| /* | 
 |  * Common time routines among all ppc machines. | 
 |  * | 
 |  * Written by Cort Dougan (cort@cs.nmt.edu) to merge | 
 |  * Paul Mackerras' version and mine for PReP and Pmac. | 
 |  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net). | 
 |  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com) | 
 |  * | 
 |  * First round of bugfixes by Gabriel Paubert (paubert@iram.es) | 
 |  * to make clock more stable (2.4.0-test5). The only thing | 
 |  * that this code assumes is that the timebases have been synchronized | 
 |  * by firmware on SMP and are never stopped (never do sleep | 
 |  * on SMP then, nap and doze are OK). | 
 |  *  | 
 |  * Speeded up do_gettimeofday by getting rid of references to | 
 |  * xtime (which required locks for consistency). (mikejc@us.ibm.com) | 
 |  * | 
 |  * TODO (not necessarily in this file): | 
 |  * - improve precision and reproducibility of timebase frequency | 
 |  * measurement at boot time. (for iSeries, we calibrate the timebase | 
 |  * against the Titan chip's clock.) | 
 |  * - for astronomical applications: add a new function to get | 
 |  * non ambiguous timestamps even around leap seconds. This needs | 
 |  * a new timestamp format and a good name. | 
 |  * | 
 |  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96 | 
 |  *             "A Kernel Model for Precision Timekeeping" by Dave Mills | 
 |  * | 
 |  *      This program is free software; you can redistribute it and/or | 
 |  *      modify it under the terms of the GNU General Public License | 
 |  *      as published by the Free Software Foundation; either version | 
 |  *      2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/module.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/param.h> | 
 | #include <linux/string.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/timex.h> | 
 | #include <linux/kernel_stat.h> | 
 | #include <linux/time.h> | 
 | #include <linux/init.h> | 
 | #include <linux/profile.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/security.h> | 
 | #include <linux/percpu.h> | 
 | #include <linux/rtc.h> | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/processor.h> | 
 | #include <asm/nvram.h> | 
 | #include <asm/cache.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/time.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/irq.h> | 
 | #include <asm/div64.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/vdso_datapage.h> | 
 | #ifdef CONFIG_PPC64 | 
 | #include <asm/firmware.h> | 
 | #endif | 
 | #ifdef CONFIG_PPC_ISERIES | 
 | #include <asm/iseries/it_lp_queue.h> | 
 | #include <asm/iseries/hv_call_xm.h> | 
 | #endif | 
 | #include <asm/smp.h> | 
 |  | 
 | /* keep track of when we need to update the rtc */ | 
 | time_t last_rtc_update; | 
 | extern int piranha_simulator; | 
 | #ifdef CONFIG_PPC_ISERIES | 
 | unsigned long iSeries_recal_titan = 0; | 
 | unsigned long iSeries_recal_tb = 0;  | 
 | static unsigned long first_settimeofday = 1; | 
 | #endif | 
 |  | 
 | /* The decrementer counts down by 128 every 128ns on a 601. */ | 
 | #define DECREMENTER_COUNT_601	(1000000000 / HZ) | 
 |  | 
 | #define XSEC_PER_SEC (1024*1024) | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC) | 
 | #else | 
 | /* compute ((xsec << 12) * max) >> 32 */ | 
 | #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max) | 
 | #endif | 
 |  | 
 | unsigned long tb_ticks_per_jiffy; | 
 | unsigned long tb_ticks_per_usec = 100; /* sane default */ | 
 | EXPORT_SYMBOL(tb_ticks_per_usec); | 
 | unsigned long tb_ticks_per_sec; | 
 | u64 tb_to_xs; | 
 | unsigned tb_to_us; | 
 | unsigned long processor_freq; | 
 | DEFINE_SPINLOCK(rtc_lock); | 
 | EXPORT_SYMBOL_GPL(rtc_lock); | 
 |  | 
 | u64 tb_to_ns_scale; | 
 | unsigned tb_to_ns_shift; | 
 |  | 
 | struct gettimeofday_struct do_gtod; | 
 |  | 
 | extern unsigned long wall_jiffies; | 
 |  | 
 | extern struct timezone sys_tz; | 
 | static long timezone_offset; | 
 |  | 
 | void ppc_adjtimex(void); | 
 |  | 
 | static unsigned adjusting_time = 0; | 
 |  | 
 | unsigned long ppc_proc_freq; | 
 | unsigned long ppc_tb_freq; | 
 |  | 
 | u64 tb_last_jiffy __cacheline_aligned_in_smp; | 
 | unsigned long tb_last_stamp; | 
 |  | 
 | /* | 
 |  * Note that on ppc32 this only stores the bottom 32 bits of | 
 |  * the timebase value, but that's enough to tell when a jiffy | 
 |  * has passed. | 
 |  */ | 
 | DEFINE_PER_CPU(unsigned long, last_jiffy); | 
 |  | 
 | void __delay(unsigned long loops) | 
 | { | 
 | 	unsigned long start; | 
 | 	int diff; | 
 |  | 
 | 	if (__USE_RTC()) { | 
 | 		start = get_rtcl(); | 
 | 		do { | 
 | 			/* the RTCL register wraps at 1000000000 */ | 
 | 			diff = get_rtcl() - start; | 
 | 			if (diff < 0) | 
 | 				diff += 1000000000; | 
 | 		} while (diff < loops); | 
 | 	} else { | 
 | 		start = get_tbl(); | 
 | 		while (get_tbl() - start < loops) | 
 | 			HMT_low(); | 
 | 		HMT_medium(); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL(__delay); | 
 |  | 
 | void udelay(unsigned long usecs) | 
 | { | 
 | 	__delay(tb_ticks_per_usec * usecs); | 
 | } | 
 | EXPORT_SYMBOL(udelay); | 
 |  | 
 | static __inline__ void timer_check_rtc(void) | 
 | { | 
 |         /* | 
 |          * update the rtc when needed, this should be performed on the | 
 |          * right fraction of a second. Half or full second ? | 
 |          * Full second works on mk48t59 clocks, others need testing. | 
 |          * Note that this update is basically only used through  | 
 |          * the adjtimex system calls. Setting the HW clock in | 
 |          * any other way is a /dev/rtc and userland business. | 
 |          * This is still wrong by -0.5/+1.5 jiffies because of the | 
 |          * timer interrupt resolution and possible delay, but here we  | 
 |          * hit a quantization limit which can only be solved by higher | 
 |          * resolution timers and decoupling time management from timer | 
 |          * interrupts. This is also wrong on the clocks | 
 |          * which require being written at the half second boundary. | 
 |          * We should have an rtc call that only sets the minutes and | 
 |          * seconds like on Intel to avoid problems with non UTC clocks. | 
 |          */ | 
 |         if (ppc_md.set_rtc_time && ntp_synced() && | 
 | 	    xtime.tv_sec - last_rtc_update >= 659 && | 
 | 	    abs((xtime.tv_nsec/1000) - (1000000-1000000/HZ)) < 500000/HZ && | 
 | 	    jiffies - wall_jiffies == 1) { | 
 | 		struct rtc_time tm; | 
 | 		to_tm(xtime.tv_sec + 1 + timezone_offset, &tm); | 
 | 		tm.tm_year -= 1900; | 
 | 		tm.tm_mon -= 1; | 
 | 		if (ppc_md.set_rtc_time(&tm) == 0) | 
 | 			last_rtc_update = xtime.tv_sec + 1; | 
 | 		else | 
 | 			/* Try again one minute later */ | 
 | 			last_rtc_update += 60; | 
 |         } | 
 | } | 
 |  | 
 | /* | 
 |  * This version of gettimeofday has microsecond resolution. | 
 |  */ | 
 | static inline void __do_gettimeofday(struct timeval *tv, u64 tb_val) | 
 | { | 
 | 	unsigned long sec, usec; | 
 | 	u64 tb_ticks, xsec; | 
 | 	struct gettimeofday_vars *temp_varp; | 
 | 	u64 temp_tb_to_xs, temp_stamp_xsec; | 
 |  | 
 | 	/* | 
 | 	 * These calculations are faster (gets rid of divides) | 
 | 	 * if done in units of 1/2^20 rather than microseconds. | 
 | 	 * The conversion to microseconds at the end is done | 
 | 	 * without a divide (and in fact, without a multiply) | 
 | 	 */ | 
 | 	temp_varp = do_gtod.varp; | 
 | 	tb_ticks = tb_val - temp_varp->tb_orig_stamp; | 
 | 	temp_tb_to_xs = temp_varp->tb_to_xs; | 
 | 	temp_stamp_xsec = temp_varp->stamp_xsec; | 
 | 	xsec = temp_stamp_xsec + mulhdu(tb_ticks, temp_tb_to_xs); | 
 | 	sec = xsec / XSEC_PER_SEC; | 
 | 	usec = (unsigned long)xsec & (XSEC_PER_SEC - 1); | 
 | 	usec = SCALE_XSEC(usec, 1000000); | 
 |  | 
 | 	tv->tv_sec = sec; | 
 | 	tv->tv_usec = usec; | 
 | } | 
 |  | 
 | void do_gettimeofday(struct timeval *tv) | 
 | { | 
 | 	if (__USE_RTC()) { | 
 | 		/* do this the old way */ | 
 | 		unsigned long flags, seq; | 
 | 		unsigned int sec, nsec, usec, lost; | 
 |  | 
 | 		do { | 
 | 			seq = read_seqbegin_irqsave(&xtime_lock, flags); | 
 | 			sec = xtime.tv_sec; | 
 | 			nsec = xtime.tv_nsec + tb_ticks_since(tb_last_stamp); | 
 | 			lost = jiffies - wall_jiffies; | 
 | 		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags)); | 
 | 		usec = nsec / 1000 + lost * (1000000 / HZ); | 
 | 		while (usec >= 1000000) { | 
 | 			usec -= 1000000; | 
 | 			++sec; | 
 | 		} | 
 | 		tv->tv_sec = sec; | 
 | 		tv->tv_usec = usec; | 
 | 		return; | 
 | 	} | 
 | 	__do_gettimeofday(tv, get_tb()); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(do_gettimeofday); | 
 |  | 
 | /* Synchronize xtime with do_gettimeofday */  | 
 |  | 
 | static inline void timer_sync_xtime(unsigned long cur_tb) | 
 | { | 
 | #ifdef CONFIG_PPC64 | 
 | 	/* why do we do this? */ | 
 | 	struct timeval my_tv; | 
 |  | 
 | 	__do_gettimeofday(&my_tv, cur_tb); | 
 |  | 
 | 	if (xtime.tv_sec <= my_tv.tv_sec) { | 
 | 		xtime.tv_sec = my_tv.tv_sec; | 
 | 		xtime.tv_nsec = my_tv.tv_usec * 1000; | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * There are two copies of tb_to_xs and stamp_xsec so that no | 
 |  * lock is needed to access and use these values in | 
 |  * do_gettimeofday.  We alternate the copies and as long as a | 
 |  * reasonable time elapses between changes, there will never | 
 |  * be inconsistent values.  ntpd has a minimum of one minute | 
 |  * between updates. | 
 |  */ | 
 | static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec, | 
 | 			       u64 new_tb_to_xs) | 
 | { | 
 | 	unsigned temp_idx; | 
 | 	struct gettimeofday_vars *temp_varp; | 
 |  | 
 | 	temp_idx = (do_gtod.var_idx == 0); | 
 | 	temp_varp = &do_gtod.vars[temp_idx]; | 
 |  | 
 | 	temp_varp->tb_to_xs = new_tb_to_xs; | 
 | 	temp_varp->tb_orig_stamp = new_tb_stamp; | 
 | 	temp_varp->stamp_xsec = new_stamp_xsec; | 
 | 	smp_mb(); | 
 | 	do_gtod.varp = temp_varp; | 
 | 	do_gtod.var_idx = temp_idx; | 
 |  | 
 | 	/* | 
 | 	 * tb_update_count is used to allow the userspace gettimeofday code | 
 | 	 * to assure itself that it sees a consistent view of the tb_to_xs and | 
 | 	 * stamp_xsec variables.  It reads the tb_update_count, then reads | 
 | 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If | 
 | 	 * the two values of tb_update_count match and are even then the | 
 | 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it | 
 | 	 * loops back and reads them again until this criteria is met. | 
 | 	 */ | 
 | 	++(vdso_data->tb_update_count); | 
 | 	smp_wmb(); | 
 | 	vdso_data->tb_orig_stamp = new_tb_stamp; | 
 | 	vdso_data->stamp_xsec = new_stamp_xsec; | 
 | 	vdso_data->tb_to_xs = new_tb_to_xs; | 
 | 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec; | 
 | 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec; | 
 | 	smp_wmb(); | 
 | 	++(vdso_data->tb_update_count); | 
 | } | 
 |  | 
 | /* | 
 |  * When the timebase - tb_orig_stamp gets too big, we do a manipulation | 
 |  * between tb_orig_stamp and stamp_xsec. The goal here is to keep the | 
 |  * difference tb - tb_orig_stamp small enough to always fit inside a | 
 |  * 32 bits number. This is a requirement of our fast 32 bits userland | 
 |  * implementation in the vdso. If we "miss" a call to this function | 
 |  * (interrupt latency, CPU locked in a spinlock, ...) and we end up | 
 |  * with a too big difference, then the vdso will fallback to calling | 
 |  * the syscall | 
 |  */ | 
 | static __inline__ void timer_recalc_offset(u64 cur_tb) | 
 | { | 
 | 	unsigned long offset; | 
 | 	u64 new_stamp_xsec; | 
 |  | 
 | 	if (__USE_RTC()) | 
 | 		return; | 
 | 	offset = cur_tb - do_gtod.varp->tb_orig_stamp; | 
 | 	if ((offset & 0x80000000u) == 0) | 
 | 		return; | 
 | 	new_stamp_xsec = do_gtod.varp->stamp_xsec | 
 | 		+ mulhdu(offset, do_gtod.varp->tb_to_xs); | 
 | 	update_gtod(cur_tb, new_stamp_xsec, do_gtod.varp->tb_to_xs); | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | unsigned long profile_pc(struct pt_regs *regs) | 
 | { | 
 | 	unsigned long pc = instruction_pointer(regs); | 
 |  | 
 | 	if (in_lock_functions(pc)) | 
 | 		return regs->link; | 
 |  | 
 | 	return pc; | 
 | } | 
 | EXPORT_SYMBOL(profile_pc); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC_ISERIES | 
 |  | 
 | /*  | 
 |  * This function recalibrates the timebase based on the 49-bit time-of-day | 
 |  * value in the Titan chip.  The Titan is much more accurate than the value | 
 |  * returned by the service processor for the timebase frequency.   | 
 |  */ | 
 |  | 
 | static void iSeries_tb_recal(void) | 
 | { | 
 | 	struct div_result divres; | 
 | 	unsigned long titan, tb; | 
 | 	tb = get_tb(); | 
 | 	titan = HvCallXm_loadTod(); | 
 | 	if ( iSeries_recal_titan ) { | 
 | 		unsigned long tb_ticks = tb - iSeries_recal_tb; | 
 | 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12; | 
 | 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec; | 
 | 		unsigned long new_tb_ticks_per_jiffy = (new_tb_ticks_per_sec+(HZ/2))/HZ; | 
 | 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy; | 
 | 		char sign = '+';		 | 
 | 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */ | 
 | 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ; | 
 |  | 
 | 		if ( tick_diff < 0 ) { | 
 | 			tick_diff = -tick_diff; | 
 | 			sign = '-'; | 
 | 		} | 
 | 		if ( tick_diff ) { | 
 | 			if ( tick_diff < tb_ticks_per_jiffy/25 ) { | 
 | 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n", | 
 | 						new_tb_ticks_per_jiffy, sign, tick_diff ); | 
 | 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy; | 
 | 				tb_ticks_per_sec   = new_tb_ticks_per_sec; | 
 | 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres ); | 
 | 				do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | 
 | 				tb_to_xs = divres.result_low; | 
 | 				do_gtod.varp->tb_to_xs = tb_to_xs; | 
 | 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; | 
 | 				vdso_data->tb_to_xs = tb_to_xs; | 
 | 			} | 
 | 			else { | 
 | 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n" | 
 | 					"                   new tb_ticks_per_jiffy = %lu\n" | 
 | 					"                   old tb_ticks_per_jiffy = %lu\n", | 
 | 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy ); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	iSeries_recal_titan = titan; | 
 | 	iSeries_recal_tb = tb; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * For iSeries shared processors, we have to let the hypervisor | 
 |  * set the hardware decrementer.  We set a virtual decrementer | 
 |  * in the lppaca and call the hypervisor if the virtual | 
 |  * decrementer is less than the current value in the hardware | 
 |  * decrementer. (almost always the new decrementer value will | 
 |  * be greater than the current hardware decementer so the hypervisor | 
 |  * call will not be needed) | 
 |  */ | 
 |  | 
 | /* | 
 |  * timer_interrupt - gets called when the decrementer overflows, | 
 |  * with interrupts disabled. | 
 |  */ | 
 | void timer_interrupt(struct pt_regs * regs) | 
 | { | 
 | 	int next_dec; | 
 | 	int cpu = smp_processor_id(); | 
 | 	unsigned long ticks; | 
 |  | 
 | #ifdef CONFIG_PPC32 | 
 | 	if (atomic_read(&ppc_n_lost_interrupts) != 0) | 
 | 		do_IRQ(regs); | 
 | #endif | 
 |  | 
 | 	irq_enter(); | 
 |  | 
 | 	profile_tick(CPU_PROFILING, regs); | 
 |  | 
 | #ifdef CONFIG_PPC_ISERIES | 
 | 	get_lppaca()->int_dword.fields.decr_int = 0; | 
 | #endif | 
 |  | 
 | 	while ((ticks = tb_ticks_since(per_cpu(last_jiffy, cpu))) | 
 | 	       >= tb_ticks_per_jiffy) { | 
 | 		/* Update last_jiffy */ | 
 | 		per_cpu(last_jiffy, cpu) += tb_ticks_per_jiffy; | 
 | 		/* Handle RTCL overflow on 601 */ | 
 | 		if (__USE_RTC() && per_cpu(last_jiffy, cpu) >= 1000000000) | 
 | 			per_cpu(last_jiffy, cpu) -= 1000000000; | 
 |  | 
 | 		/* | 
 | 		 * We cannot disable the decrementer, so in the period | 
 | 		 * between this cpu's being marked offline in cpu_online_map | 
 | 		 * and calling stop-self, it is taking timer interrupts. | 
 | 		 * Avoid calling into the scheduler rebalancing code if this | 
 | 		 * is the case. | 
 | 		 */ | 
 | 		if (!cpu_is_offline(cpu)) | 
 | 			update_process_times(user_mode(regs)); | 
 |  | 
 | 		/* | 
 | 		 * No need to check whether cpu is offline here; boot_cpuid | 
 | 		 * should have been fixed up by now. | 
 | 		 */ | 
 | 		if (cpu != boot_cpuid) | 
 | 			continue; | 
 |  | 
 | 		write_seqlock(&xtime_lock); | 
 | 		tb_last_jiffy += tb_ticks_per_jiffy; | 
 | 		tb_last_stamp = per_cpu(last_jiffy, cpu); | 
 | 		timer_recalc_offset(tb_last_jiffy); | 
 | 		do_timer(regs); | 
 | 		timer_sync_xtime(tb_last_jiffy); | 
 | 		timer_check_rtc(); | 
 | 		write_sequnlock(&xtime_lock); | 
 | 		if (adjusting_time && (time_adjust == 0)) | 
 | 			ppc_adjtimex(); | 
 | 	} | 
 | 	 | 
 | 	next_dec = tb_ticks_per_jiffy - ticks; | 
 | 	set_dec(next_dec); | 
 |  | 
 | #ifdef CONFIG_PPC_ISERIES | 
 | 	if (hvlpevent_is_pending()) | 
 | 		process_hvlpevents(regs); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_PPC64 | 
 | 	/* collect purr register values often, for accurate calculations */ | 
 | 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) { | 
 | 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array); | 
 | 		cu->current_tb = mfspr(SPRN_PURR); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	irq_exit(); | 
 | } | 
 |  | 
 | void wakeup_decrementer(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	set_dec(tb_ticks_per_jiffy); | 
 | 	/* | 
 | 	 * We don't expect this to be called on a machine with a 601, | 
 | 	 * so using get_tbl is fine. | 
 | 	 */ | 
 | 	tb_last_stamp = tb_last_jiffy = get_tb(); | 
 | 	for_each_cpu(i) | 
 | 		per_cpu(last_jiffy, i) = tb_last_stamp; | 
 | } | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | void __init smp_space_timers(unsigned int max_cpus) | 
 | { | 
 | 	int i; | 
 | 	unsigned long offset = tb_ticks_per_jiffy / max_cpus; | 
 | 	unsigned long previous_tb = per_cpu(last_jiffy, boot_cpuid); | 
 |  | 
 | 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */ | 
 | 	previous_tb -= tb_ticks_per_jiffy; | 
 | 	for_each_cpu(i) { | 
 | 		if (i != boot_cpuid) { | 
 | 			previous_tb += offset; | 
 | 			per_cpu(last_jiffy, i) = previous_tb; | 
 | 		} | 
 | 	} | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Scheduler clock - returns current time in nanosec units. | 
 |  * | 
 |  * Note: mulhdu(a, b) (multiply high double unsigned) returns | 
 |  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b | 
 |  * are 64-bit unsigned numbers. | 
 |  */ | 
 | unsigned long long sched_clock(void) | 
 | { | 
 | 	if (__USE_RTC()) | 
 | 		return get_rtc(); | 
 | 	return mulhdu(get_tb(), tb_to_ns_scale) << tb_to_ns_shift; | 
 | } | 
 |  | 
 | int do_settimeofday(struct timespec *tv) | 
 | { | 
 | 	time_t wtm_sec, new_sec = tv->tv_sec; | 
 | 	long wtm_nsec, new_nsec = tv->tv_nsec; | 
 | 	unsigned long flags; | 
 | 	long int tb_delta; | 
 | 	u64 new_xsec, tb_delta_xs; | 
 |  | 
 | 	if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
 | 		return -EINVAL; | 
 |  | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 |  | 
 | 	/* | 
 | 	 * Updating the RTC is not the job of this code. If the time is | 
 | 	 * stepped under NTP, the RTC will be updated after STA_UNSYNC | 
 | 	 * is cleared.  Tools like clock/hwclock either copy the RTC | 
 | 	 * to the system time, in which case there is no point in writing | 
 | 	 * to the RTC again, or write to the RTC but then they don't call | 
 | 	 * settimeofday to perform this operation. | 
 | 	 */ | 
 | #ifdef CONFIG_PPC_ISERIES | 
 | 	if (first_settimeofday) { | 
 | 		iSeries_tb_recal(); | 
 | 		first_settimeofday = 0; | 
 | 	} | 
 | #endif | 
 | 	tb_delta = tb_ticks_since(tb_last_stamp); | 
 | 	tb_delta += (jiffies - wall_jiffies) * tb_ticks_per_jiffy; | 
 | 	tb_delta_xs = mulhdu(tb_delta, do_gtod.varp->tb_to_xs); | 
 |  | 
 | 	wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec); | 
 | 	wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec); | 
 |  | 
 |  	set_normalized_timespec(&xtime, new_sec, new_nsec); | 
 | 	set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
 |  | 
 | 	/* In case of a large backwards jump in time with NTP, we want the  | 
 | 	 * clock to be updated as soon as the PLL is again in lock. | 
 | 	 */ | 
 | 	last_rtc_update = new_sec - 658; | 
 |  | 
 | 	ntp_clear(); | 
 |  | 
 | 	new_xsec = 0; | 
 | 	if (new_nsec != 0) { | 
 | 		new_xsec = (u64)new_nsec * XSEC_PER_SEC; | 
 | 		do_div(new_xsec, NSEC_PER_SEC); | 
 | 	} | 
 | 	new_xsec += (u64)new_sec * XSEC_PER_SEC - tb_delta_xs; | 
 | 	update_gtod(tb_last_jiffy, new_xsec, do_gtod.varp->tb_to_xs); | 
 |  | 
 | 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest; | 
 | 	vdso_data->tz_dsttime = sys_tz.tz_dsttime; | 
 |  | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 | 	clock_was_set(); | 
 | 	return 0; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(do_settimeofday); | 
 |  | 
 | void __init generic_calibrate_decr(void) | 
 | { | 
 | 	struct device_node *cpu; | 
 | 	unsigned int *fp; | 
 | 	int node_found; | 
 |  | 
 | 	/* | 
 | 	 * The cpu node should have a timebase-frequency property | 
 | 	 * to tell us the rate at which the decrementer counts. | 
 | 	 */ | 
 | 	cpu = of_find_node_by_type(NULL, "cpu"); | 
 |  | 
 | 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */ | 
 | 	node_found = 0; | 
 | 	if (cpu != 0) { | 
 | 		fp = (unsigned int *)get_property(cpu, "timebase-frequency", | 
 | 						  NULL); | 
 | 		if (fp != 0) { | 
 | 			node_found = 1; | 
 | 			ppc_tb_freq = *fp; | 
 | 		} | 
 | 	} | 
 | 	if (!node_found) | 
 | 		printk(KERN_ERR "WARNING: Estimating decrementer frequency " | 
 | 				"(not found)\n"); | 
 |  | 
 | 	ppc_proc_freq = DEFAULT_PROC_FREQ; | 
 | 	node_found = 0; | 
 | 	if (cpu != 0) { | 
 | 		fp = (unsigned int *)get_property(cpu, "clock-frequency", | 
 | 						  NULL); | 
 | 		if (fp != 0) { | 
 | 			node_found = 1; | 
 | 			ppc_proc_freq = *fp; | 
 | 		} | 
 | 	} | 
 | #ifdef CONFIG_BOOKE | 
 | 	/* Set the time base to zero */ | 
 | 	mtspr(SPRN_TBWL, 0); | 
 | 	mtspr(SPRN_TBWU, 0); | 
 |  | 
 | 	/* Clear any pending timer interrupts */ | 
 | 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS); | 
 |  | 
 | 	/* Enable decrementer interrupt */ | 
 | 	mtspr(SPRN_TCR, TCR_DIE); | 
 | #endif | 
 | 	if (!node_found) | 
 | 		printk(KERN_ERR "WARNING: Estimating processor frequency " | 
 | 				"(not found)\n"); | 
 |  | 
 | 	of_node_put(cpu); | 
 | } | 
 |  | 
 | unsigned long get_boot_time(void) | 
 | { | 
 | 	struct rtc_time tm; | 
 |  | 
 | 	if (ppc_md.get_boot_time) | 
 | 		return ppc_md.get_boot_time(); | 
 | 	if (!ppc_md.get_rtc_time) | 
 | 		return 0; | 
 | 	ppc_md.get_rtc_time(&tm); | 
 | 	return mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday, | 
 | 		      tm.tm_hour, tm.tm_min, tm.tm_sec); | 
 | } | 
 |  | 
 | /* This function is only called on the boot processor */ | 
 | void __init time_init(void) | 
 | { | 
 | 	unsigned long flags; | 
 | 	unsigned long tm = 0; | 
 | 	struct div_result res; | 
 | 	u64 scale; | 
 | 	unsigned shift; | 
 |  | 
 |         if (ppc_md.time_init != NULL) | 
 |                 timezone_offset = ppc_md.time_init(); | 
 |  | 
 | 	if (__USE_RTC()) { | 
 | 		/* 601 processor: dec counts down by 128 every 128ns */ | 
 | 		ppc_tb_freq = 1000000000; | 
 | 		tb_last_stamp = get_rtcl(); | 
 | 		tb_last_jiffy = tb_last_stamp; | 
 | 	} else { | 
 | 		/* Normal PowerPC with timebase register */ | 
 | 		ppc_md.calibrate_decr(); | 
 | 		printk(KERN_INFO "time_init: decrementer frequency = %lu.%.6lu MHz\n", | 
 | 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000); | 
 | 		printk(KERN_INFO "time_init: processor frequency   = %lu.%.6lu MHz\n", | 
 | 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000); | 
 | 		tb_last_stamp = tb_last_jiffy = get_tb(); | 
 | 	} | 
 |  | 
 | 	tb_ticks_per_jiffy = ppc_tb_freq / HZ; | 
 | 	tb_ticks_per_sec = tb_ticks_per_jiffy * HZ; | 
 | 	tb_ticks_per_usec = ppc_tb_freq / 1000000; | 
 | 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000); | 
 | 	div128_by_32(1024*1024, 0, tb_ticks_per_sec, &res); | 
 | 	tb_to_xs = res.result_low; | 
 |  | 
 | 	/* | 
 | 	 * Compute scale factor for sched_clock. | 
 | 	 * The calibrate_decr() function has set tb_ticks_per_sec, | 
 | 	 * which is the timebase frequency. | 
 | 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret | 
 | 	 * the 128-bit result as a 64.64 fixed-point number. | 
 | 	 * We then shift that number right until it is less than 1.0, | 
 | 	 * giving us the scale factor and shift count to use in | 
 | 	 * sched_clock(). | 
 | 	 */ | 
 | 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res); | 
 | 	scale = res.result_low; | 
 | 	for (shift = 0; res.result_high != 0; ++shift) { | 
 | 		scale = (scale >> 1) | (res.result_high << 63); | 
 | 		res.result_high >>= 1; | 
 | 	} | 
 | 	tb_to_ns_scale = scale; | 
 | 	tb_to_ns_shift = shift; | 
 |  | 
 | #ifdef CONFIG_PPC_ISERIES | 
 | 	if (!piranha_simulator) | 
 | #endif | 
 | 		tm = get_boot_time(); | 
 |  | 
 | 	write_seqlock_irqsave(&xtime_lock, flags); | 
 | 	xtime.tv_sec = tm; | 
 | 	xtime.tv_nsec = 0; | 
 | 	do_gtod.varp = &do_gtod.vars[0]; | 
 | 	do_gtod.var_idx = 0; | 
 | 	do_gtod.varp->tb_orig_stamp = tb_last_jiffy; | 
 | 	__get_cpu_var(last_jiffy) = tb_last_stamp; | 
 | 	do_gtod.varp->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC; | 
 | 	do_gtod.tb_ticks_per_sec = tb_ticks_per_sec; | 
 | 	do_gtod.varp->tb_to_xs = tb_to_xs; | 
 | 	do_gtod.tb_to_us = tb_to_us; | 
 |  | 
 | 	vdso_data->tb_orig_stamp = tb_last_jiffy; | 
 | 	vdso_data->tb_update_count = 0; | 
 | 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec; | 
 | 	vdso_data->stamp_xsec = xtime.tv_sec * XSEC_PER_SEC; | 
 | 	vdso_data->tb_to_xs = tb_to_xs; | 
 |  | 
 | 	time_freq = 0; | 
 |  | 
 | 	/* If platform provided a timezone (pmac), we correct the time */ | 
 |         if (timezone_offset) { | 
 | 		sys_tz.tz_minuteswest = -timezone_offset / 60; | 
 | 		sys_tz.tz_dsttime = 0; | 
 | 		xtime.tv_sec -= timezone_offset; | 
 |         } | 
 |  | 
 | 	last_rtc_update = xtime.tv_sec; | 
 | 	set_normalized_timespec(&wall_to_monotonic, | 
 | 	                        -xtime.tv_sec, -xtime.tv_nsec); | 
 | 	write_sequnlock_irqrestore(&xtime_lock, flags); | 
 |  | 
 | 	/* Not exact, but the timer interrupt takes care of this */ | 
 | 	set_dec(tb_ticks_per_jiffy); | 
 | } | 
 |  | 
 | /*  | 
 |  * After adjtimex is called, adjust the conversion of tb ticks | 
 |  * to microseconds to keep do_gettimeofday synchronized  | 
 |  * with ntpd. | 
 |  * | 
 |  * Use the time_adjust, time_freq and time_offset computed by adjtimex to  | 
 |  * adjust the frequency. | 
 |  */ | 
 |  | 
 | /* #define DEBUG_PPC_ADJTIMEX 1 */ | 
 |  | 
 | void ppc_adjtimex(void) | 
 | { | 
 | #ifdef CONFIG_PPC64 | 
 | 	unsigned long den, new_tb_ticks_per_sec, tb_ticks, old_xsec, | 
 | 		new_tb_to_xs, new_xsec, new_stamp_xsec; | 
 | 	unsigned long tb_ticks_per_sec_delta; | 
 | 	long delta_freq, ltemp; | 
 | 	struct div_result divres;  | 
 | 	unsigned long flags; | 
 | 	long singleshot_ppm = 0; | 
 |  | 
 | 	/* | 
 | 	 * Compute parts per million frequency adjustment to | 
 | 	 * accomplish the time adjustment implied by time_offset to be | 
 | 	 * applied over the elapsed time indicated by time_constant. | 
 | 	 * Use SHIFT_USEC to get it into the same units as | 
 | 	 * time_freq. | 
 | 	 */ | 
 | 	if ( time_offset < 0 ) { | 
 | 		ltemp = -time_offset; | 
 | 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | 
 | 		ltemp >>= SHIFT_KG + time_constant; | 
 | 		ltemp = -ltemp; | 
 | 	} else { | 
 | 		ltemp = time_offset; | 
 | 		ltemp <<= SHIFT_USEC - SHIFT_UPDATE; | 
 | 		ltemp >>= SHIFT_KG + time_constant; | 
 | 	} | 
 | 	 | 
 | 	/* If there is a single shot time adjustment in progress */ | 
 | 	if ( time_adjust ) { | 
 | #ifdef DEBUG_PPC_ADJTIMEX | 
 | 		printk("ppc_adjtimex: "); | 
 | 		if ( adjusting_time == 0 ) | 
 | 			printk("starting "); | 
 | 		printk("single shot time_adjust = %ld\n", time_adjust); | 
 | #endif	 | 
 | 	 | 
 | 		adjusting_time = 1; | 
 | 		 | 
 | 		/* | 
 | 		 * Compute parts per million frequency adjustment | 
 | 		 * to match time_adjust | 
 | 		 */ | 
 | 		singleshot_ppm = tickadj * HZ;	 | 
 | 		/* | 
 | 		 * The adjustment should be tickadj*HZ to match the code in | 
 | 		 * linux/kernel/timer.c, but experiments show that this is too | 
 | 		 * large. 3/4 of tickadj*HZ seems about right | 
 | 		 */ | 
 | 		singleshot_ppm -= singleshot_ppm / 4; | 
 | 		/* Use SHIFT_USEC to get it into the same units as time_freq */ | 
 | 		singleshot_ppm <<= SHIFT_USEC; | 
 | 		if ( time_adjust < 0 ) | 
 | 			singleshot_ppm = -singleshot_ppm; | 
 | 	} | 
 | 	else { | 
 | #ifdef DEBUG_PPC_ADJTIMEX | 
 | 		if ( adjusting_time ) | 
 | 			printk("ppc_adjtimex: ending single shot time_adjust\n"); | 
 | #endif | 
 | 		adjusting_time = 0; | 
 | 	} | 
 | 	 | 
 | 	/* Add up all of the frequency adjustments */ | 
 | 	delta_freq = time_freq + ltemp + singleshot_ppm; | 
 | 	 | 
 | 	/* | 
 | 	 * Compute a new value for tb_ticks_per_sec based on | 
 | 	 * the frequency adjustment | 
 | 	 */ | 
 | 	den = 1000000 * (1 << (SHIFT_USEC - 8)); | 
 | 	if ( delta_freq < 0 ) { | 
 | 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( (-delta_freq) >> (SHIFT_USEC - 8))) / den; | 
 | 		new_tb_ticks_per_sec = tb_ticks_per_sec + tb_ticks_per_sec_delta; | 
 | 	} | 
 | 	else { | 
 | 		tb_ticks_per_sec_delta = ( tb_ticks_per_sec * ( delta_freq >> (SHIFT_USEC - 8))) / den; | 
 | 		new_tb_ticks_per_sec = tb_ticks_per_sec - tb_ticks_per_sec_delta; | 
 | 	} | 
 | 	 | 
 | #ifdef DEBUG_PPC_ADJTIMEX | 
 | 	printk("ppc_adjtimex: ltemp = %ld, time_freq = %ld, singleshot_ppm = %ld\n", ltemp, time_freq, singleshot_ppm); | 
 | 	printk("ppc_adjtimex: tb_ticks_per_sec - base = %ld  new = %ld\n", tb_ticks_per_sec, new_tb_ticks_per_sec); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Compute a new value of tb_to_xs (used to convert tb to | 
 | 	 * microseconds) and a new value of stamp_xsec which is the | 
 | 	 * time (in 1/2^20 second units) corresponding to | 
 | 	 * tb_orig_stamp.  This new value of stamp_xsec compensates | 
 | 	 * for the change in frequency (implied by the new tb_to_xs) | 
 | 	 * which guarantees that the current time remains the same. | 
 | 	 */ | 
 | 	write_seqlock_irqsave( &xtime_lock, flags ); | 
 | 	tb_ticks = get_tb() - do_gtod.varp->tb_orig_stamp; | 
 | 	div128_by_32(1024*1024, 0, new_tb_ticks_per_sec, &divres); | 
 | 	new_tb_to_xs = divres.result_low; | 
 | 	new_xsec = mulhdu(tb_ticks, new_tb_to_xs); | 
 |  | 
 | 	old_xsec = mulhdu(tb_ticks, do_gtod.varp->tb_to_xs); | 
 | 	new_stamp_xsec = do_gtod.varp->stamp_xsec + old_xsec - new_xsec; | 
 |  | 
 | 	update_gtod(do_gtod.varp->tb_orig_stamp, new_stamp_xsec, new_tb_to_xs); | 
 |  | 
 | 	write_sequnlock_irqrestore( &xtime_lock, flags ); | 
 | #endif /* CONFIG_PPC64 */ | 
 | } | 
 |  | 
 |  | 
 | #define FEBRUARY	2 | 
 | #define	STARTOFTIME	1970 | 
 | #define SECDAY		86400L | 
 | #define SECYR		(SECDAY * 365) | 
 | #define	leapyear(year)		((year) % 4 == 0 && \ | 
 | 				 ((year) % 100 != 0 || (year) % 400 == 0)) | 
 | #define	days_in_year(a) 	(leapyear(a) ? 366 : 365) | 
 | #define	days_in_month(a) 	(month_days[(a) - 1]) | 
 |  | 
 | static int month_days[12] = { | 
 | 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 | 
 | }; | 
 |  | 
 | /* | 
 |  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK) | 
 |  */ | 
 | void GregorianDay(struct rtc_time * tm) | 
 | { | 
 | 	int leapsToDate; | 
 | 	int lastYear; | 
 | 	int day; | 
 | 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 }; | 
 |  | 
 | 	lastYear = tm->tm_year - 1; | 
 |  | 
 | 	/* | 
 | 	 * Number of leap corrections to apply up to end of last year | 
 | 	 */ | 
 | 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400; | 
 |  | 
 | 	/* | 
 | 	 * This year is a leap year if it is divisible by 4 except when it is | 
 | 	 * divisible by 100 unless it is divisible by 400 | 
 | 	 * | 
 | 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was | 
 | 	 */ | 
 | 	day = tm->tm_mon > 2 && leapyear(tm->tm_year); | 
 |  | 
 | 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] + | 
 | 		   tm->tm_mday; | 
 |  | 
 | 	tm->tm_wday = day % 7; | 
 | } | 
 |  | 
 | void to_tm(int tim, struct rtc_time * tm) | 
 | { | 
 | 	register int    i; | 
 | 	register long   hms, day; | 
 |  | 
 | 	day = tim / SECDAY; | 
 | 	hms = tim % SECDAY; | 
 |  | 
 | 	/* Hours, minutes, seconds are easy */ | 
 | 	tm->tm_hour = hms / 3600; | 
 | 	tm->tm_min = (hms % 3600) / 60; | 
 | 	tm->tm_sec = (hms % 3600) % 60; | 
 |  | 
 | 	/* Number of years in days */ | 
 | 	for (i = STARTOFTIME; day >= days_in_year(i); i++) | 
 | 		day -= days_in_year(i); | 
 | 	tm->tm_year = i; | 
 |  | 
 | 	/* Number of months in days left */ | 
 | 	if (leapyear(tm->tm_year)) | 
 | 		days_in_month(FEBRUARY) = 29; | 
 | 	for (i = 1; day >= days_in_month(i); i++) | 
 | 		day -= days_in_month(i); | 
 | 	days_in_month(FEBRUARY) = 28; | 
 | 	tm->tm_mon = i; | 
 |  | 
 | 	/* Days are what is left over (+1) from all that. */ | 
 | 	tm->tm_mday = day + 1; | 
 |  | 
 | 	/* | 
 | 	 * Determine the day of week | 
 | 	 */ | 
 | 	GregorianDay(tm); | 
 | } | 
 |  | 
 | /* Auxiliary function to compute scaling factors */ | 
 | /* Actually the choice of a timebase running at 1/4 the of the bus | 
 |  * frequency giving resolution of a few tens of nanoseconds is quite nice. | 
 |  * It makes this computation very precise (27-28 bits typically) which | 
 |  * is optimistic considering the stability of most processor clock | 
 |  * oscillators and the precision with which the timebase frequency | 
 |  * is measured but does not harm. | 
 |  */ | 
 | unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) | 
 | { | 
 |         unsigned mlt=0, tmp, err; | 
 |         /* No concern for performance, it's done once: use a stupid | 
 |          * but safe and compact method to find the multiplier. | 
 |          */ | 
 |    | 
 |         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) { | 
 |                 if (mulhwu(inscale, mlt|tmp) < outscale) | 
 | 			mlt |= tmp; | 
 |         } | 
 |    | 
 |         /* We might still be off by 1 for the best approximation. | 
 |          * A side effect of this is that if outscale is too large | 
 |          * the returned value will be zero. | 
 |          * Many corner cases have been checked and seem to work, | 
 |          * some might have been forgotten in the test however. | 
 |          */ | 
 |    | 
 |         err = inscale * (mlt+1); | 
 |         if (err <= inscale/2) | 
 | 		mlt++; | 
 |         return mlt; | 
 | } | 
 |  | 
 | /* | 
 |  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit | 
 |  * result. | 
 |  */ | 
 | void div128_by_32(u64 dividend_high, u64 dividend_low, | 
 | 		  unsigned divisor, struct div_result *dr) | 
 | { | 
 | 	unsigned long a, b, c, d; | 
 | 	unsigned long w, x, y, z; | 
 | 	u64 ra, rb, rc; | 
 |  | 
 | 	a = dividend_high >> 32; | 
 | 	b = dividend_high & 0xffffffff; | 
 | 	c = dividend_low >> 32; | 
 | 	d = dividend_low & 0xffffffff; | 
 |  | 
 | 	w = a / divisor; | 
 | 	ra = ((u64)(a - (w * divisor)) << 32) + b; | 
 |  | 
 | 	rb = ((u64) do_div(ra, divisor) << 32) + c; | 
 | 	x = ra; | 
 |  | 
 | 	rc = ((u64) do_div(rb, divisor) << 32) + d; | 
 | 	y = rb; | 
 |  | 
 | 	do_div(rc, divisor); | 
 | 	z = rc; | 
 |  | 
 | 	dr->result_high = ((u64)w << 32) + x; | 
 | 	dr->result_low  = ((u64)y << 32) + z; | 
 |  | 
 | } |