|  | /* $Id: bitops.h,v 1.39 2002/01/30 01:40:00 davem Exp $ | 
|  | * bitops.h: Bit string operations on the V9. | 
|  | * | 
|  | * Copyright 1996, 1997 David S. Miller (davem@caip.rutgers.edu) | 
|  | */ | 
|  |  | 
|  | #ifndef _SPARC64_BITOPS_H | 
|  | #define _SPARC64_BITOPS_H | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <asm/byteorder.h> | 
|  |  | 
|  | extern int test_and_set_bit(unsigned long nr, volatile unsigned long *addr); | 
|  | extern int test_and_clear_bit(unsigned long nr, volatile unsigned long *addr); | 
|  | extern int test_and_change_bit(unsigned long nr, volatile unsigned long *addr); | 
|  | extern void set_bit(unsigned long nr, volatile unsigned long *addr); | 
|  | extern void clear_bit(unsigned long nr, volatile unsigned long *addr); | 
|  | extern void change_bit(unsigned long nr, volatile unsigned long *addr); | 
|  |  | 
|  | /* "non-atomic" versions... */ | 
|  |  | 
|  | static inline void __set_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | unsigned long *m = ((unsigned long *)addr) + (nr >> 6); | 
|  |  | 
|  | *m |= (1UL << (nr & 63)); | 
|  | } | 
|  |  | 
|  | static inline void __clear_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | unsigned long *m = ((unsigned long *)addr) + (nr >> 6); | 
|  |  | 
|  | *m &= ~(1UL << (nr & 63)); | 
|  | } | 
|  |  | 
|  | static inline void __change_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | unsigned long *m = ((unsigned long *)addr) + (nr >> 6); | 
|  |  | 
|  | *m ^= (1UL << (nr & 63)); | 
|  | } | 
|  |  | 
|  | static inline int __test_and_set_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | unsigned long *m = ((unsigned long *)addr) + (nr >> 6); | 
|  | unsigned long old = *m; | 
|  | unsigned long mask = (1UL << (nr & 63)); | 
|  |  | 
|  | *m = (old | mask); | 
|  | return ((old & mask) != 0); | 
|  | } | 
|  |  | 
|  | static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | unsigned long *m = ((unsigned long *)addr) + (nr >> 6); | 
|  | unsigned long old = *m; | 
|  | unsigned long mask = (1UL << (nr & 63)); | 
|  |  | 
|  | *m = (old & ~mask); | 
|  | return ((old & mask) != 0); | 
|  | } | 
|  |  | 
|  | static inline int __test_and_change_bit(int nr, volatile unsigned long *addr) | 
|  | { | 
|  | unsigned long *m = ((unsigned long *)addr) + (nr >> 6); | 
|  | unsigned long old = *m; | 
|  | unsigned long mask = (1UL << (nr & 63)); | 
|  |  | 
|  | *m = (old ^ mask); | 
|  | return ((old & mask) != 0); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define smp_mb__before_clear_bit()	membar_storeload_loadload() | 
|  | #define smp_mb__after_clear_bit()	membar_storeload_storestore() | 
|  | #else | 
|  | #define smp_mb__before_clear_bit()	barrier() | 
|  | #define smp_mb__after_clear_bit()	barrier() | 
|  | #endif | 
|  |  | 
|  | static inline int test_bit(int nr, __const__ volatile unsigned long *addr) | 
|  | { | 
|  | return (1UL & (addr[nr >> 6] >> (nr & 63))) != 0UL; | 
|  | } | 
|  |  | 
|  | /* The easy/cheese version for now. */ | 
|  | static inline unsigned long ffz(unsigned long word) | 
|  | { | 
|  | unsigned long result; | 
|  |  | 
|  | result = 0; | 
|  | while(word & 1) { | 
|  | result++; | 
|  | word >>= 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __ffs - find first bit in word. | 
|  | * @word: The word to search | 
|  | * | 
|  | * Undefined if no bit exists, so code should check against 0 first. | 
|  | */ | 
|  | static inline unsigned long __ffs(unsigned long word) | 
|  | { | 
|  | unsigned long result = 0; | 
|  |  | 
|  | while (!(word & 1UL)) { | 
|  | result++; | 
|  | word >>= 1; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fls: find last bit set. | 
|  | */ | 
|  |  | 
|  | #define fls(x) generic_fls(x) | 
|  | #define fls64(x)   generic_fls64(x) | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | /* | 
|  | * Every architecture must define this function. It's the fastest | 
|  | * way of searching a 140-bit bitmap where the first 100 bits are | 
|  | * unlikely to be set. It's guaranteed that at least one of the 140 | 
|  | * bits is cleared. | 
|  | */ | 
|  | static inline int sched_find_first_bit(unsigned long *b) | 
|  | { | 
|  | if (unlikely(b[0])) | 
|  | return __ffs(b[0]); | 
|  | if (unlikely(((unsigned int)b[1]))) | 
|  | return __ffs(b[1]) + 64; | 
|  | if (b[1] >> 32) | 
|  | return __ffs(b[1] >> 32) + 96; | 
|  | return __ffs(b[2]) + 128; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ffs: find first bit set. This is defined the same way as | 
|  | * the libc and compiler builtin ffs routines, therefore | 
|  | * differs in spirit from the above ffz (man ffs). | 
|  | */ | 
|  | static inline int ffs(int x) | 
|  | { | 
|  | if (!x) | 
|  | return 0; | 
|  | return __ffs((unsigned long)x) + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hweightN: returns the hamming weight (i.e. the number | 
|  | * of bits set) of a N-bit word | 
|  | */ | 
|  |  | 
|  | #ifdef ULTRA_HAS_POPULATION_COUNT | 
|  |  | 
|  | static inline unsigned int hweight64(unsigned long w) | 
|  | { | 
|  | unsigned int res; | 
|  |  | 
|  | __asm__ ("popc %1,%0" : "=r" (res) : "r" (w)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline unsigned int hweight32(unsigned int w) | 
|  | { | 
|  | unsigned int res; | 
|  |  | 
|  | __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffffffff)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline unsigned int hweight16(unsigned int w) | 
|  | { | 
|  | unsigned int res; | 
|  |  | 
|  | __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xffff)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline unsigned int hweight8(unsigned int w) | 
|  | { | 
|  | unsigned int res; | 
|  |  | 
|  | __asm__ ("popc %1,%0" : "=r" (res) : "r" (w & 0xff)); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define hweight64(x) generic_hweight64(x) | 
|  | #define hweight32(x) generic_hweight32(x) | 
|  | #define hweight16(x) generic_hweight16(x) | 
|  | #define hweight8(x) generic_hweight8(x) | 
|  |  | 
|  | #endif | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | /** | 
|  | * find_next_bit - find the next set bit in a memory region | 
|  | * @addr: The address to base the search on | 
|  | * @offset: The bitnumber to start searching at | 
|  | * @size: The maximum size to search | 
|  | */ | 
|  | extern unsigned long find_next_bit(const unsigned long *, unsigned long, | 
|  | unsigned long); | 
|  |  | 
|  | /** | 
|  | * find_first_bit - find the first set bit in a memory region | 
|  | * @addr: The address to start the search at | 
|  | * @size: The maximum size to search | 
|  | * | 
|  | * Returns the bit-number of the first set bit, not the number of the byte | 
|  | * containing a bit. | 
|  | */ | 
|  | #define find_first_bit(addr, size) \ | 
|  | find_next_bit((addr), (size), 0) | 
|  |  | 
|  | /* find_next_zero_bit() finds the first zero bit in a bit string of length | 
|  | * 'size' bits, starting the search at bit 'offset'. This is largely based | 
|  | * on Linus's ALPHA routines, which are pretty portable BTW. | 
|  | */ | 
|  |  | 
|  | extern unsigned long find_next_zero_bit(const unsigned long *, | 
|  | unsigned long, unsigned long); | 
|  |  | 
|  | #define find_first_zero_bit(addr, size) \ | 
|  | find_next_zero_bit((addr), (size), 0) | 
|  |  | 
|  | #define test_and_set_le_bit(nr,addr)	\ | 
|  | test_and_set_bit((nr) ^ 0x38, (addr)) | 
|  | #define test_and_clear_le_bit(nr,addr)	\ | 
|  | test_and_clear_bit((nr) ^ 0x38, (addr)) | 
|  |  | 
|  | static inline int test_le_bit(int nr, __const__ unsigned long * addr) | 
|  | { | 
|  | int			mask; | 
|  | __const__ unsigned char	*ADDR = (__const__ unsigned char *) addr; | 
|  |  | 
|  | ADDR += nr >> 3; | 
|  | mask = 1 << (nr & 0x07); | 
|  | return ((mask & *ADDR) != 0); | 
|  | } | 
|  |  | 
|  | #define find_first_zero_le_bit(addr, size) \ | 
|  | find_next_zero_le_bit((addr), (size), 0) | 
|  |  | 
|  | extern unsigned long find_next_zero_le_bit(unsigned long *, unsigned long, unsigned long); | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #define __set_le_bit(nr, addr) \ | 
|  | __set_bit((nr) ^ 0x38, (addr)) | 
|  | #define __clear_le_bit(nr, addr) \ | 
|  | __clear_bit((nr) ^ 0x38, (addr)) | 
|  | #define __test_and_clear_le_bit(nr, addr) \ | 
|  | __test_and_clear_bit((nr) ^ 0x38, (addr)) | 
|  | #define __test_and_set_le_bit(nr, addr) \ | 
|  | __test_and_set_bit((nr) ^ 0x38, (addr)) | 
|  |  | 
|  | #define ext2_set_bit(nr,addr)	\ | 
|  | __test_and_set_le_bit((nr),(unsigned long *)(addr)) | 
|  | #define ext2_set_bit_atomic(lock,nr,addr) \ | 
|  | test_and_set_le_bit((nr),(unsigned long *)(addr)) | 
|  | #define ext2_clear_bit(nr,addr)	\ | 
|  | __test_and_clear_le_bit((nr),(unsigned long *)(addr)) | 
|  | #define ext2_clear_bit_atomic(lock,nr,addr) \ | 
|  | test_and_clear_le_bit((nr),(unsigned long *)(addr)) | 
|  | #define ext2_test_bit(nr,addr)	\ | 
|  | test_le_bit((nr),(unsigned long *)(addr)) | 
|  | #define ext2_find_first_zero_bit(addr, size) \ | 
|  | find_first_zero_le_bit((unsigned long *)(addr), (size)) | 
|  | #define ext2_find_next_zero_bit(addr, size, off) \ | 
|  | find_next_zero_le_bit((unsigned long *)(addr), (size), (off)) | 
|  |  | 
|  | /* Bitmap functions for the minix filesystem.  */ | 
|  | #define minix_test_and_set_bit(nr,addr)	\ | 
|  | test_and_set_bit((nr),(unsigned long *)(addr)) | 
|  | #define minix_set_bit(nr,addr)	\ | 
|  | set_bit((nr),(unsigned long *)(addr)) | 
|  | #define minix_test_and_clear_bit(nr,addr) \ | 
|  | test_and_clear_bit((nr),(unsigned long *)(addr)) | 
|  | #define minix_test_bit(nr,addr)	\ | 
|  | test_bit((nr),(unsigned long *)(addr)) | 
|  | #define minix_find_first_zero_bit(addr,size) \ | 
|  | find_first_zero_bit((unsigned long *)(addr),(size)) | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  |  | 
|  | #endif /* defined(_SPARC64_BITOPS_H) */ |