| /* | 
 |  * This file is subject to the terms and conditions of the GNU General Public | 
 |  * License.  See the file "COPYING" in the main directory of this archive | 
 |  * for more details. | 
 |  * | 
 |  * Synthesize TLB refill handlers at runtime. | 
 |  * | 
 |  * Copyright (C) 2004,2005 by Thiemo Seufer | 
 |  */ | 
 |  | 
 | #include <stdarg.h> | 
 |  | 
 | #include <linux/config.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <linux/init.h> | 
 |  | 
 | #include <asm/pgtable.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/inst.h> | 
 | #include <asm/elf.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/war.h> | 
 |  | 
 | /* #define DEBUG_TLB */ | 
 |  | 
 | static __init int __attribute__((unused)) r45k_bvahwbug(void) | 
 | { | 
 | 	/* XXX: We should probe for the presence of this bug, but we don't. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int __attribute__((unused)) r4k_250MHZhwbug(void) | 
 | { | 
 | 	/* XXX: We should probe for the presence of this bug, but we don't. */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int __attribute__((unused)) bcm1250_m3_war(void) | 
 | { | 
 | 	return BCM1250_M3_WAR; | 
 | } | 
 |  | 
 | static __init int __attribute__((unused)) r10000_llsc_war(void) | 
 | { | 
 | 	return R10000_LLSC_WAR; | 
 | } | 
 |  | 
 | /* | 
 |  * A little micro-assembler, intended for TLB refill handler | 
 |  * synthesizing. It is intentionally kept simple, does only support | 
 |  * a subset of instructions, and does not try to hide pipeline effects | 
 |  * like branch delay slots. | 
 |  */ | 
 |  | 
 | enum fields | 
 | { | 
 | 	RS = 0x001, | 
 | 	RT = 0x002, | 
 | 	RD = 0x004, | 
 | 	RE = 0x008, | 
 | 	SIMM = 0x010, | 
 | 	UIMM = 0x020, | 
 | 	BIMM = 0x040, | 
 | 	JIMM = 0x080, | 
 | 	FUNC = 0x100, | 
 | }; | 
 |  | 
 | #define OP_MASK		0x2f | 
 | #define OP_SH		26 | 
 | #define RS_MASK		0x1f | 
 | #define RS_SH		21 | 
 | #define RT_MASK		0x1f | 
 | #define RT_SH		16 | 
 | #define RD_MASK		0x1f | 
 | #define RD_SH		11 | 
 | #define RE_MASK		0x1f | 
 | #define RE_SH		6 | 
 | #define IMM_MASK	0xffff | 
 | #define IMM_SH		0 | 
 | #define JIMM_MASK	0x3ffffff | 
 | #define JIMM_SH		0 | 
 | #define FUNC_MASK	0x2f | 
 | #define FUNC_SH		0 | 
 |  | 
 | enum opcode { | 
 | 	insn_invalid, | 
 | 	insn_addu, insn_addiu, insn_and, insn_andi, insn_beq, | 
 | 	insn_beql, insn_bgez, insn_bgezl, insn_bltz, insn_bltzl, | 
 | 	insn_bne, insn_daddu, insn_daddiu, insn_dmfc0, insn_dmtc0, | 
 | 	insn_dsll, insn_dsll32, insn_dsra, insn_dsrl, insn_dsrl32, | 
 | 	insn_dsubu, insn_eret, insn_j, insn_jal, insn_jr, insn_ld, | 
 | 	insn_ll, insn_lld, insn_lui, insn_lw, insn_mfc0, insn_mtc0, | 
 | 	insn_ori, insn_rfe, insn_sc, insn_scd, insn_sd, insn_sll, | 
 | 	insn_sra, insn_srl, insn_subu, insn_sw, insn_tlbp, insn_tlbwi, | 
 | 	insn_tlbwr, insn_xor, insn_xori | 
 | }; | 
 |  | 
 | struct insn { | 
 | 	enum opcode opcode; | 
 | 	u32 match; | 
 | 	enum fields fields; | 
 | }; | 
 |  | 
 | /* This macro sets the non-variable bits of an instruction. */ | 
 | #define M(a, b, c, d, e, f)					\ | 
 | 	((a) << OP_SH						\ | 
 | 	 | (b) << RS_SH						\ | 
 | 	 | (c) << RT_SH						\ | 
 | 	 | (d) << RD_SH						\ | 
 | 	 | (e) << RE_SH						\ | 
 | 	 | (f) << FUNC_SH) | 
 |  | 
 | static __initdata struct insn insn_table[] = { | 
 | 	{ insn_addiu, M(addiu_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_addu, M(spec_op,0,0,0,0,addu_op), RS | RT | RD }, | 
 | 	{ insn_and, M(spec_op,0,0,0,0,and_op), RS | RT | RD }, | 
 | 	{ insn_andi, M(andi_op,0,0,0,0,0), RS | RT | UIMM }, | 
 | 	{ insn_beq, M(beq_op,0,0,0,0,0), RS | RT | BIMM }, | 
 | 	{ insn_beql, M(beql_op,0,0,0,0,0), RS | RT | BIMM }, | 
 | 	{ insn_bgez, M(bcond_op,0,bgez_op,0,0,0), RS | BIMM }, | 
 | 	{ insn_bgezl, M(bcond_op,0,bgezl_op,0,0,0), RS | BIMM }, | 
 | 	{ insn_bltz, M(bcond_op,0,bltz_op,0,0,0), RS | BIMM }, | 
 | 	{ insn_bltzl, M(bcond_op,0,bltzl_op,0,0,0), RS | BIMM }, | 
 | 	{ insn_bne, M(bne_op,0,0,0,0,0), RS | RT | BIMM }, | 
 | 	{ insn_daddiu, M(daddiu_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_daddu, M(spec_op,0,0,0,0,daddu_op), RS | RT | RD }, | 
 | 	{ insn_dmfc0, M(cop0_op,dmfc_op,0,0,0,0), RT | RD }, | 
 | 	{ insn_dmtc0, M(cop0_op,dmtc_op,0,0,0,0), RT | RD }, | 
 | 	{ insn_dsll, M(spec_op,0,0,0,0,dsll_op), RT | RD | RE }, | 
 | 	{ insn_dsll32, M(spec_op,0,0,0,0,dsll32_op), RT | RD | RE }, | 
 | 	{ insn_dsra, M(spec_op,0,0,0,0,dsra_op), RT | RD | RE }, | 
 | 	{ insn_dsrl, M(spec_op,0,0,0,0,dsrl_op), RT | RD | RE }, | 
 | 	{ insn_dsrl32, M(spec_op,0,0,0,0,dsrl32_op), RT | RD | RE }, | 
 | 	{ insn_dsubu, M(spec_op,0,0,0,0,dsubu_op), RS | RT | RD }, | 
 | 	{ insn_eret, M(cop0_op,cop_op,0,0,0,eret_op), 0 }, | 
 | 	{ insn_j, M(j_op,0,0,0,0,0), JIMM }, | 
 | 	{ insn_jal, M(jal_op,0,0,0,0,0), JIMM }, | 
 | 	{ insn_jr, M(spec_op,0,0,0,0,jr_op), RS }, | 
 | 	{ insn_ld, M(ld_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_ll, M(ll_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_lld, M(lld_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_lui, M(lui_op,0,0,0,0,0), RT | SIMM }, | 
 | 	{ insn_lw, M(lw_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_mfc0, M(cop0_op,mfc_op,0,0,0,0), RT | RD }, | 
 | 	{ insn_mtc0, M(cop0_op,mtc_op,0,0,0,0), RT | RD }, | 
 | 	{ insn_ori, M(ori_op,0,0,0,0,0), RS | RT | UIMM }, | 
 | 	{ insn_rfe, M(cop0_op,cop_op,0,0,0,rfe_op), 0 }, | 
 | 	{ insn_sc, M(sc_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_scd, M(scd_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_sd, M(sd_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_sll, M(spec_op,0,0,0,0,sll_op), RT | RD | RE }, | 
 | 	{ insn_sra, M(spec_op,0,0,0,0,sra_op), RT | RD | RE }, | 
 | 	{ insn_srl, M(spec_op,0,0,0,0,srl_op), RT | RD | RE }, | 
 | 	{ insn_subu, M(spec_op,0,0,0,0,subu_op), RS | RT | RD }, | 
 | 	{ insn_sw, M(sw_op,0,0,0,0,0), RS | RT | SIMM }, | 
 | 	{ insn_tlbp, M(cop0_op,cop_op,0,0,0,tlbp_op), 0 }, | 
 | 	{ insn_tlbwi, M(cop0_op,cop_op,0,0,0,tlbwi_op), 0 }, | 
 | 	{ insn_tlbwr, M(cop0_op,cop_op,0,0,0,tlbwr_op), 0 }, | 
 | 	{ insn_xor, M(spec_op,0,0,0,0,xor_op), RS | RT | RD }, | 
 | 	{ insn_xori, M(xori_op,0,0,0,0,0), RS | RT | UIMM }, | 
 | 	{ insn_invalid, 0, 0 } | 
 | }; | 
 |  | 
 | #undef M | 
 |  | 
 | static __init u32 build_rs(u32 arg) | 
 | { | 
 | 	if (arg & ~RS_MASK) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return (arg & RS_MASK) << RS_SH; | 
 | } | 
 |  | 
 | static __init u32 build_rt(u32 arg) | 
 | { | 
 | 	if (arg & ~RT_MASK) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return (arg & RT_MASK) << RT_SH; | 
 | } | 
 |  | 
 | static __init u32 build_rd(u32 arg) | 
 | { | 
 | 	if (arg & ~RD_MASK) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return (arg & RD_MASK) << RD_SH; | 
 | } | 
 |  | 
 | static __init u32 build_re(u32 arg) | 
 | { | 
 | 	if (arg & ~RE_MASK) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return (arg & RE_MASK) << RE_SH; | 
 | } | 
 |  | 
 | static __init u32 build_simm(s32 arg) | 
 | { | 
 | 	if (arg > 0x7fff || arg < -0x8000) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return arg & 0xffff; | 
 | } | 
 |  | 
 | static __init u32 build_uimm(u32 arg) | 
 | { | 
 | 	if (arg & ~IMM_MASK) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return arg & IMM_MASK; | 
 | } | 
 |  | 
 | static __init u32 build_bimm(s32 arg) | 
 | { | 
 | 	if (arg > 0x1ffff || arg < -0x20000) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	if (arg & 0x3) | 
 | 		printk(KERN_WARNING "Invalid TLB synthesizer branch target\n"); | 
 |  | 
 | 	return ((arg < 0) ? (1 << 15) : 0) | ((arg >> 2) & 0x7fff); | 
 | } | 
 |  | 
 | static __init u32 build_jimm(u32 arg) | 
 | { | 
 | 	if (arg & ~((JIMM_MASK) << 2)) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return (arg >> 2) & JIMM_MASK; | 
 | } | 
 |  | 
 | static __init u32 build_func(u32 arg) | 
 | { | 
 | 	if (arg & ~FUNC_MASK) | 
 | 		printk(KERN_WARNING "TLB synthesizer field overflow\n"); | 
 |  | 
 | 	return arg & FUNC_MASK; | 
 | } | 
 |  | 
 | /* | 
 |  * The order of opcode arguments is implicitly left to right, | 
 |  * starting with RS and ending with FUNC or IMM. | 
 |  */ | 
 | static void __init build_insn(u32 **buf, enum opcode opc, ...) | 
 | { | 
 | 	struct insn *ip = NULL; | 
 | 	unsigned int i; | 
 | 	va_list ap; | 
 | 	u32 op; | 
 |  | 
 | 	for (i = 0; insn_table[i].opcode != insn_invalid; i++) | 
 | 		if (insn_table[i].opcode == opc) { | 
 | 			ip = &insn_table[i]; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 	if (!ip) | 
 | 		panic("Unsupported TLB synthesizer instruction %d", opc); | 
 |  | 
 | 	op = ip->match; | 
 | 	va_start(ap, opc); | 
 | 	if (ip->fields & RS) op |= build_rs(va_arg(ap, u32)); | 
 | 	if (ip->fields & RT) op |= build_rt(va_arg(ap, u32)); | 
 | 	if (ip->fields & RD) op |= build_rd(va_arg(ap, u32)); | 
 | 	if (ip->fields & RE) op |= build_re(va_arg(ap, u32)); | 
 | 	if (ip->fields & SIMM) op |= build_simm(va_arg(ap, s32)); | 
 | 	if (ip->fields & UIMM) op |= build_uimm(va_arg(ap, u32)); | 
 | 	if (ip->fields & BIMM) op |= build_bimm(va_arg(ap, s32)); | 
 | 	if (ip->fields & JIMM) op |= build_jimm(va_arg(ap, u32)); | 
 | 	if (ip->fields & FUNC) op |= build_func(va_arg(ap, u32)); | 
 | 	va_end(ap); | 
 |  | 
 | 	**buf = op; | 
 | 	(*buf)++; | 
 | } | 
 |  | 
 | #define I_u1u2u3(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	unsigned int b, unsigned int c)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, a, b, c);		\ | 
 | 	} | 
 |  | 
 | #define I_u2u1u3(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	unsigned int b, unsigned int c)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, b, a, c);		\ | 
 | 	} | 
 |  | 
 | #define I_u3u1u2(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	unsigned int b, unsigned int c)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, b, c, a);		\ | 
 | 	} | 
 |  | 
 | #define I_u1u2s3(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	unsigned int b, signed int c)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, a, b, c);		\ | 
 | 	} | 
 |  | 
 | #define I_u2s3u1(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	signed int b, unsigned int c)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, c, a, b);		\ | 
 | 	} | 
 |  | 
 | #define I_u2u1s3(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	unsigned int b, signed int c)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, b, a, c);		\ | 
 | 	} | 
 |  | 
 | #define I_u1u2(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	unsigned int b)					\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, a, b);		\ | 
 | 	} | 
 |  | 
 | #define I_u1s2(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a,	\ | 
 | 	 	signed int b)					\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, a, b);		\ | 
 | 	} | 
 |  | 
 | #define I_u1(op)						\ | 
 | 	static inline void i##op(u32 **buf, unsigned int a)	\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op, a);			\ | 
 | 	} | 
 |  | 
 | #define I_0(op)							\ | 
 | 	static inline void i##op(u32 **buf)			\ | 
 | 	{							\ | 
 | 		build_insn(buf, insn##op);			\ | 
 | 	} | 
 |  | 
 | I_u2u1s3(_addiu); | 
 | I_u3u1u2(_addu); | 
 | I_u2u1u3(_andi); | 
 | I_u3u1u2(_and); | 
 | I_u1u2s3(_beq); | 
 | I_u1u2s3(_beql); | 
 | I_u1s2(_bgez); | 
 | I_u1s2(_bgezl); | 
 | I_u1s2(_bltz); | 
 | I_u1s2(_bltzl); | 
 | I_u1u2s3(_bne); | 
 | I_u1u2(_dmfc0); | 
 | I_u1u2(_dmtc0); | 
 | I_u2u1s3(_daddiu); | 
 | I_u3u1u2(_daddu); | 
 | I_u2u1u3(_dsll); | 
 | I_u2u1u3(_dsll32); | 
 | I_u2u1u3(_dsra); | 
 | I_u2u1u3(_dsrl); | 
 | I_u2u1u3(_dsrl32); | 
 | I_u3u1u2(_dsubu); | 
 | I_0(_eret); | 
 | I_u1(_j); | 
 | I_u1(_jal); | 
 | I_u1(_jr); | 
 | I_u2s3u1(_ld); | 
 | I_u2s3u1(_ll); | 
 | I_u2s3u1(_lld); | 
 | I_u1s2(_lui); | 
 | I_u2s3u1(_lw); | 
 | I_u1u2(_mfc0); | 
 | I_u1u2(_mtc0); | 
 | I_u2u1u3(_ori); | 
 | I_0(_rfe); | 
 | I_u2s3u1(_sc); | 
 | I_u2s3u1(_scd); | 
 | I_u2s3u1(_sd); | 
 | I_u2u1u3(_sll); | 
 | I_u2u1u3(_sra); | 
 | I_u2u1u3(_srl); | 
 | I_u3u1u2(_subu); | 
 | I_u2s3u1(_sw); | 
 | I_0(_tlbp); | 
 | I_0(_tlbwi); | 
 | I_0(_tlbwr); | 
 | I_u3u1u2(_xor) | 
 | I_u2u1u3(_xori); | 
 |  | 
 | /* | 
 |  * handling labels | 
 |  */ | 
 |  | 
 | enum label_id { | 
 | 	label_invalid, | 
 | 	label_second_part, | 
 | 	label_leave, | 
 | 	label_vmalloc, | 
 | 	label_vmalloc_done, | 
 | 	label_tlbw_hazard, | 
 | 	label_split, | 
 | 	label_nopage_tlbl, | 
 | 	label_nopage_tlbs, | 
 | 	label_nopage_tlbm, | 
 | 	label_smp_pgtable_change, | 
 | 	label_r3000_write_probe_fail, | 
 | 	label_r3000_write_probe_ok | 
 | }; | 
 |  | 
 | struct label { | 
 | 	u32 *addr; | 
 | 	enum label_id lab; | 
 | }; | 
 |  | 
 | static __init void build_label(struct label **lab, u32 *addr, | 
 | 			       enum label_id l) | 
 | { | 
 | 	(*lab)->addr = addr; | 
 | 	(*lab)->lab = l; | 
 | 	(*lab)++; | 
 | } | 
 |  | 
 | #define L_LA(lb)						\ | 
 | 	static inline void l##lb(struct label **lab, u32 *addr) \ | 
 | 	{							\ | 
 | 		build_label(lab, addr, label##lb);		\ | 
 | 	} | 
 |  | 
 | L_LA(_second_part) | 
 | L_LA(_leave) | 
 | L_LA(_vmalloc) | 
 | L_LA(_vmalloc_done) | 
 | L_LA(_tlbw_hazard) | 
 | L_LA(_split) | 
 | L_LA(_nopage_tlbl) | 
 | L_LA(_nopage_tlbs) | 
 | L_LA(_nopage_tlbm) | 
 | L_LA(_smp_pgtable_change) | 
 | L_LA(_r3000_write_probe_fail) | 
 | L_LA(_r3000_write_probe_ok) | 
 |  | 
 | /* convenience macros for instructions */ | 
 | #ifdef CONFIG_MIPS64 | 
 | # define i_LW(buf, rs, rt, off) i_ld(buf, rs, rt, off) | 
 | # define i_SW(buf, rs, rt, off) i_sd(buf, rs, rt, off) | 
 | # define i_SLL(buf, rs, rt, sh) i_dsll(buf, rs, rt, sh) | 
 | # define i_SRA(buf, rs, rt, sh) i_dsra(buf, rs, rt, sh) | 
 | # define i_SRL(buf, rs, rt, sh) i_dsrl(buf, rs, rt, sh) | 
 | # define i_MFC0(buf, rt, rd) i_dmfc0(buf, rt, rd) | 
 | # define i_MTC0(buf, rt, rd) i_dmtc0(buf, rt, rd) | 
 | # define i_ADDIU(buf, rs, rt, val) i_daddiu(buf, rs, rt, val) | 
 | # define i_ADDU(buf, rs, rt, rd) i_daddu(buf, rs, rt, rd) | 
 | # define i_SUBU(buf, rs, rt, rd) i_dsubu(buf, rs, rt, rd) | 
 | # define i_LL(buf, rs, rt, off) i_lld(buf, rs, rt, off) | 
 | # define i_SC(buf, rs, rt, off) i_scd(buf, rs, rt, off) | 
 | #else | 
 | # define i_LW(buf, rs, rt, off) i_lw(buf, rs, rt, off) | 
 | # define i_SW(buf, rs, rt, off) i_sw(buf, rs, rt, off) | 
 | # define i_SLL(buf, rs, rt, sh) i_sll(buf, rs, rt, sh) | 
 | # define i_SRA(buf, rs, rt, sh) i_sra(buf, rs, rt, sh) | 
 | # define i_SRL(buf, rs, rt, sh) i_srl(buf, rs, rt, sh) | 
 | # define i_MFC0(buf, rt, rd) i_mfc0(buf, rt, rd) | 
 | # define i_MTC0(buf, rt, rd) i_mtc0(buf, rt, rd) | 
 | # define i_ADDIU(buf, rs, rt, val) i_addiu(buf, rs, rt, val) | 
 | # define i_ADDU(buf, rs, rt, rd) i_addu(buf, rs, rt, rd) | 
 | # define i_SUBU(buf, rs, rt, rd) i_subu(buf, rs, rt, rd) | 
 | # define i_LL(buf, rs, rt, off) i_ll(buf, rs, rt, off) | 
 | # define i_SC(buf, rs, rt, off) i_sc(buf, rs, rt, off) | 
 | #endif | 
 |  | 
 | #define i_b(buf, off) i_beq(buf, 0, 0, off) | 
 | #define i_beqz(buf, rs, off) i_beq(buf, rs, 0, off) | 
 | #define i_beqzl(buf, rs, off) i_beql(buf, rs, 0, off) | 
 | #define i_bnez(buf, rs, off) i_bne(buf, rs, 0, off) | 
 | #define i_bnezl(buf, rs, off) i_bnel(buf, rs, 0, off) | 
 | #define i_move(buf, a, b) i_ADDU(buf, a, 0, b) | 
 | #define i_nop(buf) i_sll(buf, 0, 0, 0) | 
 | #define i_ssnop(buf) i_sll(buf, 0, 0, 1) | 
 | #define i_ehb(buf) i_sll(buf, 0, 0, 3) | 
 |  | 
 | #ifdef CONFIG_MIPS64 | 
 | static __init int __attribute__((unused)) in_compat_space_p(long addr) | 
 | { | 
 | 	/* Is this address in 32bit compat space? */ | 
 | 	return (((addr) & 0xffffffff00000000) == 0xffffffff00000000); | 
 | } | 
 |  | 
 | static __init int __attribute__((unused)) rel_highest(long val) | 
 | { | 
 | 	return ((((val + 0x800080008000L) >> 48) & 0xffff) ^ 0x8000) - 0x8000; | 
 | } | 
 |  | 
 | static __init int __attribute__((unused)) rel_higher(long val) | 
 | { | 
 | 	return ((((val + 0x80008000L) >> 32) & 0xffff) ^ 0x8000) - 0x8000; | 
 | } | 
 | #endif | 
 |  | 
 | static __init int rel_hi(long val) | 
 | { | 
 | 	return ((((val + 0x8000L) >> 16) & 0xffff) ^ 0x8000) - 0x8000; | 
 | } | 
 |  | 
 | static __init int rel_lo(long val) | 
 | { | 
 | 	return ((val & 0xffff) ^ 0x8000) - 0x8000; | 
 | } | 
 |  | 
 | static __init void i_LA_mostly(u32 **buf, unsigned int rs, long addr) | 
 | { | 
 | #if CONFIG_MIPS64 | 
 | 	if (!in_compat_space_p(addr)) { | 
 | 		i_lui(buf, rs, rel_highest(addr)); | 
 | 		if (rel_higher(addr)) | 
 | 			i_daddiu(buf, rs, rs, rel_higher(addr)); | 
 | 		if (rel_hi(addr)) { | 
 | 			i_dsll(buf, rs, rs, 16); | 
 | 			i_daddiu(buf, rs, rs, rel_hi(addr)); | 
 | 			i_dsll(buf, rs, rs, 16); | 
 | 		} else | 
 | 			i_dsll32(buf, rs, rs, 0); | 
 | 	} else | 
 | #endif | 
 | 		i_lui(buf, rs, rel_hi(addr)); | 
 | } | 
 |  | 
 | static __init void __attribute__((unused)) i_LA(u32 **buf, unsigned int rs, | 
 | 						long addr) | 
 | { | 
 | 	i_LA_mostly(buf, rs, addr); | 
 | 	if (rel_lo(addr)) | 
 | 		i_ADDIU(buf, rs, rs, rel_lo(addr)); | 
 | } | 
 |  | 
 | /* | 
 |  * handle relocations | 
 |  */ | 
 |  | 
 | struct reloc { | 
 | 	u32 *addr; | 
 | 	unsigned int type; | 
 | 	enum label_id lab; | 
 | }; | 
 |  | 
 | static __init void r_mips_pc16(struct reloc **rel, u32 *addr, | 
 | 			       enum label_id l) | 
 | { | 
 | 	(*rel)->addr = addr; | 
 | 	(*rel)->type = R_MIPS_PC16; | 
 | 	(*rel)->lab = l; | 
 | 	(*rel)++; | 
 | } | 
 |  | 
 | static inline void __resolve_relocs(struct reloc *rel, struct label *lab) | 
 | { | 
 | 	long laddr = (long)lab->addr; | 
 | 	long raddr = (long)rel->addr; | 
 |  | 
 | 	switch (rel->type) { | 
 | 	case R_MIPS_PC16: | 
 | 		*rel->addr |= build_bimm(laddr - (raddr + 4)); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		panic("Unsupported TLB synthesizer relocation %d", | 
 | 		      rel->type); | 
 | 	} | 
 | } | 
 |  | 
 | static __init void resolve_relocs(struct reloc *rel, struct label *lab) | 
 | { | 
 | 	struct label *l; | 
 |  | 
 | 	for (; rel->lab != label_invalid; rel++) | 
 | 		for (l = lab; l->lab != label_invalid; l++) | 
 | 			if (rel->lab == l->lab) | 
 | 				__resolve_relocs(rel, l); | 
 | } | 
 |  | 
 | static __init void move_relocs(struct reloc *rel, u32 *first, u32 *end, | 
 | 			       long off) | 
 | { | 
 | 	for (; rel->lab != label_invalid; rel++) | 
 | 		if (rel->addr >= first && rel->addr < end) | 
 | 			rel->addr += off; | 
 | } | 
 |  | 
 | static __init void move_labels(struct label *lab, u32 *first, u32 *end, | 
 | 			       long off) | 
 | { | 
 | 	for (; lab->lab != label_invalid; lab++) | 
 | 		if (lab->addr >= first && lab->addr < end) | 
 | 			lab->addr += off; | 
 | } | 
 |  | 
 | static __init void copy_handler(struct reloc *rel, struct label *lab, | 
 | 				u32 *first, u32 *end, u32 *target) | 
 | { | 
 | 	long off = (long)(target - first); | 
 |  | 
 | 	memcpy(target, first, (end - first) * sizeof(u32)); | 
 |  | 
 | 	move_relocs(rel, first, end, off); | 
 | 	move_labels(lab, first, end, off); | 
 | } | 
 |  | 
 | static __init int __attribute__((unused)) insn_has_bdelay(struct reloc *rel, | 
 | 							  u32 *addr) | 
 | { | 
 | 	for (; rel->lab != label_invalid; rel++) { | 
 | 		if (rel->addr == addr | 
 | 		    && (rel->type == R_MIPS_PC16 | 
 | 			|| rel->type == R_MIPS_26)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* convenience functions for labeled branches */ | 
 | static void __attribute__((unused)) il_bltz(u32 **p, struct reloc **r, | 
 | 					    unsigned int reg, enum label_id l) | 
 | { | 
 | 	r_mips_pc16(r, *p, l); | 
 | 	i_bltz(p, reg, 0); | 
 | } | 
 |  | 
 | static void __attribute__((unused)) il_b(u32 **p, struct reloc **r, | 
 | 					 enum label_id l) | 
 | { | 
 | 	r_mips_pc16(r, *p, l); | 
 | 	i_b(p, 0); | 
 | } | 
 |  | 
 | static void il_beqz(u32 **p, struct reloc **r, unsigned int reg, | 
 | 		    enum label_id l) | 
 | { | 
 | 	r_mips_pc16(r, *p, l); | 
 | 	i_beqz(p, reg, 0); | 
 | } | 
 |  | 
 | static void __attribute__((unused)) | 
 | il_beqzl(u32 **p, struct reloc **r, unsigned int reg, enum label_id l) | 
 | { | 
 | 	r_mips_pc16(r, *p, l); | 
 | 	i_beqzl(p, reg, 0); | 
 | } | 
 |  | 
 | static void il_bnez(u32 **p, struct reloc **r, unsigned int reg, | 
 | 		    enum label_id l) | 
 | { | 
 | 	r_mips_pc16(r, *p, l); | 
 | 	i_bnez(p, reg, 0); | 
 | } | 
 |  | 
 | static void il_bgezl(u32 **p, struct reloc **r, unsigned int reg, | 
 | 		     enum label_id l) | 
 | { | 
 | 	r_mips_pc16(r, *p, l); | 
 | 	i_bgezl(p, reg, 0); | 
 | } | 
 |  | 
 | /* The only general purpose registers allowed in TLB handlers. */ | 
 | #define K0		26 | 
 | #define K1		27 | 
 |  | 
 | /* Some CP0 registers */ | 
 | #define C0_INDEX	0 | 
 | #define C0_ENTRYLO0	2 | 
 | #define C0_ENTRYLO1	3 | 
 | #define C0_CONTEXT	4 | 
 | #define C0_BADVADDR	8 | 
 | #define C0_ENTRYHI	10 | 
 | #define C0_EPC		14 | 
 | #define C0_XCONTEXT	20 | 
 |  | 
 | #ifdef CONFIG_MIPS64 | 
 | # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_XCONTEXT) | 
 | #else | 
 | # define GET_CONTEXT(buf, reg) i_MFC0(buf, reg, C0_CONTEXT) | 
 | #endif | 
 |  | 
 | /* The worst case length of the handler is around 18 instructions for | 
 |  * R3000-style TLBs and up to 63 instructions for R4000-style TLBs. | 
 |  * Maximum space available is 32 instructions for R3000 and 64 | 
 |  * instructions for R4000. | 
 |  * | 
 |  * We deliberately chose a buffer size of 128, so we won't scribble | 
 |  * over anything important on overflow before we panic. | 
 |  */ | 
 | static __initdata u32 tlb_handler[128]; | 
 |  | 
 | /* simply assume worst case size for labels and relocs */ | 
 | static __initdata struct label labels[128]; | 
 | static __initdata struct reloc relocs[128]; | 
 |  | 
 | /* | 
 |  * The R3000 TLB handler is simple. | 
 |  */ | 
 | static void __init build_r3000_tlb_refill_handler(void) | 
 | { | 
 | 	long pgdc = (long)pgd_current; | 
 | 	u32 *p; | 
 |  | 
 | 	memset(tlb_handler, 0, sizeof(tlb_handler)); | 
 | 	p = tlb_handler; | 
 |  | 
 | 	i_mfc0(&p, K0, C0_BADVADDR); | 
 | 	i_lui(&p, K1, rel_hi(pgdc)); /* cp0 delay */ | 
 | 	i_lw(&p, K1, rel_lo(pgdc), K1); | 
 | 	i_srl(&p, K0, K0, 22); /* load delay */ | 
 | 	i_sll(&p, K0, K0, 2); | 
 | 	i_addu(&p, K1, K1, K0); | 
 | 	i_mfc0(&p, K0, C0_CONTEXT); | 
 | 	i_lw(&p, K1, 0, K1); /* cp0 delay */ | 
 | 	i_andi(&p, K0, K0, 0xffc); /* load delay */ | 
 | 	i_addu(&p, K1, K1, K0); | 
 | 	i_lw(&p, K0, 0, K1); | 
 | 	i_nop(&p); /* load delay */ | 
 | 	i_mtc0(&p, K0, C0_ENTRYLO0); | 
 | 	i_mfc0(&p, K1, C0_EPC); /* cp0 delay */ | 
 | 	i_tlbwr(&p); /* cp0 delay */ | 
 | 	i_jr(&p, K1); | 
 | 	i_rfe(&p); /* branch delay */ | 
 |  | 
 | 	if (p > tlb_handler + 32) | 
 | 		panic("TLB refill handler space exceeded"); | 
 |  | 
 | 	printk("Synthesized TLB handler (%u instructions).\n", | 
 | 	       (unsigned int)(p - tlb_handler)); | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < (p - tlb_handler); i++) | 
 | 			printk("%08x\n", tlb_handler[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	memcpy((void *)CAC_BASE, tlb_handler, 0x80); | 
 | 	flush_icache_range(CAC_BASE, CAC_BASE + 0x80); | 
 | } | 
 |  | 
 | /* | 
 |  * The R4000 TLB handler is much more complicated. We have two | 
 |  * consecutive handler areas with 32 instructions space each. | 
 |  * Since they aren't used at the same time, we can overflow in the | 
 |  * other one.To keep things simple, we first assume linear space, | 
 |  * then we relocate it to the final handler layout as needed. | 
 |  */ | 
 | static __initdata u32 final_handler[64]; | 
 |  | 
 | /* | 
 |  * Hazards | 
 |  * | 
 |  * From the IDT errata for the QED RM5230 (Nevada), processor revision 1.0: | 
 |  * 2. A timing hazard exists for the TLBP instruction. | 
 |  * | 
 |  *      stalling_instruction | 
 |  *      TLBP | 
 |  * | 
 |  * The JTLB is being read for the TLBP throughout the stall generated by the | 
 |  * previous instruction. This is not really correct as the stalling instruction | 
 |  * can modify the address used to access the JTLB.  The failure symptom is that | 
 |  * the TLBP instruction will use an address created for the stalling instruction | 
 |  * and not the address held in C0_ENHI and thus report the wrong results. | 
 |  * | 
 |  * The software work-around is to not allow the instruction preceding the TLBP | 
 |  * to stall - make it an NOP or some other instruction guaranteed not to stall. | 
 |  * | 
 |  * Errata 2 will not be fixed.  This errata is also on the R5000. | 
 |  * | 
 |  * As if we MIPS hackers wouldn't know how to nop pipelines happy ... | 
 |  */ | 
 | static __init void __attribute__((unused)) build_tlb_probe_entry(u32 **p) | 
 | { | 
 | 	switch (current_cpu_data.cputype) { | 
 | 	case CPU_R5000: | 
 | 	case CPU_R5000A: | 
 | 	case CPU_NEVADA: | 
 | 		i_nop(p); | 
 | 		i_tlbp(p); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		i_tlbp(p); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Write random or indexed TLB entry, and care about the hazards from | 
 |  * the preceeding mtc0 and for the following eret. | 
 |  */ | 
 | enum tlb_write_entry { tlb_random, tlb_indexed }; | 
 |  | 
 | static __init void build_tlb_write_entry(u32 **p, struct label **l, | 
 | 					 struct reloc **r, | 
 | 					 enum tlb_write_entry wmode) | 
 | { | 
 | 	void(*tlbw)(u32 **) = NULL; | 
 |  | 
 | 	switch (wmode) { | 
 | 	case tlb_random: tlbw = i_tlbwr; break; | 
 | 	case tlb_indexed: tlbw = i_tlbwi; break; | 
 | 	} | 
 |  | 
 | 	switch (current_cpu_data.cputype) { | 
 | 	case CPU_R4000PC: | 
 | 	case CPU_R4000SC: | 
 | 	case CPU_R4000MC: | 
 | 	case CPU_R4400PC: | 
 | 	case CPU_R4400SC: | 
 | 	case CPU_R4400MC: | 
 | 		/* | 
 | 		 * This branch uses up a mtc0 hazard nop slot and saves | 
 | 		 * two nops after the tlbw instruction. | 
 | 		 */ | 
 | 		il_bgezl(p, r, 0, label_tlbw_hazard); | 
 | 		tlbw(p); | 
 | 		l_tlbw_hazard(l, *p); | 
 | 		i_nop(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_R4600: | 
 | 	case CPU_R4700: | 
 | 	case CPU_R5000: | 
 | 	case CPU_R5000A: | 
 | 	case CPU_5KC: | 
 | 	case CPU_TX49XX: | 
 | 	case CPU_AU1000: | 
 | 	case CPU_AU1100: | 
 | 	case CPU_AU1500: | 
 | 	case CPU_AU1550: | 
 | 		i_nop(p); | 
 | 		tlbw(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_R10000: | 
 | 	case CPU_R12000: | 
 | 	case CPU_4KC: | 
 | 	case CPU_SB1: | 
 | 	case CPU_4KSC: | 
 | 	case CPU_20KC: | 
 | 	case CPU_25KF: | 
 | 		tlbw(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_NEVADA: | 
 | 		i_nop(p); /* QED specifies 2 nops hazard */ | 
 | 		/* | 
 | 		 * This branch uses up a mtc0 hazard nop slot and saves | 
 | 		 * a nop after the tlbw instruction. | 
 | 		 */ | 
 | 		il_bgezl(p, r, 0, label_tlbw_hazard); | 
 | 		tlbw(p); | 
 | 		l_tlbw_hazard(l, *p); | 
 | 		break; | 
 |  | 
 | 	case CPU_RM7000: | 
 | 		i_nop(p); | 
 | 		i_nop(p); | 
 | 		i_nop(p); | 
 | 		i_nop(p); | 
 | 		tlbw(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_4KEC: | 
 | 	case CPU_24K: | 
 | 		i_ehb(p); | 
 | 		tlbw(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_RM9000: | 
 | 		/* | 
 | 		 * When the JTLB is updated by tlbwi or tlbwr, a subsequent | 
 | 		 * use of the JTLB for instructions should not occur for 4 | 
 | 		 * cpu cycles and use for data translations should not occur | 
 | 		 * for 3 cpu cycles. | 
 | 		 */ | 
 | 		i_ssnop(p); | 
 | 		i_ssnop(p); | 
 | 		i_ssnop(p); | 
 | 		i_ssnop(p); | 
 | 		tlbw(p); | 
 | 		i_ssnop(p); | 
 | 		i_ssnop(p); | 
 | 		i_ssnop(p); | 
 | 		i_ssnop(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_VR4111: | 
 | 	case CPU_VR4121: | 
 | 	case CPU_VR4122: | 
 | 	case CPU_VR4181: | 
 | 	case CPU_VR4181A: | 
 | 		i_nop(p); | 
 | 		i_nop(p); | 
 | 		tlbw(p); | 
 | 		i_nop(p); | 
 | 		i_nop(p); | 
 | 		break; | 
 |  | 
 | 	case CPU_VR4131: | 
 | 	case CPU_VR4133: | 
 | 		i_nop(p); | 
 | 		i_nop(p); | 
 | 		tlbw(p); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		panic("No TLB refill handler yet (CPU type: %d)", | 
 | 		      current_cpu_data.cputype); | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_MIPS64 | 
 | /* | 
 |  * TMP and PTR are scratch. | 
 |  * TMP will be clobbered, PTR will hold the pmd entry. | 
 |  */ | 
 | static __init void | 
 | build_get_pmde64(u32 **p, struct label **l, struct reloc **r, | 
 | 		 unsigned int tmp, unsigned int ptr) | 
 | { | 
 | 	long pgdc = (long)pgd_current; | 
 |  | 
 | 	/* | 
 | 	 * The vmalloc handling is not in the hotpath. | 
 | 	 */ | 
 | 	i_dmfc0(p, tmp, C0_BADVADDR); | 
 | 	il_bltz(p, r, tmp, label_vmalloc); | 
 | 	/* No i_nop needed here, since the next insn doesn't touch TMP. */ | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* | 
 | 	 * 64 bit SMP has the lower part of &pgd_current[smp_processor_id()] | 
 | 	 * stored in CONTEXT. | 
 | 	 */ | 
 | 	if (in_compat_space_p(pgdc)) { | 
 | 		i_dmfc0(p, ptr, C0_CONTEXT); | 
 | 		i_dsra(p, ptr, ptr, 23); | 
 | 		i_ld(p, ptr, 0, ptr); | 
 | 	} else { | 
 | #ifdef CONFIG_BUILD_ELF64 | 
 | 		i_dmfc0(p, ptr, C0_CONTEXT); | 
 | 		i_dsrl(p, ptr, ptr, 23); | 
 | 		i_dsll(p, ptr, ptr, 3); | 
 | 		i_LA_mostly(p, tmp, pgdc); | 
 | 		i_daddu(p, ptr, ptr, tmp); | 
 | 		i_dmfc0(p, tmp, C0_BADVADDR); | 
 | 		i_ld(p, ptr, rel_lo(pgdc), ptr); | 
 | #else | 
 | 		i_dmfc0(p, ptr, C0_CONTEXT); | 
 | 		i_lui(p, tmp, rel_highest(pgdc)); | 
 | 		i_dsll(p, ptr, ptr, 9); | 
 | 		i_daddiu(p, tmp, tmp, rel_higher(pgdc)); | 
 | 		i_dsrl32(p, ptr, ptr, 0); | 
 | 		i_and(p, ptr, ptr, tmp); | 
 | 		i_dmfc0(p, tmp, C0_BADVADDR); | 
 | 		i_ld(p, ptr, 0, ptr); | 
 | #endif | 
 | 	} | 
 | #else | 
 | 	i_LA_mostly(p, ptr, pgdc); | 
 | 	i_ld(p, ptr, rel_lo(pgdc), ptr); | 
 | #endif | 
 |  | 
 | 	l_vmalloc_done(l, *p); | 
 | 	i_dsrl(p, tmp, tmp, PGDIR_SHIFT-3); /* get pgd offset in bytes */ | 
 | 	i_andi(p, tmp, tmp, (PTRS_PER_PGD - 1)<<3); | 
 | 	i_daddu(p, ptr, ptr, tmp); /* add in pgd offset */ | 
 | 	i_dmfc0(p, tmp, C0_BADVADDR); /* get faulting address */ | 
 | 	i_ld(p, ptr, 0, ptr); /* get pmd pointer */ | 
 | 	i_dsrl(p, tmp, tmp, PMD_SHIFT-3); /* get pmd offset in bytes */ | 
 | 	i_andi(p, tmp, tmp, (PTRS_PER_PMD - 1)<<3); | 
 | 	i_daddu(p, ptr, ptr, tmp); /* add in pmd offset */ | 
 | } | 
 |  | 
 | /* | 
 |  * BVADDR is the faulting address, PTR is scratch. | 
 |  * PTR will hold the pgd for vmalloc. | 
 |  */ | 
 | static __init void | 
 | build_get_pgd_vmalloc64(u32 **p, struct label **l, struct reloc **r, | 
 | 			unsigned int bvaddr, unsigned int ptr) | 
 | { | 
 | 	long swpd = (long)swapper_pg_dir; | 
 |  | 
 | 	l_vmalloc(l, *p); | 
 | 	i_LA(p, ptr, VMALLOC_START); | 
 | 	i_dsubu(p, bvaddr, bvaddr, ptr); | 
 |  | 
 | 	if (in_compat_space_p(swpd) && !rel_lo(swpd)) { | 
 | 		il_b(p, r, label_vmalloc_done); | 
 | 		i_lui(p, ptr, rel_hi(swpd)); | 
 | 	} else { | 
 | 		i_LA_mostly(p, ptr, swpd); | 
 | 		il_b(p, r, label_vmalloc_done); | 
 | 		i_daddiu(p, ptr, ptr, rel_lo(swpd)); | 
 | 	} | 
 | } | 
 |  | 
 | #else /* !CONFIG_MIPS64 */ | 
 |  | 
 | /* | 
 |  * TMP and PTR are scratch. | 
 |  * TMP will be clobbered, PTR will hold the pgd entry. | 
 |  */ | 
 | static __init void __attribute__((unused)) | 
 | build_get_pgde32(u32 **p, unsigned int tmp, unsigned int ptr) | 
 | { | 
 | 	long pgdc = (long)pgd_current; | 
 |  | 
 | 	/* 32 bit SMP has smp_processor_id() stored in CONTEXT. */ | 
 | #ifdef CONFIG_SMP | 
 | 	i_mfc0(p, ptr, C0_CONTEXT); | 
 | 	i_LA_mostly(p, tmp, pgdc); | 
 | 	i_srl(p, ptr, ptr, 23); | 
 | 	i_sll(p, ptr, ptr, 2); | 
 | 	i_addu(p, ptr, tmp, ptr); | 
 | #else | 
 | 	i_LA_mostly(p, ptr, pgdc); | 
 | #endif | 
 | 	i_mfc0(p, tmp, C0_BADVADDR); /* get faulting address */ | 
 | 	i_lw(p, ptr, rel_lo(pgdc), ptr); | 
 | 	i_srl(p, tmp, tmp, PGDIR_SHIFT); /* get pgd only bits */ | 
 | 	i_sll(p, tmp, tmp, PGD_T_LOG2); | 
 | 	i_addu(p, ptr, ptr, tmp); /* add in pgd offset */ | 
 | } | 
 |  | 
 | #endif /* !CONFIG_MIPS64 */ | 
 |  | 
 | static __init void build_adjust_context(u32 **p, unsigned int ctx) | 
 | { | 
 | 	unsigned int shift = 4 - (PTE_T_LOG2 + 1); | 
 | 	unsigned int mask = (PTRS_PER_PTE / 2 - 1) << (PTE_T_LOG2 + 1); | 
 |  | 
 | 	switch (current_cpu_data.cputype) { | 
 | 	case CPU_VR41XX: | 
 | 	case CPU_VR4111: | 
 | 	case CPU_VR4121: | 
 | 	case CPU_VR4122: | 
 | 	case CPU_VR4131: | 
 | 	case CPU_VR4181: | 
 | 	case CPU_VR4181A: | 
 | 	case CPU_VR4133: | 
 | 		shift += 2; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (shift) | 
 | 		i_SRL(p, ctx, ctx, shift); | 
 | 	i_andi(p, ctx, ctx, mask); | 
 | } | 
 |  | 
 | static __init void build_get_ptep(u32 **p, unsigned int tmp, unsigned int ptr) | 
 | { | 
 | 	/* | 
 | 	 * Bug workaround for the Nevada. It seems as if under certain | 
 | 	 * circumstances the move from cp0_context might produce a | 
 | 	 * bogus result when the mfc0 instruction and its consumer are | 
 | 	 * in a different cacheline or a load instruction, probably any | 
 | 	 * memory reference, is between them. | 
 | 	 */ | 
 | 	switch (current_cpu_data.cputype) { | 
 | 	case CPU_NEVADA: | 
 | 		i_LW(p, ptr, 0, ptr); | 
 | 		GET_CONTEXT(p, tmp); /* get context reg */ | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		GET_CONTEXT(p, tmp); /* get context reg */ | 
 | 		i_LW(p, ptr, 0, ptr); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	build_adjust_context(p, tmp); | 
 | 	i_ADDU(p, ptr, ptr, tmp); /* add in offset */ | 
 | } | 
 |  | 
 | static __init void build_update_entries(u32 **p, unsigned int tmp, | 
 | 					unsigned int ptep) | 
 | { | 
 | 	/* | 
 | 	 * 64bit address support (36bit on a 32bit CPU) in a 32bit | 
 | 	 * Kernel is a special case. Only a few CPUs use it. | 
 | 	 */ | 
 | #ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (cpu_has_64bits) { | 
 | 		i_ld(p, tmp, 0, ptep); /* get even pte */ | 
 | 		i_ld(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ | 
 | 		i_dsrl(p, tmp, tmp, 6); /* convert to entrylo0 */ | 
 | 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ | 
 | 		i_dsrl(p, ptep, ptep, 6); /* convert to entrylo1 */ | 
 | 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ | 
 | 	} else { | 
 | 		int pte_off_even = sizeof(pte_t) / 2; | 
 | 		int pte_off_odd = pte_off_even + sizeof(pte_t); | 
 |  | 
 | 		/* The pte entries are pre-shifted */ | 
 | 		i_lw(p, tmp, pte_off_even, ptep); /* get even pte */ | 
 | 		i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ | 
 | 		i_lw(p, ptep, pte_off_odd, ptep); /* get odd pte */ | 
 | 		i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ | 
 | 	} | 
 | #else | 
 | 	i_LW(p, tmp, 0, ptep); /* get even pte */ | 
 | 	i_LW(p, ptep, sizeof(pte_t), ptep); /* get odd pte */ | 
 | 	if (r45k_bvahwbug()) | 
 | 		build_tlb_probe_entry(p); | 
 | 	i_SRL(p, tmp, tmp, 6); /* convert to entrylo0 */ | 
 | 	if (r4k_250MHZhwbug()) | 
 | 		i_mtc0(p, 0, C0_ENTRYLO0); | 
 | 	i_mtc0(p, tmp, C0_ENTRYLO0); /* load it */ | 
 | 	i_SRL(p, ptep, ptep, 6); /* convert to entrylo1 */ | 
 | 	if (r45k_bvahwbug()) | 
 | 		i_mfc0(p, tmp, C0_INDEX); | 
 | 	if (r4k_250MHZhwbug()) | 
 | 		i_mtc0(p, 0, C0_ENTRYLO1); | 
 | 	i_mtc0(p, ptep, C0_ENTRYLO1); /* load it */ | 
 | #endif | 
 | } | 
 |  | 
 | static void __init build_r4000_tlb_refill_handler(void) | 
 | { | 
 | 	u32 *p = tlb_handler; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 | 	u32 *f; | 
 | 	unsigned int final_len; | 
 |  | 
 | 	memset(tlb_handler, 0, sizeof(tlb_handler)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 | 	memset(final_handler, 0, sizeof(final_handler)); | 
 |  | 
 | 	/* | 
 | 	 * create the plain linear handler | 
 | 	 */ | 
 | 	if (bcm1250_m3_war()) { | 
 | 		i_MFC0(&p, K0, C0_BADVADDR); | 
 | 		i_MFC0(&p, K1, C0_ENTRYHI); | 
 | 		i_xor(&p, K0, K0, K1); | 
 | 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1); | 
 | 		il_bnez(&p, &r, K0, label_leave); | 
 | 		/* No need for i_nop */ | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_MIPS64 | 
 | 	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */ | 
 | #else | 
 | 	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */ | 
 | #endif | 
 |  | 
 | 	build_get_ptep(&p, K0, K1); | 
 | 	build_update_entries(&p, K0, K1); | 
 | 	build_tlb_write_entry(&p, &l, &r, tlb_random); | 
 | 	l_leave(&l, p); | 
 | 	i_eret(&p); /* return from trap */ | 
 |  | 
 | #ifdef CONFIG_MIPS64 | 
 | 	build_get_pgd_vmalloc64(&p, &l, &r, K0, K1); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Overflow check: For the 64bit handler, we need at least one | 
 | 	 * free instruction slot for the wrap-around branch. In worst | 
 | 	 * case, if the intended insertion point is a delay slot, we | 
 | 	 * need three, with the the second nop'ed and the third being | 
 | 	 * unused. | 
 | 	 */ | 
 | #ifdef CONFIG_MIPS32 | 
 | 	if ((p - tlb_handler) > 64) | 
 | 		panic("TLB refill handler space exceeded"); | 
 | #else | 
 | 	if (((p - tlb_handler) > 63) | 
 | 	    || (((p - tlb_handler) > 61) | 
 | 		&& insn_has_bdelay(relocs, tlb_handler + 29))) | 
 | 		panic("TLB refill handler space exceeded"); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * Now fold the handler in the TLB refill handler space. | 
 | 	 */ | 
 | #ifdef CONFIG_MIPS32 | 
 | 	f = final_handler; | 
 | 	/* Simplest case, just copy the handler. */ | 
 | 	copy_handler(relocs, labels, tlb_handler, p, f); | 
 | 	final_len = p - tlb_handler; | 
 | #else /* CONFIG_MIPS64 */ | 
 | 	f = final_handler + 32; | 
 | 	if ((p - tlb_handler) <= 32) { | 
 | 		/* Just copy the handler. */ | 
 | 		copy_handler(relocs, labels, tlb_handler, p, f); | 
 | 		final_len = p - tlb_handler; | 
 | 	} else { | 
 | 		u32 *split = tlb_handler + 30; | 
 |  | 
 | 		/* | 
 | 		 * Find the split point. | 
 | 		 */ | 
 | 		if (insn_has_bdelay(relocs, split - 1)) | 
 | 			split--; | 
 |  | 
 | 		/* Copy first part of the handler. */ | 
 | 		copy_handler(relocs, labels, tlb_handler, split, f); | 
 | 		f += split - tlb_handler; | 
 |  | 
 | 		/* Insert branch. */ | 
 | 		l_split(&l, final_handler); | 
 | 		il_b(&f, &r, label_split); | 
 | 		if (insn_has_bdelay(relocs, split)) | 
 | 			i_nop(&f); | 
 | 		else { | 
 | 			copy_handler(relocs, labels, split, split + 1, f); | 
 | 			move_labels(labels, f, f + 1, -1); | 
 | 			f++; | 
 | 			split++; | 
 | 		} | 
 |  | 
 | 		/* Copy the rest of the handler. */ | 
 | 		copy_handler(relocs, labels, split, p, final_handler); | 
 | 		final_len = (f - (final_handler + 32)) + (p - split); | 
 | 	} | 
 | #endif /* CONFIG_MIPS64 */ | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB refill handler (%u instructions).\n", | 
 | 	       final_len); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < 64; i++) | 
 | 			printk("%08x\n", final_handler[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	memcpy((void *)CAC_BASE, final_handler, 0x100); | 
 | 	flush_icache_range(CAC_BASE, CAC_BASE + 0x100); | 
 | } | 
 |  | 
 | /* | 
 |  * TLB load/store/modify handlers. | 
 |  * | 
 |  * Only the fastpath gets synthesized at runtime, the slowpath for | 
 |  * do_page_fault remains normal asm. | 
 |  */ | 
 | extern void tlb_do_page_fault_0(void); | 
 | extern void tlb_do_page_fault_1(void); | 
 |  | 
 | #define __tlb_handler_align \ | 
 | 	__attribute__((__aligned__(1 << CONFIG_MIPS_L1_CACHE_SHIFT))) | 
 |  | 
 | /* | 
 |  * 128 instructions for the fastpath handler is generous and should | 
 |  * never be exceeded. | 
 |  */ | 
 | #define FASTPATH_SIZE 128 | 
 |  | 
 | u32 __tlb_handler_align handle_tlbl[FASTPATH_SIZE]; | 
 | u32 __tlb_handler_align handle_tlbs[FASTPATH_SIZE]; | 
 | u32 __tlb_handler_align handle_tlbm[FASTPATH_SIZE]; | 
 |  | 
 | static void __init | 
 | iPTE_LW(u32 **p, struct label **l, unsigned int pte, int offset, | 
 | 	unsigned int ptr) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | # ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (cpu_has_64bits) | 
 | 		i_lld(p, pte, offset, ptr); | 
 | 	else | 
 | # endif | 
 | 		i_LL(p, pte, offset, ptr); | 
 | #else | 
 | # ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (cpu_has_64bits) | 
 | 		i_ld(p, pte, offset, ptr); | 
 | 	else | 
 | # endif | 
 | 		i_LW(p, pte, offset, ptr); | 
 | #endif | 
 | } | 
 |  | 
 | static void __init | 
 | iPTE_SW(u32 **p, struct reloc **r, unsigned int pte, int offset, | 
 | 	unsigned int ptr) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | # ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (cpu_has_64bits) | 
 | 		i_scd(p, pte, offset, ptr); | 
 | 	else | 
 | # endif | 
 | 		i_SC(p, pte, offset, ptr); | 
 |  | 
 | 	if (r10000_llsc_war()) | 
 | 		il_beqzl(p, r, pte, label_smp_pgtable_change); | 
 | 	else | 
 | 		il_beqz(p, r, pte, label_smp_pgtable_change); | 
 |  | 
 | # ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (!cpu_has_64bits) { | 
 | 		/* no i_nop needed */ | 
 | 		i_ll(p, pte, sizeof(pte_t) / 2, ptr); | 
 | 		i_ori(p, pte, pte, _PAGE_VALID); | 
 | 		i_sc(p, pte, sizeof(pte_t) / 2, ptr); | 
 | 		il_beqz(p, r, pte, label_smp_pgtable_change); | 
 | 		/* no i_nop needed */ | 
 | 		i_lw(p, pte, 0, ptr); | 
 | 	} else | 
 | 		i_nop(p); | 
 | # else | 
 | 	i_nop(p); | 
 | # endif | 
 | #else | 
 | # ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (cpu_has_64bits) | 
 | 		i_sd(p, pte, offset, ptr); | 
 | 	else | 
 | # endif | 
 | 		i_SW(p, pte, offset, ptr); | 
 |  | 
 | # ifdef CONFIG_64BIT_PHYS_ADDR | 
 | 	if (!cpu_has_64bits) { | 
 | 		i_lw(p, pte, sizeof(pte_t) / 2, ptr); | 
 | 		i_ori(p, pte, pte, _PAGE_VALID); | 
 | 		i_sw(p, pte, sizeof(pte_t) / 2, ptr); | 
 | 		i_lw(p, pte, 0, ptr); | 
 | 	} | 
 | # endif | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Check if PTE is present, if not then jump to LABEL. PTR points to | 
 |  * the page table where this PTE is located, PTE will be re-loaded | 
 |  * with it's original value. | 
 |  */ | 
 | static void __init | 
 | build_pte_present(u32 **p, struct label **l, struct reloc **r, | 
 | 		  unsigned int pte, unsigned int ptr, enum label_id lid) | 
 | { | 
 | 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); | 
 | 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_READ); | 
 | 	il_bnez(p, r, pte, lid); | 
 | 	iPTE_LW(p, l, pte, 0, ptr); | 
 | } | 
 |  | 
 | /* Make PTE valid, store result in PTR. */ | 
 | static void __init | 
 | build_make_valid(u32 **p, struct reloc **r, unsigned int pte, | 
 | 		 unsigned int ptr) | 
 | { | 
 | 	i_ori(p, pte, pte, _PAGE_VALID | _PAGE_ACCESSED); | 
 | 	iPTE_SW(p, r, pte, 0, ptr); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if PTE can be written to, if not branch to LABEL. Regardless | 
 |  * restore PTE with value from PTR when done. | 
 |  */ | 
 | static void __init | 
 | build_pte_writable(u32 **p, struct label **l, struct reloc **r, | 
 | 		   unsigned int pte, unsigned int ptr, enum label_id lid) | 
 | { | 
 | 	i_andi(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); | 
 | 	i_xori(p, pte, pte, _PAGE_PRESENT | _PAGE_WRITE); | 
 | 	il_bnez(p, r, pte, lid); | 
 | 	iPTE_LW(p, l, pte, 0, ptr); | 
 | } | 
 |  | 
 | /* Make PTE writable, update software status bits as well, then store | 
 |  * at PTR. | 
 |  */ | 
 | static void __init | 
 | build_make_write(u32 **p, struct reloc **r, unsigned int pte, | 
 | 		 unsigned int ptr) | 
 | { | 
 | 	i_ori(p, pte, pte, | 
 | 	      _PAGE_ACCESSED | _PAGE_MODIFIED | _PAGE_VALID | _PAGE_DIRTY); | 
 | 	iPTE_SW(p, r, pte, 0, ptr); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if PTE can be modified, if not branch to LABEL. Regardless | 
 |  * restore PTE with value from PTR when done. | 
 |  */ | 
 | static void __init | 
 | build_pte_modifiable(u32 **p, struct label **l, struct reloc **r, | 
 | 		     unsigned int pte, unsigned int ptr, enum label_id lid) | 
 | { | 
 | 	i_andi(p, pte, pte, _PAGE_WRITE); | 
 | 	il_beqz(p, r, pte, lid); | 
 | 	iPTE_LW(p, l, pte, 0, ptr); | 
 | } | 
 |  | 
 | /* | 
 |  * R3000 style TLB load/store/modify handlers. | 
 |  */ | 
 |  | 
 | /* This places the pte in the page table at PTR into ENTRYLO0. */ | 
 | static void __init | 
 | build_r3000_pte_reload(u32 **p, unsigned int ptr) | 
 | { | 
 | 	i_lw(p, ptr, 0, ptr); | 
 | 	i_nop(p); /* load delay */ | 
 | 	i_mtc0(p, ptr, C0_ENTRYLO0); | 
 | 	i_nop(p); /* cp0 delay */ | 
 | } | 
 |  | 
 | /* | 
 |  * The index register may have the probe fail bit set, | 
 |  * because we would trap on access kseg2, i.e. without refill. | 
 |  */ | 
 | static void __init | 
 | build_r3000_tlb_write(u32 **p, struct label **l, struct reloc **r, | 
 | 		      unsigned int tmp) | 
 | { | 
 | 	i_mfc0(p, tmp, C0_INDEX); | 
 | 	i_nop(p); /* cp0 delay */ | 
 | 	il_bltz(p, r, tmp, label_r3000_write_probe_fail); | 
 | 	i_nop(p); /* branch delay */ | 
 | 	i_tlbwi(p); | 
 | 	il_b(p, r, label_r3000_write_probe_ok); | 
 | 	i_nop(p); /* branch delay */ | 
 | 	l_r3000_write_probe_fail(l, *p); | 
 | 	i_tlbwr(p); | 
 | 	l_r3000_write_probe_ok(l, *p); | 
 | } | 
 |  | 
 | static void __init | 
 | build_r3000_tlbchange_handler_head(u32 **p, unsigned int pte, | 
 | 				   unsigned int ptr) | 
 | { | 
 | 	long pgdc = (long)pgd_current; | 
 |  | 
 | 	i_mfc0(p, pte, C0_BADVADDR); | 
 | 	i_lui(p, ptr, rel_hi(pgdc)); /* cp0 delay */ | 
 | 	i_lw(p, ptr, rel_lo(pgdc), ptr); | 
 | 	i_srl(p, pte, pte, 22); /* load delay */ | 
 | 	i_sll(p, pte, pte, 2); | 
 | 	i_addu(p, ptr, ptr, pte); | 
 | 	i_mfc0(p, pte, C0_CONTEXT); | 
 | 	i_lw(p, ptr, 0, ptr); /* cp0 delay */ | 
 | 	i_andi(p, pte, pte, 0xffc); /* load delay */ | 
 | 	i_addu(p, ptr, ptr, pte); | 
 | 	i_lw(p, pte, 0, ptr); | 
 | 	i_nop(p); /* load delay */ | 
 | 	i_tlbp(p); | 
 | } | 
 |  | 
 | static void __init | 
 | build_r3000_tlbchange_handler_tail(u32 **p, unsigned int tmp) | 
 | { | 
 | 	i_mfc0(p, tmp, C0_EPC); | 
 | 	i_nop(p); /* cp0 delay */ | 
 | 	i_jr(p, tmp); | 
 | 	i_rfe(p); /* branch delay */ | 
 | } | 
 |  | 
 | static void __init build_r3000_tlb_load_handler(void) | 
 | { | 
 | 	u32 *p = handle_tlbl; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 |  | 
 | 	memset(handle_tlbl, 0, sizeof(handle_tlbl)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 |  | 
 | 	build_r3000_tlbchange_handler_head(&p, K0, K1); | 
 | 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl); | 
 | 	build_make_valid(&p, &r, K0, K1); | 
 | 	build_r3000_pte_reload(&p, K1); | 
 | 	build_r3000_tlb_write(&p, &l, &r, K0); | 
 | 	build_r3000_tlbchange_handler_tail(&p, K0); | 
 |  | 
 | 	l_nopage_tlbl(&l, p); | 
 | 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); | 
 | 	i_nop(&p); | 
 |  | 
 | 	if ((p - handle_tlbl) > FASTPATH_SIZE) | 
 | 		panic("TLB load handler fastpath space exceeded"); | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB load handler fastpath (%u instructions).\n", | 
 | 	       (unsigned int)(p - handle_tlbl)); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < FASTPATH_SIZE; i++) | 
 | 			printk("%08x\n", handle_tlbl[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	flush_icache_range((unsigned long)handle_tlbl, | 
 | 			   (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32)); | 
 | } | 
 |  | 
 | static void __init build_r3000_tlb_store_handler(void) | 
 | { | 
 | 	u32 *p = handle_tlbs; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 |  | 
 | 	memset(handle_tlbs, 0, sizeof(handle_tlbs)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 |  | 
 | 	build_r3000_tlbchange_handler_head(&p, K0, K1); | 
 | 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs); | 
 | 	build_make_write(&p, &r, K0, K1); | 
 | 	build_r3000_pte_reload(&p, K1); | 
 | 	build_r3000_tlb_write(&p, &l, &r, K0); | 
 | 	build_r3000_tlbchange_handler_tail(&p, K0); | 
 |  | 
 | 	l_nopage_tlbs(&l, p); | 
 | 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); | 
 | 	i_nop(&p); | 
 |  | 
 | 	if ((p - handle_tlbs) > FASTPATH_SIZE) | 
 | 		panic("TLB store handler fastpath space exceeded"); | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB store handler fastpath (%u instructions).\n", | 
 | 	       (unsigned int)(p - handle_tlbs)); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < FASTPATH_SIZE; i++) | 
 | 			printk("%08x\n", handle_tlbs[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	flush_icache_range((unsigned long)handle_tlbs, | 
 | 			   (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32)); | 
 | } | 
 |  | 
 | static void __init build_r3000_tlb_modify_handler(void) | 
 | { | 
 | 	u32 *p = handle_tlbm; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 |  | 
 | 	memset(handle_tlbm, 0, sizeof(handle_tlbm)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 |  | 
 | 	build_r3000_tlbchange_handler_head(&p, K0, K1); | 
 | 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm); | 
 | 	build_make_write(&p, &r, K0, K1); | 
 | 	build_r3000_pte_reload(&p, K1); | 
 | 	i_tlbwi(&p); | 
 | 	build_r3000_tlbchange_handler_tail(&p, K0); | 
 |  | 
 | 	l_nopage_tlbm(&l, p); | 
 | 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); | 
 | 	i_nop(&p); | 
 |  | 
 | 	if ((p - handle_tlbm) > FASTPATH_SIZE) | 
 | 		panic("TLB modify handler fastpath space exceeded"); | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n", | 
 | 	       (unsigned int)(p - handle_tlbm)); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < FASTPATH_SIZE; i++) | 
 | 			printk("%08x\n", handle_tlbm[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	flush_icache_range((unsigned long)handle_tlbm, | 
 | 			   (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32)); | 
 | } | 
 |  | 
 | /* | 
 |  * R4000 style TLB load/store/modify handlers. | 
 |  */ | 
 | static void __init | 
 | build_r4000_tlbchange_handler_head(u32 **p, struct label **l, | 
 | 				   struct reloc **r, unsigned int pte, | 
 | 				   unsigned int ptr) | 
 | { | 
 | #ifdef CONFIG_MIPS64 | 
 | 	build_get_pmde64(p, l, r, pte, ptr); /* get pmd in ptr */ | 
 | #else | 
 | 	build_get_pgde32(p, pte, ptr); /* get pgd in ptr */ | 
 | #endif | 
 |  | 
 | 	i_MFC0(p, pte, C0_BADVADDR); | 
 | 	i_LW(p, ptr, 0, ptr); | 
 | 	i_SRL(p, pte, pte, PAGE_SHIFT + PTE_ORDER - PTE_T_LOG2); | 
 | 	i_andi(p, pte, pte, (PTRS_PER_PTE - 1) << PTE_T_LOG2); | 
 | 	i_ADDU(p, ptr, ptr, pte); | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	l_smp_pgtable_change(l, *p); | 
 | # endif | 
 | 	iPTE_LW(p, l, pte, 0, ptr); /* get even pte */ | 
 | 	build_tlb_probe_entry(p); | 
 | } | 
 |  | 
 | static void __init | 
 | build_r4000_tlbchange_handler_tail(u32 **p, struct label **l, | 
 | 				   struct reloc **r, unsigned int tmp, | 
 | 				   unsigned int ptr) | 
 | { | 
 | 	i_ori(p, ptr, ptr, sizeof(pte_t)); | 
 | 	i_xori(p, ptr, ptr, sizeof(pte_t)); | 
 | 	build_update_entries(p, tmp, ptr); | 
 | 	build_tlb_write_entry(p, l, r, tlb_indexed); | 
 | 	l_leave(l, *p); | 
 | 	i_eret(p); /* return from trap */ | 
 |  | 
 | #ifdef CONFIG_MIPS64 | 
 | 	build_get_pgd_vmalloc64(p, l, r, tmp, ptr); | 
 | #endif | 
 | } | 
 |  | 
 | static void __init build_r4000_tlb_load_handler(void) | 
 | { | 
 | 	u32 *p = handle_tlbl; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 |  | 
 | 	memset(handle_tlbl, 0, sizeof(handle_tlbl)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 |  | 
 | 	if (bcm1250_m3_war()) { | 
 | 		i_MFC0(&p, K0, C0_BADVADDR); | 
 | 		i_MFC0(&p, K1, C0_ENTRYHI); | 
 | 		i_xor(&p, K0, K0, K1); | 
 | 		i_SRL(&p, K0, K0, PAGE_SHIFT + 1); | 
 | 		il_bnez(&p, &r, K0, label_leave); | 
 | 		/* No need for i_nop */ | 
 | 	} | 
 |  | 
 | 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); | 
 | 	build_pte_present(&p, &l, &r, K0, K1, label_nopage_tlbl); | 
 | 	build_make_valid(&p, &r, K0, K1); | 
 | 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); | 
 |  | 
 | 	l_nopage_tlbl(&l, p); | 
 | 	i_j(&p, (unsigned long)tlb_do_page_fault_0 & 0x0fffffff); | 
 | 	i_nop(&p); | 
 |  | 
 | 	if ((p - handle_tlbl) > FASTPATH_SIZE) | 
 | 		panic("TLB load handler fastpath space exceeded"); | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB load handler fastpath (%u instructions).\n", | 
 | 	       (unsigned int)(p - handle_tlbl)); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < FASTPATH_SIZE; i++) | 
 | 			printk("%08x\n", handle_tlbl[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	flush_icache_range((unsigned long)handle_tlbl, | 
 | 			   (unsigned long)handle_tlbl + FASTPATH_SIZE * sizeof(u32)); | 
 | } | 
 |  | 
 | static void __init build_r4000_tlb_store_handler(void) | 
 | { | 
 | 	u32 *p = handle_tlbs; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 |  | 
 | 	memset(handle_tlbs, 0, sizeof(handle_tlbs)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 |  | 
 | 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); | 
 | 	build_pte_writable(&p, &l, &r, K0, K1, label_nopage_tlbs); | 
 | 	build_make_write(&p, &r, K0, K1); | 
 | 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); | 
 |  | 
 | 	l_nopage_tlbs(&l, p); | 
 | 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); | 
 | 	i_nop(&p); | 
 |  | 
 | 	if ((p - handle_tlbs) > FASTPATH_SIZE) | 
 | 		panic("TLB store handler fastpath space exceeded"); | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB store handler fastpath (%u instructions).\n", | 
 | 	       (unsigned int)(p - handle_tlbs)); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < FASTPATH_SIZE; i++) | 
 | 			printk("%08x\n", handle_tlbs[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	flush_icache_range((unsigned long)handle_tlbs, | 
 | 			   (unsigned long)handle_tlbs + FASTPATH_SIZE * sizeof(u32)); | 
 | } | 
 |  | 
 | static void __init build_r4000_tlb_modify_handler(void) | 
 | { | 
 | 	u32 *p = handle_tlbm; | 
 | 	struct label *l = labels; | 
 | 	struct reloc *r = relocs; | 
 |  | 
 | 	memset(handle_tlbm, 0, sizeof(handle_tlbm)); | 
 | 	memset(labels, 0, sizeof(labels)); | 
 | 	memset(relocs, 0, sizeof(relocs)); | 
 |  | 
 | 	build_r4000_tlbchange_handler_head(&p, &l, &r, K0, K1); | 
 | 	build_pte_modifiable(&p, &l, &r, K0, K1, label_nopage_tlbm); | 
 | 	/* Present and writable bits set, set accessed and dirty bits. */ | 
 | 	build_make_write(&p, &r, K0, K1); | 
 | 	build_r4000_tlbchange_handler_tail(&p, &l, &r, K0, K1); | 
 |  | 
 | 	l_nopage_tlbm(&l, p); | 
 | 	i_j(&p, (unsigned long)tlb_do_page_fault_1 & 0x0fffffff); | 
 | 	i_nop(&p); | 
 |  | 
 | 	if ((p - handle_tlbm) > FASTPATH_SIZE) | 
 | 		panic("TLB modify handler fastpath space exceeded"); | 
 |  | 
 | 	resolve_relocs(relocs, labels); | 
 | 	printk("Synthesized TLB modify handler fastpath (%u instructions).\n", | 
 | 	       (unsigned int)(p - handle_tlbm)); | 
 |  | 
 | #ifdef DEBUG_TLB | 
 | 	{ | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < FASTPATH_SIZE; i++) | 
 | 			printk("%08x\n", handle_tlbm[i]); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	flush_icache_range((unsigned long)handle_tlbm, | 
 | 			   (unsigned long)handle_tlbm + FASTPATH_SIZE * sizeof(u32)); | 
 | } | 
 |  | 
 | void __init build_tlb_refill_handler(void) | 
 | { | 
 | 	/* | 
 | 	 * The refill handler is generated per-CPU, multi-node systems | 
 | 	 * may have local storage for it. The other handlers are only | 
 | 	 * needed once. | 
 | 	 */ | 
 | 	static int run_once = 0; | 
 |  | 
 | 	switch (current_cpu_data.cputype) { | 
 | 	case CPU_R2000: | 
 | 	case CPU_R3000: | 
 | 	case CPU_R3000A: | 
 | 	case CPU_R3081E: | 
 | 	case CPU_TX3912: | 
 | 	case CPU_TX3922: | 
 | 	case CPU_TX3927: | 
 | 		build_r3000_tlb_refill_handler(); | 
 | 		if (!run_once) { | 
 | 			build_r3000_tlb_load_handler(); | 
 | 			build_r3000_tlb_store_handler(); | 
 | 			build_r3000_tlb_modify_handler(); | 
 | 			run_once++; | 
 | 		} | 
 | 		break; | 
 |  | 
 | 	case CPU_R6000: | 
 | 	case CPU_R6000A: | 
 | 		panic("No R6000 TLB refill handler yet"); | 
 | 		break; | 
 |  | 
 | 	case CPU_R8000: | 
 | 		panic("No R8000 TLB refill handler yet"); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		build_r4000_tlb_refill_handler(); | 
 | 		if (!run_once) { | 
 | 			build_r4000_tlb_load_handler(); | 
 | 			build_r4000_tlb_store_handler(); | 
 | 			build_r4000_tlb_modify_handler(); | 
 | 			run_once++; | 
 | 		} | 
 | 	} | 
 | } |