|  | /* | 
|  | *  drivers/mtd/nand/rtc_from4.c | 
|  | * | 
|  | *  Copyright (C) 2004  Red Hat, Inc. | 
|  | * | 
|  | *  Derived from drivers/mtd/nand/spia.c | 
|  | *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com) | 
|  | * | 
|  | * $Id: rtc_from4.c,v 1.10 2005/11/07 11:14:31 gleixner Exp $ | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * Overview: | 
|  | *   This is a device driver for the AG-AND flash device found on the | 
|  | *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4), | 
|  | *   which utilizes the Renesas HN29V1G91T-30 part. | 
|  | *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device. | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/rslib.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mtd/compatmac.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/mtd/nand.h> | 
|  | #include <linux/mtd/partitions.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | /* | 
|  | * MTD structure for Renesas board | 
|  | */ | 
|  | static struct mtd_info *rtc_from4_mtd = NULL; | 
|  |  | 
|  | #define RTC_FROM4_MAX_CHIPS	2 | 
|  |  | 
|  | /* HS77x9 processor register defines */ | 
|  | #define SH77X9_BCR1	((volatile unsigned short *)(0xFFFFFF60)) | 
|  | #define SH77X9_BCR2	((volatile unsigned short *)(0xFFFFFF62)) | 
|  | #define SH77X9_WCR1	((volatile unsigned short *)(0xFFFFFF64)) | 
|  | #define SH77X9_WCR2	((volatile unsigned short *)(0xFFFFFF66)) | 
|  | #define SH77X9_MCR	((volatile unsigned short *)(0xFFFFFF68)) | 
|  | #define SH77X9_PCR	((volatile unsigned short *)(0xFFFFFF6C)) | 
|  | #define SH77X9_FRQCR	((volatile unsigned short *)(0xFFFFFF80)) | 
|  |  | 
|  | /* | 
|  | * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor) | 
|  | */ | 
|  | /* Address where flash is mapped */ | 
|  | #define RTC_FROM4_FIO_BASE	0x14000000 | 
|  |  | 
|  | /* CLE and ALE are tied to address lines 5 & 4, respectively */ | 
|  | #define RTC_FROM4_CLE		(1 << 5) | 
|  | #define RTC_FROM4_ALE		(1 << 4) | 
|  |  | 
|  | /* address lines A24-A22 used for chip selection */ | 
|  | #define RTC_FROM4_NAND_ADDR_SLOT3	(0x00800000) | 
|  | #define RTC_FROM4_NAND_ADDR_SLOT4	(0x00C00000) | 
|  | #define RTC_FROM4_NAND_ADDR_FPGA	(0x01000000) | 
|  | /* mask address lines A24-A22 used for chip selection */ | 
|  | #define RTC_FROM4_NAND_ADDR_MASK	(RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA) | 
|  |  | 
|  | /* FPGA status register for checking device ready (bit zero) */ | 
|  | #define RTC_FROM4_FPGA_SR		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000002) | 
|  | #define RTC_FROM4_DEVICE_READY		0x0001 | 
|  |  | 
|  | /* FPGA Reed-Solomon ECC Control register */ | 
|  |  | 
|  | #define RTC_FROM4_RS_ECC_CTL		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000050) | 
|  | #define RTC_FROM4_RS_ECC_CTL_CLR	(1 << 7) | 
|  | #define RTC_FROM4_RS_ECC_CTL_GEN	(1 << 6) | 
|  | #define RTC_FROM4_RS_ECC_CTL_FD_E	(1 << 5) | 
|  |  | 
|  | /* FPGA Reed-Solomon ECC code base */ | 
|  | #define RTC_FROM4_RS_ECC		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000060) | 
|  | #define RTC_FROM4_RS_ECCN		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000080) | 
|  |  | 
|  | /* FPGA Reed-Solomon ECC check register */ | 
|  | #define RTC_FROM4_RS_ECC_CHK		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000070) | 
|  | #define RTC_FROM4_RS_ECC_CHK_ERROR	(1 << 7) | 
|  |  | 
|  | #define ERR_STAT_ECC_AVAILABLE		0x20 | 
|  |  | 
|  | /* Undefine for software ECC */ | 
|  | #define RTC_FROM4_HWECC	1 | 
|  |  | 
|  | /* Define as 1 for no virtual erase blocks (in JFFS2) */ | 
|  | #define RTC_FROM4_NO_VIRTBLOCKS	0 | 
|  |  | 
|  | /* | 
|  | * Module stuff | 
|  | */ | 
|  | static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE); | 
|  |  | 
|  | static const struct mtd_partition partition_info[] = { | 
|  | { | 
|  | .name   = "Renesas flash partition 1", | 
|  | .offset = 0, | 
|  | .size   = MTDPART_SIZ_FULL | 
|  | }, | 
|  | }; | 
|  | #define NUM_PARTITIONS 1 | 
|  |  | 
|  | /* | 
|  | *	hardware specific flash bbt decriptors | 
|  | *	Note: this is to allow debugging by disabling | 
|  | *		NAND_BBT_CREATE and/or NAND_BBT_WRITE | 
|  | * | 
|  | */ | 
|  | static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; | 
|  | static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; | 
|  |  | 
|  | static struct nand_bbt_descr rtc_from4_bbt_main_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs = 40, | 
|  | .len = 4, | 
|  | .veroffs = 44, | 
|  | .maxblocks = 4, | 
|  | .pattern = bbt_pattern | 
|  | }; | 
|  |  | 
|  | static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = { | 
|  | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | 
|  | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, | 
|  | .offs = 40, | 
|  | .len = 4, | 
|  | .veroffs = 44, | 
|  | .maxblocks = 4, | 
|  | .pattern = mirror_pattern | 
|  | }; | 
|  |  | 
|  |  | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  |  | 
|  | /* the Reed Solomon control structure */ | 
|  | static struct rs_control *rs_decoder; | 
|  |  | 
|  | /* | 
|  | *      hardware specific Out Of Band information | 
|  | */ | 
|  | static struct nand_oobinfo rtc_from4_nand_oobinfo = { | 
|  | .useecc = MTD_NANDECC_AUTOPLACE, | 
|  | .eccbytes = 32, | 
|  | .eccpos = { | 
|  | 0,  1,  2,  3,  4,  5,  6,  7, | 
|  | 8,  9, 10, 11, 12, 13, 14, 15, | 
|  | 16, 17, 18, 19, 20, 21, 22, 23, | 
|  | 24, 25, 26, 27, 28, 29, 30, 31}, | 
|  | .oobfree = { {32, 32} } | 
|  | }; | 
|  |  | 
|  | /* Aargh. I missed the reversed bit order, when I | 
|  | * was talking to Renesas about the FPGA. | 
|  | * | 
|  | * The table is used for bit reordering and inversion | 
|  | * of the ecc byte which we get from the FPGA | 
|  | */ | 
|  | static uint8_t revbits[256] = { | 
|  | 0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0, | 
|  | 0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0, | 
|  | 0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8, | 
|  | 0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8, | 
|  | 0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4, | 
|  | 0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4, | 
|  | 0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec, | 
|  | 0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc, | 
|  | 0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2, | 
|  | 0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2, | 
|  | 0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea, | 
|  | 0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa, | 
|  | 0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6, | 
|  | 0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6, | 
|  | 0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee, | 
|  | 0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe, | 
|  | 0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1, | 
|  | 0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1, | 
|  | 0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9, | 
|  | 0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9, | 
|  | 0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5, | 
|  | 0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5, | 
|  | 0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed, | 
|  | 0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd, | 
|  | 0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3, | 
|  | 0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3, | 
|  | 0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb, | 
|  | 0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb, | 
|  | 0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7, | 
|  | 0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7, | 
|  | 0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, | 
|  | 0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff, | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * rtc_from4_hwcontrol - hardware specific access to control-lines | 
|  | * @mtd:	MTD device structure | 
|  | * @cmd:	hardware control command | 
|  | * | 
|  | * Address lines (A5 and A4) are used to control Command and Address Latch | 
|  | * Enable on this board, so set the read/write address appropriately. | 
|  | * | 
|  | * Chip Enable is also controlled by the Chip Select (CS5) and | 
|  | * Address lines (A24-A22), so no action is required here. | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd) | 
|  | { | 
|  | struct nand_chip* this = (struct nand_chip *) (mtd->priv); | 
|  |  | 
|  | switch(cmd) { | 
|  |  | 
|  | case NAND_CTL_SETCLE: | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_CLE); | 
|  | break; | 
|  | case NAND_CTL_CLRCLE: | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_CLE); | 
|  | break; | 
|  |  | 
|  | case NAND_CTL_SETALE: | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_ALE); | 
|  | break; | 
|  | case NAND_CTL_CLRALE: | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_ALE); | 
|  | break; | 
|  |  | 
|  | case NAND_CTL_SETNCE: | 
|  | break; | 
|  | case NAND_CTL_CLRNCE: | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * rtc_from4_nand_select_chip - hardware specific chip select | 
|  | * @mtd:	MTD device structure | 
|  | * @chip:	Chip to select (0 == slot 3, 1 == slot 4) | 
|  | * | 
|  | * The chip select is based on address lines A24-A22. | 
|  | * This driver uses flash slots 3 and 4 (A23-A22). | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK); | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK); | 
|  |  | 
|  | switch(chip) { | 
|  |  | 
|  | case 0:		/* select slot 3 chip */ | 
|  | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3); | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3); | 
|  | break; | 
|  | case 1:		/* select slot 4 chip */ | 
|  | this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4); | 
|  | this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4); | 
|  | break; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * rtc_from4_nand_device_ready - hardware specific ready/busy check | 
|  | * @mtd:	MTD device structure | 
|  | * | 
|  | * This board provides the Ready/Busy state in the status register | 
|  | * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal. | 
|  | * | 
|  | */ | 
|  | static int rtc_from4_nand_device_ready(struct mtd_info *mtd) | 
|  | { | 
|  | unsigned short status; | 
|  |  | 
|  | status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR)); | 
|  |  | 
|  | return (status & RTC_FROM4_DEVICE_READY); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * deplete - code to perform device recovery in case there was a power loss | 
|  | * @mtd:	MTD device structure | 
|  | * @chip:	Chip to select (0 == slot 3, 1 == slot 4) | 
|  | * | 
|  | * If there was a sudden loss of power during an erase operation, a | 
|  | * "device recovery" operation must be performed when power is restored | 
|  | * to ensure correct operation.  This routine performs the required steps | 
|  | * for the requested chip. | 
|  | * | 
|  | * See page 86 of the data sheet for details. | 
|  | * | 
|  | */ | 
|  | static void deplete(struct mtd_info *mtd, int chip) | 
|  | { | 
|  | struct nand_chip *this = mtd->priv; | 
|  |  | 
|  | /* wait until device is ready */ | 
|  | while (!this->dev_ready(mtd)); | 
|  |  | 
|  | this->select_chip(mtd, chip); | 
|  |  | 
|  | /* Send the commands for device recovery, phase 1 */ | 
|  | this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000); | 
|  | this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1); | 
|  |  | 
|  | /* Send the commands for device recovery, phase 2 */ | 
|  | this->cmdfunc (mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004); | 
|  | this->cmdfunc (mtd, NAND_CMD_DEPLETE2, -1, -1); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | /* | 
|  | * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function | 
|  | * @mtd:	MTD device structure | 
|  | * @mode:	I/O mode; read or write | 
|  | * | 
|  | * enable hardware ECC for data read or write | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode) | 
|  | { | 
|  | volatile unsigned short * rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL); | 
|  | unsigned short status; | 
|  |  | 
|  | switch (mode) { | 
|  | case NAND_ECC_READ : | 
|  | status =  RTC_FROM4_RS_ECC_CTL_CLR | 
|  | | RTC_FROM4_RS_ECC_CTL_FD_E; | 
|  |  | 
|  | *rs_ecc_ctl = status; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_READSYN : | 
|  | status =  0x00; | 
|  |  | 
|  | *rs_ecc_ctl = status; | 
|  | break; | 
|  |  | 
|  | case NAND_ECC_WRITE : | 
|  | status =  RTC_FROM4_RS_ECC_CTL_CLR | 
|  | | RTC_FROM4_RS_ECC_CTL_GEN | 
|  | | RTC_FROM4_RS_ECC_CTL_FD_E; | 
|  |  | 
|  | *rs_ecc_ctl = status; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * rtc_from4_calculate_ecc - hardware specific code to read ECC code | 
|  | * @mtd:	MTD device structure | 
|  | * @dat:	buffer containing the data to generate ECC codes | 
|  | * @ecc_code	ECC codes calculated | 
|  | * | 
|  | * The ECC code is calculated by the FPGA.  All we have to do is read the values | 
|  | * from the FPGA registers. | 
|  | * | 
|  | * Note: We read from the inverted registers, since data is inverted before | 
|  | * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code | 
|  | * | 
|  | */ | 
|  | static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | volatile unsigned short * rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN); | 
|  | unsigned short value; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 8; i++) { | 
|  | value = *rs_eccn; | 
|  | ecc_code[i] = (unsigned char)value; | 
|  | rs_eccn++; | 
|  | } | 
|  | ecc_code[7] |= 0x0f;	/* set the last four bits (not used) */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * rtc_from4_correct_data - hardware specific code to correct data using ECC code | 
|  | * @mtd:	MTD device structure | 
|  | * @buf:	buffer containing the data to generate ECC codes | 
|  | * @ecc1	ECC codes read | 
|  | * @ecc2	ECC codes calculated | 
|  | * | 
|  | * The FPGA tells us fast, if there's an error or not. If no, we go back happy | 
|  | * else we read the ecc results from the fpga and call the rs library to decode | 
|  | * and hopefully correct the error. | 
|  | * | 
|  | */ | 
|  | static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2) | 
|  | { | 
|  | int i, j, res; | 
|  | unsigned short status; | 
|  | uint16_t par[6], syn[6]; | 
|  | uint8_t ecc[8]; | 
|  | volatile unsigned short *rs_ecc; | 
|  |  | 
|  | status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK)); | 
|  |  | 
|  | if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read the syndrom pattern from the FPGA and correct the bitorder */ | 
|  | rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC); | 
|  | for (i = 0; i < 8; i++) { | 
|  | ecc[i] = revbits[(*rs_ecc) & 0xFF]; | 
|  | rs_ecc++; | 
|  | } | 
|  |  | 
|  | /* convert into 6 10bit syndrome fields */ | 
|  | par[5] = rs_decoder->index_of[(((uint16_t)ecc[0] >> 0) & 0x0ff) | | 
|  | (((uint16_t)ecc[1] << 8) & 0x300)]; | 
|  | par[4] = rs_decoder->index_of[(((uint16_t)ecc[1] >> 2) & 0x03f) | | 
|  | (((uint16_t)ecc[2] << 6) & 0x3c0)]; | 
|  | par[3] = rs_decoder->index_of[(((uint16_t)ecc[2] >> 4) & 0x00f) | | 
|  | (((uint16_t)ecc[3] << 4) & 0x3f0)]; | 
|  | par[2] = rs_decoder->index_of[(((uint16_t)ecc[3] >> 6) & 0x003) | | 
|  | (((uint16_t)ecc[4] << 2) & 0x3fc)]; | 
|  | par[1] = rs_decoder->index_of[(((uint16_t)ecc[5] >> 0) & 0x0ff) | | 
|  | (((uint16_t)ecc[6] << 8) & 0x300)]; | 
|  | par[0] = (((uint16_t)ecc[6] >> 2) & 0x03f) | (((uint16_t)ecc[7] << 6) & 0x3c0); | 
|  |  | 
|  | /* Convert to computable syndrome */ | 
|  | for (i = 0; i < 6; i++) { | 
|  | syn[i] = par[0]; | 
|  | for (j = 1; j < 6; j++) | 
|  | if (par[j] != rs_decoder->nn) | 
|  | syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)]; | 
|  |  | 
|  | /* Convert to index form */ | 
|  | syn[i] = rs_decoder->index_of[syn[i]]; | 
|  | } | 
|  |  | 
|  | /* Let the library code do its magic.*/ | 
|  | res = decode_rs8(rs_decoder, (uint8_t *)buf, par, 512, syn, 0, NULL, 0xff, NULL); | 
|  | if (res > 0) { | 
|  | DEBUG (MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " | 
|  | "ECC corrected %d errors on read\n", res); | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * rtc_from4_errstat - perform additional error status checks | 
|  | * @mtd:	MTD device structure | 
|  | * @this:	NAND chip structure | 
|  | * @state:	state or the operation | 
|  | * @status:	status code returned from read status | 
|  | * @page:	startpage inside the chip, must be called with (page & this->pagemask) | 
|  | * | 
|  | * Perform additional error status checks on erase and write failures | 
|  | * to determine if errors are correctable.  For this device, correctable | 
|  | * 1-bit errors on erase and write are considered acceptable. | 
|  | * | 
|  | * note: see pages 34..37 of data sheet for details. | 
|  | * | 
|  | */ | 
|  | static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page) | 
|  | { | 
|  | int	er_stat=0; | 
|  | int	rtn, retlen; | 
|  | size_t	len; | 
|  | uint8_t *buf; | 
|  | int	i; | 
|  |  | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS_CLEAR, -1, -1); | 
|  |  | 
|  | if (state == FL_ERASING) { | 
|  | for (i=0; i<4; i++) { | 
|  | if (status & 1<<(i+1)) { | 
|  | this->cmdfunc (mtd, (NAND_CMD_STATUS_ERROR + i + 1), -1, -1); | 
|  | rtn = this->read_byte(mtd); | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1); | 
|  | if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { | 
|  | er_stat |= 1<<(i+1);	/* err_ecc_not_avail */ | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (state == FL_WRITING) { | 
|  | /* single bank write logic */ | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS_ERROR, -1, -1); | 
|  | rtn = this->read_byte(mtd); | 
|  | this->cmdfunc (mtd, NAND_CMD_STATUS_RESET, -1, -1); | 
|  | if (!(rtn & ERR_STAT_ECC_AVAILABLE)) { | 
|  | er_stat |= 1<<1;	/* err_ecc_not_avail */ | 
|  | } else { | 
|  | len = mtd->oobblock; | 
|  | buf = kmalloc (len, GFP_KERNEL); | 
|  | if (!buf) { | 
|  | printk (KERN_ERR "rtc_from4_errstat: Out of memory!\n"); | 
|  | er_stat = 1;			/* if we can't check, assume failed */ | 
|  | } else { | 
|  | /* recovery read */ | 
|  | /* page read */ | 
|  | rtn = nand_do_read_ecc (mtd, page, len, &retlen, buf, NULL, this->autooob, 1); | 
|  | if (rtn) {	/* if read failed or > 1-bit error corrected */ | 
|  | er_stat |= 1<<1;	/* ECC read failed */ | 
|  | } | 
|  | kfree(buf); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | rtn = status; | 
|  | if (er_stat == 0) {				/* if ECC is available   */ | 
|  | rtn = (status & ~NAND_STATUS_FAIL);	/*   clear the error bit */ | 
|  | } | 
|  |  | 
|  | return rtn; | 
|  | } | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main initialization routine | 
|  | */ | 
|  | int __init rtc_from4_init (void) | 
|  | { | 
|  | struct nand_chip *this; | 
|  | unsigned short bcr1, bcr2, wcr2; | 
|  | int i; | 
|  |  | 
|  | /* Allocate memory for MTD device structure and private data */ | 
|  | rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof (struct nand_chip), | 
|  | GFP_KERNEL); | 
|  | if (!rtc_from4_mtd) { | 
|  | printk ("Unable to allocate Renesas NAND MTD device structure.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* Get pointer to private data */ | 
|  | this = (struct nand_chip *) (&rtc_from4_mtd[1]); | 
|  |  | 
|  | /* Initialize structures */ | 
|  | memset((char *) rtc_from4_mtd, 0, sizeof(struct mtd_info)); | 
|  | memset((char *) this, 0, sizeof(struct nand_chip)); | 
|  |  | 
|  | /* Link the private data with the MTD structure */ | 
|  | rtc_from4_mtd->priv = this; | 
|  |  | 
|  | /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */ | 
|  | bcr1 = *SH77X9_BCR1 & ~0x0002; | 
|  | bcr1 |= 0x0002; | 
|  | *SH77X9_BCR1 = bcr1; | 
|  |  | 
|  | /* set */ | 
|  | bcr2 = *SH77X9_BCR2 & ~0x0c00; | 
|  | bcr2 |= 0x0800; | 
|  | *SH77X9_BCR2 = bcr2; | 
|  |  | 
|  | /* set area 5 wait states */ | 
|  | wcr2 = *SH77X9_WCR2 & ~0x1c00; | 
|  | wcr2 |= 0x1c00; | 
|  | *SH77X9_WCR2 = wcr2; | 
|  |  | 
|  | /* Set address of NAND IO lines */ | 
|  | this->IO_ADDR_R = rtc_from4_fio_base; | 
|  | this->IO_ADDR_W = rtc_from4_fio_base; | 
|  | /* Set address of hardware control function */ | 
|  | this->hwcontrol = rtc_from4_hwcontrol; | 
|  | /* Set address of chip select function */ | 
|  | this->select_chip = rtc_from4_nand_select_chip; | 
|  | /* command delay time (in us) */ | 
|  | this->chip_delay = 100; | 
|  | /* return the status of the Ready/Busy line */ | 
|  | this->dev_ready = rtc_from4_nand_device_ready; | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n"); | 
|  |  | 
|  | this->eccmode = NAND_ECC_HW8_512; | 
|  | this->options |= NAND_HWECC_SYNDROME; | 
|  | /* return the status of extra status and ECC checks */ | 
|  | this->errstat = rtc_from4_errstat; | 
|  | /* set the nand_oobinfo to support FPGA H/W error detection */ | 
|  | this->autooob = &rtc_from4_nand_oobinfo; | 
|  | this->enable_hwecc = rtc_from4_enable_hwecc; | 
|  | this->calculate_ecc = rtc_from4_calculate_ecc; | 
|  | this->correct_data = rtc_from4_correct_data; | 
|  | #else | 
|  | printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n"); | 
|  |  | 
|  | this->eccmode = NAND_ECC_SOFT; | 
|  | #endif | 
|  |  | 
|  | /* set the bad block tables to support debugging */ | 
|  | this->bbt_td = &rtc_from4_bbt_main_descr; | 
|  | this->bbt_md = &rtc_from4_bbt_mirror_descr; | 
|  |  | 
|  | /* Scan to find existence of the device */ | 
|  | if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) { | 
|  | kfree(rtc_from4_mtd); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  | /* Perform 'device recovery' for each chip in case there was a power loss. */ | 
|  | for (i=0; i < this->numchips; i++) { | 
|  | deplete(rtc_from4_mtd, i); | 
|  | } | 
|  |  | 
|  | #if RTC_FROM4_NO_VIRTBLOCKS | 
|  | /* use a smaller erase block to minimize wasted space when a block is bad */ | 
|  | /* note: this uses eight times as much RAM as using the default and makes */ | 
|  | /*       mounts take four times as long. */ | 
|  | rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS; | 
|  | #endif | 
|  |  | 
|  | /* Register the partitions */ | 
|  | add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS); | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | /* We could create the decoder on demand, if memory is a concern. | 
|  | * This way we have it handy, if an error happens | 
|  | * | 
|  | * Symbolsize is 10 (bits) | 
|  | * Primitve polynomial is x^10+x^3+1 | 
|  | * first consecutive root is 0 | 
|  | * primitve element to generate roots = 1 | 
|  | * generator polinomial degree = 6 | 
|  | */ | 
|  | rs_decoder = init_rs(10, 0x409, 0, 1, 6); | 
|  | if (!rs_decoder) { | 
|  | printk (KERN_ERR "Could not create a RS decoder\n"); | 
|  | nand_release(rtc_from4_mtd); | 
|  | kfree(rtc_from4_mtd); | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  | /* Return happy */ | 
|  | return 0; | 
|  | } | 
|  | module_init(rtc_from4_init); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Clean up routine | 
|  | */ | 
|  | #ifdef MODULE | 
|  | static void __exit rtc_from4_cleanup (void) | 
|  | { | 
|  | /* Release resource, unregister partitions */ | 
|  | nand_release(rtc_from4_mtd); | 
|  |  | 
|  | /* Free the MTD device structure */ | 
|  | kfree (rtc_from4_mtd); | 
|  |  | 
|  | #ifdef RTC_FROM4_HWECC | 
|  | /* Free the reed solomon resources */ | 
|  | if (rs_decoder) { | 
|  | free_rs(rs_decoder); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | module_exit(rtc_from4_cleanup); | 
|  | #endif | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("d.marlin <dmarlin@redhat.com"); | 
|  | MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4"); | 
|  |  |