| /* | 
 |  * sc-rm7k.c: RM7000 cache management functions. | 
 |  * | 
 |  * Copyright (C) 1997, 2001, 2003, 2004 Ralf Baechle (ralf@linux-mips.org) | 
 |  */ | 
 |  | 
 | #undef DEBUG | 
 |  | 
 | #include <linux/init.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 |  | 
 | #include <asm/addrspace.h> | 
 | #include <asm/bcache.h> | 
 | #include <asm/cacheops.h> | 
 | #include <asm/mipsregs.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | /* Primary cache parameters. */ | 
 | #define sc_lsize	32 | 
 | #define tc_pagesize	(32*128) | 
 |  | 
 | /* Secondary cache parameters. */ | 
 | #define scache_size	(256*1024)	/* Fixed to 256KiB on RM7000 */ | 
 |  | 
 | extern unsigned long icache_way_size, dcache_way_size; | 
 |  | 
 | #include <asm/r4kcache.h> | 
 |  | 
 | int rm7k_tcache_enabled; | 
 |  | 
 | /* | 
 |  * Writeback and invalidate the primary cache dcache before DMA. | 
 |  * (XXX These need to be fixed ...) | 
 |  */ | 
 | static void rm7k_sc_wback_inv(unsigned long addr, unsigned long size) | 
 | { | 
 | 	unsigned long end, a; | 
 |  | 
 | 	pr_debug("rm7k_sc_wback_inv[%08lx,%08lx]", addr, size); | 
 |  | 
 | 	/* Catch bad driver code */ | 
 | 	BUG_ON(size == 0); | 
 |  | 
 | 	a = addr & ~(sc_lsize - 1); | 
 | 	end = (addr + size - 1) & ~(sc_lsize - 1); | 
 | 	while (1) { | 
 | 		flush_scache_line(a);	/* Hit_Writeback_Inv_SD */ | 
 | 		if (a == end) | 
 | 			break; | 
 | 		a += sc_lsize; | 
 | 	} | 
 |  | 
 | 	if (!rm7k_tcache_enabled) | 
 | 		return; | 
 |  | 
 | 	a = addr & ~(tc_pagesize - 1); | 
 | 	end = (addr + size - 1) & ~(tc_pagesize - 1); | 
 | 	while(1) { | 
 | 		invalidate_tcache_page(a);	/* Page_Invalidate_T */ | 
 | 		if (a == end) | 
 | 			break; | 
 | 		a += tc_pagesize; | 
 | 	} | 
 | } | 
 |  | 
 | static void rm7k_sc_inv(unsigned long addr, unsigned long size) | 
 | { | 
 | 	unsigned long end, a; | 
 |  | 
 | 	pr_debug("rm7k_sc_inv[%08lx,%08lx]", addr, size); | 
 |  | 
 | 	/* Catch bad driver code */ | 
 | 	BUG_ON(size == 0); | 
 |  | 
 | 	a = addr & ~(sc_lsize - 1); | 
 | 	end = (addr + size - 1) & ~(sc_lsize - 1); | 
 | 	while (1) { | 
 | 		invalidate_scache_line(a);	/* Hit_Invalidate_SD */ | 
 | 		if (a == end) | 
 | 			break; | 
 | 		a += sc_lsize; | 
 | 	} | 
 |  | 
 | 	if (!rm7k_tcache_enabled) | 
 | 		return; | 
 |  | 
 | 	a = addr & ~(tc_pagesize - 1); | 
 | 	end = (addr + size - 1) & ~(tc_pagesize - 1); | 
 | 	while(1) { | 
 | 		invalidate_tcache_page(a);	/* Page_Invalidate_T */ | 
 | 		if (a == end) | 
 | 			break; | 
 | 		a += tc_pagesize; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This function is executed in the uncached segment CKSEG1. | 
 |  * It must not touch the stack, because the stack pointer still points | 
 |  * into CKSEG0. | 
 |  * | 
 |  * Three options: | 
 |  *	- Write it in assembly and guarantee that we don't use the stack. | 
 |  *	- Disable caching for CKSEG0 before calling it. | 
 |  *	- Pray that GCC doesn't randomly start using the stack. | 
 |  * | 
 |  * This being Linux, we obviously take the least sane of those options - | 
 |  * following DaveM's lead in c-r4k.c | 
 |  * | 
 |  * It seems we get our kicks from relying on unguaranteed behaviour in GCC | 
 |  */ | 
 | static __init void __rm7k_sc_enable(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	set_c0_config(1 << 3);				/* CONF_SE */ | 
 |  | 
 | 	write_c0_taglo(0); | 
 | 	write_c0_taghi(0); | 
 |  | 
 | 	for (i = 0; i < scache_size; i += sc_lsize) { | 
 | 		__asm__ __volatile__ ( | 
 | 		      ".set noreorder\n\t" | 
 | 		      ".set mips3\n\t" | 
 | 		      "cache %1, (%0)\n\t" | 
 | 		      ".set mips0\n\t" | 
 | 		      ".set reorder" | 
 | 		      : | 
 | 		      : "r" (KSEG0ADDR(i)), "i" (Index_Store_Tag_SD)); | 
 | 	} | 
 | } | 
 |  | 
 | static __init void rm7k_sc_enable(void) | 
 | { | 
 | 	void (*func)(void) = (void *) KSEG1ADDR(&__rm7k_sc_enable); | 
 |  | 
 | 	if (read_c0_config() & 0x08)			/* CONF_SE */ | 
 | 		return; | 
 |  | 
 | 	printk(KERN_INFO "Enabling secondary cache..."); | 
 | 	func(); | 
 | } | 
 |  | 
 | static void rm7k_sc_disable(void) | 
 | { | 
 | 	clear_c0_config(1<<3);				/* CONF_SE */ | 
 | } | 
 |  | 
 | struct bcache_ops rm7k_sc_ops = { | 
 | 	.bc_enable = rm7k_sc_enable, | 
 | 	.bc_disable = rm7k_sc_disable, | 
 | 	.bc_wback_inv = rm7k_sc_wback_inv, | 
 | 	.bc_inv = rm7k_sc_inv | 
 | }; | 
 |  | 
 | void __init rm7k_sc_init(void) | 
 | { | 
 | 	unsigned int config = read_c0_config(); | 
 |  | 
 | 	if ((config >> 31) & 1)		/* Bit 31 set -> no S-Cache */ | 
 | 		return; | 
 |  | 
 | 	printk(KERN_INFO "Secondary cache size %dK, linesize %d bytes.\n", | 
 | 	       (scache_size >> 10), sc_lsize); | 
 |  | 
 | 	if (!((config >> 3) & 1))	/* CONF_SE */ | 
 | 		rm7k_sc_enable(); | 
 |  | 
 | 	/* | 
 | 	 * While we're at it let's deal with the tertiary cache. | 
 | 	 */ | 
 | 	if (!((config >> 17) & 1)) { | 
 |  | 
 | 		/* | 
 | 		 * We can't enable the L3 cache yet. There may be board-specific | 
 | 		 * magic necessary to turn it on, and blindly asking the CPU to | 
 | 		 * start using it would may give cache errors. | 
 | 		 * | 
 | 		 * Also, board-specific knowledge may allow us to use the | 
 | 		 * CACHE Flash_Invalidate_T instruction if the tag RAM supports | 
 | 		 * it, and may specify the size of the L3 cache so we don't have | 
 | 		 * to probe it. | 
 | 		 */ | 
 | 		printk(KERN_INFO "Tertiary cache present, %s enabled\n", | 
 | 		       config&(1<<12) ? "already" : "not (yet)"); | 
 |  | 
 | 		if ((config >> 12) & 1) | 
 | 			rm7k_tcache_enabled = 1; | 
 | 	} | 
 |  | 
 | 	bcops = &rm7k_sc_ops; | 
 | } |