|  | /* | 
|  | * MTD SPI driver for ST M25Pxx flash chips | 
|  | * | 
|  | * Author: Mike Lavender, mike@steroidmicros.com | 
|  | * | 
|  | * Copyright (c) 2005, Intec Automation Inc. | 
|  | * | 
|  | * Some parts are based on lart.c by Abraham Van Der Merwe | 
|  | * | 
|  | * Cleaned up and generalized based on mtd_dataflash.c | 
|  | * | 
|  | * This code is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/device.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <linux/spi/spi.h> | 
|  | #include <linux/spi/flash.h> | 
|  |  | 
|  | #include <asm/semaphore.h> | 
|  |  | 
|  |  | 
|  | /* NOTE: AT 25F and SST 25LF series are very similar, | 
|  | * but commands for sector erase and chip id differ... | 
|  | */ | 
|  |  | 
|  | #define FLASH_PAGESIZE		256 | 
|  |  | 
|  | /* Flash opcodes. */ | 
|  | #define	OPCODE_WREN		6	/* Write enable */ | 
|  | #define	OPCODE_RDSR		5	/* Read status register */ | 
|  | #define	OPCODE_READ		3	/* Read data bytes */ | 
|  | #define	OPCODE_PP		2	/* Page program */ | 
|  | #define	OPCODE_SE		0xd8	/* Sector erase */ | 
|  | #define	OPCODE_RES		0xab	/* Read Electronic Signature */ | 
|  | #define	OPCODE_RDID		0x9f	/* Read JEDEC ID */ | 
|  |  | 
|  | /* Status Register bits. */ | 
|  | #define	SR_WIP			1	/* Write in progress */ | 
|  | #define	SR_WEL			2	/* Write enable latch */ | 
|  | #define	SR_BP0			4	/* Block protect 0 */ | 
|  | #define	SR_BP1			8	/* Block protect 1 */ | 
|  | #define	SR_BP2			0x10	/* Block protect 2 */ | 
|  | #define	SR_SRWD			0x80	/* SR write protect */ | 
|  |  | 
|  | /* Define max times to check status register before we give up. */ | 
|  | #define	MAX_READY_WAIT_COUNT	100000 | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | #define	mtd_has_partitions()	(1) | 
|  | #else | 
|  | #define	mtd_has_partitions()	(0) | 
|  | #endif | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | struct m25p { | 
|  | struct spi_device	*spi; | 
|  | struct semaphore	lock; | 
|  | struct mtd_info		mtd; | 
|  | unsigned		partitioned; | 
|  | u8			command[4]; | 
|  | }; | 
|  |  | 
|  | static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd) | 
|  | { | 
|  | return container_of(mtd, struct m25p, mtd); | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * Internal helper functions | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Read the status register, returning its value in the location | 
|  | * Return the status register value. | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static int read_sr(struct m25p *flash) | 
|  | { | 
|  | ssize_t retval; | 
|  | u8 code = OPCODE_RDSR; | 
|  | u8 val; | 
|  |  | 
|  | retval = spi_write_then_read(flash->spi, &code, 1, &val, 1); | 
|  |  | 
|  | if (retval < 0) { | 
|  | dev_err(&flash->spi->dev, "error %d reading SR\n", | 
|  | (int) retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | return val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Set write enable latch with Write Enable command. | 
|  | * Returns negative if error occurred. | 
|  | */ | 
|  | static inline int write_enable(struct m25p *flash) | 
|  | { | 
|  | u8	code = OPCODE_WREN; | 
|  |  | 
|  | return spi_write_then_read(flash->spi, &code, 1, NULL, 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Service routine to read status register until ready, or timeout occurs. | 
|  | * Returns non-zero if error. | 
|  | */ | 
|  | static int wait_till_ready(struct m25p *flash) | 
|  | { | 
|  | int count; | 
|  | int sr; | 
|  |  | 
|  | /* one chip guarantees max 5 msec wait here after page writes, | 
|  | * but potentially three seconds (!) after page erase. | 
|  | */ | 
|  | for (count = 0; count < MAX_READY_WAIT_COUNT; count++) { | 
|  | if ((sr = read_sr(flash)) < 0) | 
|  | break; | 
|  | else if (!(sr & SR_WIP)) | 
|  | return 0; | 
|  |  | 
|  | /* REVISIT sometimes sleeping would be best */ | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Erase one sector of flash memory at offset ``offset'' which is any | 
|  | * address within the sector which should be erased. | 
|  | * | 
|  | * Returns 0 if successful, non-zero otherwise. | 
|  | */ | 
|  | static int erase_sector(struct m25p *flash, u32 offset) | 
|  | { | 
|  | DEBUG(MTD_DEBUG_LEVEL3, "%s: %s at 0x%08x\n", flash->spi->dev.bus_id, | 
|  | __FUNCTION__, offset); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) | 
|  | return 1; | 
|  |  | 
|  | /* Send write enable, then erase commands. */ | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up command buffer. */ | 
|  | flash->command[0] = OPCODE_SE; | 
|  | flash->command[1] = offset >> 16; | 
|  | flash->command[2] = offset >> 8; | 
|  | flash->command[3] = offset; | 
|  |  | 
|  | spi_write(flash->spi, flash->command, sizeof(flash->command)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * MTD implementation | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Erase an address range on the flash chip.  The address range may extend | 
|  | * one or more erase sectors.  Return an error is there is a problem erasing. | 
|  | */ | 
|  | static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | u32 addr,len; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | flash->spi->dev.bus_id, __FUNCTION__, "at", | 
|  | (u32)instr->addr, instr->len); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (instr->addr + instr->len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  | if ((instr->addr % mtd->erasesize) != 0 | 
|  | || (instr->len % mtd->erasesize) != 0) { | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | addr = instr->addr; | 
|  | len = instr->len; | 
|  |  | 
|  | down(&flash->lock); | 
|  |  | 
|  | /* now erase those sectors */ | 
|  | while (len) { | 
|  | if (erase_sector(flash, addr)) { | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | up(&flash->lock); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | addr += mtd->erasesize; | 
|  | len -= mtd->erasesize; | 
|  | } | 
|  |  | 
|  | up(&flash->lock); | 
|  |  | 
|  | instr->state = MTD_ERASE_DONE; | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read an address range from the flash chip.  The address range | 
|  | * may be any size provided it is within the physical boundaries. | 
|  | */ | 
|  | static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t *retlen, u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | flash->spi->dev.bus_id, __FUNCTION__, "from", | 
|  | (u32)from, len); | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return 0; | 
|  |  | 
|  | if (from + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = sizeof(flash->command); | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].rx_buf = buf; | 
|  | t[1].len = len; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | /* Byte count starts at zero. */ | 
|  | if (retlen) | 
|  | *retlen = 0; | 
|  |  | 
|  | down(&flash->lock); | 
|  |  | 
|  | /* Wait till previous write/erase is done. */ | 
|  | if (wait_till_ready(flash)) { | 
|  | /* REVISIT status return?? */ | 
|  | up(&flash->lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* NOTE:  OPCODE_FAST_READ (if available) is faster... */ | 
|  |  | 
|  | /* Set up the write data buffer. */ | 
|  | flash->command[0] = OPCODE_READ; | 
|  | flash->command[1] = from >> 16; | 
|  | flash->command[2] = from >> 8; | 
|  | flash->command[3] = from; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - sizeof(flash->command); | 
|  |  | 
|  | up(&flash->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write an address range to the flash chip.  Data must be written in | 
|  | * FLASH_PAGESIZE chunks.  The address range may be any size provided | 
|  | * it is within the physical boundaries. | 
|  | */ | 
|  | static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t *retlen, const u_char *buf) | 
|  | { | 
|  | struct m25p *flash = mtd_to_m25p(mtd); | 
|  | u32 page_offset, page_size; | 
|  | struct spi_transfer t[2]; | 
|  | struct spi_message m; | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n", | 
|  | flash->spi->dev.bus_id, __FUNCTION__, "to", | 
|  | (u32)to, len); | 
|  |  | 
|  | if (retlen) | 
|  | *retlen = 0; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (!len) | 
|  | return(0); | 
|  |  | 
|  | if (to + len > flash->mtd.size) | 
|  | return -EINVAL; | 
|  |  | 
|  | spi_message_init(&m); | 
|  | memset(t, 0, (sizeof t)); | 
|  |  | 
|  | t[0].tx_buf = flash->command; | 
|  | t[0].len = sizeof(flash->command); | 
|  | spi_message_add_tail(&t[0], &m); | 
|  |  | 
|  | t[1].tx_buf = buf; | 
|  | spi_message_add_tail(&t[1], &m); | 
|  |  | 
|  | down(&flash->lock); | 
|  |  | 
|  | /* Wait until finished previous write command. */ | 
|  | if (wait_till_ready(flash)) | 
|  | return 1; | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | /* Set up the opcode in the write buffer. */ | 
|  | flash->command[0] = OPCODE_PP; | 
|  | flash->command[1] = to >> 16; | 
|  | flash->command[2] = to >> 8; | 
|  | flash->command[3] = to; | 
|  |  | 
|  | /* what page do we start with? */ | 
|  | page_offset = to % FLASH_PAGESIZE; | 
|  |  | 
|  | /* do all the bytes fit onto one page? */ | 
|  | if (page_offset + len <= FLASH_PAGESIZE) { | 
|  | t[1].len = len; | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - sizeof(flash->command); | 
|  | } else { | 
|  | u32 i; | 
|  |  | 
|  | /* the size of data remaining on the first page */ | 
|  | page_size = FLASH_PAGESIZE - page_offset; | 
|  |  | 
|  | t[1].len = page_size; | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | *retlen = m.actual_length - sizeof(flash->command); | 
|  |  | 
|  | /* write everything in PAGESIZE chunks */ | 
|  | for (i = page_size; i < len; i += page_size) { | 
|  | page_size = len - i; | 
|  | if (page_size > FLASH_PAGESIZE) | 
|  | page_size = FLASH_PAGESIZE; | 
|  |  | 
|  | /* write the next page to flash */ | 
|  | flash->command[1] = (to + i) >> 16; | 
|  | flash->command[2] = (to + i) >> 8; | 
|  | flash->command[3] = (to + i); | 
|  |  | 
|  | t[1].tx_buf = buf + i; | 
|  | t[1].len = page_size; | 
|  |  | 
|  | wait_till_ready(flash); | 
|  |  | 
|  | write_enable(flash); | 
|  |  | 
|  | spi_sync(flash->spi, &m); | 
|  |  | 
|  | if (retlen) | 
|  | *retlen += m.actual_length | 
|  | - sizeof(flash->command); | 
|  | } | 
|  | } | 
|  |  | 
|  | up(&flash->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * SPI device driver setup and teardown | 
|  | */ | 
|  |  | 
|  | struct flash_info { | 
|  | char		*name; | 
|  | u8		id; | 
|  | u16		jedec_id; | 
|  | unsigned	sector_size; | 
|  | unsigned	n_sectors; | 
|  | }; | 
|  |  | 
|  | static struct flash_info __devinitdata m25p_data [] = { | 
|  | /* REVISIT: fill in JEDEC ids, for parts that have them */ | 
|  | { "m25p05", 0x05, 0x0000, 32 * 1024, 2 }, | 
|  | { "m25p10", 0x10, 0x0000, 32 * 1024, 4 }, | 
|  | { "m25p20", 0x11, 0x0000, 64 * 1024, 4 }, | 
|  | { "m25p40", 0x12, 0x0000, 64 * 1024, 8 }, | 
|  | { "m25p80", 0x13, 0x0000, 64 * 1024, 16 }, | 
|  | { "m25p16", 0x14, 0x0000, 64 * 1024, 32 }, | 
|  | { "m25p32", 0x15, 0x0000, 64 * 1024, 64 }, | 
|  | { "m25p64", 0x16, 0x2017, 64 * 1024, 128 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * board specific setup should have ensured the SPI clock used here | 
|  | * matches what the READ command supports, at least until this driver | 
|  | * understands FAST_READ (for clocks over 25 MHz). | 
|  | */ | 
|  | static int __devinit m25p_probe(struct spi_device *spi) | 
|  | { | 
|  | struct flash_platform_data	*data; | 
|  | struct m25p			*flash; | 
|  | struct flash_info		*info; | 
|  | unsigned			i; | 
|  |  | 
|  | /* Platform data helps sort out which chip type we have, as | 
|  | * well as how this board partitions it. | 
|  | */ | 
|  | data = spi->dev.platform_data; | 
|  | if (!data || !data->type) { | 
|  | /* FIXME some chips can identify themselves with RES | 
|  | * or JEDEC get-id commands.  Try them ... | 
|  | */ | 
|  | DEBUG(MTD_DEBUG_LEVEL1, "%s: no chip id\n", | 
|  | flash->spi->dev.bus_id); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | for (i = 0, info = m25p_data; i < ARRAY_SIZE(m25p_data); i++, info++) { | 
|  | if (strcmp(data->type, info->name) == 0) | 
|  | break; | 
|  | } | 
|  | if (i == ARRAY_SIZE(m25p_data)) { | 
|  | DEBUG(MTD_DEBUG_LEVEL1, "%s: unrecognized id %s\n", | 
|  | flash->spi->dev.bus_id, data->type); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | flash = kzalloc(sizeof *flash, SLAB_KERNEL); | 
|  | if (!flash) | 
|  | return -ENOMEM; | 
|  |  | 
|  | flash->spi = spi; | 
|  | init_MUTEX(&flash->lock); | 
|  | dev_set_drvdata(&spi->dev, flash); | 
|  |  | 
|  | if (data->name) | 
|  | flash->mtd.name = data->name; | 
|  | else | 
|  | flash->mtd.name = spi->dev.bus_id; | 
|  |  | 
|  | flash->mtd.type = MTD_NORFLASH; | 
|  | flash->mtd.flags = MTD_CAP_NORFLASH; | 
|  | flash->mtd.size = info->sector_size * info->n_sectors; | 
|  | flash->mtd.erasesize = info->sector_size; | 
|  | flash->mtd.erase = m25p80_erase; | 
|  | flash->mtd.read = m25p80_read; | 
|  | flash->mtd.write = m25p80_write; | 
|  |  | 
|  | dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name, | 
|  | flash->mtd.size / 1024); | 
|  |  | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "mtd .name = %s, .size = 0x%.8x (%uM) " | 
|  | ".erasesize = 0x%.8x (%uK) .numeraseregions = %d\n", | 
|  | flash->mtd.name, | 
|  | flash->mtd.size, flash->mtd.size / (1024*1024), | 
|  | flash->mtd.erasesize, flash->mtd.erasesize / 1024, | 
|  | flash->mtd.numeraseregions); | 
|  |  | 
|  | if (flash->mtd.numeraseregions) | 
|  | for (i = 0; i < flash->mtd.numeraseregions; i++) | 
|  | DEBUG(MTD_DEBUG_LEVEL2, | 
|  | "mtd.eraseregions[%d] = { .offset = 0x%.8x, " | 
|  | ".erasesize = 0x%.8x (%uK), " | 
|  | ".numblocks = %d }\n", | 
|  | i, flash->mtd.eraseregions[i].offset, | 
|  | flash->mtd.eraseregions[i].erasesize, | 
|  | flash->mtd.eraseregions[i].erasesize / 1024, | 
|  | flash->mtd.eraseregions[i].numblocks); | 
|  |  | 
|  |  | 
|  | /* partitions should match sector boundaries; and it may be good to | 
|  | * use readonly partitions for writeprotected sectors (BP2..BP0). | 
|  | */ | 
|  | if (mtd_has_partitions()) { | 
|  | struct mtd_partition	*parts = NULL; | 
|  | int			nr_parts = 0; | 
|  |  | 
|  | #ifdef CONFIG_MTD_CMDLINE_PARTS | 
|  | static const char *part_probes[] = { "cmdlinepart", NULL, }; | 
|  |  | 
|  | nr_parts = parse_mtd_partitions(&flash->mtd, | 
|  | part_probes, &parts, 0); | 
|  | #endif | 
|  |  | 
|  | if (nr_parts <= 0 && data && data->parts) { | 
|  | parts = data->parts; | 
|  | nr_parts = data->nr_parts; | 
|  | } | 
|  |  | 
|  | if (nr_parts > 0) { | 
|  | for (i = 0; i < data->nr_parts; i++) { | 
|  | DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = " | 
|  | "{.name = %s, .offset = 0x%.8x, " | 
|  | ".size = 0x%.8x (%uK) }\n", | 
|  | i, data->parts[i].name, | 
|  | data->parts[i].offset, | 
|  | data->parts[i].size, | 
|  | data->parts[i].size / 1024); | 
|  | } | 
|  | flash->partitioned = 1; | 
|  | return add_mtd_partitions(&flash->mtd, parts, nr_parts); | 
|  | } | 
|  | } else if (data->nr_parts) | 
|  | dev_warn(&spi->dev, "ignoring %d default partitions on %s\n", | 
|  | data->nr_parts, data->name); | 
|  |  | 
|  | return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int __devexit m25p_remove(struct spi_device *spi) | 
|  | { | 
|  | struct m25p	*flash = dev_get_drvdata(&spi->dev); | 
|  | int		status; | 
|  |  | 
|  | /* Clean up MTD stuff. */ | 
|  | if (mtd_has_partitions() && flash->partitioned) | 
|  | status = del_mtd_partitions(&flash->mtd); | 
|  | else | 
|  | status = del_mtd_device(&flash->mtd); | 
|  | if (status == 0) | 
|  | kfree(flash); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct spi_driver m25p80_driver = { | 
|  | .driver = { | 
|  | .name	= "m25p80", | 
|  | .bus	= &spi_bus_type, | 
|  | .owner	= THIS_MODULE, | 
|  | }, | 
|  | .probe	= m25p_probe, | 
|  | .remove	= __devexit_p(m25p_remove), | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int m25p80_init(void) | 
|  | { | 
|  | return spi_register_driver(&m25p80_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void m25p80_exit(void) | 
|  | { | 
|  | spi_unregister_driver(&m25p80_driver); | 
|  | } | 
|  |  | 
|  |  | 
|  | module_init(m25p80_init); | 
|  | module_exit(m25p80_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Mike Lavender"); | 
|  | MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips"); |