|  | /* | 
|  | *  drivers/mtd/nand.c | 
|  | * | 
|  | *  Overview: | 
|  | *   This is the generic MTD driver for NAND flash devices. It should be | 
|  | *   capable of working with almost all NAND chips currently available. | 
|  | *   Basic support for AG-AND chips is provided. | 
|  | * | 
|  | *	Additional technical information is available on | 
|  | *	http://www.linux-mtd.infradead.org/tech/nand.html | 
|  | * | 
|  | *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | 
|  | * 		  2002 Thomas Gleixner (tglx@linutronix.de) | 
|  | * | 
|  | *  02-08-2004  tglx: support for strange chips, which cannot auto increment | 
|  | *		pages on read / read_oob | 
|  | * | 
|  | *  03-17-2004  tglx: Check ready before auto increment check. Simon Bayes | 
|  | *		pointed this out, as he marked an auto increment capable chip | 
|  | *		as NOAUTOINCR in the board driver. | 
|  | *		Make reads over block boundaries work too | 
|  | * | 
|  | *  04-14-2004	tglx: first working version for 2k page size chips | 
|  | * | 
|  | *  05-19-2004  tglx: Basic support for Renesas AG-AND chips | 
|  | * | 
|  | *  09-24-2004  tglx: add support for hardware controllers (e.g. ECC) shared | 
|  | *		among multiple independend devices. Suggestions and initial patch | 
|  | *		from Ben Dooks <ben-mtd@fluff.org> | 
|  | * | 
|  | *  12-05-2004	dmarlin: add workaround for Renesas AG-AND chips "disturb" issue. | 
|  | *		Basically, any block not rewritten may lose data when surrounding blocks | 
|  | *		are rewritten many times.  JFFS2 ensures this doesn't happen for blocks | 
|  | *		it uses, but the Bad Block Table(s) may not be rewritten.  To ensure they | 
|  | *		do not lose data, force them to be rewritten when some of the surrounding | 
|  | *		blocks are erased.  Rather than tracking a specific nearby block (which | 
|  | *		could itself go bad), use a page address 'mask' to select several blocks | 
|  | *		in the same area, and rewrite the BBT when any of them are erased. | 
|  | * | 
|  | *  01-03-2005	dmarlin: added support for the device recovery command sequence for Renesas | 
|  | *		AG-AND chips.  If there was a sudden loss of power during an erase operation, | 
|  | * 		a "device recovery" operation must be performed when power is restored | 
|  | * 		to ensure correct operation. | 
|  | * | 
|  | *  01-20-2005	dmarlin: added support for optional hardware specific callback routine to | 
|  | *		perform extra error status checks on erase and write failures.  This required | 
|  | *		adding a wrapper function for nand_read_ecc. | 
|  | * | 
|  | * 08-20-2005	vwool: suspend/resume added | 
|  | * | 
|  | * Credits: | 
|  | *	David Woodhouse for adding multichip support | 
|  | * | 
|  | *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the | 
|  | *	rework for 2K page size chips | 
|  | * | 
|  | * TODO: | 
|  | *	Enable cached programming for 2k page size chips | 
|  | *	Check, if mtd->ecctype should be set to MTD_ECC_HW | 
|  | *	if we have HW ecc support. | 
|  | *	The AG-AND chips have nice features for speed improvement, | 
|  | *	which are not supported yet. Read / program 4 pages in one go. | 
|  | * | 
|  | * $Id: nand_base.c,v 1.150 2005/09/15 13:58:48 vwool Exp $ | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/nand_ecc.h> | 
|  | #include <linux/mtd/compatmac.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | #include <linux/mtd/partitions.h> | 
|  | #endif | 
|  |  | 
|  | /* Define default oob placement schemes for large and small page devices */ | 
|  | static struct nand_oobinfo nand_oob_8 = { | 
|  | .useecc = MTD_NANDECC_AUTOPLACE, | 
|  | .eccbytes = 3, | 
|  | .eccpos = {0, 1, 2}, | 
|  | .oobfree = { {3, 2}, {6, 2} } | 
|  | }; | 
|  |  | 
|  | static struct nand_oobinfo nand_oob_16 = { | 
|  | .useecc = MTD_NANDECC_AUTOPLACE, | 
|  | .eccbytes = 6, | 
|  | .eccpos = {0, 1, 2, 3, 6, 7}, | 
|  | .oobfree = { {8, 8} } | 
|  | }; | 
|  |  | 
|  | static struct nand_oobinfo nand_oob_64 = { | 
|  | .useecc = MTD_NANDECC_AUTOPLACE, | 
|  | .eccbytes = 24, | 
|  | .eccpos = { | 
|  | 40, 41, 42, 43, 44, 45, 46, 47, | 
|  | 48, 49, 50, 51, 52, 53, 54, 55, | 
|  | 56, 57, 58, 59, 60, 61, 62, 63}, | 
|  | .oobfree = { {2, 38} } | 
|  | }; | 
|  |  | 
|  | /* This is used for padding purposes in nand_write_oob */ | 
|  | static u_char ffchars[] = { | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * NAND low-level MTD interface functions | 
|  | */ | 
|  | static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len); | 
|  | static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len); | 
|  | static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len); | 
|  |  | 
|  | static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); | 
|  | static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t * retlen, u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); | 
|  | static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf); | 
|  | static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf); | 
|  | static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel); | 
|  | static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char *buf); | 
|  | static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, | 
|  | unsigned long count, loff_t to, size_t * retlen); | 
|  | static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, | 
|  | unsigned long count, loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel); | 
|  | static int nand_erase (struct mtd_info *mtd, struct erase_info *instr); | 
|  | static void nand_sync (struct mtd_info *mtd); | 
|  |  | 
|  | /* Some internal functions */ | 
|  | static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, u_char *oob_buf, | 
|  | struct nand_oobinfo *oobsel, int mode); | 
|  | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
|  | static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, | 
|  | u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode); | 
|  | #else | 
|  | #define nand_verify_pages(...) (0) | 
|  | #endif | 
|  |  | 
|  | static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state); | 
|  |  | 
|  | /** | 
|  | * nand_release_device - [GENERIC] release chip | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * Deselect, release chip lock and wake up anyone waiting on the device | 
|  | */ | 
|  | static void nand_release_device (struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | /* De-select the NAND device */ | 
|  | this->select_chip(mtd, -1); | 
|  |  | 
|  | if (this->controller) { | 
|  | /* Release the controller and the chip */ | 
|  | spin_lock(&this->controller->lock); | 
|  | this->controller->active = NULL; | 
|  | this->state = FL_READY; | 
|  | wake_up(&this->controller->wq); | 
|  | spin_unlock(&this->controller->lock); | 
|  | } else { | 
|  | /* Release the chip */ | 
|  | spin_lock(&this->chip_lock); | 
|  | this->state = FL_READY; | 
|  | wake_up(&this->wq); | 
|  | spin_unlock(&this->chip_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_byte - [DEFAULT] read one byte from the chip | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * Default read function for 8bit buswith | 
|  | */ | 
|  | static u_char nand_read_byte(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | return readb(this->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_byte - [DEFAULT] write one byte to the chip | 
|  | * @mtd:	MTD device structure | 
|  | * @byte:	pointer to data byte to write | 
|  | * | 
|  | * Default write function for 8it buswith | 
|  | */ | 
|  | static void nand_write_byte(struct mtd_info *mtd, u_char byte) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | writeb(byte, this->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * Default read function for 16bit buswith with | 
|  | * endianess conversion | 
|  | */ | 
|  | static u_char nand_read_byte16(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | return (u_char) cpu_to_le16(readw(this->IO_ADDR_R)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_byte16 - [DEFAULT] write one byte endianess aware to the chip | 
|  | * @mtd:	MTD device structure | 
|  | * @byte:	pointer to data byte to write | 
|  | * | 
|  | * Default write function for 16bit buswith with | 
|  | * endianess conversion | 
|  | */ | 
|  | static void nand_write_byte16(struct mtd_info *mtd, u_char byte) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | writew(le16_to_cpu((u16) byte), this->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_word - [DEFAULT] read one word from the chip | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * Default read function for 16bit buswith without | 
|  | * endianess conversion | 
|  | */ | 
|  | static u16 nand_read_word(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | return readw(this->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_word - [DEFAULT] write one word to the chip | 
|  | * @mtd:	MTD device structure | 
|  | * @word:	data word to write | 
|  | * | 
|  | * Default write function for 16bit buswith without | 
|  | * endianess conversion | 
|  | */ | 
|  | static void nand_write_word(struct mtd_info *mtd, u16 word) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | writew(word, this->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_select_chip - [DEFAULT] control CE line | 
|  | * @mtd:	MTD device structure | 
|  | * @chip:	chipnumber to select, -1 for deselect | 
|  | * | 
|  | * Default select function for 1 chip devices. | 
|  | */ | 
|  | static void nand_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | switch(chip) { | 
|  | case -1: | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRNCE); | 
|  | break; | 
|  | case 0: | 
|  | this->hwcontrol(mtd, NAND_CTL_SETNCE); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_buf - [DEFAULT] write buffer to chip | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	data buffer | 
|  | * @len:	number of bytes to write | 
|  | * | 
|  | * Default write function for 8bit buswith | 
|  | */ | 
|  | static void nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | for (i=0; i<len; i++) | 
|  | writeb(buf[i], this->IO_ADDR_W); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_buf - [DEFAULT] read chip data into buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer to store date | 
|  | * @len:	number of bytes to read | 
|  | * | 
|  | * Default read function for 8bit buswith | 
|  | */ | 
|  | static void nand_read_buf(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | for (i=0; i<len; i++) | 
|  | buf[i] = readb(this->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_verify_buf - [DEFAULT] Verify chip data against buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer containing the data to compare | 
|  | * @len:	number of bytes to compare | 
|  | * | 
|  | * Default verify function for 8bit buswith | 
|  | */ | 
|  | static int nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | for (i=0; i<len; i++) | 
|  | if (buf[i] != readb(this->IO_ADDR_R)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_buf16 - [DEFAULT] write buffer to chip | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	data buffer | 
|  | * @len:	number of bytes to write | 
|  | * | 
|  | * Default write function for 16bit buswith | 
|  | */ | 
|  | static void nand_write_buf16(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u16 *p = (u16 *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i=0; i<len; i++) | 
|  | writew(p[i], this->IO_ADDR_W); | 
|  |  | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_buf16 - [DEFAULT] read chip data into buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer to store date | 
|  | * @len:	number of bytes to read | 
|  | * | 
|  | * Default read function for 16bit buswith | 
|  | */ | 
|  | static void nand_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u16 *p = (u16 *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i=0; i<len; i++) | 
|  | p[i] = readw(this->IO_ADDR_R); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer containing the data to compare | 
|  | * @len:	number of bytes to compare | 
|  | * | 
|  | * Default verify function for 16bit buswith | 
|  | */ | 
|  | static int nand_verify_buf16(struct mtd_info *mtd, const u_char *buf, int len) | 
|  | { | 
|  | int i; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u16 *p = (u16 *) buf; | 
|  | len >>= 1; | 
|  |  | 
|  | for (i=0; i<len; i++) | 
|  | if (p[i] != readw(this->IO_ADDR_R)) | 
|  | return -EFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_bad - [DEFAULT] Read bad block marker from the chip | 
|  | * @mtd:	MTD device structure | 
|  | * @ofs:	offset from device start | 
|  | * @getchip:	0, if the chip is already selected | 
|  | * | 
|  | * Check, if the block is bad. | 
|  | */ | 
|  | static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip) | 
|  | { | 
|  | int page, chipnr, res = 0; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u16 bad; | 
|  |  | 
|  | if (getchip) { | 
|  | page = (int)(ofs >> this->page_shift); | 
|  | chipnr = (int)(ofs >> this->chip_shift); | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd, FL_READING); | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | this->select_chip(mtd, chipnr); | 
|  | } else | 
|  | page = (int) ofs; | 
|  |  | 
|  | if (this->options & NAND_BUSWIDTH_16) { | 
|  | this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos & 0xFE, page & this->pagemask); | 
|  | bad = cpu_to_le16(this->read_word(mtd)); | 
|  | if (this->badblockpos & 0x1) | 
|  | bad >>= 8; | 
|  | if ((bad & 0xFF) != 0xff) | 
|  | res = 1; | 
|  | } else { | 
|  | this->cmdfunc (mtd, NAND_CMD_READOOB, this->badblockpos, page & this->pagemask); | 
|  | if (this->read_byte(mtd) != 0xff) | 
|  | res = 1; | 
|  | } | 
|  |  | 
|  | if (getchip) { | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  | } | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_default_block_markbad - [DEFAULT] mark a block bad | 
|  | * @mtd:	MTD device structure | 
|  | * @ofs:	offset from device start | 
|  | * | 
|  | * This is the default implementation, which can be overridden by | 
|  | * a hardware specific driver. | 
|  | */ | 
|  | static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u_char buf[2] = {0, 0}; | 
|  | size_t	retlen; | 
|  | int block; | 
|  |  | 
|  | /* Get block number */ | 
|  | block = ((int) ofs) >> this->bbt_erase_shift; | 
|  | if (this->bbt) | 
|  | this->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1); | 
|  |  | 
|  | /* Do we have a flash based bad block table ? */ | 
|  | if (this->options & NAND_USE_FLASH_BBT) | 
|  | return nand_update_bbt (mtd, ofs); | 
|  |  | 
|  | /* We write two bytes, so we dont have to mess with 16 bit access */ | 
|  | ofs += mtd->oobsize + (this->badblockpos & ~0x01); | 
|  | return nand_write_oob (mtd, ofs , 2, &retlen, buf); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_check_wp - [GENERIC] check if the chip is write protected | 
|  | * @mtd:	MTD device structure | 
|  | * Check, if the device is write protected | 
|  | * | 
|  | * The function expects, that the device is already selected | 
|  | */ | 
|  | static int nand_check_wp (struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | /* Check the WP bit */ | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); | 
|  | return (this->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_checkbad - [GENERIC] Check if a block is marked bad | 
|  | * @mtd:	MTD device structure | 
|  | * @ofs:	offset from device start | 
|  | * @getchip:	0, if the chip is already selected | 
|  | * @allowbbt:	1, if its allowed to access the bbt area | 
|  | * | 
|  | * Check, if the block is bad. Either by reading the bad block table or | 
|  | * calling of the scan function. | 
|  | */ | 
|  | static int nand_block_checkbad (struct mtd_info *mtd, loff_t ofs, int getchip, int allowbbt) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | if (!this->bbt) | 
|  | return this->block_bad(mtd, ofs, getchip); | 
|  |  | 
|  | /* Return info from the table */ | 
|  | return nand_isbad_bbt (mtd, ofs, allowbbt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wait for the ready pin, after a command | 
|  | * The timeout is catched later. | 
|  | */ | 
|  | static void nand_wait_ready(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | unsigned long	timeo = jiffies + 2; | 
|  |  | 
|  | /* wait until command is processed or timeout occures */ | 
|  | do { | 
|  | if (this->dev_ready(mtd)) | 
|  | return; | 
|  | touch_softlockup_watchdog(); | 
|  | } while (time_before(jiffies, timeo)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_command - [DEFAULT] Send command to NAND device | 
|  | * @mtd:	MTD device structure | 
|  | * @command:	the command to be sent | 
|  | * @column:	the column address for this command, -1 if none | 
|  | * @page_addr:	the page address for this command, -1 if none | 
|  | * | 
|  | * Send command to NAND device. This function is used for small page | 
|  | * devices (256/512 Bytes per page) | 
|  | */ | 
|  | static void nand_command (struct mtd_info *mtd, unsigned command, int column, int page_addr) | 
|  | { | 
|  | register struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | /* Begin command latch cycle */ | 
|  | this->hwcontrol(mtd, NAND_CTL_SETCLE); | 
|  | /* | 
|  | * Write out the command to the device. | 
|  | */ | 
|  | if (command == NAND_CMD_SEQIN) { | 
|  | int readcmd; | 
|  |  | 
|  | if (column >= mtd->oobblock) { | 
|  | /* OOB area */ | 
|  | column -= mtd->oobblock; | 
|  | readcmd = NAND_CMD_READOOB; | 
|  | } else if (column < 256) { | 
|  | /* First 256 bytes --> READ0 */ | 
|  | readcmd = NAND_CMD_READ0; | 
|  | } else { | 
|  | column -= 256; | 
|  | readcmd = NAND_CMD_READ1; | 
|  | } | 
|  | this->write_byte(mtd, readcmd); | 
|  | } | 
|  | this->write_byte(mtd, command); | 
|  |  | 
|  | /* Set ALE and clear CLE to start address cycle */ | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRCLE); | 
|  |  | 
|  | if (column != -1 || page_addr != -1) { | 
|  | this->hwcontrol(mtd, NAND_CTL_SETALE); | 
|  |  | 
|  | /* Serially input address */ | 
|  | if (column != -1) { | 
|  | /* Adjust columns for 16 bit buswidth */ | 
|  | if (this->options & NAND_BUSWIDTH_16) | 
|  | column >>= 1; | 
|  | this->write_byte(mtd, column); | 
|  | } | 
|  | if (page_addr != -1) { | 
|  | this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); | 
|  | this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); | 
|  | /* One more address cycle for devices > 32MiB */ | 
|  | if (this->chipsize > (32 << 20)) | 
|  | this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0x0f)); | 
|  | } | 
|  | /* Latch in address */ | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRALE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * program and erase have their own busy handlers | 
|  | * status and sequential in needs no delay | 
|  | */ | 
|  | switch (command) { | 
|  |  | 
|  | case NAND_CMD_PAGEPROG: | 
|  | case NAND_CMD_ERASE1: | 
|  | case NAND_CMD_ERASE2: | 
|  | case NAND_CMD_SEQIN: | 
|  | case NAND_CMD_STATUS: | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | if (this->dev_ready) | 
|  | break; | 
|  | udelay(this->chip_delay); | 
|  | this->hwcontrol(mtd, NAND_CTL_SETCLE); | 
|  | this->write_byte(mtd, NAND_CMD_STATUS); | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRCLE); | 
|  | while ( !(this->read_byte(mtd) & NAND_STATUS_READY)); | 
|  | return; | 
|  |  | 
|  | /* This applies to read commands */ | 
|  | default: | 
|  | /* | 
|  | * If we don't have access to the busy pin, we apply the given | 
|  | * command delay | 
|  | */ | 
|  | if (!this->dev_ready) { | 
|  | udelay (this->chip_delay); | 
|  | return; | 
|  | } | 
|  | } | 
|  | /* Apply this short delay always to ensure that we do wait tWB in | 
|  | * any case on any machine. */ | 
|  | ndelay (100); | 
|  |  | 
|  | nand_wait_ready(mtd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_command_lp - [DEFAULT] Send command to NAND large page device | 
|  | * @mtd:	MTD device structure | 
|  | * @command:	the command to be sent | 
|  | * @column:	the column address for this command, -1 if none | 
|  | * @page_addr:	the page address for this command, -1 if none | 
|  | * | 
|  | * Send command to NAND device. This is the version for the new large page devices | 
|  | * We dont have the seperate regions as we have in the small page devices. | 
|  | * We must emulate NAND_CMD_READOOB to keep the code compatible. | 
|  | * | 
|  | */ | 
|  | static void nand_command_lp (struct mtd_info *mtd, unsigned command, int column, int page_addr) | 
|  | { | 
|  | register struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | /* Emulate NAND_CMD_READOOB */ | 
|  | if (command == NAND_CMD_READOOB) { | 
|  | column += mtd->oobblock; | 
|  | command = NAND_CMD_READ0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Begin command latch cycle */ | 
|  | this->hwcontrol(mtd, NAND_CTL_SETCLE); | 
|  | /* Write out the command to the device. */ | 
|  | this->write_byte(mtd, (command & 0xff)); | 
|  | /* End command latch cycle */ | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRCLE); | 
|  |  | 
|  | if (column != -1 || page_addr != -1) { | 
|  | this->hwcontrol(mtd, NAND_CTL_SETALE); | 
|  |  | 
|  | /* Serially input address */ | 
|  | if (column != -1) { | 
|  | /* Adjust columns for 16 bit buswidth */ | 
|  | if (this->options & NAND_BUSWIDTH_16) | 
|  | column >>= 1; | 
|  | this->write_byte(mtd, column & 0xff); | 
|  | this->write_byte(mtd, column >> 8); | 
|  | } | 
|  | if (page_addr != -1) { | 
|  | this->write_byte(mtd, (unsigned char) (page_addr & 0xff)); | 
|  | this->write_byte(mtd, (unsigned char) ((page_addr >> 8) & 0xff)); | 
|  | /* One more address cycle for devices > 128MiB */ | 
|  | if (this->chipsize > (128 << 20)) | 
|  | this->write_byte(mtd, (unsigned char) ((page_addr >> 16) & 0xff)); | 
|  | } | 
|  | /* Latch in address */ | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRALE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * program and erase have their own busy handlers | 
|  | * status, sequential in, and deplete1 need no delay | 
|  | */ | 
|  | switch (command) { | 
|  |  | 
|  | case NAND_CMD_CACHEDPROG: | 
|  | case NAND_CMD_PAGEPROG: | 
|  | case NAND_CMD_ERASE1: | 
|  | case NAND_CMD_ERASE2: | 
|  | case NAND_CMD_SEQIN: | 
|  | case NAND_CMD_STATUS: | 
|  | case NAND_CMD_DEPLETE1: | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * read error status commands require only a short delay | 
|  | */ | 
|  | case NAND_CMD_STATUS_ERROR: | 
|  | case NAND_CMD_STATUS_ERROR0: | 
|  | case NAND_CMD_STATUS_ERROR1: | 
|  | case NAND_CMD_STATUS_ERROR2: | 
|  | case NAND_CMD_STATUS_ERROR3: | 
|  | udelay(this->chip_delay); | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_RESET: | 
|  | if (this->dev_ready) | 
|  | break; | 
|  | udelay(this->chip_delay); | 
|  | this->hwcontrol(mtd, NAND_CTL_SETCLE); | 
|  | this->write_byte(mtd, NAND_CMD_STATUS); | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRCLE); | 
|  | while ( !(this->read_byte(mtd) & NAND_STATUS_READY)); | 
|  | return; | 
|  |  | 
|  | case NAND_CMD_READ0: | 
|  | /* Begin command latch cycle */ | 
|  | this->hwcontrol(mtd, NAND_CTL_SETCLE); | 
|  | /* Write out the start read command */ | 
|  | this->write_byte(mtd, NAND_CMD_READSTART); | 
|  | /* End command latch cycle */ | 
|  | this->hwcontrol(mtd, NAND_CTL_CLRCLE); | 
|  | /* Fall through into ready check */ | 
|  |  | 
|  | /* This applies to read commands */ | 
|  | default: | 
|  | /* | 
|  | * If we don't have access to the busy pin, we apply the given | 
|  | * command delay | 
|  | */ | 
|  | if (!this->dev_ready) { | 
|  | udelay (this->chip_delay); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Apply this short delay always to ensure that we do wait tWB in | 
|  | * any case on any machine. */ | 
|  | ndelay (100); | 
|  |  | 
|  | nand_wait_ready(mtd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_get_device - [GENERIC] Get chip for selected access | 
|  | * @this:	the nand chip descriptor | 
|  | * @mtd:	MTD device structure | 
|  | * @new_state:	the state which is requested | 
|  | * | 
|  | * Get the device and lock it for exclusive access | 
|  | */ | 
|  | static int nand_get_device (struct nand_chip *this, struct mtd_info *mtd, int new_state) | 
|  | { | 
|  | struct nand_chip *active; | 
|  | spinlock_t *lock; | 
|  | wait_queue_head_t *wq; | 
|  | DECLARE_WAITQUEUE (wait, current); | 
|  |  | 
|  | lock = (this->controller) ? &this->controller->lock : &this->chip_lock; | 
|  | wq = (this->controller) ? &this->controller->wq : &this->wq; | 
|  | retry: | 
|  | active = this; | 
|  | spin_lock(lock); | 
|  |  | 
|  | /* Hardware controller shared among independend devices */ | 
|  | if (this->controller) { | 
|  | if (this->controller->active) | 
|  | active = this->controller->active; | 
|  | else | 
|  | this->controller->active = this; | 
|  | } | 
|  | if (active == this && this->state == FL_READY) { | 
|  | this->state = new_state; | 
|  | spin_unlock(lock); | 
|  | return 0; | 
|  | } | 
|  | if (new_state == FL_PM_SUSPENDED) { | 
|  | spin_unlock(lock); | 
|  | return (this->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN; | 
|  | } | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | add_wait_queue(wq, &wait); | 
|  | spin_unlock(lock); | 
|  | schedule(); | 
|  | remove_wait_queue(wq, &wait); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_wait - [DEFAULT]  wait until the command is done | 
|  | * @mtd:	MTD device structure | 
|  | * @this:	NAND chip structure | 
|  | * @state:	state to select the max. timeout value | 
|  | * | 
|  | * Wait for command done. This applies to erase and program only | 
|  | * Erase can take up to 400ms and program up to 20ms according to | 
|  | * general NAND and SmartMedia specs | 
|  | * | 
|  | */ | 
|  | static int nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state) | 
|  | { | 
|  |  | 
|  | unsigned long	timeo = jiffies; | 
|  | int	status; | 
|  |  | 
|  | if (state == FL_ERASING) | 
|  | timeo += (HZ * 400) / 1000; | 
|  | else | 
|  | timeo += (HZ * 20) / 1000; | 
|  |  | 
|  | /* Apply this short delay always to ensure that we do wait tWB in | 
|  | * any case on any machine. */ | 
|  | ndelay (100); | 
|  |  | 
|  | if ((state == FL_ERASING) && (this->options & NAND_IS_AND)) | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS_MULTI, -1, -1); | 
|  | else | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS, -1, -1); | 
|  |  | 
|  | while (time_before(jiffies, timeo)) { | 
|  | /* Check, if we were interrupted */ | 
|  | if (this->state != state) | 
|  | return 0; | 
|  |  | 
|  | if (this->dev_ready) { | 
|  | if (this->dev_ready(mtd)) | 
|  | break; | 
|  | } else { | 
|  | if (this->read_byte(mtd) & NAND_STATUS_READY) | 
|  | break; | 
|  | } | 
|  | cond_resched(); | 
|  | } | 
|  | status = (int) this->read_byte(mtd); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_page - [GENERIC] write one page | 
|  | * @mtd:	MTD device structure | 
|  | * @this:	NAND chip structure | 
|  | * @page: 	startpage inside the chip, must be called with (page & this->pagemask) | 
|  | * @oob_buf:	out of band data buffer | 
|  | * @oobsel:	out of band selecttion structre | 
|  | * @cached:	1 = enable cached programming if supported by chip | 
|  | * | 
|  | * Nand_page_program function is used for write and writev ! | 
|  | * This function will always program a full page of data | 
|  | * If you call it with a non page aligned buffer, you're lost :) | 
|  | * | 
|  | * Cached programming is not supported yet. | 
|  | */ | 
|  | static int nand_write_page (struct mtd_info *mtd, struct nand_chip *this, int page, | 
|  | u_char *oob_buf,  struct nand_oobinfo *oobsel, int cached) | 
|  | { | 
|  | int 	i, status; | 
|  | u_char	ecc_code[32]; | 
|  | int	eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; | 
|  | int  	*oob_config = oobsel->eccpos; | 
|  | int	datidx = 0, eccidx = 0, eccsteps = this->eccsteps; | 
|  | int	eccbytes = 0; | 
|  |  | 
|  | /* FIXME: Enable cached programming */ | 
|  | cached = 0; | 
|  |  | 
|  | /* Send command to begin auto page programming */ | 
|  | this->cmdfunc (mtd, NAND_CMD_SEQIN, 0x00, page); | 
|  |  | 
|  | /* Write out complete page of data, take care of eccmode */ | 
|  | switch (eccmode) { | 
|  | /* No ecc, write all */ | 
|  | case NAND_ECC_NONE: | 
|  | printk (KERN_WARNING "Writing data without ECC to NAND-FLASH is not recommended\n"); | 
|  | this->write_buf(mtd, this->data_poi, mtd->oobblock); | 
|  | break; | 
|  |  | 
|  | /* Software ecc 3/256, write all */ | 
|  | case NAND_ECC_SOFT: | 
|  | for (; eccsteps; eccsteps--) { | 
|  | this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); | 
|  | for (i = 0; i < 3; i++, eccidx++) | 
|  | oob_buf[oob_config[eccidx]] = ecc_code[i]; | 
|  | datidx += this->eccsize; | 
|  | } | 
|  | this->write_buf(mtd, this->data_poi, mtd->oobblock); | 
|  | break; | 
|  | default: | 
|  | eccbytes = this->eccbytes; | 
|  | for (; eccsteps; eccsteps--) { | 
|  | /* enable hardware ecc logic for write */ | 
|  | this->enable_hwecc(mtd, NAND_ECC_WRITE); | 
|  | this->write_buf(mtd, &this->data_poi[datidx], this->eccsize); | 
|  | this->calculate_ecc(mtd, &this->data_poi[datidx], ecc_code); | 
|  | for (i = 0; i < eccbytes; i++, eccidx++) | 
|  | oob_buf[oob_config[eccidx]] = ecc_code[i]; | 
|  | /* If the hardware ecc provides syndromes then | 
|  | * the ecc code must be written immidiately after | 
|  | * the data bytes (words) */ | 
|  | if (this->options & NAND_HWECC_SYNDROME) | 
|  | this->write_buf(mtd, ecc_code, eccbytes); | 
|  | datidx += this->eccsize; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Write out OOB data */ | 
|  | if (this->options & NAND_HWECC_SYNDROME) | 
|  | this->write_buf(mtd, &oob_buf[oobsel->eccbytes], mtd->oobsize - oobsel->eccbytes); | 
|  | else | 
|  | this->write_buf(mtd, oob_buf, mtd->oobsize); | 
|  |  | 
|  | /* Send command to actually program the data */ | 
|  | this->cmdfunc (mtd, cached ? NAND_CMD_CACHEDPROG : NAND_CMD_PAGEPROG, -1, -1); | 
|  |  | 
|  | if (!cached) { | 
|  | /* call wait ready function */ | 
|  | status = this->waitfunc (mtd, this, FL_WRITING); | 
|  |  | 
|  | /* See if operation failed and additional status checks are available */ | 
|  | if ((status & NAND_STATUS_FAIL) && (this->errstat)) { | 
|  | status = this->errstat(mtd, this, FL_WRITING, status, page); | 
|  | } | 
|  |  | 
|  | /* See if device thinks it succeeded */ | 
|  | if (status & NAND_STATUS_FAIL) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write, page 0x%08x, ", __FUNCTION__, page); | 
|  | return -EIO; | 
|  | } | 
|  | } else { | 
|  | /* FIXME: Implement cached programming ! */ | 
|  | /* wait until cache is ready*/ | 
|  | // status = this->waitfunc (mtd, this, FL_CACHEDRPG); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
|  | /** | 
|  | * nand_verify_pages - [GENERIC] verify the chip contents after a write | 
|  | * @mtd:	MTD device structure | 
|  | * @this:	NAND chip structure | 
|  | * @page: 	startpage inside the chip, must be called with (page & this->pagemask) | 
|  | * @numpages:	number of pages to verify | 
|  | * @oob_buf:	out of band data buffer | 
|  | * @oobsel:	out of band selecttion structre | 
|  | * @chipnr:	number of the current chip | 
|  | * @oobmode:	1 = full buffer verify, 0 = ecc only | 
|  | * | 
|  | * The NAND device assumes that it is always writing to a cleanly erased page. | 
|  | * Hence, it performs its internal write verification only on bits that | 
|  | * transitioned from 1 to 0. The device does NOT verify the whole page on a | 
|  | * byte by byte basis. It is possible that the page was not completely erased | 
|  | * or the page is becoming unusable due to wear. The read with ECC would catch | 
|  | * the error later when the ECC page check fails, but we would rather catch | 
|  | * it early in the page write stage. Better to write no data than invalid data. | 
|  | */ | 
|  | static int nand_verify_pages (struct mtd_info *mtd, struct nand_chip *this, int page, int numpages, | 
|  | u_char *oob_buf, struct nand_oobinfo *oobsel, int chipnr, int oobmode) | 
|  | { | 
|  | int 	i, j, datidx = 0, oobofs = 0, res = -EIO; | 
|  | int	eccsteps = this->eccsteps; | 
|  | int	hweccbytes; | 
|  | u_char 	oobdata[64]; | 
|  |  | 
|  | hweccbytes = (this->options & NAND_HWECC_SYNDROME) ? (oobsel->eccbytes / eccsteps) : 0; | 
|  |  | 
|  | /* Send command to read back the first page */ | 
|  | this->cmdfunc (mtd, NAND_CMD_READ0, 0, page); | 
|  |  | 
|  | for(;;) { | 
|  | for (j = 0; j < eccsteps; j++) { | 
|  | /* Loop through and verify the data */ | 
|  | if (this->verify_buf(mtd, &this->data_poi[datidx], mtd->eccsize)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); | 
|  | goto out; | 
|  | } | 
|  | datidx += mtd->eccsize; | 
|  | /* Have we a hw generator layout ? */ | 
|  | if (!hweccbytes) | 
|  | continue; | 
|  | if (this->verify_buf(mtd, &this->oob_buf[oobofs], hweccbytes)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); | 
|  | goto out; | 
|  | } | 
|  | oobofs += hweccbytes; | 
|  | } | 
|  |  | 
|  | /* check, if we must compare all data or if we just have to | 
|  | * compare the ecc bytes | 
|  | */ | 
|  | if (oobmode) { | 
|  | if (this->verify_buf(mtd, &oob_buf[oobofs], mtd->oobsize - hweccbytes * eccsteps)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "%s: " "Failed write verify, page 0x%08x ", __FUNCTION__, page); | 
|  | goto out; | 
|  | } | 
|  | } else { | 
|  | /* Read always, else autoincrement fails */ | 
|  | this->read_buf(mtd, oobdata, mtd->oobsize - hweccbytes * eccsteps); | 
|  |  | 
|  | if (oobsel->useecc != MTD_NANDECC_OFF && !hweccbytes) { | 
|  | int ecccnt = oobsel->eccbytes; | 
|  |  | 
|  | for (i = 0; i < ecccnt; i++) { | 
|  | int idx = oobsel->eccpos[i]; | 
|  | if (oobdata[idx] != oob_buf[oobofs + idx] ) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, | 
|  | "%s: Failed ECC write " | 
|  | "verify, page 0x%08x, " "%6i bytes were succesful\n", __FUNCTION__, page, i); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | oobofs += mtd->oobsize - hweccbytes * eccsteps; | 
|  | page++; | 
|  | numpages--; | 
|  |  | 
|  | /* Apply delay or wait for ready/busy pin | 
|  | * Do this before the AUTOINCR check, so no problems | 
|  | * arise if a chip which does auto increment | 
|  | * is marked as NOAUTOINCR by the board driver. | 
|  | * Do this also before returning, so the chip is | 
|  | * ready for the next command. | 
|  | */ | 
|  | if (!this->dev_ready) | 
|  | udelay (this->chip_delay); | 
|  | else | 
|  | nand_wait_ready(mtd); | 
|  |  | 
|  | /* All done, return happy */ | 
|  | if (!numpages) | 
|  | return 0; | 
|  |  | 
|  |  | 
|  | /* Check, if the chip supports auto page increment */ | 
|  | if (!NAND_CANAUTOINCR(this)) | 
|  | this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); | 
|  | } | 
|  | /* | 
|  | * Terminate the read command. We come here in case of an error | 
|  | * So we must issue a reset command. | 
|  | */ | 
|  | out: | 
|  | this->cmdfunc (mtd, NAND_CMD_RESET, -1, -1); | 
|  | return res; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc | 
|  | * @mtd:	MTD device structure | 
|  | * @from:	offset to read from | 
|  | * @len:	number of bytes to read | 
|  | * @retlen:	pointer to variable to store the number of read bytes | 
|  | * @buf:	the databuffer to put data | 
|  | * | 
|  | * This function simply calls nand_do_read_ecc with oob buffer and oobsel = NULL | 
|  | * and flags = 0xff | 
|  | */ | 
|  | static int nand_read (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) | 
|  | { | 
|  | return nand_do_read_ecc (mtd, from, len, retlen, buf, NULL, &mtd->oobinfo, 0xff); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_read_ecc - [MTD Interface] MTD compability function for nand_do_read_ecc | 
|  | * @mtd:	MTD device structure | 
|  | * @from:	offset to read from | 
|  | * @len:	number of bytes to read | 
|  | * @retlen:	pointer to variable to store the number of read bytes | 
|  | * @buf:	the databuffer to put data | 
|  | * @oob_buf:	filesystem supplied oob data buffer | 
|  | * @oobsel:	oob selection structure | 
|  | * | 
|  | * This function simply calls nand_do_read_ecc with flags = 0xff | 
|  | */ | 
|  | static int nand_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t * retlen, u_char * buf, u_char * oob_buf, struct nand_oobinfo *oobsel) | 
|  | { | 
|  | /* use userspace supplied oobinfo, if zero */ | 
|  | if (oobsel == NULL) | 
|  | oobsel = &mtd->oobinfo; | 
|  | return nand_do_read_ecc(mtd, from, len, retlen, buf, oob_buf, oobsel, 0xff); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_do_read_ecc - [MTD Interface] Read data with ECC | 
|  | * @mtd:	MTD device structure | 
|  | * @from:	offset to read from | 
|  | * @len:	number of bytes to read | 
|  | * @retlen:	pointer to variable to store the number of read bytes | 
|  | * @buf:	the databuffer to put data | 
|  | * @oob_buf:	filesystem supplied oob data buffer (can be NULL) | 
|  | * @oobsel:	oob selection structure | 
|  | * @flags:	flag to indicate if nand_get_device/nand_release_device should be preformed | 
|  | *		and how many corrected error bits are acceptable: | 
|  | *		  bits 0..7 - number of tolerable errors | 
|  | *		  bit  8    - 0 == do not get/release chip, 1 == get/release chip | 
|  | * | 
|  | * NAND read with ECC | 
|  | */ | 
|  | int nand_do_read_ecc (struct mtd_info *mtd, loff_t from, size_t len, | 
|  | size_t * retlen, u_char * buf, u_char * oob_buf, | 
|  | struct nand_oobinfo *oobsel, int flags) | 
|  | { | 
|  |  | 
|  | int i, j, col, realpage, page, end, ecc, chipnr, sndcmd = 1; | 
|  | int read = 0, oob = 0, ecc_status = 0, ecc_failed = 0; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u_char *data_poi, *oob_data = oob_buf; | 
|  | u_char ecc_calc[32]; | 
|  | u_char ecc_code[32]; | 
|  | int eccmode, eccsteps; | 
|  | int	*oob_config, datidx; | 
|  | int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; | 
|  | int	eccbytes; | 
|  | int	compareecc = 1; | 
|  | int	oobreadlen; | 
|  |  | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, "nand_read_ecc: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); | 
|  |  | 
|  | /* Do not allow reads past end of device */ | 
|  | if ((from + len) > mtd->size) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: Attempt read beyond end of device\n"); | 
|  | *retlen = 0; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | if (flags & NAND_GET_DEVICE) | 
|  | nand_get_device (this, mtd, FL_READING); | 
|  |  | 
|  | /* Autoplace of oob data ? Use the default placement scheme */ | 
|  | if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) | 
|  | oobsel = this->autooob; | 
|  |  | 
|  | eccmode = oobsel->useecc ? this->eccmode : NAND_ECC_NONE; | 
|  | oob_config = oobsel->eccpos; | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | chipnr = (int)(from >> this->chip_shift); | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* First we calculate the starting page */ | 
|  | realpage = (int) (from >> this->page_shift); | 
|  | page = realpage & this->pagemask; | 
|  |  | 
|  | /* Get raw starting column */ | 
|  | col = from & (mtd->oobblock - 1); | 
|  |  | 
|  | end = mtd->oobblock; | 
|  | ecc = this->eccsize; | 
|  | eccbytes = this->eccbytes; | 
|  |  | 
|  | if ((eccmode == NAND_ECC_NONE) || (this->options & NAND_HWECC_SYNDROME)) | 
|  | compareecc = 0; | 
|  |  | 
|  | oobreadlen = mtd->oobsize; | 
|  | if (this->options & NAND_HWECC_SYNDROME) | 
|  | oobreadlen -= oobsel->eccbytes; | 
|  |  | 
|  | /* Loop until all data read */ | 
|  | while (read < len) { | 
|  |  | 
|  | int aligned = (!col && (len - read) >= end); | 
|  | /* | 
|  | * If the read is not page aligned, we have to read into data buffer | 
|  | * due to ecc, else we read into return buffer direct | 
|  | */ | 
|  | if (aligned) | 
|  | data_poi = &buf[read]; | 
|  | else | 
|  | data_poi = this->data_buf; | 
|  |  | 
|  | /* Check, if we have this page in the buffer | 
|  | * | 
|  | * FIXME: Make it work when we must provide oob data too, | 
|  | * check the usage of data_buf oob field | 
|  | */ | 
|  | if (realpage == this->pagebuf && !oob_buf) { | 
|  | /* aligned read ? */ | 
|  | if (aligned) | 
|  | memcpy (data_poi, this->data_buf, end); | 
|  | goto readdata; | 
|  | } | 
|  |  | 
|  | /* Check, if we must send the read command */ | 
|  | if (sndcmd) { | 
|  | this->cmdfunc (mtd, NAND_CMD_READ0, 0x00, page); | 
|  | sndcmd = 0; | 
|  | } | 
|  |  | 
|  | /* get oob area, if we have no oob buffer from fs-driver */ | 
|  | if (!oob_buf || oobsel->useecc == MTD_NANDECC_AUTOPLACE || | 
|  | oobsel->useecc == MTD_NANDECC_AUTOPL_USR) | 
|  | oob_data = &this->data_buf[end]; | 
|  |  | 
|  | eccsteps = this->eccsteps; | 
|  |  | 
|  | switch (eccmode) { | 
|  | case NAND_ECC_NONE: {	/* No ECC, Read in a page */ | 
|  | static unsigned long lastwhinge = 0; | 
|  | if ((lastwhinge / HZ) != (jiffies / HZ)) { | 
|  | printk (KERN_WARNING "Reading data from NAND FLASH without ECC is not recommended\n"); | 
|  | lastwhinge = jiffies; | 
|  | } | 
|  | this->read_buf(mtd, data_poi, end); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case NAND_ECC_SOFT:	/* Software ECC 3/256: Read in a page + oob data */ | 
|  | this->read_buf(mtd, data_poi, end); | 
|  | for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=3, datidx += ecc) | 
|  | this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | for (i = 0, datidx = 0; eccsteps; eccsteps--, i+=eccbytes, datidx += ecc) { | 
|  | this->enable_hwecc(mtd, NAND_ECC_READ); | 
|  | this->read_buf(mtd, &data_poi[datidx], ecc); | 
|  |  | 
|  | /* HW ecc with syndrome calculation must read the | 
|  | * syndrome from flash immidiately after the data */ | 
|  | if (!compareecc) { | 
|  | /* Some hw ecc generators need to know when the | 
|  | * syndrome is read from flash */ | 
|  | this->enable_hwecc(mtd, NAND_ECC_READSYN); | 
|  | this->read_buf(mtd, &oob_data[i], eccbytes); | 
|  | /* We calc error correction directly, it checks the hw | 
|  | * generator for an error, reads back the syndrome and | 
|  | * does the error correction on the fly */ | 
|  | ecc_status = this->correct_data(mtd, &data_poi[datidx], &oob_data[i], &ecc_code[i]); | 
|  | if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " | 
|  | "Failed ECC read, page 0x%08x on chip %d\n", page, chipnr); | 
|  | ecc_failed++; | 
|  | } | 
|  | } else { | 
|  | this->calculate_ecc(mtd, &data_poi[datidx], &ecc_calc[i]); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* read oobdata */ | 
|  | this->read_buf(mtd, &oob_data[mtd->oobsize - oobreadlen], oobreadlen); | 
|  |  | 
|  | /* Skip ECC check, if not requested (ECC_NONE or HW_ECC with syndromes) */ | 
|  | if (!compareecc) | 
|  | goto readoob; | 
|  |  | 
|  | /* Pick the ECC bytes out of the oob data */ | 
|  | for (j = 0; j < oobsel->eccbytes; j++) | 
|  | ecc_code[j] = oob_data[oob_config[j]]; | 
|  |  | 
|  | /* correct data, if neccecary */ | 
|  | for (i = 0, j = 0, datidx = 0; i < this->eccsteps; i++, datidx += ecc) { | 
|  | ecc_status = this->correct_data(mtd, &data_poi[datidx], &ecc_code[j], &ecc_calc[j]); | 
|  |  | 
|  | /* Get next chunk of ecc bytes */ | 
|  | j += eccbytes; | 
|  |  | 
|  | /* Check, if we have a fs supplied oob-buffer, | 
|  | * This is the legacy mode. Used by YAFFS1 | 
|  | * Should go away some day | 
|  | */ | 
|  | if (oob_buf && oobsel->useecc == MTD_NANDECC_PLACE) { | 
|  | int *p = (int *)(&oob_data[mtd->oobsize]); | 
|  | p[i] = ecc_status; | 
|  | } | 
|  |  | 
|  | if ((ecc_status == -1) || (ecc_status > (flags && 0xff))) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_read_ecc: " "Failed ECC read, page 0x%08x\n", page); | 
|  | ecc_failed++; | 
|  | } | 
|  | } | 
|  |  | 
|  | readoob: | 
|  | /* check, if we have a fs supplied oob-buffer */ | 
|  | if (oob_buf) { | 
|  | /* without autoplace. Legacy mode used by YAFFS1 */ | 
|  | switch(oobsel->useecc) { | 
|  | case MTD_NANDECC_AUTOPLACE: | 
|  | case MTD_NANDECC_AUTOPL_USR: | 
|  | /* Walk through the autoplace chunks */ | 
|  | for (i = 0; oobsel->oobfree[i][1]; i++) { | 
|  | int from = oobsel->oobfree[i][0]; | 
|  | int num = oobsel->oobfree[i][1]; | 
|  | memcpy(&oob_buf[oob], &oob_data[from], num); | 
|  | oob += num; | 
|  | } | 
|  | break; | 
|  | case MTD_NANDECC_PLACE: | 
|  | /* YAFFS1 legacy mode */ | 
|  | oob_data += this->eccsteps * sizeof (int); | 
|  | default: | 
|  | oob_data += mtd->oobsize; | 
|  | } | 
|  | } | 
|  | readdata: | 
|  | /* Partial page read, transfer data into fs buffer */ | 
|  | if (!aligned) { | 
|  | for (j = col; j < end && read < len; j++) | 
|  | buf[read++] = data_poi[j]; | 
|  | this->pagebuf = realpage; | 
|  | } else | 
|  | read += mtd->oobblock; | 
|  |  | 
|  | /* Apply delay or wait for ready/busy pin | 
|  | * Do this before the AUTOINCR check, so no problems | 
|  | * arise if a chip which does auto increment | 
|  | * is marked as NOAUTOINCR by the board driver. | 
|  | */ | 
|  | if (!this->dev_ready) | 
|  | udelay (this->chip_delay); | 
|  | else | 
|  | nand_wait_ready(mtd); | 
|  |  | 
|  | if (read == len) | 
|  | break; | 
|  |  | 
|  | /* For subsequent reads align to page boundary. */ | 
|  | col = 0; | 
|  | /* Increment page address */ | 
|  | realpage++; | 
|  |  | 
|  | page = realpage & this->pagemask; | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!page) { | 
|  | chipnr++; | 
|  | this->select_chip(mtd, -1); | 
|  | this->select_chip(mtd, chipnr); | 
|  | } | 
|  | /* Check, if the chip supports auto page increment | 
|  | * or if we have hit a block boundary. | 
|  | */ | 
|  | if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) | 
|  | sndcmd = 1; | 
|  | } | 
|  |  | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | if (flags & NAND_GET_DEVICE) | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | /* | 
|  | * Return success, if no ECC failures, else -EBADMSG | 
|  | * fs driver will take care of that, because | 
|  | * retlen == desired len and result == -EBADMSG | 
|  | */ | 
|  | *retlen = read; | 
|  | return ecc_failed ? -EBADMSG : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_oob - [MTD Interface] NAND read out-of-band | 
|  | * @mtd:	MTD device structure | 
|  | * @from:	offset to read from | 
|  | * @len:	number of bytes to read | 
|  | * @retlen:	pointer to variable to store the number of read bytes | 
|  | * @buf:	the databuffer to put data | 
|  | * | 
|  | * NAND read out-of-band data from the spare area | 
|  | */ | 
|  | static int nand_read_oob (struct mtd_info *mtd, loff_t from, size_t len, size_t * retlen, u_char * buf) | 
|  | { | 
|  | int i, col, page, chipnr; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08x, len = %i\n", (unsigned int) from, (int) len); | 
|  |  | 
|  | /* Shift to get page */ | 
|  | page = (int)(from >> this->page_shift); | 
|  | chipnr = (int)(from >> this->chip_shift); | 
|  |  | 
|  | /* Mask to get column */ | 
|  | col = from & (mtd->oobsize - 1); | 
|  |  | 
|  | /* Initialize return length value */ | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Do not allow reads past end of device */ | 
|  | if ((from + len) > mtd->size) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_read_oob: Attempt read beyond end of device\n"); | 
|  | *retlen = 0; | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd , FL_READING); | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Send the read command */ | 
|  | this->cmdfunc (mtd, NAND_CMD_READOOB, col, page & this->pagemask); | 
|  | /* | 
|  | * Read the data, if we read more than one page | 
|  | * oob data, let the device transfer the data ! | 
|  | */ | 
|  | i = 0; | 
|  | while (i < len) { | 
|  | int thislen = mtd->oobsize - col; | 
|  | thislen = min_t(int, thislen, len); | 
|  | this->read_buf(mtd, &buf[i], thislen); | 
|  | i += thislen; | 
|  |  | 
|  | /* Read more ? */ | 
|  | if (i < len) { | 
|  | page++; | 
|  | col = 0; | 
|  |  | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!(page & this->pagemask)) { | 
|  | chipnr++; | 
|  | this->select_chip(mtd, -1); | 
|  | this->select_chip(mtd, chipnr); | 
|  | } | 
|  |  | 
|  | /* Apply delay or wait for ready/busy pin | 
|  | * Do this before the AUTOINCR check, so no problems | 
|  | * arise if a chip which does auto increment | 
|  | * is marked as NOAUTOINCR by the board driver. | 
|  | */ | 
|  | if (!this->dev_ready) | 
|  | udelay (this->chip_delay); | 
|  | else | 
|  | nand_wait_ready(mtd); | 
|  |  | 
|  | /* Check, if the chip supports auto page increment | 
|  | * or if we have hit a block boundary. | 
|  | */ | 
|  | if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) { | 
|  | /* For subsequent page reads set offset to 0 */ | 
|  | this->cmdfunc (mtd, NAND_CMD_READOOB, 0x0, page & this->pagemask); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | /* Return happy */ | 
|  | *retlen = len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_read_raw - [GENERIC] Read raw data including oob into buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	temporary buffer | 
|  | * @from:	offset to read from | 
|  | * @len:	number of bytes to read | 
|  | * @ooblen:	number of oob data bytes to read | 
|  | * | 
|  | * Read raw data including oob into buffer | 
|  | */ | 
|  | int nand_read_raw (struct mtd_info *mtd, uint8_t *buf, loff_t from, size_t len, size_t ooblen) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | int page = (int) (from >> this->page_shift); | 
|  | int chip = (int) (from >> this->chip_shift); | 
|  | int sndcmd = 1; | 
|  | int cnt = 0; | 
|  | int pagesize = mtd->oobblock + mtd->oobsize; | 
|  | int	blockcheck = (1 << (this->phys_erase_shift - this->page_shift)) - 1; | 
|  |  | 
|  | /* Do not allow reads past end of device */ | 
|  | if ((from + len) > mtd->size) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_read_raw: Attempt read beyond end of device\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd , FL_READING); | 
|  |  | 
|  | this->select_chip (mtd, chip); | 
|  |  | 
|  | /* Add requested oob length */ | 
|  | len += ooblen; | 
|  |  | 
|  | while (len) { | 
|  | if (sndcmd) | 
|  | this->cmdfunc (mtd, NAND_CMD_READ0, 0, page & this->pagemask); | 
|  | sndcmd = 0; | 
|  |  | 
|  | this->read_buf (mtd, &buf[cnt], pagesize); | 
|  |  | 
|  | len -= pagesize; | 
|  | cnt += pagesize; | 
|  | page++; | 
|  |  | 
|  | if (!this->dev_ready) | 
|  | udelay (this->chip_delay); | 
|  | else | 
|  | nand_wait_ready(mtd); | 
|  |  | 
|  | /* Check, if the chip supports auto page increment */ | 
|  | if (!NAND_CANAUTOINCR(this) || !(page & blockcheck)) | 
|  | sndcmd = 1; | 
|  | } | 
|  |  | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_prepare_oobbuf - [GENERIC] Prepare the out of band buffer | 
|  | * @mtd:	MTD device structure | 
|  | * @fsbuf:	buffer given by fs driver | 
|  | * @oobsel:	out of band selection structre | 
|  | * @autoplace:	1 = place given buffer into the oob bytes | 
|  | * @numpages:	number of pages to prepare | 
|  | * | 
|  | * Return: | 
|  | * 1. Filesystem buffer available and autoplacement is off, | 
|  | *    return filesystem buffer | 
|  | * 2. No filesystem buffer or autoplace is off, return internal | 
|  | *    buffer | 
|  | * 3. Filesystem buffer is given and autoplace selected | 
|  | *    put data from fs buffer into internal buffer and | 
|  | *    retrun internal buffer | 
|  | * | 
|  | * Note: The internal buffer is filled with 0xff. This must | 
|  | * be done only once, when no autoplacement happens | 
|  | * Autoplacement sets the buffer dirty flag, which | 
|  | * forces the 0xff fill before using the buffer again. | 
|  | * | 
|  | */ | 
|  | static u_char * nand_prepare_oobbuf (struct mtd_info *mtd, u_char *fsbuf, struct nand_oobinfo *oobsel, | 
|  | int autoplace, int numpages) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | int i, len, ofs; | 
|  |  | 
|  | /* Zero copy fs supplied buffer */ | 
|  | if (fsbuf && !autoplace) | 
|  | return fsbuf; | 
|  |  | 
|  | /* Check, if the buffer must be filled with ff again */ | 
|  | if (this->oobdirty) { | 
|  | memset (this->oob_buf, 0xff, | 
|  | mtd->oobsize << (this->phys_erase_shift - this->page_shift)); | 
|  | this->oobdirty = 0; | 
|  | } | 
|  |  | 
|  | /* If we have no autoplacement or no fs buffer use the internal one */ | 
|  | if (!autoplace || !fsbuf) | 
|  | return this->oob_buf; | 
|  |  | 
|  | /* Walk through the pages and place the data */ | 
|  | this->oobdirty = 1; | 
|  | ofs = 0; | 
|  | while (numpages--) { | 
|  | for (i = 0, len = 0; len < mtd->oobavail; i++) { | 
|  | int to = ofs + oobsel->oobfree[i][0]; | 
|  | int num = oobsel->oobfree[i][1]; | 
|  | memcpy (&this->oob_buf[to], fsbuf, num); | 
|  | len += num; | 
|  | fsbuf += num; | 
|  | } | 
|  | ofs += mtd->oobavail; | 
|  | } | 
|  | return this->oob_buf; | 
|  | } | 
|  |  | 
|  | #define NOTALIGNED(x) (x & (mtd->oobblock-1)) != 0 | 
|  |  | 
|  | /** | 
|  | * nand_write - [MTD Interface] compability function for nand_write_ecc | 
|  | * @mtd:	MTD device structure | 
|  | * @to:		offset to write to | 
|  | * @len:	number of bytes to write | 
|  | * @retlen:	pointer to variable to store the number of written bytes | 
|  | * @buf:	the data to write | 
|  | * | 
|  | * This function simply calls nand_write_ecc with oob buffer and oobsel = NULL | 
|  | * | 
|  | */ | 
|  | static int nand_write (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) | 
|  | { | 
|  | return (nand_write_ecc (mtd, to, len, retlen, buf, NULL, NULL)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_write_ecc - [MTD Interface] NAND write with ECC | 
|  | * @mtd:	MTD device structure | 
|  | * @to:		offset to write to | 
|  | * @len:	number of bytes to write | 
|  | * @retlen:	pointer to variable to store the number of written bytes | 
|  | * @buf:	the data to write | 
|  | * @eccbuf:	filesystem supplied oob data buffer | 
|  | * @oobsel:	oob selection structure | 
|  | * | 
|  | * NAND write with ECC | 
|  | */ | 
|  | static int nand_write_ecc (struct mtd_info *mtd, loff_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf, u_char * eccbuf, struct nand_oobinfo *oobsel) | 
|  | { | 
|  | int startpage, page, ret = -EIO, oob = 0, written = 0, chipnr; | 
|  | int autoplace = 0, numpages, totalpages; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | u_char *oobbuf, *bufstart; | 
|  | int	ppblock = (1 << (this->phys_erase_shift - this->page_shift)); | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, "nand_write_ecc: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); | 
|  |  | 
|  | /* Initialize retlen, in case of early exit */ | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Do not allow write past end of device */ | 
|  | if ((to + len) > mtd->size) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: Attempt to write past end of page\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* reject writes, which are not page aligned */ | 
|  | if (NOTALIGNED (to) || NOTALIGNED(len)) { | 
|  | printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd, FL_WRITING); | 
|  |  | 
|  | /* Calculate chipnr */ | 
|  | chipnr = (int)(to >> this->chip_shift); | 
|  | /* Select the NAND device */ | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) | 
|  | goto out; | 
|  |  | 
|  | /* if oobsel is NULL, use chip defaults */ | 
|  | if (oobsel == NULL) | 
|  | oobsel = &mtd->oobinfo; | 
|  |  | 
|  | /* Autoplace of oob data ? Use the default placement scheme */ | 
|  | if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { | 
|  | oobsel = this->autooob; | 
|  | autoplace = 1; | 
|  | } | 
|  | if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) | 
|  | autoplace = 1; | 
|  |  | 
|  | /* Setup variables and oob buffer */ | 
|  | totalpages = len >> this->page_shift; | 
|  | page = (int) (to >> this->page_shift); | 
|  | /* Invalidate the page cache, if we write to the cached page */ | 
|  | if (page <= this->pagebuf && this->pagebuf < (page + totalpages)) | 
|  | this->pagebuf = -1; | 
|  |  | 
|  | /* Set it relative to chip */ | 
|  | page &= this->pagemask; | 
|  | startpage = page; | 
|  | /* Calc number of pages we can write in one go */ | 
|  | numpages = min (ppblock - (startpage  & (ppblock - 1)), totalpages); | 
|  | oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, autoplace, numpages); | 
|  | bufstart = (u_char *)buf; | 
|  |  | 
|  | /* Loop until all data is written */ | 
|  | while (written < len) { | 
|  |  | 
|  | this->data_poi = (u_char*) &buf[written]; | 
|  | /* Write one page. If this is the last page to write | 
|  | * or the last page in this block, then use the | 
|  | * real pageprogram command, else select cached programming | 
|  | * if supported by the chip. | 
|  | */ | 
|  | ret = nand_write_page (mtd, this, page, &oobbuf[oob], oobsel, (--numpages > 0)); | 
|  | if (ret) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: write_page failed %d\n", ret); | 
|  | goto out; | 
|  | } | 
|  | /* Next oob page */ | 
|  | oob += mtd->oobsize; | 
|  | /* Update written bytes count */ | 
|  | written += mtd->oobblock; | 
|  | if (written == len) | 
|  | goto cmp; | 
|  |  | 
|  | /* Increment page address */ | 
|  | page++; | 
|  |  | 
|  | /* Have we hit a block boundary ? Then we have to verify and | 
|  | * if verify is ok, we have to setup the oob buffer for | 
|  | * the next pages. | 
|  | */ | 
|  | if (!(page & (ppblock - 1))){ | 
|  | int ofs; | 
|  | this->data_poi = bufstart; | 
|  | ret = nand_verify_pages (mtd, this, startpage, | 
|  | page - startpage, | 
|  | oobbuf, oobsel, chipnr, (eccbuf != NULL)); | 
|  | if (ret) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); | 
|  | goto out; | 
|  | } | 
|  | *retlen = written; | 
|  |  | 
|  | ofs = autoplace ? mtd->oobavail : mtd->oobsize; | 
|  | if (eccbuf) | 
|  | eccbuf += (page - startpage) * ofs; | 
|  | totalpages -= page - startpage; | 
|  | numpages = min (totalpages, ppblock); | 
|  | page &= this->pagemask; | 
|  | startpage = page; | 
|  | oobbuf = nand_prepare_oobbuf (mtd, eccbuf, oobsel, | 
|  | autoplace, numpages); | 
|  | oob = 0; | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!page) { | 
|  | chipnr++; | 
|  | this->select_chip(mtd, -1); | 
|  | this->select_chip(mtd, chipnr); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Verify the remaining pages */ | 
|  | cmp: | 
|  | this->data_poi = bufstart; | 
|  | ret = nand_verify_pages (mtd, this, startpage, totalpages, | 
|  | oobbuf, oobsel, chipnr, (eccbuf != NULL)); | 
|  | if (!ret) | 
|  | *retlen = written; | 
|  | else | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_ecc: verify_pages failed %d\n", ret); | 
|  |  | 
|  | out: | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_write_oob - [MTD Interface] NAND write out-of-band | 
|  | * @mtd:	MTD device structure | 
|  | * @to:		offset to write to | 
|  | * @len:	number of bytes to write | 
|  | * @retlen:	pointer to variable to store the number of written bytes | 
|  | * @buf:	the data to write | 
|  | * | 
|  | * NAND write out-of-band | 
|  | */ | 
|  | static int nand_write_oob (struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf) | 
|  | { | 
|  | int column, page, status, ret = -EIO, chipnr; | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n", (unsigned int) to, (int) len); | 
|  |  | 
|  | /* Shift to get page */ | 
|  | page = (int) (to >> this->page_shift); | 
|  | chipnr = (int) (to >> this->chip_shift); | 
|  |  | 
|  | /* Mask to get column */ | 
|  | column = to & (mtd->oobsize - 1); | 
|  |  | 
|  | /* Initialize return length value */ | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Do not allow write past end of page */ | 
|  | if ((column + len) > mtd->oobsize) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: Attempt to write past end of page\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd, FL_WRITING); | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Reset the chip. Some chips (like the Toshiba TC5832DC found | 
|  | in one of my DiskOnChip 2000 test units) will clear the whole | 
|  | data page too if we don't do this. I have no clue why, but | 
|  | I seem to have 'fixed' it in the doc2000 driver in | 
|  | August 1999.  dwmw2. */ | 
|  | this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) | 
|  | goto out; | 
|  |  | 
|  | /* Invalidate the page cache, if we write to the cached page */ | 
|  | if (page == this->pagebuf) | 
|  | this->pagebuf = -1; | 
|  |  | 
|  | if (NAND_MUST_PAD(this)) { | 
|  | /* Write out desired data */ | 
|  | this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock, page & this->pagemask); | 
|  | /* prepad 0xff for partial programming */ | 
|  | this->write_buf(mtd, ffchars, column); | 
|  | /* write data */ | 
|  | this->write_buf(mtd, buf, len); | 
|  | /* postpad 0xff for partial programming */ | 
|  | this->write_buf(mtd, ffchars, mtd->oobsize - (len+column)); | 
|  | } else { | 
|  | /* Write out desired data */ | 
|  | this->cmdfunc (mtd, NAND_CMD_SEQIN, mtd->oobblock + column, page & this->pagemask); | 
|  | /* write data */ | 
|  | this->write_buf(mtd, buf, len); | 
|  | } | 
|  | /* Send command to program the OOB data */ | 
|  | this->cmdfunc (mtd, NAND_CMD_PAGEPROG, -1, -1); | 
|  |  | 
|  | status = this->waitfunc (mtd, this, FL_WRITING); | 
|  |  | 
|  | /* See if device thinks it succeeded */ | 
|  | if (status & NAND_STATUS_FAIL) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write, page 0x%08x\n", page); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | /* Return happy */ | 
|  | *retlen = len; | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
|  | /* Send command to read back the data */ | 
|  | this->cmdfunc (mtd, NAND_CMD_READOOB, column, page & this->pagemask); | 
|  |  | 
|  | if (this->verify_buf(mtd, buf, len)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_write_oob: " "Failed write verify, page 0x%08x\n", page); | 
|  | ret = -EIO; | 
|  | goto out; | 
|  | } | 
|  | #endif | 
|  | ret = 0; | 
|  | out: | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_writev - [MTD Interface] compabilty function for nand_writev_ecc | 
|  | * @mtd:	MTD device structure | 
|  | * @vecs:	the iovectors to write | 
|  | * @count:	number of vectors | 
|  | * @to:		offset to write to | 
|  | * @retlen:	pointer to variable to store the number of written bytes | 
|  | * | 
|  | * NAND write with kvec. This just calls the ecc function | 
|  | */ | 
|  | static int nand_writev (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, | 
|  | loff_t to, size_t * retlen) | 
|  | { | 
|  | return (nand_writev_ecc (mtd, vecs, count, to, retlen, NULL, NULL)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_writev_ecc - [MTD Interface] write with iovec with ecc | 
|  | * @mtd:	MTD device structure | 
|  | * @vecs:	the iovectors to write | 
|  | * @count:	number of vectors | 
|  | * @to:		offset to write to | 
|  | * @retlen:	pointer to variable to store the number of written bytes | 
|  | * @eccbuf:	filesystem supplied oob data buffer | 
|  | * @oobsel:	oob selection structure | 
|  | * | 
|  | * NAND write with iovec with ecc | 
|  | */ | 
|  | static int nand_writev_ecc (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, | 
|  | loff_t to, size_t * retlen, u_char *eccbuf, struct nand_oobinfo *oobsel) | 
|  | { | 
|  | int i, page, len, total_len, ret = -EIO, written = 0, chipnr; | 
|  | int oob, numpages, autoplace = 0, startpage; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | int	ppblock = (1 << (this->phys_erase_shift - this->page_shift)); | 
|  | u_char *oobbuf, *bufstart; | 
|  |  | 
|  | /* Preset written len for early exit */ | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Calculate total length of data */ | 
|  | total_len = 0; | 
|  | for (i = 0; i < count; i++) | 
|  | total_len += (int) vecs[i].iov_len; | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, | 
|  | "nand_writev: to = 0x%08x, len = %i, count = %ld\n", (unsigned int) to, (unsigned int) total_len, count); | 
|  |  | 
|  | /* Do not allow write past end of page */ | 
|  | if ((to + total_len) > mtd->size) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_writev: Attempted write past end of device\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* reject writes, which are not page aligned */ | 
|  | if (NOTALIGNED (to) || NOTALIGNED(total_len)) { | 
|  | printk (KERN_NOTICE "nand_write_ecc: Attempt to write not page aligned data\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd, FL_WRITING); | 
|  |  | 
|  | /* Get the current chip-nr */ | 
|  | chipnr = (int) (to >> this->chip_shift); | 
|  | /* Select the NAND device */ | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) | 
|  | goto out; | 
|  |  | 
|  | /* if oobsel is NULL, use chip defaults */ | 
|  | if (oobsel == NULL) | 
|  | oobsel = &mtd->oobinfo; | 
|  |  | 
|  | /* Autoplace of oob data ? Use the default placement scheme */ | 
|  | if (oobsel->useecc == MTD_NANDECC_AUTOPLACE) { | 
|  | oobsel = this->autooob; | 
|  | autoplace = 1; | 
|  | } | 
|  | if (oobsel->useecc == MTD_NANDECC_AUTOPL_USR) | 
|  | autoplace = 1; | 
|  |  | 
|  | /* Setup start page */ | 
|  | page = (int) (to >> this->page_shift); | 
|  | /* Invalidate the page cache, if we write to the cached page */ | 
|  | if (page <= this->pagebuf && this->pagebuf < ((to + total_len) >> this->page_shift)) | 
|  | this->pagebuf = -1; | 
|  |  | 
|  | startpage = page & this->pagemask; | 
|  |  | 
|  | /* Loop until all kvec' data has been written */ | 
|  | len = 0; | 
|  | while (count) { | 
|  | /* If the given tuple is >= pagesize then | 
|  | * write it out from the iov | 
|  | */ | 
|  | if ((vecs->iov_len - len) >= mtd->oobblock) { | 
|  | /* Calc number of pages we can write | 
|  | * out of this iov in one go */ | 
|  | numpages = (vecs->iov_len - len) >> this->page_shift; | 
|  | /* Do not cross block boundaries */ | 
|  | numpages = min (ppblock - (startpage & (ppblock - 1)), numpages); | 
|  | oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); | 
|  | bufstart = (u_char *)vecs->iov_base; | 
|  | bufstart += len; | 
|  | this->data_poi = bufstart; | 
|  | oob = 0; | 
|  | for (i = 1; i <= numpages; i++) { | 
|  | /* Write one page. If this is the last page to write | 
|  | * then use the real pageprogram command, else select | 
|  | * cached programming if supported by the chip. | 
|  | */ | 
|  | ret = nand_write_page (mtd, this, page & this->pagemask, | 
|  | &oobbuf[oob], oobsel, i != numpages); | 
|  | if (ret) | 
|  | goto out; | 
|  | this->data_poi += mtd->oobblock; | 
|  | len += mtd->oobblock; | 
|  | oob += mtd->oobsize; | 
|  | page++; | 
|  | } | 
|  | /* Check, if we have to switch to the next tuple */ | 
|  | if (len >= (int) vecs->iov_len) { | 
|  | vecs++; | 
|  | len = 0; | 
|  | count--; | 
|  | } | 
|  | } else { | 
|  | /* We must use the internal buffer, read data out of each | 
|  | * tuple until we have a full page to write | 
|  | */ | 
|  | int cnt = 0; | 
|  | while (cnt < mtd->oobblock) { | 
|  | if (vecs->iov_base != NULL && vecs->iov_len) | 
|  | this->data_buf[cnt++] = ((u_char *) vecs->iov_base)[len++]; | 
|  | /* Check, if we have to switch to the next tuple */ | 
|  | if (len >= (int) vecs->iov_len) { | 
|  | vecs++; | 
|  | len = 0; | 
|  | count--; | 
|  | } | 
|  | } | 
|  | this->pagebuf = page; | 
|  | this->data_poi = this->data_buf; | 
|  | bufstart = this->data_poi; | 
|  | numpages = 1; | 
|  | oobbuf = nand_prepare_oobbuf (mtd, NULL, oobsel, autoplace, numpages); | 
|  | ret = nand_write_page (mtd, this, page & this->pagemask, | 
|  | oobbuf, oobsel, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  | page++; | 
|  | } | 
|  |  | 
|  | this->data_poi = bufstart; | 
|  | ret = nand_verify_pages (mtd, this, startpage, numpages, oobbuf, oobsel, chipnr, 0); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | written += mtd->oobblock * numpages; | 
|  | /* All done ? */ | 
|  | if (!count) | 
|  | break; | 
|  |  | 
|  | startpage = page & this->pagemask; | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (!startpage) { | 
|  | chipnr++; | 
|  | this->select_chip(mtd, -1); | 
|  | this->select_chip(mtd, chipnr); | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | *retlen = written; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * single_erease_cmd - [GENERIC] NAND standard block erase command function | 
|  | * @mtd:	MTD device structure | 
|  | * @page:	the page address of the block which will be erased | 
|  | * | 
|  | * Standard erase command for NAND chips | 
|  | */ | 
|  | static void single_erase_cmd (struct mtd_info *mtd, int page) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | /* Send commands to erase a block */ | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * multi_erease_cmd - [GENERIC] AND specific block erase command function | 
|  | * @mtd:	MTD device structure | 
|  | * @page:	the page address of the block which will be erased | 
|  | * | 
|  | * AND multi block erase command function | 
|  | * Erase 4 consecutive blocks | 
|  | */ | 
|  | static void multi_erase_cmd (struct mtd_info *mtd, int page) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | /* Send commands to erase a block */ | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page++); | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE1, -1, page); | 
|  | this->cmdfunc (mtd, NAND_CMD_ERASE2, -1, -1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_erase - [MTD Interface] erase block(s) | 
|  | * @mtd:	MTD device structure | 
|  | * @instr:	erase instruction | 
|  | * | 
|  | * Erase one ore more blocks | 
|  | */ | 
|  | static int nand_erase (struct mtd_info *mtd, struct erase_info *instr) | 
|  | { | 
|  | return nand_erase_nand (mtd, instr, 0); | 
|  | } | 
|  |  | 
|  | #define BBT_PAGE_MASK	0xffffff3f | 
|  | /** | 
|  | * nand_erase_intern - [NAND Interface] erase block(s) | 
|  | * @mtd:	MTD device structure | 
|  | * @instr:	erase instruction | 
|  | * @allowbbt:	allow erasing the bbt area | 
|  | * | 
|  | * Erase one ore more blocks | 
|  | */ | 
|  | int nand_erase_nand (struct mtd_info *mtd, struct erase_info *instr, int allowbbt) | 
|  | { | 
|  | int page, len, status, pages_per_block, ret, chipnr; | 
|  | struct nand_chip *this = mtd->priv; | 
|  | int rewrite_bbt[NAND_MAX_CHIPS]={0};	/* flags to indicate the page, if bbt needs to be rewritten. */ | 
|  | unsigned int bbt_masked_page;		/* bbt mask to compare to page being erased. */ | 
|  | /* It is used to see if the current page is in the same */ | 
|  | /*   256 block group and the same bank as the bbt. */ | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, | 
|  | "nand_erase: start = 0x%08x, len = %i\n", (unsigned int) instr->addr, (unsigned int) instr->len); | 
|  |  | 
|  | /* Start address must align on block boundary */ | 
|  | if (instr->addr & ((1 << this->phys_erase_shift) - 1)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Length must align on block boundary */ | 
|  | if (instr->len & ((1 << this->phys_erase_shift) - 1)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Length not block aligned\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* Do not allow erase past end of device */ | 
|  | if ((instr->len + instr->addr) > mtd->size) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Erase past end of device\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | instr->fail_addr = 0xffffffff; | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd, FL_ERASING); | 
|  |  | 
|  | /* Shift to get first page */ | 
|  | page = (int) (instr->addr >> this->page_shift); | 
|  | chipnr = (int) (instr->addr >> this->chip_shift); | 
|  |  | 
|  | /* Calculate pages in each block */ | 
|  | pages_per_block = 1 << (this->phys_erase_shift - this->page_shift); | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* Check the WP bit */ | 
|  | /* Check, if it is write protected */ | 
|  | if (nand_check_wp(mtd)) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: Device is write protected!!!\n"); | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | goto erase_exit; | 
|  | } | 
|  |  | 
|  | /* if BBT requires refresh, set the BBT page mask to see if the BBT should be rewritten */ | 
|  | if (this->options & BBT_AUTO_REFRESH) { | 
|  | bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK; | 
|  | } else { | 
|  | bbt_masked_page = 0xffffffff;	/* should not match anything */ | 
|  | } | 
|  |  | 
|  | /* Loop through the pages */ | 
|  | len = instr->len; | 
|  |  | 
|  | instr->state = MTD_ERASING; | 
|  |  | 
|  | while (len) { | 
|  | /* Check if we have a bad block, we do not erase bad blocks ! */ | 
|  | if (nand_block_checkbad(mtd, ((loff_t) page) << this->page_shift, 0, allowbbt)) { | 
|  | printk (KERN_WARNING "nand_erase: attempt to erase a bad block at page 0x%08x\n", page); | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | goto erase_exit; | 
|  | } | 
|  |  | 
|  | /* Invalidate the page cache, if we erase the block which contains | 
|  | the current cached page */ | 
|  | if (page <= this->pagebuf && this->pagebuf < (page + pages_per_block)) | 
|  | this->pagebuf = -1; | 
|  |  | 
|  | this->erase_cmd (mtd, page & this->pagemask); | 
|  |  | 
|  | status = this->waitfunc (mtd, this, FL_ERASING); | 
|  |  | 
|  | /* See if operation failed and additional status checks are available */ | 
|  | if ((status & NAND_STATUS_FAIL) && (this->errstat)) { | 
|  | status = this->errstat(mtd, this, FL_ERASING, status, page); | 
|  | } | 
|  |  | 
|  | /* See if block erase succeeded */ | 
|  | if (status & NAND_STATUS_FAIL) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_erase: " "Failed erase, page 0x%08x\n", page); | 
|  | instr->state = MTD_ERASE_FAILED; | 
|  | instr->fail_addr = (page << this->page_shift); | 
|  | goto erase_exit; | 
|  | } | 
|  |  | 
|  | /* if BBT requires refresh, set the BBT rewrite flag to the page being erased */ | 
|  | if (this->options & BBT_AUTO_REFRESH) { | 
|  | if (((page & BBT_PAGE_MASK) == bbt_masked_page) && | 
|  | (page != this->bbt_td->pages[chipnr])) { | 
|  | rewrite_bbt[chipnr] = (page << this->page_shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Increment page address and decrement length */ | 
|  | len -= (1 << this->phys_erase_shift); | 
|  | page += pages_per_block; | 
|  |  | 
|  | /* Check, if we cross a chip boundary */ | 
|  | if (len && !(page & this->pagemask)) { | 
|  | chipnr++; | 
|  | this->select_chip(mtd, -1); | 
|  | this->select_chip(mtd, chipnr); | 
|  |  | 
|  | /* if BBT requires refresh and BBT-PERCHIP, | 
|  | *   set the BBT page mask to see if this BBT should be rewritten */ | 
|  | if ((this->options & BBT_AUTO_REFRESH) && (this->bbt_td->options & NAND_BBT_PERCHIP)) { | 
|  | bbt_masked_page = this->bbt_td->pages[chipnr] & BBT_PAGE_MASK; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  | instr->state = MTD_ERASE_DONE; | 
|  |  | 
|  | erase_exit: | 
|  |  | 
|  | ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO; | 
|  | /* Do call back function */ | 
|  | if (!ret) | 
|  | mtd_erase_callback(instr); | 
|  |  | 
|  | /* Deselect and wake up anyone waiting on the device */ | 
|  | nand_release_device(mtd); | 
|  |  | 
|  | /* if BBT requires refresh and erase was successful, rewrite any selected bad block tables */ | 
|  | if ((this->options & BBT_AUTO_REFRESH) && (!ret)) { | 
|  | for (chipnr = 0; chipnr < this->numchips; chipnr++) { | 
|  | if (rewrite_bbt[chipnr]) { | 
|  | /* update the BBT for chip */ | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt (%d:0x%0x 0x%0x)\n", | 
|  | chipnr, rewrite_bbt[chipnr], this->bbt_td->pages[chipnr]); | 
|  | nand_update_bbt (mtd, rewrite_bbt[chipnr]); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return more or less happy */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_sync - [MTD Interface] sync | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * Sync is actually a wait for chip ready function | 
|  | */ | 
|  | static void nand_sync (struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | DEBUG (MTD_DEBUG_LEVEL3, "nand_sync: called\n"); | 
|  |  | 
|  | /* Grab the lock and see if the device is available */ | 
|  | nand_get_device (this, mtd, FL_SYNCING); | 
|  | /* Release it and go back */ | 
|  | nand_release_device (mtd); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad | 
|  | * @mtd:	MTD device structure | 
|  | * @ofs:	offset relative to mtd start | 
|  | */ | 
|  | static int nand_block_isbad (struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | /* Check for invalid offset */ | 
|  | if (ofs > mtd->size) | 
|  | return -EINVAL; | 
|  |  | 
|  | return nand_block_checkbad (mtd, ofs, 1, 0); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_block_markbad - [MTD Interface] Mark the block at the given offset as bad | 
|  | * @mtd:	MTD device structure | 
|  | * @ofs:	offset relative to mtd start | 
|  | */ | 
|  | static int nand_block_markbad (struct mtd_info *mtd, loff_t ofs) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  | int ret; | 
|  |  | 
|  | if ((ret = nand_block_isbad(mtd, ofs))) { | 
|  | /* If it was bad already, return success and do nothing. */ | 
|  | if (ret > 0) | 
|  | return 0; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | return this->block_markbad(mtd, ofs); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_suspend - [MTD Interface] Suspend the NAND flash | 
|  | * @mtd:	MTD device structure | 
|  | */ | 
|  | static int nand_suspend(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | return nand_get_device (this, mtd, FL_PM_SUSPENDED); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_resume - [MTD Interface] Resume the NAND flash | 
|  | * @mtd:	MTD device structure | 
|  | */ | 
|  | static void nand_resume(struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | if (this->state == FL_PM_SUSPENDED) | 
|  | nand_release_device(mtd); | 
|  | else | 
|  | printk(KERN_ERR "resume() called for the chip which is not " | 
|  | "in suspended state\n"); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * nand_scan - [NAND Interface] Scan for the NAND device | 
|  | * @mtd:	MTD device structure | 
|  | * @maxchips:	Number of chips to scan for | 
|  | * | 
|  | * This fills out all the not initialized function pointers | 
|  | * with the defaults. | 
|  | * The flash ID is read and the mtd/chip structures are | 
|  | * filled with the appropriate values. Buffers are allocated if | 
|  | * they are not provided by the board driver | 
|  | * | 
|  | */ | 
|  | int nand_scan (struct mtd_info *mtd, int maxchips) | 
|  | { | 
|  | int i, nand_maf_id, nand_dev_id, busw, maf_id; | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | /* Get buswidth to select the correct functions*/ | 
|  | busw = this->options & NAND_BUSWIDTH_16; | 
|  |  | 
|  | /* check for proper chip_delay setup, set 20us if not */ | 
|  | if (!this->chip_delay) | 
|  | this->chip_delay = 20; | 
|  |  | 
|  | /* check, if a user supplied command function given */ | 
|  | if (this->cmdfunc == NULL) | 
|  | this->cmdfunc = nand_command; | 
|  |  | 
|  | /* check, if a user supplied wait function given */ | 
|  | if (this->waitfunc == NULL) | 
|  | this->waitfunc = nand_wait; | 
|  |  | 
|  | if (!this->select_chip) | 
|  | this->select_chip = nand_select_chip; | 
|  | if (!this->write_byte) | 
|  | this->write_byte = busw ? nand_write_byte16 : nand_write_byte; | 
|  | if (!this->read_byte) | 
|  | this->read_byte = busw ? nand_read_byte16 : nand_read_byte; | 
|  | if (!this->write_word) | 
|  | this->write_word = nand_write_word; | 
|  | if (!this->read_word) | 
|  | this->read_word = nand_read_word; | 
|  | if (!this->block_bad) | 
|  | this->block_bad = nand_block_bad; | 
|  | if (!this->block_markbad) | 
|  | this->block_markbad = nand_default_block_markbad; | 
|  | if (!this->write_buf) | 
|  | this->write_buf = busw ? nand_write_buf16 : nand_write_buf; | 
|  | if (!this->read_buf) | 
|  | this->read_buf = busw ? nand_read_buf16 : nand_read_buf; | 
|  | if (!this->verify_buf) | 
|  | this->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf; | 
|  | if (!this->scan_bbt) | 
|  | this->scan_bbt = nand_default_bbt; | 
|  |  | 
|  | /* Select the device */ | 
|  | this->select_chip(mtd, 0); | 
|  |  | 
|  | /* Send the command for reading device ID */ | 
|  | this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); | 
|  |  | 
|  | /* Read manufacturer and device IDs */ | 
|  | nand_maf_id = this->read_byte(mtd); | 
|  | nand_dev_id = this->read_byte(mtd); | 
|  |  | 
|  | /* Print and store flash device information */ | 
|  | for (i = 0; nand_flash_ids[i].name != NULL; i++) { | 
|  |  | 
|  | if (nand_dev_id != nand_flash_ids[i].id) | 
|  | continue; | 
|  |  | 
|  | if (!mtd->name) mtd->name = nand_flash_ids[i].name; | 
|  | this->chipsize = nand_flash_ids[i].chipsize << 20; | 
|  |  | 
|  | /* New devices have all the information in additional id bytes */ | 
|  | if (!nand_flash_ids[i].pagesize) { | 
|  | int extid; | 
|  | /* The 3rd id byte contains non relevant data ATM */ | 
|  | extid = this->read_byte(mtd); | 
|  | /* The 4th id byte is the important one */ | 
|  | extid = this->read_byte(mtd); | 
|  | /* Calc pagesize */ | 
|  | mtd->oobblock = 1024 << (extid & 0x3); | 
|  | extid >>= 2; | 
|  | /* Calc oobsize */ | 
|  | mtd->oobsize = (8 << (extid & 0x01)) * (mtd->oobblock >> 9); | 
|  | extid >>= 2; | 
|  | /* Calc blocksize. Blocksize is multiples of 64KiB */ | 
|  | mtd->erasesize = (64 * 1024)  << (extid & 0x03); | 
|  | extid >>= 2; | 
|  | /* Get buswidth information */ | 
|  | busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0; | 
|  |  | 
|  | } else { | 
|  | /* Old devices have this data hardcoded in the | 
|  | * device id table */ | 
|  | mtd->erasesize = nand_flash_ids[i].erasesize; | 
|  | mtd->oobblock = nand_flash_ids[i].pagesize; | 
|  | mtd->oobsize = mtd->oobblock / 32; | 
|  | busw = nand_flash_ids[i].options & NAND_BUSWIDTH_16; | 
|  | } | 
|  |  | 
|  | /* Try to identify manufacturer */ | 
|  | for (maf_id = 0; nand_manuf_ids[maf_id].id != 0x0; maf_id++) { | 
|  | if (nand_manuf_ids[maf_id].id == nand_maf_id) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Check, if buswidth is correct. Hardware drivers should set | 
|  | * this correct ! */ | 
|  | if (busw != (this->options & NAND_BUSWIDTH_16)) { | 
|  | printk (KERN_INFO "NAND device: Manufacturer ID:" | 
|  | " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, | 
|  | nand_manuf_ids[maf_id].name , mtd->name); | 
|  | printk (KERN_WARNING | 
|  | "NAND bus width %d instead %d bit\n", | 
|  | (this->options & NAND_BUSWIDTH_16) ? 16 : 8, | 
|  | busw ? 16 : 8); | 
|  | this->select_chip(mtd, -1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Calculate the address shift from the page size */ | 
|  | this->page_shift = ffs(mtd->oobblock) - 1; | 
|  | this->bbt_erase_shift = this->phys_erase_shift = ffs(mtd->erasesize) - 1; | 
|  | this->chip_shift = ffs(this->chipsize) - 1; | 
|  |  | 
|  | /* Set the bad block position */ | 
|  | this->badblockpos = mtd->oobblock > 512 ? | 
|  | NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS; | 
|  |  | 
|  | /* Get chip options, preserve non chip based options */ | 
|  | this->options &= ~NAND_CHIPOPTIONS_MSK; | 
|  | this->options |= nand_flash_ids[i].options & NAND_CHIPOPTIONS_MSK; | 
|  | /* Set this as a default. Board drivers can override it, if neccecary */ | 
|  | this->options |= NAND_NO_AUTOINCR; | 
|  | /* Check if this is a not a samsung device. Do not clear the options | 
|  | * for chips which are not having an extended id. | 
|  | */ | 
|  | if (nand_maf_id != NAND_MFR_SAMSUNG && !nand_flash_ids[i].pagesize) | 
|  | this->options &= ~NAND_SAMSUNG_LP_OPTIONS; | 
|  |  | 
|  | /* Check for AND chips with 4 page planes */ | 
|  | if (this->options & NAND_4PAGE_ARRAY) | 
|  | this->erase_cmd = multi_erase_cmd; | 
|  | else | 
|  | this->erase_cmd = single_erase_cmd; | 
|  |  | 
|  | /* Do not replace user supplied command function ! */ | 
|  | if (mtd->oobblock > 512 && this->cmdfunc == nand_command) | 
|  | this->cmdfunc = nand_command_lp; | 
|  |  | 
|  | printk (KERN_INFO "NAND device: Manufacturer ID:" | 
|  | " 0x%02x, Chip ID: 0x%02x (%s %s)\n", nand_maf_id, nand_dev_id, | 
|  | nand_manuf_ids[maf_id].name , nand_flash_ids[i].name); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!nand_flash_ids[i].name) { | 
|  | printk (KERN_WARNING "No NAND device found!!!\n"); | 
|  | this->select_chip(mtd, -1); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | for (i=1; i < maxchips; i++) { | 
|  | this->select_chip(mtd, i); | 
|  |  | 
|  | /* Send the command for reading device ID */ | 
|  | this->cmdfunc (mtd, NAND_CMD_READID, 0x00, -1); | 
|  |  | 
|  | /* Read manufacturer and device IDs */ | 
|  | if (nand_maf_id != this->read_byte(mtd) || | 
|  | nand_dev_id != this->read_byte(mtd)) | 
|  | break; | 
|  | } | 
|  | if (i > 1) | 
|  | printk(KERN_INFO "%d NAND chips detected\n", i); | 
|  |  | 
|  | /* Allocate buffers, if neccecary */ | 
|  | if (!this->oob_buf) { | 
|  | size_t len; | 
|  | len = mtd->oobsize << (this->phys_erase_shift - this->page_shift); | 
|  | this->oob_buf = kmalloc (len, GFP_KERNEL); | 
|  | if (!this->oob_buf) { | 
|  | printk (KERN_ERR "nand_scan(): Cannot allocate oob_buf\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | this->options |= NAND_OOBBUF_ALLOC; | 
|  | } | 
|  |  | 
|  | if (!this->data_buf) { | 
|  | size_t len; | 
|  | len = mtd->oobblock + mtd->oobsize; | 
|  | this->data_buf = kmalloc (len, GFP_KERNEL); | 
|  | if (!this->data_buf) { | 
|  | if (this->options & NAND_OOBBUF_ALLOC) | 
|  | kfree (this->oob_buf); | 
|  | printk (KERN_ERR "nand_scan(): Cannot allocate data_buf\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | this->options |= NAND_DATABUF_ALLOC; | 
|  | } | 
|  |  | 
|  | /* Store the number of chips and calc total size for mtd */ | 
|  | this->numchips = i; | 
|  | mtd->size = i * this->chipsize; | 
|  | /* Convert chipsize to number of pages per chip -1. */ | 
|  | this->pagemask = (this->chipsize >> this->page_shift) - 1; | 
|  | /* Preset the internal oob buffer */ | 
|  | memset(this->oob_buf, 0xff, mtd->oobsize << (this->phys_erase_shift - this->page_shift)); | 
|  |  | 
|  | /* If no default placement scheme is given, select an | 
|  | * appropriate one */ | 
|  | if (!this->autooob) { | 
|  | /* Select the appropriate default oob placement scheme for | 
|  | * placement agnostic filesystems */ | 
|  | switch (mtd->oobsize) { | 
|  | case 8: | 
|  | this->autooob = &nand_oob_8; | 
|  | break; | 
|  | case 16: | 
|  | this->autooob = &nand_oob_16; | 
|  | break; | 
|  | case 64: | 
|  | this->autooob = &nand_oob_64; | 
|  | break; | 
|  | default: | 
|  | printk (KERN_WARNING "No oob scheme defined for oobsize %d\n", | 
|  | mtd->oobsize); | 
|  | BUG(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* The number of bytes available for the filesystem to place fs dependend | 
|  | * oob data */ | 
|  | mtd->oobavail = 0; | 
|  | for (i = 0; this->autooob->oobfree[i][1]; i++) | 
|  | mtd->oobavail += this->autooob->oobfree[i][1]; | 
|  |  | 
|  | /* | 
|  | * check ECC mode, default to software | 
|  | * if 3byte/512byte hardware ECC is selected and we have 256 byte pagesize | 
|  | * fallback to software ECC | 
|  | */ | 
|  | this->eccsize = 256;	/* set default eccsize */ | 
|  | this->eccbytes = 3; | 
|  |  | 
|  | switch (this->eccmode) { | 
|  | case NAND_ECC_HW12_2048: | 
|  | if (mtd->oobblock < 2048) { | 
|  | printk(KERN_WARNING "2048 byte HW ECC not possible on %d byte page size, fallback to SW ECC\n", | 
|  | mtd->oobblock); | 
|  | this->eccmode = NAND_ECC_SOFT; | 
|  | this->calculate_ecc = nand_calculate_ecc; | 
|  | this->correct_data = nand_correct_data; | 
|  | } else | 
|  | this->eccsize = 2048; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_HW3_512: | 
|  | case NAND_ECC_HW6_512: | 
|  | case NAND_ECC_HW8_512: | 
|  | if (mtd->oobblock == 256) { | 
|  | printk (KERN_WARNING "512 byte HW ECC not possible on 256 Byte pagesize, fallback to SW ECC \n"); | 
|  | this->eccmode = NAND_ECC_SOFT; | 
|  | this->calculate_ecc = nand_calculate_ecc; | 
|  | this->correct_data = nand_correct_data; | 
|  | } else | 
|  | this->eccsize = 512; /* set eccsize to 512 */ | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_HW3_256: | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_NONE: | 
|  | printk (KERN_WARNING "NAND_ECC_NONE selected by board driver. This is not recommended !!\n"); | 
|  | this->eccmode = NAND_ECC_NONE; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_SOFT: | 
|  | this->calculate_ecc = nand_calculate_ecc; | 
|  | this->correct_data = nand_correct_data; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printk (KERN_WARNING "Invalid NAND_ECC_MODE %d\n", this->eccmode); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Check hardware ecc function availability and adjust number of ecc bytes per | 
|  | * calculation step | 
|  | */ | 
|  | switch (this->eccmode) { | 
|  | case NAND_ECC_HW12_2048: | 
|  | this->eccbytes += 4; | 
|  | case NAND_ECC_HW8_512: | 
|  | this->eccbytes += 2; | 
|  | case NAND_ECC_HW6_512: | 
|  | this->eccbytes += 3; | 
|  | case NAND_ECC_HW3_512: | 
|  | case NAND_ECC_HW3_256: | 
|  | if (this->calculate_ecc && this->correct_data && this->enable_hwecc) | 
|  | break; | 
|  | printk (KERN_WARNING "No ECC functions supplied, Hardware ECC not possible\n"); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | mtd->eccsize = this->eccsize; | 
|  |  | 
|  | /* Set the number of read / write steps for one page to ensure ECC generation */ | 
|  | switch (this->eccmode) { | 
|  | case NAND_ECC_HW12_2048: | 
|  | this->eccsteps = mtd->oobblock / 2048; | 
|  | break; | 
|  | case NAND_ECC_HW3_512: | 
|  | case NAND_ECC_HW6_512: | 
|  | case NAND_ECC_HW8_512: | 
|  | this->eccsteps = mtd->oobblock / 512; | 
|  | break; | 
|  | case NAND_ECC_HW3_256: | 
|  | case NAND_ECC_SOFT: | 
|  | this->eccsteps = mtd->oobblock / 256; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_NONE: | 
|  | this->eccsteps = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Initialize state, waitqueue and spinlock */ | 
|  | this->state = FL_READY; | 
|  | init_waitqueue_head (&this->wq); | 
|  | spin_lock_init (&this->chip_lock); | 
|  |  | 
|  | /* De-select the device */ | 
|  | this->select_chip(mtd, -1); | 
|  |  | 
|  | /* Invalidate the pagebuffer reference */ | 
|  | this->pagebuf = -1; | 
|  |  | 
|  | /* Fill in remaining MTD driver data */ | 
|  | mtd->type = MTD_NANDFLASH; | 
|  | mtd->flags = MTD_CAP_NANDFLASH | MTD_ECC; | 
|  | mtd->ecctype = MTD_ECC_SW; | 
|  | mtd->erase = nand_erase; | 
|  | mtd->point = NULL; | 
|  | mtd->unpoint = NULL; | 
|  | mtd->read = nand_read; | 
|  | mtd->write = nand_write; | 
|  | mtd->read_ecc = nand_read_ecc; | 
|  | mtd->write_ecc = nand_write_ecc; | 
|  | mtd->read_oob = nand_read_oob; | 
|  | mtd->write_oob = nand_write_oob; | 
|  | mtd->readv = NULL; | 
|  | mtd->writev = nand_writev; | 
|  | mtd->writev_ecc = nand_writev_ecc; | 
|  | mtd->sync = nand_sync; | 
|  | mtd->lock = NULL; | 
|  | mtd->unlock = NULL; | 
|  | mtd->suspend = nand_suspend; | 
|  | mtd->resume = nand_resume; | 
|  | mtd->block_isbad = nand_block_isbad; | 
|  | mtd->block_markbad = nand_block_markbad; | 
|  |  | 
|  | /* and make the autooob the default one */ | 
|  | memcpy(&mtd->oobinfo, this->autooob, sizeof(mtd->oobinfo)); | 
|  |  | 
|  | mtd->owner = THIS_MODULE; | 
|  |  | 
|  | /* Check, if we should skip the bad block table scan */ | 
|  | if (this->options & NAND_SKIP_BBTSCAN) | 
|  | return 0; | 
|  |  | 
|  | /* Build bad block table */ | 
|  | return this->scan_bbt (mtd); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * nand_release - [NAND Interface] Free resources held by the NAND device | 
|  | * @mtd:	MTD device structure | 
|  | */ | 
|  | void nand_release (struct mtd_info *mtd) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | #ifdef CONFIG_MTD_PARTITIONS | 
|  | /* Deregister partitions */ | 
|  | del_mtd_partitions (mtd); | 
|  | #endif | 
|  | /* Deregister the device */ | 
|  | del_mtd_device (mtd); | 
|  |  | 
|  | /* Free bad block table memory */ | 
|  | kfree (this->bbt); | 
|  | /* Buffer allocated by nand_scan ? */ | 
|  | if (this->options & NAND_OOBBUF_ALLOC) | 
|  | kfree (this->oob_buf); | 
|  | /* Buffer allocated by nand_scan ? */ | 
|  | if (this->options & NAND_DATABUF_ALLOC) | 
|  | kfree (this->data_buf); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL (nand_scan); | 
|  | EXPORT_SYMBOL_GPL (nand_release); | 
|  |  | 
|  | MODULE_LICENSE ("GPL"); | 
|  | MODULE_AUTHOR ("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>"); | 
|  | MODULE_DESCRIPTION ("Generic NAND flash driver code"); |