| #ifndef __ASM_SH_BITOPS_H | 
 | #define __ASM_SH_BITOPS_H | 
 |  | 
 | #ifdef __KERNEL__ | 
 | #include <asm/system.h> | 
 | /* For __swab32 */ | 
 | #include <asm/byteorder.h> | 
 |  | 
 | static __inline__ void set_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask; | 
 | 	volatile unsigned int *a = addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	local_irq_save(flags); | 
 | 	*a |= mask; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static __inline__ void __set_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask; | 
 | 	volatile unsigned int *a = addr; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	*a |= mask; | 
 | } | 
 |  | 
 | /* | 
 |  * clear_bit() doesn't provide any barrier for the compiler. | 
 |  */ | 
 | #define smp_mb__before_clear_bit()	barrier() | 
 | #define smp_mb__after_clear_bit()	barrier() | 
 | static __inline__ void clear_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask; | 
 | 	volatile unsigned int *a = addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	local_irq_save(flags); | 
 | 	*a &= ~mask; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static __inline__ void __clear_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask; | 
 | 	volatile unsigned int *a = addr; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	*a &= ~mask; | 
 | } | 
 |  | 
 | static __inline__ void change_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask; | 
 | 	volatile unsigned int *a = addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	local_irq_save(flags); | 
 | 	*a ^= mask; | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | static __inline__ void __change_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask; | 
 | 	volatile unsigned int *a = addr; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	*a ^= mask; | 
 | } | 
 |  | 
 | static __inline__ int test_and_set_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask, retval; | 
 | 	volatile unsigned int *a = addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	local_irq_save(flags); | 
 | 	retval = (mask & *a) != 0; | 
 | 	*a |= mask; | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int __test_and_set_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask, retval; | 
 | 	volatile unsigned int *a = addr; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	retval = (mask & *a) != 0; | 
 | 	*a |= mask; | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int test_and_clear_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask, retval; | 
 | 	volatile unsigned int *a = addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	local_irq_save(flags); | 
 | 	retval = (mask & *a) != 0; | 
 | 	*a &= ~mask; | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int __test_and_clear_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask, retval; | 
 | 	volatile unsigned int *a = addr; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	retval = (mask & *a) != 0; | 
 | 	*a &= ~mask; | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int test_and_change_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask, retval; | 
 | 	volatile unsigned int *a = addr; | 
 | 	unsigned long flags; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	local_irq_save(flags); | 
 | 	retval = (mask & *a) != 0; | 
 | 	*a ^= mask; | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int __test_and_change_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int	mask, retval; | 
 | 	volatile unsigned int *a = addr; | 
 |  | 
 | 	a += nr >> 5; | 
 | 	mask = 1 << (nr & 0x1f); | 
 | 	retval = (mask & *a) != 0; | 
 | 	*a ^= mask; | 
 |  | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int test_bit(int nr, const volatile void *addr) | 
 | { | 
 | 	return 1UL & (((const volatile unsigned int *) addr)[nr >> 5] >> (nr & 31)); | 
 | } | 
 |  | 
 | static __inline__ unsigned long ffz(unsigned long word) | 
 | { | 
 | 	unsigned long result; | 
 |  | 
 | 	__asm__("1:\n\t" | 
 | 		"shlr	%1\n\t" | 
 | 		"bt/s	1b\n\t" | 
 | 		" add	#1, %0" | 
 | 		: "=r" (result), "=r" (word) | 
 | 		: "0" (~0L), "1" (word) | 
 | 		: "t"); | 
 | 	return result; | 
 | } | 
 |  | 
 | /** | 
 |  * __ffs - find first bit in word. | 
 |  * @word: The word to search | 
 |  * | 
 |  * Undefined if no bit exists, so code should check against 0 first. | 
 |  */ | 
 | static __inline__ unsigned long __ffs(unsigned long word) | 
 | { | 
 | 	unsigned long result; | 
 |  | 
 | 	__asm__("1:\n\t" | 
 | 		"shlr	%1\n\t" | 
 | 		"bf/s	1b\n\t" | 
 | 		" add	#1, %0" | 
 | 		: "=r" (result), "=r" (word) | 
 | 		: "0" (~0L), "1" (word) | 
 | 		: "t"); | 
 | 	return result; | 
 | } | 
 |  | 
 | /** | 
 |  * find_next_bit - find the next set bit in a memory region | 
 |  * @addr: The address to base the search on | 
 |  * @offset: The bitnumber to start searching at | 
 |  * @size: The maximum size to search | 
 |  */ | 
 | static __inline__ unsigned long find_next_bit(const unsigned long *addr, | 
 | 	unsigned long size, unsigned long offset) | 
 | { | 
 | 	unsigned int *p = ((unsigned int *) addr) + (offset >> 5); | 
 | 	unsigned int result = offset & ~31UL; | 
 | 	unsigned int tmp; | 
 |  | 
 | 	if (offset >= size) | 
 | 		return size; | 
 | 	size -= result; | 
 | 	offset &= 31UL; | 
 | 	if (offset) { | 
 | 		tmp = *p++; | 
 | 		tmp &= ~0UL << offset; | 
 | 		if (size < 32) | 
 | 			goto found_first; | 
 | 		if (tmp) | 
 | 			goto found_middle; | 
 | 		size -= 32; | 
 | 		result += 32; | 
 | 	} | 
 | 	while (size >= 32) { | 
 | 		if ((tmp = *p++) != 0) | 
 | 			goto found_middle; | 
 | 		result += 32; | 
 | 		size -= 32; | 
 | 	} | 
 | 	if (!size) | 
 | 		return result; | 
 | 	tmp = *p; | 
 |  | 
 | found_first: | 
 | 	tmp &= ~0UL >> (32 - size); | 
 | 	if (tmp == 0UL)        /* Are any bits set? */ | 
 | 		return result + size; /* Nope. */ | 
 | found_middle: | 
 | 	return result + __ffs(tmp); | 
 | } | 
 |  | 
 | /** | 
 |  * find_first_bit - find the first set bit in a memory region | 
 |  * @addr: The address to start the search at | 
 |  * @size: The maximum size to search | 
 |  * | 
 |  * Returns the bit-number of the first set bit, not the number of the byte | 
 |  * containing a bit. | 
 |  */ | 
 | #define find_first_bit(addr, size) \ | 
 | 	find_next_bit((addr), (size), 0) | 
 |  | 
 | static __inline__ int find_next_zero_bit(const unsigned long *addr, int size, int offset) | 
 | { | 
 | 	const unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
 | 	unsigned long result = offset & ~31UL; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (offset >= size) | 
 | 		return size; | 
 | 	size -= result; | 
 | 	offset &= 31UL; | 
 | 	if (offset) { | 
 | 		tmp = *(p++); | 
 | 		tmp |= ~0UL >> (32-offset); | 
 | 		if (size < 32) | 
 | 			goto found_first; | 
 | 		if (~tmp) | 
 | 			goto found_middle; | 
 | 		size -= 32; | 
 | 		result += 32; | 
 | 	} | 
 | 	while (size & ~31UL) { | 
 | 		if (~(tmp = *(p++))) | 
 | 			goto found_middle; | 
 | 		result += 32; | 
 | 		size -= 32; | 
 | 	} | 
 | 	if (!size) | 
 | 		return result; | 
 | 	tmp = *p; | 
 |  | 
 | found_first: | 
 | 	tmp |= ~0UL << size; | 
 | found_middle: | 
 | 	return result + ffz(tmp); | 
 | } | 
 |  | 
 | #define find_first_zero_bit(addr, size) \ | 
 |         find_next_zero_bit((addr), (size), 0) | 
 |  | 
 | /* | 
 |  * ffs: find first bit set. This is defined the same way as | 
 |  * the libc and compiler builtin ffs routines, therefore | 
 |  * differs in spirit from the above ffz (man ffs). | 
 |  */ | 
 |  | 
 | #define ffs(x) generic_ffs(x) | 
 |  | 
 | /* | 
 |  * hweightN: returns the hamming weight (i.e. the number | 
 |  * of bits set) of a N-bit word | 
 |  */ | 
 |  | 
 | #define hweight32(x) generic_hweight32(x) | 
 | #define hweight16(x) generic_hweight16(x) | 
 | #define hweight8(x) generic_hweight8(x) | 
 |  | 
 | /* | 
 |  * Every architecture must define this function. It's the fastest | 
 |  * way of searching a 140-bit bitmap where the first 100 bits are | 
 |  * unlikely to be set. It's guaranteed that at least one of the 140 | 
 |  * bits is cleared. | 
 |  */ | 
 |  | 
 | static inline int sched_find_first_bit(const unsigned long *b) | 
 | { | 
 | 	if (unlikely(b[0])) | 
 | 		return __ffs(b[0]); | 
 | 	if (unlikely(b[1])) | 
 | 		return __ffs(b[1]) + 32; | 
 | 	if (unlikely(b[2])) | 
 | 		return __ffs(b[2]) + 64; | 
 | 	if (b[3]) | 
 | 		return __ffs(b[3]) + 96; | 
 | 	return __ffs(b[4]) + 128; | 
 | } | 
 |  | 
 | #ifdef __LITTLE_ENDIAN__ | 
 | #define ext2_set_bit(nr, addr) test_and_set_bit((nr), (addr)) | 
 | #define ext2_clear_bit(nr, addr) test_and_clear_bit((nr), (addr)) | 
 | #define ext2_test_bit(nr, addr) test_bit((nr), (addr)) | 
 | #define ext2_find_first_zero_bit(addr, size) find_first_zero_bit((addr), (size)) | 
 | #define ext2_find_next_zero_bit(addr, size, offset) \ | 
 |                 find_next_zero_bit((unsigned long *)(addr), (size), (offset)) | 
 | #else | 
 | static __inline__ int ext2_set_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int		mask, retval; | 
 | 	unsigned long	flags; | 
 | 	volatile unsigned char	*ADDR = (unsigned char *) addr; | 
 |  | 
 | 	ADDR += nr >> 3; | 
 | 	mask = 1 << (nr & 0x07); | 
 | 	local_irq_save(flags); | 
 | 	retval = (mask & *ADDR) != 0; | 
 | 	*ADDR |= mask; | 
 | 	local_irq_restore(flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int ext2_clear_bit(int nr, volatile void * addr) | 
 | { | 
 | 	int		mask, retval; | 
 | 	unsigned long	flags; | 
 | 	volatile unsigned char	*ADDR = (unsigned char *) addr; | 
 |  | 
 | 	ADDR += nr >> 3; | 
 | 	mask = 1 << (nr & 0x07); | 
 | 	local_irq_save(flags); | 
 | 	retval = (mask & *ADDR) != 0; | 
 | 	*ADDR &= ~mask; | 
 | 	local_irq_restore(flags); | 
 | 	return retval; | 
 | } | 
 |  | 
 | static __inline__ int ext2_test_bit(int nr, const volatile void * addr) | 
 | { | 
 | 	int			mask; | 
 | 	const volatile unsigned char	*ADDR = (const unsigned char *) addr; | 
 |  | 
 | 	ADDR += nr >> 3; | 
 | 	mask = 1 << (nr & 0x07); | 
 | 	return ((mask & *ADDR) != 0); | 
 | } | 
 |  | 
 | #define ext2_find_first_zero_bit(addr, size) \ | 
 |         ext2_find_next_zero_bit((addr), (size), 0) | 
 |  | 
 | static __inline__ unsigned long ext2_find_next_zero_bit(void *addr, unsigned long size, unsigned long offset) | 
 | { | 
 | 	unsigned long *p = ((unsigned long *) addr) + (offset >> 5); | 
 | 	unsigned long result = offset & ~31UL; | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (offset >= size) | 
 | 		return size; | 
 | 	size -= result; | 
 | 	offset &= 31UL; | 
 | 	if(offset) { | 
 | 		/* We hold the little endian value in tmp, but then the | 
 | 		 * shift is illegal. So we could keep a big endian value | 
 | 		 * in tmp, like this: | 
 | 		 * | 
 | 		 * tmp = __swab32(*(p++)); | 
 | 		 * tmp |= ~0UL >> (32-offset); | 
 | 		 * | 
 | 		 * but this would decrease preformance, so we change the | 
 | 		 * shift: | 
 | 		 */ | 
 | 		tmp = *(p++); | 
 | 		tmp |= __swab32(~0UL >> (32-offset)); | 
 | 		if(size < 32) | 
 | 			goto found_first; | 
 | 		if(~tmp) | 
 | 			goto found_middle; | 
 | 		size -= 32; | 
 | 		result += 32; | 
 | 	} | 
 | 	while(size & ~31UL) { | 
 | 		if(~(tmp = *(p++))) | 
 | 			goto found_middle; | 
 | 		result += 32; | 
 | 		size -= 32; | 
 | 	} | 
 | 	if(!size) | 
 | 		return result; | 
 | 	tmp = *p; | 
 |  | 
 | found_first: | 
 | 	/* tmp is little endian, so we would have to swab the shift, | 
 | 	 * see above. But then we have to swab tmp below for ffz, so | 
 | 	 * we might as well do this here. | 
 | 	 */ | 
 | 	return result + ffz(__swab32(tmp) | (~0UL << size)); | 
 | found_middle: | 
 | 	return result + ffz(__swab32(tmp)); | 
 | } | 
 | #endif | 
 |  | 
 | #define ext2_set_bit_atomic(lock, nr, addr)		\ | 
 | 	({						\ | 
 | 		int ret;				\ | 
 | 		spin_lock(lock);			\ | 
 | 		ret = ext2_set_bit((nr), (addr));	\ | 
 | 		spin_unlock(lock);			\ | 
 | 		ret;					\ | 
 | 	}) | 
 |  | 
 | #define ext2_clear_bit_atomic(lock, nr, addr)		\ | 
 | 	({						\ | 
 | 		int ret;				\ | 
 | 		spin_lock(lock);			\ | 
 | 		ret = ext2_clear_bit((nr), (addr));	\ | 
 | 		spin_unlock(lock);			\ | 
 | 		ret;					\ | 
 | 	}) | 
 |  | 
 | /* Bitmap functions for the minix filesystem.  */ | 
 | #define minix_test_and_set_bit(nr,addr) test_and_set_bit(nr,addr) | 
 | #define minix_set_bit(nr,addr) set_bit(nr,addr) | 
 | #define minix_test_and_clear_bit(nr,addr) test_and_clear_bit(nr,addr) | 
 | #define minix_test_bit(nr,addr) test_bit(nr,addr) | 
 | #define minix_find_first_zero_bit(addr,size) find_first_zero_bit(addr,size) | 
 |  | 
 | /* | 
 |  * fls: find last bit set. | 
 |  */ | 
 |  | 
 | #define fls(x) generic_fls(x) | 
 | #define fls64(x)   generic_fls64(x) | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 |  | 
 | #endif /* __ASM_SH_BITOPS_H */ |