.ignore_nice ? | 
|  | kstat_cpu(cpu).cpustat.nice : | 
|  | 0); | 
|  | } | 
|  |  | 
|  | /************************** sysfs interface ************************/ | 
|  | static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | return sprintf (buf, "%u\n", MAX_SAMPLING_RATE); | 
|  | } | 
|  |  | 
|  | static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf) | 
|  | { | 
|  | return sprintf (buf, "%u\n", MIN_SAMPLING_RATE); | 
|  | } | 
|  |  | 
|  | #define define_one_ro(_name) 					\ | 
|  | static struct freq_attr _name =  				\ | 
|  | __ATTR(_name, 0444, show_##_name, NULL) | 
|  |  | 
|  | define_one_ro(sampling_rate_max); | 
|  | define_one_ro(sampling_rate_min); | 
|  |  | 
|  | /* cpufreq_conservative Governor Tunables */ | 
|  | #define show_one(file_name, object)					\ | 
|  | static ssize_t show_##file_name						\ | 
|  | (struct cpufreq_policy *unused, char *buf)				\ | 
|  | {									\ | 
|  | return sprintf(buf, "%u\n", dbs_tuners_ins.object);		\ | 
|  | } | 
|  | show_one(sampling_rate, sampling_rate); | 
|  | show_one(sampling_down_factor, sampling_down_factor); | 
|  | show_one(up_threshold, up_threshold); | 
|  | show_one(down_threshold, down_threshold); | 
|  | show_one(ignore_nice_load, ignore_nice); | 
|  | show_one(freq_step, freq_step); | 
|  |  | 
|  | static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf (buf, "%u", &input); | 
|  | if (ret != 1 ) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | dbs_tuners_ins.sampling_down_factor = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_sampling_rate(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf (buf, "%u", &input); | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dbs_tuners_ins.sampling_rate = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_up_threshold(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf (buf, "%u", &input); | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD || | 
|  | input < MIN_FREQUENCY_UP_THRESHOLD || | 
|  | input <= dbs_tuners_ins.down_threshold) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dbs_tuners_ins.up_threshold = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_down_threshold(struct cpufreq_policy *unused, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  | ret = sscanf (buf, "%u", &input); | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (ret != 1 || input > MAX_FREQUENCY_DOWN_THRESHOLD || | 
|  | input < MIN_FREQUENCY_DOWN_THRESHOLD || | 
|  | input >= dbs_tuners_ins.up_threshold) { | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | dbs_tuners_ins.down_threshold = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | unsigned int j; | 
|  |  | 
|  | ret = sscanf (buf, "%u", &input); | 
|  | if ( ret != 1 ) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ( input > 1 ) | 
|  | input = 1; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */ | 
|  | mutex_unlock(&dbs_mutex); | 
|  | return count; | 
|  | } | 
|  | dbs_tuners_ins.ignore_nice = input; | 
|  |  | 
|  | /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */ | 
|  | for_each_online_cpu(j) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); | 
|  | j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up; | 
|  | } | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | static ssize_t store_freq_step(struct cpufreq_policy *policy, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | unsigned int input; | 
|  | int ret; | 
|  |  | 
|  | ret = sscanf (buf, "%u", &input); | 
|  |  | 
|  | if ( ret != 1 ) | 
|  | return -EINVAL; | 
|  |  | 
|  | if ( input > 100 ) | 
|  | input = 100; | 
|  |  | 
|  | /* no need to test here if freq_step is zero as the user might actually | 
|  | * want this, they would be crazy though :) */ | 
|  | mutex_lock(&dbs_mutex); | 
|  | dbs_tuners_ins.freq_step = input; | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | #define define_one_rw(_name) \ | 
|  | static struct freq_attr _name = \ | 
|  | __ATTR(_name, 0644, show_##_name, store_##_name) | 
|  |  | 
|  | define_one_rw(sampling_rate); | 
|  | define_one_rw(sampling_down_factor); | 
|  | define_one_rw(up_threshold); | 
|  | define_one_rw(down_threshold); | 
|  | define_one_rw(ignore_nice_load); | 
|  | define_one_rw(freq_step); | 
|  |  | 
|  | static struct attribute * dbs_attributes[] = { | 
|  | &sampling_rate_max.attr, | 
|  | &sampling_rate_min.attr, | 
|  | &sampling_rate.attr, | 
|  | &sampling_down_factor.attr, | 
|  | &up_threshold.attr, | 
|  | &down_threshold.attr, | 
|  | &ignore_nice_load.attr, | 
|  | &freq_step.attr, | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | static struct attribute_group dbs_attr_group = { | 
|  | .attrs = dbs_attributes, | 
|  | .name = "conservative", | 
|  | }; | 
|  |  | 
|  | /************************** sysfs end ************************/ | 
|  |  | 
|  | static void dbs_check_cpu(int cpu) | 
|  | { | 
|  | unsigned int idle_ticks, up_idle_ticks, down_idle_ticks; | 
|  | unsigned int freq_step; | 
|  | unsigned int freq_down_sampling_rate; | 
|  | static int down_skip[NR_CPUS]; | 
|  | static int requested_freq[NR_CPUS]; | 
|  | static unsigned short init_flag = 0; | 
|  | struct cpu_dbs_info_s *this_dbs_info; | 
|  | struct cpu_dbs_info_s *dbs_info; | 
|  |  | 
|  | struct cpufreq_policy *policy; | 
|  | unsigned int j; | 
|  |  | 
|  | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | 
|  | if (!this_dbs_info->enable) | 
|  | return; | 
|  |  | 
|  | policy = this_dbs_info->cur_policy; | 
|  |  | 
|  | if ( init_flag == 0 ) { | 
|  | for_each_online_cpu(j) { | 
|  | dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | requested_freq[j] = dbs_info->cur_policy->cur; | 
|  | } | 
|  | init_flag = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The default safe range is 20% to 80% | 
|  | * Every sampling_rate, we check | 
|  | * 	- If current idle time is less than 20%, then we try to | 
|  | * 	  increase frequency | 
|  | * Every sampling_rate*sampling_down_factor, we check | 
|  | * 	- If current idle time is more than 80%, then we try to | 
|  | * 	  decrease frequency | 
|  | * | 
|  | * Any frequency increase takes it to the maximum frequency. | 
|  | * Frequency reduction happens at minimum steps of | 
|  | * 5% (default) of max_frequency | 
|  | */ | 
|  |  | 
|  | /* Check for frequency increase */ | 
|  |  | 
|  | idle_ticks = UINT_MAX; | 
|  | for_each_cpu_mask(j, policy->cpus) { | 
|  | unsigned int tmp_idle_ticks, total_idle_ticks; | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  |  | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | /* Check for frequency increase */ | 
|  | total_idle_ticks = get_cpu_idle_time(j); | 
|  | tmp_idle_ticks = total_idle_ticks - | 
|  | j_dbs_info->prev_cpu_idle_up; | 
|  | j_dbs_info->prev_cpu_idle_up = total_idle_ticks; | 
|  |  | 
|  | if (tmp_idle_ticks < idle_ticks) | 
|  | idle_ticks = tmp_idle_ticks; | 
|  | } | 
|  |  | 
|  | /* Scale idle ticks by 100 and compare with up and down ticks */ | 
|  | idle_ticks *= 100; | 
|  | up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) * | 
|  | usecs_to_jiffies(dbs_tuners_ins.sampling_rate); | 
|  |  | 
|  | if (idle_ticks < up_idle_ticks) { | 
|  | down_skip[cpu] = 0; | 
|  | for_each_cpu_mask(j, policy->cpus) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  |  | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | j_dbs_info->prev_cpu_idle_down = | 
|  | j_dbs_info->prev_cpu_idle_up; | 
|  | } | 
|  | /* if we are already at full speed then break out early */ | 
|  | if (requested_freq[cpu] == policy->max) | 
|  | return; | 
|  |  | 
|  | freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; | 
|  |  | 
|  | /* max freq cannot be less than 100. But who knows.... */ | 
|  | if (unlikely(freq_step == 0)) | 
|  | freq_step = 5; | 
|  |  | 
|  | requested_freq[cpu] += freq_step; | 
|  | if (requested_freq[cpu] > policy->max) | 
|  | requested_freq[cpu] = policy->max; | 
|  |  | 
|  | __cpufreq_driver_target(policy, requested_freq[cpu], | 
|  | CPUFREQ_RELATION_H); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check for frequency decrease */ | 
|  | down_skip[cpu]++; | 
|  | if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor) | 
|  | return; | 
|  |  | 
|  | idle_ticks = UINT_MAX; | 
|  | for_each_cpu_mask(j, policy->cpus) { | 
|  | unsigned int tmp_idle_ticks, total_idle_ticks; | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  |  | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | total_idle_ticks = j_dbs_info->prev_cpu_idle_up; | 
|  | tmp_idle_ticks = total_idle_ticks - | 
|  | j_dbs_info->prev_cpu_idle_down; | 
|  | j_dbs_info->prev_cpu_idle_down = total_idle_ticks; | 
|  |  | 
|  | if (tmp_idle_ticks < idle_ticks) | 
|  | idle_ticks = tmp_idle_ticks; | 
|  | } | 
|  |  | 
|  | /* Scale idle ticks by 100 and compare with up and down ticks */ | 
|  | idle_ticks *= 100; | 
|  | down_skip[cpu] = 0; | 
|  |  | 
|  | freq_down_sampling_rate = dbs_tuners_ins.sampling_rate * | 
|  | dbs_tuners_ins.sampling_down_factor; | 
|  | down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) * | 
|  | usecs_to_jiffies(freq_down_sampling_rate); | 
|  |  | 
|  | if (idle_ticks > down_idle_ticks) { | 
|  | /* if we are already at the lowest speed then break out early | 
|  | * or if we 'cannot' reduce the speed as the user might want | 
|  | * freq_step to be zero */ | 
|  | if (requested_freq[cpu] == policy->min | 
|  | || dbs_tuners_ins.freq_step == 0) | 
|  | return; | 
|  |  | 
|  | freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100; | 
|  |  | 
|  | /* max freq cannot be less than 100. But who knows.... */ | 
|  | if (unlikely(freq_step == 0)) | 
|  | freq_step = 5; | 
|  |  | 
|  | requested_freq[cpu] -= freq_step; | 
|  | if (requested_freq[cpu] < policy->min) | 
|  | requested_freq[cpu] = policy->min; | 
|  |  | 
|  | __cpufreq_driver_target(policy, | 
|  | requested_freq[cpu], | 
|  | CPUFREQ_RELATION_H); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_dbs_timer(void *data) | 
|  | { | 
|  | int i; | 
|  | mutex_lock(&dbs_mutex); | 
|  | for_each_online_cpu(i) | 
|  | dbs_check_cpu(i); | 
|  | schedule_delayed_work(&dbs_work, | 
|  | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); | 
|  | mutex_unlock(&dbs_mutex); | 
|  | } | 
|  |  | 
|  | static inline void dbs_timer_init(void) | 
|  | { | 
|  | INIT_WORK(&dbs_work, do_dbs_timer, NULL); | 
|  | schedule_delayed_work(&dbs_work, | 
|  | usecs_to_jiffies(dbs_tuners_ins.sampling_rate)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static inline void dbs_timer_exit(void) | 
|  | { | 
|  | cancel_delayed_work(&dbs_work); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int cpufreq_governor_dbs(struct cpufreq_policy *policy, | 
|  | unsigned int event) | 
|  | { | 
|  | unsigned int cpu = policy->cpu; | 
|  | struct cpu_dbs_info_s *this_dbs_info; | 
|  | unsigned int j; | 
|  |  | 
|  | this_dbs_info = &per_cpu(cpu_dbs_info, cpu); | 
|  |  | 
|  | switch (event) { | 
|  | case CPUFREQ_GOV_START: | 
|  | if ((!cpu_online(cpu)) || | 
|  | (!policy->cur)) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (policy->cpuinfo.transition_latency > | 
|  | (TRANSITION_LATENCY_LIMIT * 1000)) | 
|  | return -EINVAL; | 
|  | if (this_dbs_info->enable) /* Already enabled */ | 
|  | break; | 
|  |  | 
|  | mutex_lock(&dbs_mutex); | 
|  | for_each_cpu_mask(j, policy->cpus) { | 
|  | struct cpu_dbs_info_s *j_dbs_info; | 
|  | j_dbs_info = &per_cpu(cpu_dbs_info, j); | 
|  | j_dbs_info->cur_policy = policy; | 
|  |  | 
|  | j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j); | 
|  | j_dbs_info->prev_cpu_idle_down | 
|  | = j_dbs_info->prev_cpu_idle_up; | 
|  | } | 
|  | this_dbs_info->enable = 1; | 
|  | sysfs_create_group(&policy->kobj, &dbs_attr_group); | 
|  | dbs_enable++; | 
|  | /* | 
|  | * Start the timerschedule work, when this governor | 
|  | * is used for first time | 
|  | */ | 
|  | if (dbs_enable == 1) { | 
|  | unsigned int latency; | 
|  | /* policy latency is in nS. Convert it to uS first */ | 
|  |  | 
|  | latency = policy->cpuinfo.transition_latency; | 
|  | if (latency < 1000) | 
|  | latency = 1000; | 
|  |  | 
|  | def_sampling_rate = (latency / 1000) * | 
|  | DEF_SAMPLING_RATE_LATENCY_MULTIPLIER; | 
|  | dbs_tuners_ins.sampling_rate = def_sampling_rate; | 
|  | dbs_tuners_ins.ignore_nice = 0; | 
|  | dbs_tuners_ins.freq_step = 5; | 
|  |  | 
|  | dbs_timer_init(); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&dbs_mutex); | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_GOV_STOP: | 
|  | mutex_lock(&dbs_mutex); | 
|  | this_dbs_info->enable = 0; | 
|  | sysfs_remove_group(&policy->kobj, &dbs_attr_group); | 
|  | dbs_enable--; | 
|  | /* | 
|  | * Stop the timerschedule work, when this governor | 
|  | * is used for first time | 
|  | */ | 
|  | if (dbs_enable == 0) | 
|  | dbs_timer_exit(); | 
|  |  | 
|  | mutex_unlock(&dbs_mutex); | 
|  |  | 
|  | break; | 
|  |  | 
|  | case CPUFREQ_GOV_LIMITS: | 
|  | mutex_lock(&dbs_mutex); | 
|  | if (policy->max < this_dbs_info->cur_policy->cur) | 
|  | __cpufreq_driver_target( | 
|  | this_dbs_info->cur_policy, | 
|  | policy->max, CPUFREQ_RELATION_H); | 
|  | else if (policy->min > this_dbs_info->cur_policy->cur) | 
|  | __cpufreq_driver_target( | 
|  | this_dbs_info->cur_policy, | 
|  | policy->min, CPUFREQ_RELATION_L); | 
|  | mutex_unlock(&dbs_mutex); | 
|  | break; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct cpufreq_governor cpufreq_gov_dbs = { | 
|  | .name		= "conservative", | 
|  | .governor	= cpufreq_governor_dbs, | 
|  | .owner		= THIS_MODULE, | 
|  | }; | 
|  |  | 
|  | static int __init cpufreq_gov_dbs_init(void) | 
|  | { | 
|  | return cpufreq_register_governor(&cpufreq_gov_dbs); | 
|  | } | 
|  |  | 
|  | static void __exit cpufreq_gov_dbs_exit(void) | 
|  | { | 
|  | /* Make sure that the scheduled work is indeed not running */ | 
|  | flush_scheduled_work(); | 
|  |  | 
|  | cpufreq_unregister_governor(&cpufreq_gov_dbs); | 
|  | } | 
|  |  | 
|  |  | 
|  | MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>"); | 
|  | MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for " | 
|  | "Low Latency Frequency Transition capable processors " | 
|  | "optimised for use in a battery environment"); | 
|  | MODULE_LICENSE ("GPL"); | 
|  |  | 
|  | module_init(cpufreq_gov_dbs_init); | 
|  | module_exit(cpufreq_gov_dbs_exit); |