| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * AMD SVM support | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 | #include <linux/kvm_host.h> | 
 |  | 
 | #include "irq.h" | 
 | #include "mmu.h" | 
 | #include "kvm_cache_regs.h" | 
 | #include "x86.h" | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/ftrace_event.h> | 
 | #include <linux/slab.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/kvm_para.h> | 
 |  | 
 | #include <asm/virtext.h> | 
 | #include "trace.h" | 
 |  | 
 | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
 |  | 
 | MODULE_AUTHOR("Qumranet"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | #define IOPM_ALLOC_ORDER 2 | 
 | #define MSRPM_ALLOC_ORDER 1 | 
 |  | 
 | #define SEG_TYPE_LDT 2 | 
 | #define SEG_TYPE_BUSY_TSS16 3 | 
 |  | 
 | #define SVM_FEATURE_NPT            (1 <<  0) | 
 | #define SVM_FEATURE_LBRV           (1 <<  1) | 
 | #define SVM_FEATURE_SVML           (1 <<  2) | 
 | #define SVM_FEATURE_NRIP           (1 <<  3) | 
 | #define SVM_FEATURE_TSC_RATE       (1 <<  4) | 
 | #define SVM_FEATURE_VMCB_CLEAN     (1 <<  5) | 
 | #define SVM_FEATURE_FLUSH_ASID     (1 <<  6) | 
 | #define SVM_FEATURE_DECODE_ASSIST  (1 <<  7) | 
 | #define SVM_FEATURE_PAUSE_FILTER   (1 << 10) | 
 |  | 
 | #define NESTED_EXIT_HOST	0	/* Exit handled on host level */ | 
 | #define NESTED_EXIT_DONE	1	/* Exit caused nested vmexit  */ | 
 | #define NESTED_EXIT_CONTINUE	2	/* Further checks needed      */ | 
 |  | 
 | #define DEBUGCTL_RESERVED_BITS (~(0x3fULL)) | 
 |  | 
 | static bool erratum_383_found __read_mostly; | 
 |  | 
 | static const u32 host_save_user_msrs[] = { | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE, | 
 | 	MSR_FS_BASE, | 
 | #endif | 
 | 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
 | }; | 
 |  | 
 | #define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs) | 
 |  | 
 | struct kvm_vcpu; | 
 |  | 
 | struct nested_state { | 
 | 	struct vmcb *hsave; | 
 | 	u64 hsave_msr; | 
 | 	u64 vm_cr_msr; | 
 | 	u64 vmcb; | 
 |  | 
 | 	/* These are the merged vectors */ | 
 | 	u32 *msrpm; | 
 |  | 
 | 	/* gpa pointers to the real vectors */ | 
 | 	u64 vmcb_msrpm; | 
 | 	u64 vmcb_iopm; | 
 |  | 
 | 	/* A VMEXIT is required but not yet emulated */ | 
 | 	bool exit_required; | 
 |  | 
 | 	/* | 
 | 	 * If we vmexit during an instruction emulation we need this to restore | 
 | 	 * the l1 guest rip after the emulation | 
 | 	 */ | 
 | 	unsigned long vmexit_rip; | 
 | 	unsigned long vmexit_rsp; | 
 | 	unsigned long vmexit_rax; | 
 |  | 
 | 	/* cache for intercepts of the guest */ | 
 | 	u32 intercept_cr; | 
 | 	u32 intercept_dr; | 
 | 	u32 intercept_exceptions; | 
 | 	u64 intercept; | 
 |  | 
 | 	/* Nested Paging related state */ | 
 | 	u64 nested_cr3; | 
 | }; | 
 |  | 
 | #define MSRPM_OFFSETS	16 | 
 | static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly; | 
 |  | 
 | struct vcpu_svm { | 
 | 	struct kvm_vcpu vcpu; | 
 | 	struct vmcb *vmcb; | 
 | 	unsigned long vmcb_pa; | 
 | 	struct svm_cpu_data *svm_data; | 
 | 	uint64_t asid_generation; | 
 | 	uint64_t sysenter_esp; | 
 | 	uint64_t sysenter_eip; | 
 |  | 
 | 	u64 next_rip; | 
 |  | 
 | 	u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS]; | 
 | 	struct { | 
 | 		u16 fs; | 
 | 		u16 gs; | 
 | 		u16 ldt; | 
 | 		u64 gs_base; | 
 | 	} host; | 
 |  | 
 | 	u32 *msrpm; | 
 |  | 
 | 	struct nested_state nested; | 
 |  | 
 | 	bool nmi_singlestep; | 
 |  | 
 | 	unsigned int3_injected; | 
 | 	unsigned long int3_rip; | 
 | 	u32 apf_reason; | 
 | }; | 
 |  | 
 | #define MSR_INVALID			0xffffffffU | 
 |  | 
 | static struct svm_direct_access_msrs { | 
 | 	u32 index;   /* Index of the MSR */ | 
 | 	bool always; /* True if intercept is always on */ | 
 | } direct_access_msrs[] = { | 
 | 	{ .index = MSR_STAR,				.always = true  }, | 
 | 	{ .index = MSR_IA32_SYSENTER_CS,		.always = true  }, | 
 | #ifdef CONFIG_X86_64 | 
 | 	{ .index = MSR_GS_BASE,				.always = true  }, | 
 | 	{ .index = MSR_FS_BASE,				.always = true  }, | 
 | 	{ .index = MSR_KERNEL_GS_BASE,			.always = true  }, | 
 | 	{ .index = MSR_LSTAR,				.always = true  }, | 
 | 	{ .index = MSR_CSTAR,				.always = true  }, | 
 | 	{ .index = MSR_SYSCALL_MASK,			.always = true  }, | 
 | #endif | 
 | 	{ .index = MSR_IA32_LASTBRANCHFROMIP,		.always = false }, | 
 | 	{ .index = MSR_IA32_LASTBRANCHTOIP,		.always = false }, | 
 | 	{ .index = MSR_IA32_LASTINTFROMIP,		.always = false }, | 
 | 	{ .index = MSR_IA32_LASTINTTOIP,		.always = false }, | 
 | 	{ .index = MSR_INVALID,				.always = false }, | 
 | }; | 
 |  | 
 | /* enable NPT for AMD64 and X86 with PAE */ | 
 | #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE) | 
 | static bool npt_enabled = true; | 
 | #else | 
 | static bool npt_enabled; | 
 | #endif | 
 | static int npt = 1; | 
 |  | 
 | module_param(npt, int, S_IRUGO); | 
 |  | 
 | static int nested = 1; | 
 | module_param(nested, int, S_IRUGO); | 
 |  | 
 | static void svm_flush_tlb(struct kvm_vcpu *vcpu); | 
 | static void svm_complete_interrupts(struct vcpu_svm *svm); | 
 |  | 
 | static int nested_svm_exit_handled(struct vcpu_svm *svm); | 
 | static int nested_svm_intercept(struct vcpu_svm *svm); | 
 | static int nested_svm_vmexit(struct vcpu_svm *svm); | 
 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
 | 				      bool has_error_code, u32 error_code); | 
 |  | 
 | enum { | 
 | 	VMCB_INTERCEPTS, /* Intercept vectors, TSC offset, | 
 | 			    pause filter count */ | 
 | 	VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */ | 
 | 	VMCB_ASID,	 /* ASID */ | 
 | 	VMCB_INTR,	 /* int_ctl, int_vector */ | 
 | 	VMCB_NPT,        /* npt_en, nCR3, gPAT */ | 
 | 	VMCB_CR,	 /* CR0, CR3, CR4, EFER */ | 
 | 	VMCB_DR,         /* DR6, DR7 */ | 
 | 	VMCB_DT,         /* GDT, IDT */ | 
 | 	VMCB_SEG,        /* CS, DS, SS, ES, CPL */ | 
 | 	VMCB_CR2,        /* CR2 only */ | 
 | 	VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */ | 
 | 	VMCB_DIRTY_MAX, | 
 | }; | 
 |  | 
 | /* TPR and CR2 are always written before VMRUN */ | 
 | #define VMCB_ALWAYS_DIRTY_MASK	((1U << VMCB_INTR) | (1U << VMCB_CR2)) | 
 |  | 
 | static inline void mark_all_dirty(struct vmcb *vmcb) | 
 | { | 
 | 	vmcb->control.clean = 0; | 
 | } | 
 |  | 
 | static inline void mark_all_clean(struct vmcb *vmcb) | 
 | { | 
 | 	vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1) | 
 | 			       & ~VMCB_ALWAYS_DIRTY_MASK; | 
 | } | 
 |  | 
 | static inline void mark_dirty(struct vmcb *vmcb, int bit) | 
 | { | 
 | 	vmcb->control.clean &= ~(1 << bit); | 
 | } | 
 |  | 
 | static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return container_of(vcpu, struct vcpu_svm, vcpu); | 
 | } | 
 |  | 
 | static void recalc_intercepts(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb_control_area *c, *h; | 
 | 	struct nested_state *g; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 |  | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return; | 
 |  | 
 | 	c = &svm->vmcb->control; | 
 | 	h = &svm->nested.hsave->control; | 
 | 	g = &svm->nested; | 
 |  | 
 | 	c->intercept_cr = h->intercept_cr | g->intercept_cr; | 
 | 	c->intercept_dr = h->intercept_dr | g->intercept_dr; | 
 | 	c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions; | 
 | 	c->intercept = h->intercept | g->intercept; | 
 | } | 
 |  | 
 | static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	if (is_guest_mode(&svm->vcpu)) | 
 | 		return svm->nested.hsave; | 
 | 	else | 
 | 		return svm->vmcb; | 
 | } | 
 |  | 
 | static inline void set_cr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_cr |= (1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_cr &= ~(1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	return vmcb->control.intercept_cr & (1U << bit); | 
 | } | 
 |  | 
 | static inline void set_dr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_dr |= (1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_dr &= ~(1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void set_exception_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_exceptions |= (1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept_exceptions &= ~(1U << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void set_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept |= (1ULL << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void clr_intercept(struct vcpu_svm *svm, int bit) | 
 | { | 
 | 	struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 	vmcb->control.intercept &= ~(1ULL << bit); | 
 |  | 
 | 	recalc_intercepts(svm); | 
 | } | 
 |  | 
 | static inline void enable_gif(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->vcpu.arch.hflags |= HF_GIF_MASK; | 
 | } | 
 |  | 
 | static inline void disable_gif(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->vcpu.arch.hflags &= ~HF_GIF_MASK; | 
 | } | 
 |  | 
 | static inline bool gif_set(struct vcpu_svm *svm) | 
 | { | 
 | 	return !!(svm->vcpu.arch.hflags & HF_GIF_MASK); | 
 | } | 
 |  | 
 | static unsigned long iopm_base; | 
 |  | 
 | struct kvm_ldttss_desc { | 
 | 	u16 limit0; | 
 | 	u16 base0; | 
 | 	unsigned base1:8, type:5, dpl:2, p:1; | 
 | 	unsigned limit1:4, zero0:3, g:1, base2:8; | 
 | 	u32 base3; | 
 | 	u32 zero1; | 
 | } __attribute__((packed)); | 
 |  | 
 | struct svm_cpu_data { | 
 | 	int cpu; | 
 |  | 
 | 	u64 asid_generation; | 
 | 	u32 max_asid; | 
 | 	u32 next_asid; | 
 | 	struct kvm_ldttss_desc *tss_desc; | 
 |  | 
 | 	struct page *save_area; | 
 | }; | 
 |  | 
 | static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); | 
 | static uint32_t svm_features; | 
 |  | 
 | struct svm_init_data { | 
 | 	int cpu; | 
 | 	int r; | 
 | }; | 
 |  | 
 | static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; | 
 |  | 
 | #define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges) | 
 | #define MSRS_RANGE_SIZE 2048 | 
 | #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) | 
 |  | 
 | static u32 svm_msrpm_offset(u32 msr) | 
 | { | 
 | 	u32 offset; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < NUM_MSR_MAPS; i++) { | 
 | 		if (msr < msrpm_ranges[i] || | 
 | 		    msr >= msrpm_ranges[i] + MSRS_IN_RANGE) | 
 | 			continue; | 
 |  | 
 | 		offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */ | 
 | 		offset += (i * MSRS_RANGE_SIZE);       /* add range offset */ | 
 |  | 
 | 		/* Now we have the u8 offset - but need the u32 offset */ | 
 | 		return offset / 4; | 
 | 	} | 
 |  | 
 | 	/* MSR not in any range */ | 
 | 	return MSR_INVALID; | 
 | } | 
 |  | 
 | #define MAX_INST_SIZE 15 | 
 |  | 
 | static inline void clgi(void) | 
 | { | 
 | 	asm volatile (__ex(SVM_CLGI)); | 
 | } | 
 |  | 
 | static inline void stgi(void) | 
 | { | 
 | 	asm volatile (__ex(SVM_STGI)); | 
 | } | 
 |  | 
 | static inline void invlpga(unsigned long addr, u32 asid) | 
 | { | 
 | 	asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid)); | 
 | } | 
 |  | 
 | static int get_npt_level(void) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	return PT64_ROOT_LEVEL; | 
 | #else | 
 | 	return PT32E_ROOT_LEVEL; | 
 | #endif | 
 | } | 
 |  | 
 | static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	vcpu->arch.efer = efer; | 
 | 	if (!npt_enabled && !(efer & EFER_LMA)) | 
 | 		efer &= ~EFER_LME; | 
 |  | 
 | 	to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME; | 
 | 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); | 
 | } | 
 |  | 
 | static int is_external_interrupt(u32 info) | 
 | { | 
 | 	info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; | 
 | 	return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); | 
 | } | 
 |  | 
 | static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u32 ret = 0; | 
 |  | 
 | 	if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) | 
 | 		ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS; | 
 | 	return ret & mask; | 
 | } | 
 |  | 
 | static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (mask == 0) | 
 | 		svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; | 
 | 	else | 
 | 		svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; | 
 |  | 
 | } | 
 |  | 
 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (svm->vmcb->control.next_rip != 0) | 
 | 		svm->next_rip = svm->vmcb->control.next_rip; | 
 |  | 
 | 	if (!svm->next_rip) { | 
 | 		if (emulate_instruction(vcpu, EMULTYPE_SKIP) != | 
 | 				EMULATE_DONE) | 
 | 			printk(KERN_DEBUG "%s: NOP\n", __func__); | 
 | 		return; | 
 | 	} | 
 | 	if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE) | 
 | 		printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n", | 
 | 		       __func__, kvm_rip_read(vcpu), svm->next_rip); | 
 |  | 
 | 	kvm_rip_write(vcpu, svm->next_rip); | 
 | 	svm_set_interrupt_shadow(vcpu, 0); | 
 | } | 
 |  | 
 | static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, | 
 | 				bool has_error_code, u32 error_code, | 
 | 				bool reinject) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * If we are within a nested VM we'd better #VMEXIT and let the guest | 
 | 	 * handle the exception | 
 | 	 */ | 
 | 	if (!reinject && | 
 | 	    nested_svm_check_exception(svm, nr, has_error_code, error_code)) | 
 | 		return; | 
 |  | 
 | 	if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) { | 
 | 		unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu); | 
 |  | 
 | 		/* | 
 | 		 * For guest debugging where we have to reinject #BP if some | 
 | 		 * INT3 is guest-owned: | 
 | 		 * Emulate nRIP by moving RIP forward. Will fail if injection | 
 | 		 * raises a fault that is not intercepted. Still better than | 
 | 		 * failing in all cases. | 
 | 		 */ | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 | 		rip = kvm_rip_read(&svm->vcpu); | 
 | 		svm->int3_rip = rip + svm->vmcb->save.cs.base; | 
 | 		svm->int3_injected = rip - old_rip; | 
 | 	} | 
 |  | 
 | 	svm->vmcb->control.event_inj = nr | 
 | 		| SVM_EVTINJ_VALID | 
 | 		| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0) | 
 | 		| SVM_EVTINJ_TYPE_EXEPT; | 
 | 	svm->vmcb->control.event_inj_err = error_code; | 
 | } | 
 |  | 
 | static void svm_init_erratum_383(void) | 
 | { | 
 | 	u32 low, high; | 
 | 	int err; | 
 | 	u64 val; | 
 |  | 
 | 	if (!cpu_has_amd_erratum(amd_erratum_383)) | 
 | 		return; | 
 |  | 
 | 	/* Use _safe variants to not break nested virtualization */ | 
 | 	val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err); | 
 | 	if (err) | 
 | 		return; | 
 |  | 
 | 	val |= (1ULL << 47); | 
 |  | 
 | 	low  = lower_32_bits(val); | 
 | 	high = upper_32_bits(val); | 
 |  | 
 | 	native_write_msr_safe(MSR_AMD64_DC_CFG, low, high); | 
 |  | 
 | 	erratum_383_found = true; | 
 | } | 
 |  | 
 | static int has_svm(void) | 
 | { | 
 | 	const char *msg; | 
 |  | 
 | 	if (!cpu_has_svm(&msg)) { | 
 | 		printk(KERN_INFO "has_svm: %s\n", msg); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void svm_hardware_disable(void *garbage) | 
 | { | 
 | 	cpu_svm_disable(); | 
 | } | 
 |  | 
 | static int svm_hardware_enable(void *garbage) | 
 | { | 
 |  | 
 | 	struct svm_cpu_data *sd; | 
 | 	uint64_t efer; | 
 | 	struct desc_ptr gdt_descr; | 
 | 	struct desc_struct *gdt; | 
 | 	int me = raw_smp_processor_id(); | 
 |  | 
 | 	rdmsrl(MSR_EFER, efer); | 
 | 	if (efer & EFER_SVME) | 
 | 		return -EBUSY; | 
 |  | 
 | 	if (!has_svm()) { | 
 | 		printk(KERN_ERR "svm_hardware_enable: err EOPNOTSUPP on %d\n", | 
 | 		       me); | 
 | 		return -EINVAL; | 
 | 	} | 
 | 	sd = per_cpu(svm_data, me); | 
 |  | 
 | 	if (!sd) { | 
 | 		printk(KERN_ERR "svm_hardware_enable: svm_data is NULL on %d\n", | 
 | 		       me); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	sd->asid_generation = 1; | 
 | 	sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; | 
 | 	sd->next_asid = sd->max_asid + 1; | 
 |  | 
 | 	native_store_gdt(&gdt_descr); | 
 | 	gdt = (struct desc_struct *)gdt_descr.address; | 
 | 	sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); | 
 |  | 
 | 	wrmsrl(MSR_EFER, efer | EFER_SVME); | 
 |  | 
 | 	wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT); | 
 |  | 
 | 	svm_init_erratum_383(); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_cpu_uninit(int cpu) | 
 | { | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id()); | 
 |  | 
 | 	if (!sd) | 
 | 		return; | 
 |  | 
 | 	per_cpu(svm_data, raw_smp_processor_id()) = NULL; | 
 | 	__free_page(sd->save_area); | 
 | 	kfree(sd); | 
 | } | 
 |  | 
 | static int svm_cpu_init(int cpu) | 
 | { | 
 | 	struct svm_cpu_data *sd; | 
 | 	int r; | 
 |  | 
 | 	sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); | 
 | 	if (!sd) | 
 | 		return -ENOMEM; | 
 | 	sd->cpu = cpu; | 
 | 	sd->save_area = alloc_page(GFP_KERNEL); | 
 | 	r = -ENOMEM; | 
 | 	if (!sd->save_area) | 
 | 		goto err_1; | 
 |  | 
 | 	per_cpu(svm_data, cpu) = sd; | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_1: | 
 | 	kfree(sd); | 
 | 	return r; | 
 |  | 
 | } | 
 |  | 
 | static bool valid_msr_intercept(u32 index) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) | 
 | 		if (direct_access_msrs[i].index == index) | 
 | 			return true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void set_msr_interception(u32 *msrpm, unsigned msr, | 
 | 				 int read, int write) | 
 | { | 
 | 	u8 bit_read, bit_write; | 
 | 	unsigned long tmp; | 
 | 	u32 offset; | 
 |  | 
 | 	/* | 
 | 	 * If this warning triggers extend the direct_access_msrs list at the | 
 | 	 * beginning of the file | 
 | 	 */ | 
 | 	WARN_ON(!valid_msr_intercept(msr)); | 
 |  | 
 | 	offset    = svm_msrpm_offset(msr); | 
 | 	bit_read  = 2 * (msr & 0x0f); | 
 | 	bit_write = 2 * (msr & 0x0f) + 1; | 
 | 	tmp       = msrpm[offset]; | 
 |  | 
 | 	BUG_ON(offset == MSR_INVALID); | 
 |  | 
 | 	read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp); | 
 | 	write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp); | 
 |  | 
 | 	msrpm[offset] = tmp; | 
 | } | 
 |  | 
 | static void svm_vcpu_init_msrpm(u32 *msrpm) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); | 
 |  | 
 | 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
 | 		if (!direct_access_msrs[i].always) | 
 | 			continue; | 
 |  | 
 | 		set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1); | 
 | 	} | 
 | } | 
 |  | 
 | static void add_msr_offset(u32 offset) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < MSRPM_OFFSETS; ++i) { | 
 |  | 
 | 		/* Offset already in list? */ | 
 | 		if (msrpm_offsets[i] == offset) | 
 | 			return; | 
 |  | 
 | 		/* Slot used by another offset? */ | 
 | 		if (msrpm_offsets[i] != MSR_INVALID) | 
 | 			continue; | 
 |  | 
 | 		/* Add offset to list */ | 
 | 		msrpm_offsets[i] = offset; | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If this BUG triggers the msrpm_offsets table has an overflow. Just | 
 | 	 * increase MSRPM_OFFSETS in this case. | 
 | 	 */ | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static void init_msrpm_offsets(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets)); | 
 |  | 
 | 	for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) { | 
 | 		u32 offset; | 
 |  | 
 | 		offset = svm_msrpm_offset(direct_access_msrs[i].index); | 
 | 		BUG_ON(offset == MSR_INVALID); | 
 |  | 
 | 		add_msr_offset(offset); | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_enable_lbrv(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 *msrpm = svm->msrpm; | 
 |  | 
 | 	svm->vmcb->control.lbr_ctl = 1; | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1); | 
 | } | 
 |  | 
 | static void svm_disable_lbrv(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 *msrpm = svm->msrpm; | 
 |  | 
 | 	svm->vmcb->control.lbr_ctl = 0; | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0); | 
 | 	set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0); | 
 | } | 
 |  | 
 | static __init int svm_hardware_setup(void) | 
 | { | 
 | 	int cpu; | 
 | 	struct page *iopm_pages; | 
 | 	void *iopm_va; | 
 | 	int r; | 
 |  | 
 | 	iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); | 
 |  | 
 | 	if (!iopm_pages) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	iopm_va = page_address(iopm_pages); | 
 | 	memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); | 
 | 	iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; | 
 |  | 
 | 	init_msrpm_offsets(); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_NX)) | 
 | 		kvm_enable_efer_bits(EFER_NX); | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_FXSR_OPT)) | 
 | 		kvm_enable_efer_bits(EFER_FFXSR); | 
 |  | 
 | 	if (nested) { | 
 | 		printk(KERN_INFO "kvm: Nested Virtualization enabled\n"); | 
 | 		kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE); | 
 | 	} | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		r = svm_cpu_init(cpu); | 
 | 		if (r) | 
 | 			goto err; | 
 | 	} | 
 |  | 
 | 	svm_features = cpuid_edx(SVM_CPUID_FUNC); | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_NPT)) | 
 | 		npt_enabled = false; | 
 |  | 
 | 	if (npt_enabled && !npt) { | 
 | 		printk(KERN_INFO "kvm: Nested Paging disabled\n"); | 
 | 		npt_enabled = false; | 
 | 	} | 
 |  | 
 | 	if (npt_enabled) { | 
 | 		printk(KERN_INFO "kvm: Nested Paging enabled\n"); | 
 | 		kvm_enable_tdp(); | 
 | 	} else | 
 | 		kvm_disable_tdp(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	__free_pages(iopm_pages, IOPM_ALLOC_ORDER); | 
 | 	iopm_base = 0; | 
 | 	return r; | 
 | } | 
 |  | 
 | static __exit void svm_hardware_unsetup(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) | 
 | 		svm_cpu_uninit(cpu); | 
 |  | 
 | 	__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); | 
 | 	iopm_base = 0; | 
 | } | 
 |  | 
 | static void init_seg(struct vmcb_seg *seg) | 
 | { | 
 | 	seg->selector = 0; | 
 | 	seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | | 
 | 		      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ | 
 | 	seg->limit = 0xffff; | 
 | 	seg->base = 0; | 
 | } | 
 |  | 
 | static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) | 
 | { | 
 | 	seg->selector = 0; | 
 | 	seg->attrib = SVM_SELECTOR_P_MASK | type; | 
 | 	seg->limit = 0xffff; | 
 | 	seg->base = 0; | 
 | } | 
 |  | 
 | static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u64 g_tsc_offset = 0; | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		g_tsc_offset = svm->vmcb->control.tsc_offset - | 
 | 			       svm->nested.hsave->control.tsc_offset; | 
 | 		svm->nested.hsave->control.tsc_offset = offset; | 
 | 	} | 
 |  | 
 | 	svm->vmcb->control.tsc_offset = offset + g_tsc_offset; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 | } | 
 |  | 
 | static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.tsc_offset += adjustment; | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		svm->nested.hsave->control.tsc_offset += adjustment; | 
 | 	mark_dirty(svm->vmcb, VMCB_INTERCEPTS); | 
 | } | 
 |  | 
 | static void init_vmcb(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 | 	struct vmcb_save_area *save = &svm->vmcb->save; | 
 |  | 
 | 	svm->vcpu.fpu_active = 1; | 
 | 	svm->vcpu.arch.hflags = 0; | 
 |  | 
 | 	set_cr_intercept(svm, INTERCEPT_CR0_READ); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR3_READ); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR4_READ); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR3_WRITE); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR4_WRITE); | 
 | 	set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 |  | 
 | 	set_dr_intercept(svm, INTERCEPT_DR0_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR1_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR2_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR3_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR4_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR5_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR6_READ); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR7_READ); | 
 |  | 
 | 	set_dr_intercept(svm, INTERCEPT_DR0_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR1_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR2_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR3_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR4_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR5_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR6_WRITE); | 
 | 	set_dr_intercept(svm, INTERCEPT_DR7_WRITE); | 
 |  | 
 | 	set_exception_intercept(svm, PF_VECTOR); | 
 | 	set_exception_intercept(svm, UD_VECTOR); | 
 | 	set_exception_intercept(svm, MC_VECTOR); | 
 |  | 
 | 	set_intercept(svm, INTERCEPT_INTR); | 
 | 	set_intercept(svm, INTERCEPT_NMI); | 
 | 	set_intercept(svm, INTERCEPT_SMI); | 
 | 	set_intercept(svm, INTERCEPT_SELECTIVE_CR0); | 
 | 	set_intercept(svm, INTERCEPT_CPUID); | 
 | 	set_intercept(svm, INTERCEPT_INVD); | 
 | 	set_intercept(svm, INTERCEPT_HLT); | 
 | 	set_intercept(svm, INTERCEPT_INVLPG); | 
 | 	set_intercept(svm, INTERCEPT_INVLPGA); | 
 | 	set_intercept(svm, INTERCEPT_IOIO_PROT); | 
 | 	set_intercept(svm, INTERCEPT_MSR_PROT); | 
 | 	set_intercept(svm, INTERCEPT_TASK_SWITCH); | 
 | 	set_intercept(svm, INTERCEPT_SHUTDOWN); | 
 | 	set_intercept(svm, INTERCEPT_VMRUN); | 
 | 	set_intercept(svm, INTERCEPT_VMMCALL); | 
 | 	set_intercept(svm, INTERCEPT_VMLOAD); | 
 | 	set_intercept(svm, INTERCEPT_VMSAVE); | 
 | 	set_intercept(svm, INTERCEPT_STGI); | 
 | 	set_intercept(svm, INTERCEPT_CLGI); | 
 | 	set_intercept(svm, INTERCEPT_SKINIT); | 
 | 	set_intercept(svm, INTERCEPT_WBINVD); | 
 | 	set_intercept(svm, INTERCEPT_MONITOR); | 
 | 	set_intercept(svm, INTERCEPT_MWAIT); | 
 | 	set_intercept(svm, INTERCEPT_XSETBV); | 
 |  | 
 | 	control->iopm_base_pa = iopm_base; | 
 | 	control->msrpm_base_pa = __pa(svm->msrpm); | 
 | 	control->int_ctl = V_INTR_MASKING_MASK; | 
 |  | 
 | 	init_seg(&save->es); | 
 | 	init_seg(&save->ss); | 
 | 	init_seg(&save->ds); | 
 | 	init_seg(&save->fs); | 
 | 	init_seg(&save->gs); | 
 |  | 
 | 	save->cs.selector = 0xf000; | 
 | 	/* Executable/Readable Code Segment */ | 
 | 	save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | | 
 | 		SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; | 
 | 	save->cs.limit = 0xffff; | 
 | 	/* | 
 | 	 * cs.base should really be 0xffff0000, but vmx can't handle that, so | 
 | 	 * be consistent with it. | 
 | 	 * | 
 | 	 * Replace when we have real mode working for vmx. | 
 | 	 */ | 
 | 	save->cs.base = 0xf0000; | 
 |  | 
 | 	save->gdtr.limit = 0xffff; | 
 | 	save->idtr.limit = 0xffff; | 
 |  | 
 | 	init_sys_seg(&save->ldtr, SEG_TYPE_LDT); | 
 | 	init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); | 
 |  | 
 | 	svm_set_efer(&svm->vcpu, 0); | 
 | 	save->dr6 = 0xffff0ff0; | 
 | 	save->dr7 = 0x400; | 
 | 	save->rflags = 2; | 
 | 	save->rip = 0x0000fff0; | 
 | 	svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip; | 
 |  | 
 | 	/* | 
 | 	 * This is the guest-visible cr0 value. | 
 | 	 * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0. | 
 | 	 */ | 
 | 	svm->vcpu.arch.cr0 = 0; | 
 | 	(void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET); | 
 |  | 
 | 	save->cr4 = X86_CR4_PAE; | 
 | 	/* rdx = ?? */ | 
 |  | 
 | 	if (npt_enabled) { | 
 | 		/* Setup VMCB for Nested Paging */ | 
 | 		control->nested_ctl = 1; | 
 | 		clr_intercept(svm, INTERCEPT_TASK_SWITCH); | 
 | 		clr_intercept(svm, INTERCEPT_INVLPG); | 
 | 		clr_exception_intercept(svm, PF_VECTOR); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR3_READ); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR3_WRITE); | 
 | 		save->g_pat = 0x0007040600070406ULL; | 
 | 		save->cr3 = 0; | 
 | 		save->cr4 = 0; | 
 | 	} | 
 | 	svm->asid_generation = 0; | 
 |  | 
 | 	svm->nested.vmcb = 0; | 
 | 	svm->vcpu.arch.hflags = 0; | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) { | 
 | 		control->pause_filter_count = 3000; | 
 | 		set_intercept(svm, INTERCEPT_PAUSE); | 
 | 	} | 
 |  | 
 | 	mark_all_dirty(svm->vmcb); | 
 |  | 
 | 	enable_gif(svm); | 
 | } | 
 |  | 
 | static int svm_vcpu_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	init_vmcb(svm); | 
 |  | 
 | 	if (!kvm_vcpu_is_bsp(vcpu)) { | 
 | 		kvm_rip_write(vcpu, 0); | 
 | 		svm->vmcb->save.cs.base = svm->vcpu.arch.sipi_vector << 12; | 
 | 		svm->vmcb->save.cs.selector = svm->vcpu.arch.sipi_vector << 8; | 
 | 	} | 
 | 	vcpu->arch.regs_avail = ~0; | 
 | 	vcpu->arch.regs_dirty = ~0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id) | 
 | { | 
 | 	struct vcpu_svm *svm; | 
 | 	struct page *page; | 
 | 	struct page *msrpm_pages; | 
 | 	struct page *hsave_page; | 
 | 	struct page *nested_msrpm_pages; | 
 | 	int err; | 
 |  | 
 | 	svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
 | 	if (!svm) { | 
 | 		err = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	err = kvm_vcpu_init(&svm->vcpu, kvm, id); | 
 | 	if (err) | 
 | 		goto free_svm; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	page = alloc_page(GFP_KERNEL); | 
 | 	if (!page) | 
 | 		goto uninit; | 
 |  | 
 | 	msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
 | 	if (!msrpm_pages) | 
 | 		goto free_page1; | 
 |  | 
 | 	nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); | 
 | 	if (!nested_msrpm_pages) | 
 | 		goto free_page2; | 
 |  | 
 | 	hsave_page = alloc_page(GFP_KERNEL); | 
 | 	if (!hsave_page) | 
 | 		goto free_page3; | 
 |  | 
 | 	svm->nested.hsave = page_address(hsave_page); | 
 |  | 
 | 	svm->msrpm = page_address(msrpm_pages); | 
 | 	svm_vcpu_init_msrpm(svm->msrpm); | 
 |  | 
 | 	svm->nested.msrpm = page_address(nested_msrpm_pages); | 
 | 	svm_vcpu_init_msrpm(svm->nested.msrpm); | 
 |  | 
 | 	svm->vmcb = page_address(page); | 
 | 	clear_page(svm->vmcb); | 
 | 	svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; | 
 | 	svm->asid_generation = 0; | 
 | 	init_vmcb(svm); | 
 | 	kvm_write_tsc(&svm->vcpu, 0); | 
 |  | 
 | 	err = fx_init(&svm->vcpu); | 
 | 	if (err) | 
 | 		goto free_page4; | 
 |  | 
 | 	svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; | 
 | 	if (kvm_vcpu_is_bsp(&svm->vcpu)) | 
 | 		svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP; | 
 |  | 
 | 	return &svm->vcpu; | 
 |  | 
 | free_page4: | 
 | 	__free_page(hsave_page); | 
 | free_page3: | 
 | 	__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER); | 
 | free_page2: | 
 | 	__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); | 
 | free_page1: | 
 | 	__free_page(page); | 
 | uninit: | 
 | 	kvm_vcpu_uninit(&svm->vcpu); | 
 | free_svm: | 
 | 	kmem_cache_free(kvm_vcpu_cache, svm); | 
 | out: | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void svm_free_vcpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT)); | 
 | 	__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER); | 
 | 	__free_page(virt_to_page(svm->nested.hsave)); | 
 | 	__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER); | 
 | 	kvm_vcpu_uninit(vcpu); | 
 | 	kmem_cache_free(kvm_vcpu_cache, svm); | 
 | } | 
 |  | 
 | static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int i; | 
 |  | 
 | 	if (unlikely(cpu != vcpu->cpu)) { | 
 | 		svm->asid_generation = 0; | 
 | 		mark_all_dirty(svm->vmcb); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base); | 
 | #endif | 
 | 	savesegment(fs, svm->host.fs); | 
 | 	savesegment(gs, svm->host.gs); | 
 | 	svm->host.ldt = kvm_read_ldt(); | 
 |  | 
 | 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
 | 		rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
 | } | 
 |  | 
 | static void svm_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int i; | 
 |  | 
 | 	++vcpu->stat.host_state_reload; | 
 | 	kvm_load_ldt(svm->host.ldt); | 
 | #ifdef CONFIG_X86_64 | 
 | 	loadsegment(fs, svm->host.fs); | 
 | 	load_gs_index(svm->host.gs); | 
 | 	wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs); | 
 | #else | 
 | 	loadsegment(gs, svm->host.gs); | 
 | #endif | 
 | 	for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++) | 
 | 		wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]); | 
 | } | 
 |  | 
 | static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return to_svm(vcpu)->vmcb->save.rflags; | 
 | } | 
 |  | 
 | static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	to_svm(vcpu)->vmcb->save.rflags = rflags; | 
 | } | 
 |  | 
 | static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | 
 | { | 
 | 	switch (reg) { | 
 | 	case VCPU_EXREG_PDPTR: | 
 | 		BUG_ON(!npt_enabled); | 
 | 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_set_vintr(struct vcpu_svm *svm) | 
 | { | 
 | 	set_intercept(svm, INTERCEPT_VINTR); | 
 | } | 
 |  | 
 | static void svm_clear_vintr(struct vcpu_svm *svm) | 
 | { | 
 | 	clr_intercept(svm, INTERCEPT_VINTR); | 
 | } | 
 |  | 
 | static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
 |  | 
 | 	switch (seg) { | 
 | 	case VCPU_SREG_CS: return &save->cs; | 
 | 	case VCPU_SREG_DS: return &save->ds; | 
 | 	case VCPU_SREG_ES: return &save->es; | 
 | 	case VCPU_SREG_FS: return &save->fs; | 
 | 	case VCPU_SREG_GS: return &save->gs; | 
 | 	case VCPU_SREG_SS: return &save->ss; | 
 | 	case VCPU_SREG_TR: return &save->tr; | 
 | 	case VCPU_SREG_LDTR: return &save->ldtr; | 
 | 	} | 
 | 	BUG(); | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct vmcb_seg *s = svm_seg(vcpu, seg); | 
 |  | 
 | 	return s->base; | 
 | } | 
 |  | 
 | static void svm_get_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct vmcb_seg *s = svm_seg(vcpu, seg); | 
 |  | 
 | 	var->base = s->base; | 
 | 	var->limit = s->limit; | 
 | 	var->selector = s->selector; | 
 | 	var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; | 
 | 	var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; | 
 | 	var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; | 
 | 	var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; | 
 | 	var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; | 
 | 	var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; | 
 | 	var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; | 
 | 	var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; | 
 |  | 
 | 	/* | 
 | 	 * AMD's VMCB does not have an explicit unusable field, so emulate it | 
 | 	 * for cross vendor migration purposes by "not present" | 
 | 	 */ | 
 | 	var->unusable = !var->present || (var->type == 0); | 
 |  | 
 | 	switch (seg) { | 
 | 	case VCPU_SREG_CS: | 
 | 		/* | 
 | 		 * SVM always stores 0 for the 'G' bit in the CS selector in | 
 | 		 * the VMCB on a VMEXIT. This hurts cross-vendor migration: | 
 | 		 * Intel's VMENTRY has a check on the 'G' bit. | 
 | 		 */ | 
 | 		var->g = s->limit > 0xfffff; | 
 | 		break; | 
 | 	case VCPU_SREG_TR: | 
 | 		/* | 
 | 		 * Work around a bug where the busy flag in the tr selector | 
 | 		 * isn't exposed | 
 | 		 */ | 
 | 		var->type |= 0x2; | 
 | 		break; | 
 | 	case VCPU_SREG_DS: | 
 | 	case VCPU_SREG_ES: | 
 | 	case VCPU_SREG_FS: | 
 | 	case VCPU_SREG_GS: | 
 | 		/* | 
 | 		 * The accessed bit must always be set in the segment | 
 | 		 * descriptor cache, although it can be cleared in the | 
 | 		 * descriptor, the cached bit always remains at 1. Since | 
 | 		 * Intel has a check on this, set it here to support | 
 | 		 * cross-vendor migration. | 
 | 		 */ | 
 | 		if (!var->unusable) | 
 | 			var->type |= 0x1; | 
 | 		break; | 
 | 	case VCPU_SREG_SS: | 
 | 		/* | 
 | 		 * On AMD CPUs sometimes the DB bit in the segment | 
 | 		 * descriptor is left as 1, although the whole segment has | 
 | 		 * been made unusable. Clear it here to pass an Intel VMX | 
 | 		 * entry check when cross vendor migrating. | 
 | 		 */ | 
 | 		if (var->unusable) | 
 | 			var->db = 0; | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static int svm_get_cpl(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save; | 
 |  | 
 | 	return save->cpl; | 
 | } | 
 |  | 
 | static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	dt->size = svm->vmcb->save.idtr.limit; | 
 | 	dt->address = svm->vmcb->save.idtr.base; | 
 | } | 
 |  | 
 | static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.idtr.limit = dt->size; | 
 | 	svm->vmcb->save.idtr.base = dt->address ; | 
 | 	mark_dirty(svm->vmcb, VMCB_DT); | 
 | } | 
 |  | 
 | static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	dt->size = svm->vmcb->save.gdtr.limit; | 
 | 	dt->address = svm->vmcb->save.gdtr.base; | 
 | } | 
 |  | 
 | static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.gdtr.limit = dt->size; | 
 | 	svm->vmcb->save.gdtr.base = dt->address ; | 
 | 	mark_dirty(svm->vmcb, VMCB_DT); | 
 | } | 
 |  | 
 | static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void svm_decache_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void update_cr0_intercept(struct vcpu_svm *svm) | 
 | { | 
 | 	ulong gcr0 = svm->vcpu.arch.cr0; | 
 | 	u64 *hcr0 = &svm->vmcb->save.cr0; | 
 |  | 
 | 	if (!svm->vcpu.fpu_active) | 
 | 		*hcr0 |= SVM_CR0_SELECTIVE_MASK; | 
 | 	else | 
 | 		*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK) | 
 | 			| (gcr0 & SVM_CR0_SELECTIVE_MASK); | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 |  | 
 | 	if (gcr0 == *hcr0 && svm->vcpu.fpu_active) { | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR0_READ); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
 | 	} else { | 
 | 		set_cr_intercept(svm, INTERCEPT_CR0_READ); | 
 | 		set_cr_intercept(svm, INTERCEPT_CR0_WRITE); | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* | 
 | 		 * We are here because we run in nested mode, the host kvm | 
 | 		 * intercepts cr0 writes but the l1 hypervisor does not. | 
 | 		 * But the L1 hypervisor may intercept selective cr0 writes. | 
 | 		 * This needs to be checked here. | 
 | 		 */ | 
 | 		unsigned long old, new; | 
 |  | 
 | 		/* Remove bits that would trigger a real cr0 write intercept */ | 
 | 		old = vcpu->arch.cr0 & SVM_CR0_SELECTIVE_MASK; | 
 | 		new = cr0 & SVM_CR0_SELECTIVE_MASK; | 
 |  | 
 | 		if (old == new) { | 
 | 			/* cr0 write with ts and mp unchanged */ | 
 | 			svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE; | 
 | 			if (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE) { | 
 | 				svm->nested.vmexit_rip = kvm_rip_read(vcpu); | 
 | 				svm->nested.vmexit_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
 | 				svm->nested.vmexit_rax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (vcpu->arch.efer & EFER_LME) { | 
 | 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
 | 			vcpu->arch.efer |= EFER_LMA; | 
 | 			svm->vmcb->save.efer |= EFER_LMA | EFER_LME; | 
 | 		} | 
 |  | 
 | 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) { | 
 | 			vcpu->arch.efer &= ~EFER_LMA; | 
 | 			svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME); | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	vcpu->arch.cr0 = cr0; | 
 |  | 
 | 	if (!npt_enabled) | 
 | 		cr0 |= X86_CR0_PG | X86_CR0_WP; | 
 |  | 
 | 	if (!vcpu->fpu_active) | 
 | 		cr0 |= X86_CR0_TS; | 
 | 	/* | 
 | 	 * re-enable caching here because the QEMU bios | 
 | 	 * does not do it - this results in some delay at | 
 | 	 * reboot | 
 | 	 */ | 
 | 	cr0 &= ~(X86_CR0_CD | X86_CR0_NW); | 
 | 	svm->vmcb->save.cr0 = cr0; | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 | 	update_cr0_intercept(svm); | 
 | } | 
 |  | 
 | static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE; | 
 | 	unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4; | 
 |  | 
 | 	if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE)) | 
 | 		svm_flush_tlb(vcpu); | 
 |  | 
 | 	vcpu->arch.cr4 = cr4; | 
 | 	if (!npt_enabled) | 
 | 		cr4 |= X86_CR4_PAE; | 
 | 	cr4 |= host_cr4_mce; | 
 | 	to_svm(vcpu)->vmcb->save.cr4 = cr4; | 
 | 	mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR); | 
 | } | 
 |  | 
 | static void svm_set_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_seg *s = svm_seg(vcpu, seg); | 
 |  | 
 | 	s->base = var->base; | 
 | 	s->limit = var->limit; | 
 | 	s->selector = var->selector; | 
 | 	if (var->unusable) | 
 | 		s->attrib = 0; | 
 | 	else { | 
 | 		s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); | 
 | 		s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; | 
 | 		s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; | 
 | 		s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; | 
 | 		s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; | 
 | 		s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; | 
 | 		s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; | 
 | 		s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; | 
 | 	} | 
 | 	if (seg == VCPU_SREG_CS) | 
 | 		svm->vmcb->save.cpl | 
 | 			= (svm->vmcb->save.cs.attrib | 
 | 			   >> SVM_SELECTOR_DPL_SHIFT) & 3; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_SEG); | 
 | } | 
 |  | 
 | static void update_db_intercept(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	clr_exception_intercept(svm, DB_VECTOR); | 
 | 	clr_exception_intercept(svm, BP_VECTOR); | 
 |  | 
 | 	if (svm->nmi_singlestep) | 
 | 		set_exception_intercept(svm, DB_VECTOR); | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) { | 
 | 		if (vcpu->guest_debug & | 
 | 		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) | 
 | 			set_exception_intercept(svm, DB_VECTOR); | 
 | 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) | 
 | 			set_exception_intercept(svm, BP_VECTOR); | 
 | 	} else | 
 | 		vcpu->guest_debug = 0; | 
 | } | 
 |  | 
 | static void svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | 
 | 		svm->vmcb->save.dr7 = dbg->arch.debugreg[7]; | 
 | 	else | 
 | 		svm->vmcb->save.dr7 = vcpu->arch.dr7; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_DR); | 
 |  | 
 | 	update_db_intercept(vcpu); | 
 | } | 
 |  | 
 | static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd) | 
 | { | 
 | 	if (sd->next_asid > sd->max_asid) { | 
 | 		++sd->asid_generation; | 
 | 		sd->next_asid = 1; | 
 | 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; | 
 | 	} | 
 |  | 
 | 	svm->asid_generation = sd->asid_generation; | 
 | 	svm->vmcb->control.asid = sd->next_asid++; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_ASID); | 
 | } | 
 |  | 
 | static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.dr7 = value; | 
 | 	mark_dirty(svm->vmcb, VMCB_DR); | 
 | } | 
 |  | 
 | static int pf_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u64 fault_address = svm->vmcb->control.exit_info_2; | 
 | 	u32 error_code; | 
 | 	int r = 1; | 
 |  | 
 | 	switch (svm->apf_reason) { | 
 | 	default: | 
 | 		error_code = svm->vmcb->control.exit_info_1; | 
 |  | 
 | 		trace_kvm_page_fault(fault_address, error_code); | 
 | 		if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu)) | 
 | 			kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address); | 
 | 		r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code, | 
 | 			svm->vmcb->control.insn_bytes, | 
 | 			svm->vmcb->control.insn_len); | 
 | 		break; | 
 | 	case KVM_PV_REASON_PAGE_NOT_PRESENT: | 
 | 		svm->apf_reason = 0; | 
 | 		local_irq_disable(); | 
 | 		kvm_async_pf_task_wait(fault_address); | 
 | 		local_irq_enable(); | 
 | 		break; | 
 | 	case KVM_PV_REASON_PAGE_READY: | 
 | 		svm->apf_reason = 0; | 
 | 		local_irq_disable(); | 
 | 		kvm_async_pf_task_wake(fault_address); | 
 | 		local_irq_enable(); | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static int db_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 |  | 
 | 	if (!(svm->vcpu.guest_debug & | 
 | 	      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) && | 
 | 		!svm->nmi_singlestep) { | 
 | 		kvm_queue_exception(&svm->vcpu, DB_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (svm->nmi_singlestep) { | 
 | 		svm->nmi_singlestep = false; | 
 | 		if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP)) | 
 | 			svm->vmcb->save.rflags &= | 
 | 				~(X86_EFLAGS_TF | X86_EFLAGS_RF); | 
 | 		update_db_intercept(&svm->vcpu); | 
 | 	} | 
 |  | 
 | 	if (svm->vcpu.guest_debug & | 
 | 	    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) { | 
 | 		kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 		kvm_run->debug.arch.pc = | 
 | 			svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
 | 		kvm_run->debug.arch.exception = DB_VECTOR; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int bp_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 |  | 
 | 	kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 	kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip; | 
 | 	kvm_run->debug.arch.exception = BP_VECTOR; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ud_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int er; | 
 |  | 
 | 	er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD); | 
 | 	if (er != EMULATE_DONE) | 
 | 		kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void svm_fpu_activate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	clr_exception_intercept(svm, NM_VECTOR); | 
 |  | 
 | 	svm->vcpu.fpu_active = 1; | 
 | 	update_cr0_intercept(svm); | 
 | } | 
 |  | 
 | static int nm_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm_fpu_activate(&svm->vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static bool is_erratum_383(void) | 
 | { | 
 | 	int err, i; | 
 | 	u64 value; | 
 |  | 
 | 	if (!erratum_383_found) | 
 | 		return false; | 
 |  | 
 | 	value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err); | 
 | 	if (err) | 
 | 		return false; | 
 |  | 
 | 	/* Bit 62 may or may not be set for this mce */ | 
 | 	value &= ~(1ULL << 62); | 
 |  | 
 | 	if (value != 0xb600000000010015ULL) | 
 | 		return false; | 
 |  | 
 | 	/* Clear MCi_STATUS registers */ | 
 | 	for (i = 0; i < 6; ++i) | 
 | 		native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0); | 
 |  | 
 | 	value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err); | 
 | 	if (!err) { | 
 | 		u32 low, high; | 
 |  | 
 | 		value &= ~(1ULL << 2); | 
 | 		low    = lower_32_bits(value); | 
 | 		high   = upper_32_bits(value); | 
 |  | 
 | 		native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high); | 
 | 	} | 
 |  | 
 | 	/* Flush tlb to evict multi-match entries */ | 
 | 	__flush_tlb_all(); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void svm_handle_mce(struct vcpu_svm *svm) | 
 | { | 
 | 	if (is_erratum_383()) { | 
 | 		/* | 
 | 		 * Erratum 383 triggered. Guest state is corrupt so kill the | 
 | 		 * guest. | 
 | 		 */ | 
 | 		pr_err("KVM: Guest triggered AMD Erratum 383\n"); | 
 |  | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu); | 
 |  | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * On an #MC intercept the MCE handler is not called automatically in | 
 | 	 * the host. So do it by hand here. | 
 | 	 */ | 
 | 	asm volatile ( | 
 | 		"int $0x12\n"); | 
 | 	/* not sure if we ever come back to this point */ | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static int mc_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int shutdown_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 |  | 
 | 	/* | 
 | 	 * VMCB is undefined after a SHUTDOWN intercept | 
 | 	 * so reinitialize it. | 
 | 	 */ | 
 | 	clear_page(svm->vmcb); | 
 | 	init_vmcb(svm); | 
 |  | 
 | 	kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int io_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 | 	u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */ | 
 | 	int size, in, string; | 
 | 	unsigned port; | 
 |  | 
 | 	++svm->vcpu.stat.io_exits; | 
 | 	string = (io_info & SVM_IOIO_STR_MASK) != 0; | 
 | 	in = (io_info & SVM_IOIO_TYPE_MASK) != 0; | 
 | 	if (string || in) | 
 | 		return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
 |  | 
 | 	port = io_info >> 16; | 
 | 	size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT; | 
 | 	svm->next_rip = svm->vmcb->control.exit_info_2; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	return kvm_fast_pio_out(vcpu, size, port); | 
 | } | 
 |  | 
 | static int nmi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int intr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	++svm->vcpu.stat.irq_exits; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int nop_on_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int halt_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 1; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 | 	return kvm_emulate_halt(&svm->vcpu); | 
 | } | 
 |  | 
 | static int vmmcall_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 | 	kvm_emulate_hypercall(&svm->vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	return svm->nested.nested_cr3; | 
 | } | 
 |  | 
 | static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu, | 
 | 				   unsigned long root) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.nested_cr3 = root; | 
 | 	mark_dirty(svm->vmcb, VMCB_NPT); | 
 | 	svm_flush_tlb(vcpu); | 
 | } | 
 |  | 
 | static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu, | 
 | 				       struct x86_exception *fault) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.exit_code = SVM_EXIT_NPF; | 
 | 	svm->vmcb->control.exit_code_hi = 0; | 
 | 	svm->vmcb->control.exit_info_1 = fault->error_code; | 
 | 	svm->vmcb->control.exit_info_2 = fault->address; | 
 |  | 
 | 	nested_svm_vmexit(svm); | 
 | } | 
 |  | 
 | static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu); | 
 |  | 
 | 	vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3; | 
 | 	vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3; | 
 | 	vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit; | 
 | 	vcpu->arch.mmu.shadow_root_level = get_npt_level(); | 
 | 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu; | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->arch.walk_mmu = &vcpu->arch.mmu; | 
 | } | 
 |  | 
 | static int nested_svm_check_permissions(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!(svm->vcpu.arch.efer & EFER_SVME) | 
 | 	    || !is_paging(&svm->vcpu)) { | 
 | 		kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (svm->vmcb->save.cpl) { | 
 | 		kvm_inject_gp(&svm->vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 |        return 0; | 
 | } | 
 |  | 
 | static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr, | 
 | 				      bool has_error_code, u32 error_code) | 
 | { | 
 | 	int vmexit; | 
 |  | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr; | 
 | 	svm->vmcb->control.exit_code_hi = 0; | 
 | 	svm->vmcb->control.exit_info_1 = error_code; | 
 | 	svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2; | 
 |  | 
 | 	vmexit = nested_svm_intercept(svm); | 
 | 	if (vmexit == NESTED_EXIT_DONE) | 
 | 		svm->nested.exit_required = true; | 
 |  | 
 | 	return vmexit; | 
 | } | 
 |  | 
 | /* This function returns true if it is save to enable the irq window */ | 
 | static inline bool nested_svm_intr(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
 | 		return true; | 
 |  | 
 | 	if (!(svm->vcpu.arch.hflags & HF_HIF_MASK)) | 
 | 		return false; | 
 |  | 
 | 	/* | 
 | 	 * if vmexit was already requested (by intercepted exception | 
 | 	 * for instance) do not overwrite it with "external interrupt" | 
 | 	 * vmexit. | 
 | 	 */ | 
 | 	if (svm->nested.exit_required) | 
 | 		return false; | 
 |  | 
 | 	svm->vmcb->control.exit_code   = SVM_EXIT_INTR; | 
 | 	svm->vmcb->control.exit_info_1 = 0; | 
 | 	svm->vmcb->control.exit_info_2 = 0; | 
 |  | 
 | 	if (svm->nested.intercept & 1ULL) { | 
 | 		/* | 
 | 		 * The #vmexit can't be emulated here directly because this | 
 | 		 * code path runs with irqs and preemtion disabled. A | 
 | 		 * #vmexit emulation might sleep. Only signal request for | 
 | 		 * the #vmexit here. | 
 | 		 */ | 
 | 		svm->nested.exit_required = true; | 
 | 		trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | /* This function returns true if it is save to enable the nmi window */ | 
 | static inline bool nested_svm_nmi(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!is_guest_mode(&svm->vcpu)) | 
 | 		return true; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI))) | 
 | 		return true; | 
 |  | 
 | 	svm->vmcb->control.exit_code = SVM_EXIT_NMI; | 
 | 	svm->nested.exit_required = true; | 
 |  | 
 | 	return false; | 
 | } | 
 |  | 
 | static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	might_sleep(); | 
 |  | 
 | 	page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT); | 
 | 	if (is_error_page(page)) | 
 | 		goto error; | 
 |  | 
 | 	*_page = page; | 
 |  | 
 | 	return kmap(page); | 
 |  | 
 | error: | 
 | 	kvm_release_page_clean(page); | 
 | 	kvm_inject_gp(&svm->vcpu, 0); | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void nested_svm_unmap(struct page *page) | 
 | { | 
 | 	kunmap(page); | 
 | 	kvm_release_page_dirty(page); | 
 | } | 
 |  | 
 | static int nested_svm_intercept_ioio(struct vcpu_svm *svm) | 
 | { | 
 | 	unsigned port; | 
 | 	u8 val, bit; | 
 | 	u64 gpa; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT))) | 
 | 		return NESTED_EXIT_HOST; | 
 |  | 
 | 	port = svm->vmcb->control.exit_info_1 >> 16; | 
 | 	gpa  = svm->nested.vmcb_iopm + (port / 8); | 
 | 	bit  = port % 8; | 
 | 	val  = 0; | 
 |  | 
 | 	if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1)) | 
 | 		val &= (1 << bit); | 
 |  | 
 | 	return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
 | } | 
 |  | 
 | static int nested_svm_exit_handled_msr(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 offset, msr, value; | 
 | 	int write, mask; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
 | 		return NESTED_EXIT_HOST; | 
 |  | 
 | 	msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
 | 	offset = svm_msrpm_offset(msr); | 
 | 	write  = svm->vmcb->control.exit_info_1 & 1; | 
 | 	mask   = 1 << ((2 * (msr & 0xf)) + write); | 
 |  | 
 | 	if (offset == MSR_INVALID) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	/* Offset is in 32 bit units but need in 8 bit units */ | 
 | 	offset *= 4; | 
 |  | 
 | 	if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4)) | 
 | 		return NESTED_EXIT_DONE; | 
 |  | 
 | 	return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST; | 
 | } | 
 |  | 
 | static int nested_svm_exit_special(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 exit_code = svm->vmcb->control.exit_code; | 
 |  | 
 | 	switch (exit_code) { | 
 | 	case SVM_EXIT_INTR: | 
 | 	case SVM_EXIT_NMI: | 
 | 	case SVM_EXIT_EXCP_BASE + MC_VECTOR: | 
 | 		return NESTED_EXIT_HOST; | 
 | 	case SVM_EXIT_NPF: | 
 | 		/* For now we are always handling NPFs when using them */ | 
 | 		if (npt_enabled) | 
 | 			return NESTED_EXIT_HOST; | 
 | 		break; | 
 | 	case SVM_EXIT_EXCP_BASE + PF_VECTOR: | 
 | 		/* When we're shadowing, trap PFs, but not async PF */ | 
 | 		if (!npt_enabled && svm->apf_reason == 0) | 
 | 			return NESTED_EXIT_HOST; | 
 | 		break; | 
 | 	case SVM_EXIT_EXCP_BASE + NM_VECTOR: | 
 | 		nm_interception(svm); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return NESTED_EXIT_CONTINUE; | 
 | } | 
 |  | 
 | /* | 
 |  * If this function returns true, this #vmexit was already handled | 
 |  */ | 
 | static int nested_svm_intercept(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 exit_code = svm->vmcb->control.exit_code; | 
 | 	int vmexit = NESTED_EXIT_HOST; | 
 |  | 
 | 	switch (exit_code) { | 
 | 	case SVM_EXIT_MSR: | 
 | 		vmexit = nested_svm_exit_handled_msr(svm); | 
 | 		break; | 
 | 	case SVM_EXIT_IOIO: | 
 | 		vmexit = nested_svm_intercept_ioio(svm); | 
 | 		break; | 
 | 	case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: { | 
 | 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0); | 
 | 		if (svm->nested.intercept_cr & bit) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: { | 
 | 		u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0); | 
 | 		if (svm->nested.intercept_dr & bit) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: { | 
 | 		u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE); | 
 | 		if (svm->nested.intercept_exceptions & excp_bits) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		/* async page fault always cause vmexit */ | 
 | 		else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) && | 
 | 			 svm->apf_reason != 0) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	case SVM_EXIT_ERR: { | 
 | 		vmexit = NESTED_EXIT_DONE; | 
 | 		break; | 
 | 	} | 
 | 	default: { | 
 | 		u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR); | 
 | 		if (svm->nested.intercept & exit_bits) | 
 | 			vmexit = NESTED_EXIT_DONE; | 
 | 	} | 
 | 	} | 
 |  | 
 | 	return vmexit; | 
 | } | 
 |  | 
 | static int nested_svm_exit_handled(struct vcpu_svm *svm) | 
 | { | 
 | 	int vmexit; | 
 |  | 
 | 	vmexit = nested_svm_intercept(svm); | 
 |  | 
 | 	if (vmexit == NESTED_EXIT_DONE) | 
 | 		nested_svm_vmexit(svm); | 
 |  | 
 | 	return vmexit; | 
 | } | 
 |  | 
 | static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb) | 
 | { | 
 | 	struct vmcb_control_area *dst  = &dst_vmcb->control; | 
 | 	struct vmcb_control_area *from = &from_vmcb->control; | 
 |  | 
 | 	dst->intercept_cr         = from->intercept_cr; | 
 | 	dst->intercept_dr         = from->intercept_dr; | 
 | 	dst->intercept_exceptions = from->intercept_exceptions; | 
 | 	dst->intercept            = from->intercept; | 
 | 	dst->iopm_base_pa         = from->iopm_base_pa; | 
 | 	dst->msrpm_base_pa        = from->msrpm_base_pa; | 
 | 	dst->tsc_offset           = from->tsc_offset; | 
 | 	dst->asid                 = from->asid; | 
 | 	dst->tlb_ctl              = from->tlb_ctl; | 
 | 	dst->int_ctl              = from->int_ctl; | 
 | 	dst->int_vector           = from->int_vector; | 
 | 	dst->int_state            = from->int_state; | 
 | 	dst->exit_code            = from->exit_code; | 
 | 	dst->exit_code_hi         = from->exit_code_hi; | 
 | 	dst->exit_info_1          = from->exit_info_1; | 
 | 	dst->exit_info_2          = from->exit_info_2; | 
 | 	dst->exit_int_info        = from->exit_int_info; | 
 | 	dst->exit_int_info_err    = from->exit_int_info_err; | 
 | 	dst->nested_ctl           = from->nested_ctl; | 
 | 	dst->event_inj            = from->event_inj; | 
 | 	dst->event_inj_err        = from->event_inj_err; | 
 | 	dst->nested_cr3           = from->nested_cr3; | 
 | 	dst->lbr_ctl              = from->lbr_ctl; | 
 | } | 
 |  | 
 | static int nested_svm_vmexit(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct vmcb *hsave = svm->nested.hsave; | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	struct page *page; | 
 |  | 
 | 	trace_kvm_nested_vmexit_inject(vmcb->control.exit_code, | 
 | 				       vmcb->control.exit_info_1, | 
 | 				       vmcb->control.exit_info_2, | 
 | 				       vmcb->control.exit_int_info, | 
 | 				       vmcb->control.exit_int_info_err); | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return 1; | 
 |  | 
 | 	/* Exit Guest-Mode */ | 
 | 	leave_guest_mode(&svm->vcpu); | 
 | 	svm->nested.vmcb = 0; | 
 |  | 
 | 	/* Give the current vmcb to the guest */ | 
 | 	disable_gif(svm); | 
 |  | 
 | 	nested_vmcb->save.es     = vmcb->save.es; | 
 | 	nested_vmcb->save.cs     = vmcb->save.cs; | 
 | 	nested_vmcb->save.ss     = vmcb->save.ss; | 
 | 	nested_vmcb->save.ds     = vmcb->save.ds; | 
 | 	nested_vmcb->save.gdtr   = vmcb->save.gdtr; | 
 | 	nested_vmcb->save.idtr   = vmcb->save.idtr; | 
 | 	nested_vmcb->save.efer   = svm->vcpu.arch.efer; | 
 | 	nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
 | 	nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu); | 
 | 	nested_vmcb->save.cr2    = vmcb->save.cr2; | 
 | 	nested_vmcb->save.cr4    = svm->vcpu.arch.cr4; | 
 | 	nested_vmcb->save.rflags = vmcb->save.rflags; | 
 | 	nested_vmcb->save.rip    = vmcb->save.rip; | 
 | 	nested_vmcb->save.rsp    = vmcb->save.rsp; | 
 | 	nested_vmcb->save.rax    = vmcb->save.rax; | 
 | 	nested_vmcb->save.dr7    = vmcb->save.dr7; | 
 | 	nested_vmcb->save.dr6    = vmcb->save.dr6; | 
 | 	nested_vmcb->save.cpl    = vmcb->save.cpl; | 
 |  | 
 | 	nested_vmcb->control.int_ctl           = vmcb->control.int_ctl; | 
 | 	nested_vmcb->control.int_vector        = vmcb->control.int_vector; | 
 | 	nested_vmcb->control.int_state         = vmcb->control.int_state; | 
 | 	nested_vmcb->control.exit_code         = vmcb->control.exit_code; | 
 | 	nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi; | 
 | 	nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1; | 
 | 	nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2; | 
 | 	nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info; | 
 | 	nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err; | 
 | 	nested_vmcb->control.next_rip          = vmcb->control.next_rip; | 
 |  | 
 | 	/* | 
 | 	 * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have | 
 | 	 * to make sure that we do not lose injected events. So check event_inj | 
 | 	 * here and copy it to exit_int_info if it is valid. | 
 | 	 * Exit_int_info and event_inj can't be both valid because the case | 
 | 	 * below only happens on a VMRUN instruction intercept which has | 
 | 	 * no valid exit_int_info set. | 
 | 	 */ | 
 | 	if (vmcb->control.event_inj & SVM_EVTINJ_VALID) { | 
 | 		struct vmcb_control_area *nc = &nested_vmcb->control; | 
 |  | 
 | 		nc->exit_int_info     = vmcb->control.event_inj; | 
 | 		nc->exit_int_info_err = vmcb->control.event_inj_err; | 
 | 	} | 
 |  | 
 | 	nested_vmcb->control.tlb_ctl           = 0; | 
 | 	nested_vmcb->control.event_inj         = 0; | 
 | 	nested_vmcb->control.event_inj_err     = 0; | 
 |  | 
 | 	/* We always set V_INTR_MASKING and remember the old value in hflags */ | 
 | 	if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK)) | 
 | 		nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK; | 
 |  | 
 | 	/* Restore the original control entries */ | 
 | 	copy_vmcb_control_area(vmcb, hsave); | 
 |  | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	svm->nested.nested_cr3 = 0; | 
 |  | 
 | 	/* Restore selected save entries */ | 
 | 	svm->vmcb->save.es = hsave->save.es; | 
 | 	svm->vmcb->save.cs = hsave->save.cs; | 
 | 	svm->vmcb->save.ss = hsave->save.ss; | 
 | 	svm->vmcb->save.ds = hsave->save.ds; | 
 | 	svm->vmcb->save.gdtr = hsave->save.gdtr; | 
 | 	svm->vmcb->save.idtr = hsave->save.idtr; | 
 | 	svm->vmcb->save.rflags = hsave->save.rflags; | 
 | 	svm_set_efer(&svm->vcpu, hsave->save.efer); | 
 | 	svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE); | 
 | 	svm_set_cr4(&svm->vcpu, hsave->save.cr4); | 
 | 	if (npt_enabled) { | 
 | 		svm->vmcb->save.cr3 = hsave->save.cr3; | 
 | 		svm->vcpu.arch.cr3 = hsave->save.cr3; | 
 | 	} else { | 
 | 		(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3); | 
 | 	} | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip); | 
 | 	svm->vmcb->save.dr7 = 0; | 
 | 	svm->vmcb->save.cpl = 0; | 
 | 	svm->vmcb->control.exit_int_info = 0; | 
 |  | 
 | 	mark_all_dirty(svm->vmcb); | 
 |  | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	nested_svm_uninit_mmu_context(&svm->vcpu); | 
 | 	kvm_mmu_reset_context(&svm->vcpu); | 
 | 	kvm_mmu_load(&svm->vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm) | 
 | { | 
 | 	/* | 
 | 	 * This function merges the msr permission bitmaps of kvm and the | 
 | 	 * nested vmcb. It is omptimized in that it only merges the parts where | 
 | 	 * the kvm msr permission bitmap may contain zero bits | 
 | 	 */ | 
 | 	int i; | 
 |  | 
 | 	if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT))) | 
 | 		return true; | 
 |  | 
 | 	for (i = 0; i < MSRPM_OFFSETS; i++) { | 
 | 		u32 value, p; | 
 | 		u64 offset; | 
 |  | 
 | 		if (msrpm_offsets[i] == 0xffffffff) | 
 | 			break; | 
 |  | 
 | 		p      = msrpm_offsets[i]; | 
 | 		offset = svm->nested.vmcb_msrpm + (p * 4); | 
 |  | 
 | 		if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4)) | 
 | 			return false; | 
 |  | 
 | 		svm->nested.msrpm[p] = svm->msrpm[p] | value; | 
 | 	} | 
 |  | 
 | 	svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool nested_vmcb_checks(struct vmcb *vmcb) | 
 | { | 
 | 	if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0) | 
 | 		return false; | 
 |  | 
 | 	if (vmcb->control.asid == 0) | 
 | 		return false; | 
 |  | 
 | 	if (vmcb->control.nested_ctl && !npt_enabled) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool nested_svm_vmrun(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct vmcb *hsave = svm->nested.hsave; | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	struct page *page; | 
 | 	u64 vmcb_gpa; | 
 |  | 
 | 	vmcb_gpa = svm->vmcb->save.rax; | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return false; | 
 |  | 
 | 	if (!nested_vmcb_checks(nested_vmcb)) { | 
 | 		nested_vmcb->control.exit_code    = SVM_EXIT_ERR; | 
 | 		nested_vmcb->control.exit_code_hi = 0; | 
 | 		nested_vmcb->control.exit_info_1  = 0; | 
 | 		nested_vmcb->control.exit_info_2  = 0; | 
 |  | 
 | 		nested_svm_unmap(page); | 
 |  | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa, | 
 | 			       nested_vmcb->save.rip, | 
 | 			       nested_vmcb->control.int_ctl, | 
 | 			       nested_vmcb->control.event_inj, | 
 | 			       nested_vmcb->control.nested_ctl); | 
 |  | 
 | 	trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff, | 
 | 				    nested_vmcb->control.intercept_cr >> 16, | 
 | 				    nested_vmcb->control.intercept_exceptions, | 
 | 				    nested_vmcb->control.intercept); | 
 |  | 
 | 	/* Clear internal status */ | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Save the old vmcb, so we don't need to pick what we save, but can | 
 | 	 * restore everything when a VMEXIT occurs | 
 | 	 */ | 
 | 	hsave->save.es     = vmcb->save.es; | 
 | 	hsave->save.cs     = vmcb->save.cs; | 
 | 	hsave->save.ss     = vmcb->save.ss; | 
 | 	hsave->save.ds     = vmcb->save.ds; | 
 | 	hsave->save.gdtr   = vmcb->save.gdtr; | 
 | 	hsave->save.idtr   = vmcb->save.idtr; | 
 | 	hsave->save.efer   = svm->vcpu.arch.efer; | 
 | 	hsave->save.cr0    = kvm_read_cr0(&svm->vcpu); | 
 | 	hsave->save.cr4    = svm->vcpu.arch.cr4; | 
 | 	hsave->save.rflags = vmcb->save.rflags; | 
 | 	hsave->save.rip    = kvm_rip_read(&svm->vcpu); | 
 | 	hsave->save.rsp    = vmcb->save.rsp; | 
 | 	hsave->save.rax    = vmcb->save.rax; | 
 | 	if (npt_enabled) | 
 | 		hsave->save.cr3    = vmcb->save.cr3; | 
 | 	else | 
 | 		hsave->save.cr3    = kvm_read_cr3(&svm->vcpu); | 
 |  | 
 | 	copy_vmcb_control_area(hsave, vmcb); | 
 |  | 
 | 	if (svm->vmcb->save.rflags & X86_EFLAGS_IF) | 
 | 		svm->vcpu.arch.hflags |= HF_HIF_MASK; | 
 | 	else | 
 | 		svm->vcpu.arch.hflags &= ~HF_HIF_MASK; | 
 |  | 
 | 	if (nested_vmcb->control.nested_ctl) { | 
 | 		kvm_mmu_unload(&svm->vcpu); | 
 | 		svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3; | 
 | 		nested_svm_init_mmu_context(&svm->vcpu); | 
 | 	} | 
 |  | 
 | 	/* Load the nested guest state */ | 
 | 	svm->vmcb->save.es = nested_vmcb->save.es; | 
 | 	svm->vmcb->save.cs = nested_vmcb->save.cs; | 
 | 	svm->vmcb->save.ss = nested_vmcb->save.ss; | 
 | 	svm->vmcb->save.ds = nested_vmcb->save.ds; | 
 | 	svm->vmcb->save.gdtr = nested_vmcb->save.gdtr; | 
 | 	svm->vmcb->save.idtr = nested_vmcb->save.idtr; | 
 | 	svm->vmcb->save.rflags = nested_vmcb->save.rflags; | 
 | 	svm_set_efer(&svm->vcpu, nested_vmcb->save.efer); | 
 | 	svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0); | 
 | 	svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4); | 
 | 	if (npt_enabled) { | 
 | 		svm->vmcb->save.cr3 = nested_vmcb->save.cr3; | 
 | 		svm->vcpu.arch.cr3 = nested_vmcb->save.cr3; | 
 | 	} else | 
 | 		(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3); | 
 |  | 
 | 	/* Guest paging mode is active - reset mmu */ | 
 | 	kvm_mmu_reset_context(&svm->vcpu); | 
 |  | 
 | 	svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2; | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp); | 
 | 	kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip); | 
 |  | 
 | 	/* In case we don't even reach vcpu_run, the fields are not updated */ | 
 | 	svm->vmcb->save.rax = nested_vmcb->save.rax; | 
 | 	svm->vmcb->save.rsp = nested_vmcb->save.rsp; | 
 | 	svm->vmcb->save.rip = nested_vmcb->save.rip; | 
 | 	svm->vmcb->save.dr7 = nested_vmcb->save.dr7; | 
 | 	svm->vmcb->save.dr6 = nested_vmcb->save.dr6; | 
 | 	svm->vmcb->save.cpl = nested_vmcb->save.cpl; | 
 |  | 
 | 	svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL; | 
 | 	svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL; | 
 |  | 
 | 	/* cache intercepts */ | 
 | 	svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr; | 
 | 	svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr; | 
 | 	svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions; | 
 | 	svm->nested.intercept            = nested_vmcb->control.intercept; | 
 |  | 
 | 	svm_flush_tlb(&svm->vcpu); | 
 | 	svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK; | 
 | 	if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK) | 
 | 		svm->vcpu.arch.hflags |= HF_VINTR_MASK; | 
 | 	else | 
 | 		svm->vcpu.arch.hflags &= ~HF_VINTR_MASK; | 
 |  | 
 | 	if (svm->vcpu.arch.hflags & HF_VINTR_MASK) { | 
 | 		/* We only want the cr8 intercept bits of the guest */ | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR8_READ); | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 | 	} | 
 |  | 
 | 	/* We don't want to see VMMCALLs from a nested guest */ | 
 | 	clr_intercept(svm, INTERCEPT_VMMCALL); | 
 |  | 
 | 	svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl; | 
 | 	svm->vmcb->control.int_vector = nested_vmcb->control.int_vector; | 
 | 	svm->vmcb->control.int_state = nested_vmcb->control.int_state; | 
 | 	svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset; | 
 | 	svm->vmcb->control.event_inj = nested_vmcb->control.event_inj; | 
 | 	svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err; | 
 |  | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	/* Enter Guest-Mode */ | 
 | 	enter_guest_mode(&svm->vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Merge guest and host intercepts - must be called  with vcpu in | 
 | 	 * guest-mode to take affect here | 
 | 	 */ | 
 | 	recalc_intercepts(svm); | 
 |  | 
 | 	svm->nested.vmcb = vmcb_gpa; | 
 |  | 
 | 	enable_gif(svm); | 
 |  | 
 | 	mark_all_dirty(svm->vmcb); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb) | 
 | { | 
 | 	to_vmcb->save.fs = from_vmcb->save.fs; | 
 | 	to_vmcb->save.gs = from_vmcb->save.gs; | 
 | 	to_vmcb->save.tr = from_vmcb->save.tr; | 
 | 	to_vmcb->save.ldtr = from_vmcb->save.ldtr; | 
 | 	to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base; | 
 | 	to_vmcb->save.star = from_vmcb->save.star; | 
 | 	to_vmcb->save.lstar = from_vmcb->save.lstar; | 
 | 	to_vmcb->save.cstar = from_vmcb->save.cstar; | 
 | 	to_vmcb->save.sfmask = from_vmcb->save.sfmask; | 
 | 	to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs; | 
 | 	to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp; | 
 | 	to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip; | 
 | } | 
 |  | 
 | static int vmload_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct page *page; | 
 |  | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return 1; | 
 |  | 
 | 	nested_svm_vmloadsave(nested_vmcb, svm->vmcb); | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int vmsave_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct vmcb *nested_vmcb; | 
 | 	struct page *page; | 
 |  | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page); | 
 | 	if (!nested_vmcb) | 
 | 		return 1; | 
 |  | 
 | 	nested_svm_vmloadsave(svm->vmcb, nested_vmcb); | 
 | 	nested_svm_unmap(page); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int vmrun_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	/* Save rip after vmrun instruction */ | 
 | 	kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3); | 
 |  | 
 | 	if (!nested_svm_vmrun(svm)) | 
 | 		return 1; | 
 |  | 
 | 	if (!nested_svm_vmrun_msrpm(svm)) | 
 | 		goto failed; | 
 |  | 
 | 	return 1; | 
 |  | 
 | failed: | 
 |  | 
 | 	svm->vmcb->control.exit_code    = SVM_EXIT_ERR; | 
 | 	svm->vmcb->control.exit_code_hi = 0; | 
 | 	svm->vmcb->control.exit_info_1  = 0; | 
 | 	svm->vmcb->control.exit_info_2  = 0; | 
 |  | 
 | 	nested_svm_vmexit(svm); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int stgi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 |  | 
 | 	enable_gif(svm); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int clgi_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (nested_svm_check_permissions(svm)) | 
 | 		return 1; | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	disable_gif(svm); | 
 |  | 
 | 	/* After a CLGI no interrupts should come */ | 
 | 	svm_clear_vintr(svm); | 
 | 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
 |  | 
 | 	mark_dirty(svm->vmcb, VMCB_INTR); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int invlpga_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 |  | 
 | 	trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX], | 
 | 			  vcpu->arch.regs[VCPU_REGS_RAX]); | 
 |  | 
 | 	/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */ | 
 | 	kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]); | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int skinit_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]); | 
 |  | 
 | 	kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int xsetbv_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u64 new_bv = kvm_read_edx_eax(&svm->vcpu); | 
 | 	u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX); | 
 |  | 
 | 	if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) { | 
 | 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 3; | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int invalid_op_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int task_switch_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u16 tss_selector; | 
 | 	int reason; | 
 | 	int int_type = svm->vmcb->control.exit_int_info & | 
 | 		SVM_EXITINTINFO_TYPE_MASK; | 
 | 	int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK; | 
 | 	uint32_t type = | 
 | 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK; | 
 | 	uint32_t idt_v = | 
 | 		svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID; | 
 | 	bool has_error_code = false; | 
 | 	u32 error_code = 0; | 
 |  | 
 | 	tss_selector = (u16)svm->vmcb->control.exit_info_1; | 
 |  | 
 | 	if (svm->vmcb->control.exit_info_2 & | 
 | 	    (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET)) | 
 | 		reason = TASK_SWITCH_IRET; | 
 | 	else if (svm->vmcb->control.exit_info_2 & | 
 | 		 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP)) | 
 | 		reason = TASK_SWITCH_JMP; | 
 | 	else if (idt_v) | 
 | 		reason = TASK_SWITCH_GATE; | 
 | 	else | 
 | 		reason = TASK_SWITCH_CALL; | 
 |  | 
 | 	if (reason == TASK_SWITCH_GATE) { | 
 | 		switch (type) { | 
 | 		case SVM_EXITINTINFO_TYPE_NMI: | 
 | 			svm->vcpu.arch.nmi_injected = false; | 
 | 			break; | 
 | 		case SVM_EXITINTINFO_TYPE_EXEPT: | 
 | 			if (svm->vmcb->control.exit_info_2 & | 
 | 			    (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) { | 
 | 				has_error_code = true; | 
 | 				error_code = | 
 | 					(u32)svm->vmcb->control.exit_info_2; | 
 | 			} | 
 | 			kvm_clear_exception_queue(&svm->vcpu); | 
 | 			break; | 
 | 		case SVM_EXITINTINFO_TYPE_INTR: | 
 | 			kvm_clear_interrupt_queue(&svm->vcpu); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (reason != TASK_SWITCH_GATE || | 
 | 	    int_type == SVM_EXITINTINFO_TYPE_SOFT || | 
 | 	    (int_type == SVM_EXITINTINFO_TYPE_EXEPT && | 
 | 	     (int_vec == OF_VECTOR || int_vec == BP_VECTOR))) | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 |  | 
 | 	if (kvm_task_switch(&svm->vcpu, tss_selector, reason, | 
 | 				has_error_code, error_code) == EMULATE_FAIL) { | 
 | 		svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 | 		svm->vcpu.run->internal.ndata = 0; | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int cpuid_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
 | 	kvm_emulate_cpuid(&svm->vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int iret_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	++svm->vcpu.stat.nmi_window_exits; | 
 | 	clr_intercept(svm, INTERCEPT_IRET); | 
 | 	svm->vcpu.arch.hflags |= HF_IRET_MASK; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int invlpg_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
 | 		return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; | 
 |  | 
 | 	kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1); | 
 | 	skip_emulated_instruction(&svm->vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int emulate_on_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE; | 
 | } | 
 |  | 
 | #define CR_VALID (1ULL << 63) | 
 |  | 
 | static int cr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int reg, cr; | 
 | 	unsigned long val; | 
 | 	int err; | 
 |  | 
 | 	if (!static_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | 
 | 	cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0; | 
 |  | 
 | 	err = 0; | 
 | 	if (cr >= 16) { /* mov to cr */ | 
 | 		cr -= 16; | 
 | 		val = kvm_register_read(&svm->vcpu, reg); | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			err = kvm_set_cr0(&svm->vcpu, val); | 
 | 			break; | 
 | 		case 3: | 
 | 			err = kvm_set_cr3(&svm->vcpu, val); | 
 | 			break; | 
 | 		case 4: | 
 | 			err = kvm_set_cr4(&svm->vcpu, val); | 
 | 			break; | 
 | 		case 8: | 
 | 			err = kvm_set_cr8(&svm->vcpu, val); | 
 | 			break; | 
 | 		default: | 
 | 			WARN(1, "unhandled write to CR%d", cr); | 
 | 			kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 			return 1; | 
 | 		} | 
 | 	} else { /* mov from cr */ | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			val = kvm_read_cr0(&svm->vcpu); | 
 | 			break; | 
 | 		case 2: | 
 | 			val = svm->vcpu.arch.cr2; | 
 | 			break; | 
 | 		case 3: | 
 | 			val = kvm_read_cr3(&svm->vcpu); | 
 | 			break; | 
 | 		case 4: | 
 | 			val = kvm_read_cr4(&svm->vcpu); | 
 | 			break; | 
 | 		case 8: | 
 | 			val = kvm_get_cr8(&svm->vcpu); | 
 | 			break; | 
 | 		default: | 
 | 			WARN(1, "unhandled read from CR%d", cr); | 
 | 			kvm_queue_exception(&svm->vcpu, UD_VECTOR); | 
 | 			return 1; | 
 | 		} | 
 | 		kvm_register_write(&svm->vcpu, reg, val); | 
 | 	} | 
 | 	kvm_complete_insn_gp(&svm->vcpu, err); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int cr0_write_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = &svm->vcpu; | 
 | 	int r; | 
 |  | 
 | 	r = cr_interception(svm); | 
 |  | 
 | 	if (svm->nested.vmexit_rip) { | 
 | 		kvm_register_write(vcpu, VCPU_REGS_RIP, svm->nested.vmexit_rip); | 
 | 		kvm_register_write(vcpu, VCPU_REGS_RSP, svm->nested.vmexit_rsp); | 
 | 		kvm_register_write(vcpu, VCPU_REGS_RAX, svm->nested.vmexit_rax); | 
 | 		svm->nested.vmexit_rip = 0; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int dr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	int reg, dr; | 
 | 	unsigned long val; | 
 | 	int err; | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) | 
 | 		return emulate_on_interception(svm); | 
 |  | 
 | 	reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK; | 
 | 	dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0; | 
 |  | 
 | 	if (dr >= 16) { /* mov to DRn */ | 
 | 		val = kvm_register_read(&svm->vcpu, reg); | 
 | 		kvm_set_dr(&svm->vcpu, dr - 16, val); | 
 | 	} else { | 
 | 		err = kvm_get_dr(&svm->vcpu, dr, &val); | 
 | 		if (!err) | 
 | 			kvm_register_write(&svm->vcpu, reg, val); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int cr8_write_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 | 	int r; | 
 |  | 
 | 	u8 cr8_prev = kvm_get_cr8(&svm->vcpu); | 
 | 	/* instruction emulation calls kvm_set_cr8() */ | 
 | 	r = cr_interception(svm); | 
 | 	if (irqchip_in_kernel(svm->vcpu.kvm)) { | 
 | 		clr_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 | 		return r; | 
 | 	} | 
 | 	if (cr8_prev <= kvm_get_cr8(&svm->vcpu)) | 
 | 		return r; | 
 | 	kvm_run->exit_reason = KVM_EXIT_SET_TPR; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	switch (ecx) { | 
 | 	case MSR_IA32_TSC: { | 
 | 		struct vmcb *vmcb = get_host_vmcb(svm); | 
 |  | 
 | 		*data = vmcb->control.tsc_offset + native_read_tsc(); | 
 | 		break; | 
 | 	} | 
 | 	case MSR_STAR: | 
 | 		*data = svm->vmcb->save.star; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_LSTAR: | 
 | 		*data = svm->vmcb->save.lstar; | 
 | 		break; | 
 | 	case MSR_CSTAR: | 
 | 		*data = svm->vmcb->save.cstar; | 
 | 		break; | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 		*data = svm->vmcb->save.kernel_gs_base; | 
 | 		break; | 
 | 	case MSR_SYSCALL_MASK: | 
 | 		*data = svm->vmcb->save.sfmask; | 
 | 		break; | 
 | #endif | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		*data = svm->vmcb->save.sysenter_cs; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		*data = svm->sysenter_eip; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		*data = svm->sysenter_esp; | 
 | 		break; | 
 | 	/* | 
 | 	 * Nobody will change the following 5 values in the VMCB so we can | 
 | 	 * safely return them on rdmsr. They will always be 0 until LBRV is | 
 | 	 * implemented. | 
 | 	 */ | 
 | 	case MSR_IA32_DEBUGCTLMSR: | 
 | 		*data = svm->vmcb->save.dbgctl; | 
 | 		break; | 
 | 	case MSR_IA32_LASTBRANCHFROMIP: | 
 | 		*data = svm->vmcb->save.br_from; | 
 | 		break; | 
 | 	case MSR_IA32_LASTBRANCHTOIP: | 
 | 		*data = svm->vmcb->save.br_to; | 
 | 		break; | 
 | 	case MSR_IA32_LASTINTFROMIP: | 
 | 		*data = svm->vmcb->save.last_excp_from; | 
 | 		break; | 
 | 	case MSR_IA32_LASTINTTOIP: | 
 | 		*data = svm->vmcb->save.last_excp_to; | 
 | 		break; | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 		*data = svm->nested.hsave_msr; | 
 | 		break; | 
 | 	case MSR_VM_CR: | 
 | 		*data = svm->nested.vm_cr_msr; | 
 | 		break; | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 		*data = 0x01000065; | 
 | 		break; | 
 | 	default: | 
 | 		return kvm_get_msr_common(vcpu, ecx, data); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int rdmsr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
 | 	u64 data; | 
 |  | 
 | 	if (svm_get_msr(&svm->vcpu, ecx, &data)) { | 
 | 		trace_kvm_msr_read_ex(ecx); | 
 | 		kvm_inject_gp(&svm->vcpu, 0); | 
 | 	} else { | 
 | 		trace_kvm_msr_read(ecx, data); | 
 |  | 
 | 		svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff; | 
 | 		svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32; | 
 | 		svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	int svm_dis, chg_mask; | 
 |  | 
 | 	if (data & ~SVM_VM_CR_VALID_MASK) | 
 | 		return 1; | 
 |  | 
 | 	chg_mask = SVM_VM_CR_VALID_MASK; | 
 |  | 
 | 	if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK) | 
 | 		chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK); | 
 |  | 
 | 	svm->nested.vm_cr_msr &= ~chg_mask; | 
 | 	svm->nested.vm_cr_msr |= (data & chg_mask); | 
 |  | 
 | 	svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK; | 
 |  | 
 | 	/* check for svm_disable while efer.svme is set */ | 
 | 	if (svm_dis && (vcpu->arch.efer & EFER_SVME)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	switch (ecx) { | 
 | 	case MSR_IA32_TSC: | 
 | 		kvm_write_tsc(vcpu, data); | 
 | 		break; | 
 | 	case MSR_STAR: | 
 | 		svm->vmcb->save.star = data; | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_LSTAR: | 
 | 		svm->vmcb->save.lstar = data; | 
 | 		break; | 
 | 	case MSR_CSTAR: | 
 | 		svm->vmcb->save.cstar = data; | 
 | 		break; | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 		svm->vmcb->save.kernel_gs_base = data; | 
 | 		break; | 
 | 	case MSR_SYSCALL_MASK: | 
 | 		svm->vmcb->save.sfmask = data; | 
 | 		break; | 
 | #endif | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		svm->vmcb->save.sysenter_cs = data; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		svm->sysenter_eip = data; | 
 | 		svm->vmcb->save.sysenter_eip = data; | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		svm->sysenter_esp = data; | 
 | 		svm->vmcb->save.sysenter_esp = data; | 
 | 		break; | 
 | 	case MSR_IA32_DEBUGCTLMSR: | 
 | 		if (!boot_cpu_has(X86_FEATURE_LBRV)) { | 
 | 			pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n", | 
 | 					__func__, data); | 
 | 			break; | 
 | 		} | 
 | 		if (data & DEBUGCTL_RESERVED_BITS) | 
 | 			return 1; | 
 |  | 
 | 		svm->vmcb->save.dbgctl = data; | 
 | 		mark_dirty(svm->vmcb, VMCB_LBR); | 
 | 		if (data & (1ULL<<0)) | 
 | 			svm_enable_lbrv(svm); | 
 | 		else | 
 | 			svm_disable_lbrv(svm); | 
 | 		break; | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 		svm->nested.hsave_msr = data; | 
 | 		break; | 
 | 	case MSR_VM_CR: | 
 | 		return svm_set_vm_cr(vcpu, data); | 
 | 	case MSR_VM_IGNNE: | 
 | 		pr_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data); | 
 | 		break; | 
 | 	default: | 
 | 		return kvm_set_msr_common(vcpu, ecx, data); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int wrmsr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX]; | 
 | 	u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u) | 
 | 		| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32); | 
 |  | 
 |  | 
 | 	svm->next_rip = kvm_rip_read(&svm->vcpu) + 2; | 
 | 	if (svm_set_msr(&svm->vcpu, ecx, data)) { | 
 | 		trace_kvm_msr_write_ex(ecx, data); | 
 | 		kvm_inject_gp(&svm->vcpu, 0); | 
 | 	} else { | 
 | 		trace_kvm_msr_write(ecx, data); | 
 | 		skip_emulated_instruction(&svm->vcpu); | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int msr_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	if (svm->vmcb->control.exit_info_1) | 
 | 		return wrmsr_interception(svm); | 
 | 	else | 
 | 		return rdmsr_interception(svm); | 
 | } | 
 |  | 
 | static int interrupt_window_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	struct kvm_run *kvm_run = svm->vcpu.run; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 | 	svm_clear_vintr(svm); | 
 | 	svm->vmcb->control.int_ctl &= ~V_IRQ_MASK; | 
 | 	mark_dirty(svm->vmcb, VMCB_INTR); | 
 | 	/* | 
 | 	 * If the user space waits to inject interrupts, exit as soon as | 
 | 	 * possible | 
 | 	 */ | 
 | 	if (!irqchip_in_kernel(svm->vcpu.kvm) && | 
 | 	    kvm_run->request_interrupt_window && | 
 | 	    !kvm_cpu_has_interrupt(&svm->vcpu)) { | 
 | 		++svm->vcpu.stat.irq_window_exits; | 
 | 		kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int pause_interception(struct vcpu_svm *svm) | 
 | { | 
 | 	kvm_vcpu_on_spin(&(svm->vcpu)); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int (*svm_exit_handlers[])(struct vcpu_svm *svm) = { | 
 | 	[SVM_EXIT_READ_CR0]			= cr_interception, | 
 | 	[SVM_EXIT_READ_CR3]			= cr_interception, | 
 | 	[SVM_EXIT_READ_CR4]			= cr_interception, | 
 | 	[SVM_EXIT_READ_CR8]			= cr_interception, | 
 | 	[SVM_EXIT_CR0_SEL_WRITE]		= emulate_on_interception, | 
 | 	[SVM_EXIT_WRITE_CR0]			= cr0_write_interception, | 
 | 	[SVM_EXIT_WRITE_CR3]			= cr_interception, | 
 | 	[SVM_EXIT_WRITE_CR4]			= cr_interception, | 
 | 	[SVM_EXIT_WRITE_CR8]			= cr8_write_interception, | 
 | 	[SVM_EXIT_READ_DR0]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR1]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR2]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR3]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR4]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR5]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR6]			= dr_interception, | 
 | 	[SVM_EXIT_READ_DR7]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR0]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR1]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR2]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR3]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR4]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR5]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR6]			= dr_interception, | 
 | 	[SVM_EXIT_WRITE_DR7]			= dr_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + DB_VECTOR]	= db_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + BP_VECTOR]	= bp_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + UD_VECTOR]	= ud_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + PF_VECTOR]	= pf_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + NM_VECTOR]	= nm_interception, | 
 | 	[SVM_EXIT_EXCP_BASE + MC_VECTOR]	= mc_interception, | 
 | 	[SVM_EXIT_INTR]				= intr_interception, | 
 | 	[SVM_EXIT_NMI]				= nmi_interception, | 
 | 	[SVM_EXIT_SMI]				= nop_on_interception, | 
 | 	[SVM_EXIT_INIT]				= nop_on_interception, | 
 | 	[SVM_EXIT_VINTR]			= interrupt_window_interception, | 
 | 	[SVM_EXIT_CPUID]			= cpuid_interception, | 
 | 	[SVM_EXIT_IRET]                         = iret_interception, | 
 | 	[SVM_EXIT_INVD]                         = emulate_on_interception, | 
 | 	[SVM_EXIT_PAUSE]			= pause_interception, | 
 | 	[SVM_EXIT_HLT]				= halt_interception, | 
 | 	[SVM_EXIT_INVLPG]			= invlpg_interception, | 
 | 	[SVM_EXIT_INVLPGA]			= invlpga_interception, | 
 | 	[SVM_EXIT_IOIO]				= io_interception, | 
 | 	[SVM_EXIT_MSR]				= msr_interception, | 
 | 	[SVM_EXIT_TASK_SWITCH]			= task_switch_interception, | 
 | 	[SVM_EXIT_SHUTDOWN]			= shutdown_interception, | 
 | 	[SVM_EXIT_VMRUN]			= vmrun_interception, | 
 | 	[SVM_EXIT_VMMCALL]			= vmmcall_interception, | 
 | 	[SVM_EXIT_VMLOAD]			= vmload_interception, | 
 | 	[SVM_EXIT_VMSAVE]			= vmsave_interception, | 
 | 	[SVM_EXIT_STGI]				= stgi_interception, | 
 | 	[SVM_EXIT_CLGI]				= clgi_interception, | 
 | 	[SVM_EXIT_SKINIT]			= skinit_interception, | 
 | 	[SVM_EXIT_WBINVD]                       = emulate_on_interception, | 
 | 	[SVM_EXIT_MONITOR]			= invalid_op_interception, | 
 | 	[SVM_EXIT_MWAIT]			= invalid_op_interception, | 
 | 	[SVM_EXIT_XSETBV]			= xsetbv_interception, | 
 | 	[SVM_EXIT_NPF]				= pf_interception, | 
 | }; | 
 |  | 
 | void dump_vmcb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 | 	struct vmcb_save_area *save = &svm->vmcb->save; | 
 |  | 
 | 	pr_err("VMCB Control Area:\n"); | 
 | 	pr_err("cr_read:            %04x\n", control->intercept_cr & 0xffff); | 
 | 	pr_err("cr_write:           %04x\n", control->intercept_cr >> 16); | 
 | 	pr_err("dr_read:            %04x\n", control->intercept_dr & 0xffff); | 
 | 	pr_err("dr_write:           %04x\n", control->intercept_dr >> 16); | 
 | 	pr_err("exceptions:         %08x\n", control->intercept_exceptions); | 
 | 	pr_err("intercepts:         %016llx\n", control->intercept); | 
 | 	pr_err("pause filter count: %d\n", control->pause_filter_count); | 
 | 	pr_err("iopm_base_pa:       %016llx\n", control->iopm_base_pa); | 
 | 	pr_err("msrpm_base_pa:      %016llx\n", control->msrpm_base_pa); | 
 | 	pr_err("tsc_offset:         %016llx\n", control->tsc_offset); | 
 | 	pr_err("asid:               %d\n", control->asid); | 
 | 	pr_err("tlb_ctl:            %d\n", control->tlb_ctl); | 
 | 	pr_err("int_ctl:            %08x\n", control->int_ctl); | 
 | 	pr_err("int_vector:         %08x\n", control->int_vector); | 
 | 	pr_err("int_state:          %08x\n", control->int_state); | 
 | 	pr_err("exit_code:          %08x\n", control->exit_code); | 
 | 	pr_err("exit_info1:         %016llx\n", control->exit_info_1); | 
 | 	pr_err("exit_info2:         %016llx\n", control->exit_info_2); | 
 | 	pr_err("exit_int_info:      %08x\n", control->exit_int_info); | 
 | 	pr_err("exit_int_info_err:  %08x\n", control->exit_int_info_err); | 
 | 	pr_err("nested_ctl:         %lld\n", control->nested_ctl); | 
 | 	pr_err("nested_cr3:         %016llx\n", control->nested_cr3); | 
 | 	pr_err("event_inj:          %08x\n", control->event_inj); | 
 | 	pr_err("event_inj_err:      %08x\n", control->event_inj_err); | 
 | 	pr_err("lbr_ctl:            %lld\n", control->lbr_ctl); | 
 | 	pr_err("next_rip:           %016llx\n", control->next_rip); | 
 | 	pr_err("VMCB State Save Area:\n"); | 
 | 	pr_err("es:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->es.selector, save->es.attrib, | 
 | 		save->es.limit, save->es.base); | 
 | 	pr_err("cs:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->cs.selector, save->cs.attrib, | 
 | 		save->cs.limit, save->cs.base); | 
 | 	pr_err("ss:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->ss.selector, save->ss.attrib, | 
 | 		save->ss.limit, save->ss.base); | 
 | 	pr_err("ds:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->ds.selector, save->ds.attrib, | 
 | 		save->ds.limit, save->ds.base); | 
 | 	pr_err("fs:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->fs.selector, save->fs.attrib, | 
 | 		save->fs.limit, save->fs.base); | 
 | 	pr_err("gs:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->gs.selector, save->gs.attrib, | 
 | 		save->gs.limit, save->gs.base); | 
 | 	pr_err("gdtr: s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->gdtr.selector, save->gdtr.attrib, | 
 | 		save->gdtr.limit, save->gdtr.base); | 
 | 	pr_err("ldtr: s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->ldtr.selector, save->ldtr.attrib, | 
 | 		save->ldtr.limit, save->ldtr.base); | 
 | 	pr_err("idtr: s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->idtr.selector, save->idtr.attrib, | 
 | 		save->idtr.limit, save->idtr.base); | 
 | 	pr_err("tr:   s: %04x a: %04x l: %08x b: %016llx\n", | 
 | 		save->tr.selector, save->tr.attrib, | 
 | 		save->tr.limit, save->tr.base); | 
 | 	pr_err("cpl:            %d                efer:         %016llx\n", | 
 | 		save->cpl, save->efer); | 
 | 	pr_err("cr0:            %016llx cr2:          %016llx\n", | 
 | 		save->cr0, save->cr2); | 
 | 	pr_err("cr3:            %016llx cr4:          %016llx\n", | 
 | 		save->cr3, save->cr4); | 
 | 	pr_err("dr6:            %016llx dr7:          %016llx\n", | 
 | 		save->dr6, save->dr7); | 
 | 	pr_err("rip:            %016llx rflags:       %016llx\n", | 
 | 		save->rip, save->rflags); | 
 | 	pr_err("rsp:            %016llx rax:          %016llx\n", | 
 | 		save->rsp, save->rax); | 
 | 	pr_err("star:           %016llx lstar:        %016llx\n", | 
 | 		save->star, save->lstar); | 
 | 	pr_err("cstar:          %016llx sfmask:       %016llx\n", | 
 | 		save->cstar, save->sfmask); | 
 | 	pr_err("kernel_gs_base: %016llx sysenter_cs:  %016llx\n", | 
 | 		save->kernel_gs_base, save->sysenter_cs); | 
 | 	pr_err("sysenter_esp:   %016llx sysenter_eip: %016llx\n", | 
 | 		save->sysenter_esp, save->sysenter_eip); | 
 | 	pr_err("gpat:           %016llx dbgctl:       %016llx\n", | 
 | 		save->g_pat, save->dbgctl); | 
 | 	pr_err("br_from:        %016llx br_to:        %016llx\n", | 
 | 		save->br_from, save->br_to); | 
 | 	pr_err("excp_from:      %016llx excp_to:      %016llx\n", | 
 | 		save->last_excp_from, save->last_excp_to); | 
 |  | 
 | } | 
 |  | 
 | static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) | 
 | { | 
 | 	struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control; | 
 |  | 
 | 	*info1 = control->exit_info_1; | 
 | 	*info2 = control->exit_info_2; | 
 | } | 
 |  | 
 | static int handle_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 | 	u32 exit_code = svm->vmcb->control.exit_code; | 
 |  | 
 | 	trace_kvm_exit(exit_code, vcpu, KVM_ISA_SVM); | 
 |  | 
 | 	if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE)) | 
 | 		vcpu->arch.cr0 = svm->vmcb->save.cr0; | 
 | 	if (npt_enabled) | 
 | 		vcpu->arch.cr3 = svm->vmcb->save.cr3; | 
 |  | 
 | 	if (unlikely(svm->nested.exit_required)) { | 
 | 		nested_svm_vmexit(svm); | 
 | 		svm->nested.exit_required = false; | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		int vmexit; | 
 |  | 
 | 		trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code, | 
 | 					svm->vmcb->control.exit_info_1, | 
 | 					svm->vmcb->control.exit_info_2, | 
 | 					svm->vmcb->control.exit_int_info, | 
 | 					svm->vmcb->control.exit_int_info_err); | 
 |  | 
 | 		vmexit = nested_svm_exit_special(svm); | 
 |  | 
 | 		if (vmexit == NESTED_EXIT_CONTINUE) | 
 | 			vmexit = nested_svm_exit_handled(svm); | 
 |  | 
 | 		if (vmexit == NESTED_EXIT_DONE) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	svm_complete_interrupts(svm); | 
 |  | 
 | 	if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) { | 
 | 		kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
 | 		kvm_run->fail_entry.hardware_entry_failure_reason | 
 | 			= svm->vmcb->control.exit_code; | 
 | 		pr_err("KVM: FAILED VMRUN WITH VMCB:\n"); | 
 | 		dump_vmcb(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_external_interrupt(svm->vmcb->control.exit_int_info) && | 
 | 	    exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR && | 
 | 	    exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH && | 
 | 	    exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI) | 
 | 		printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " | 
 | 		       "exit_code 0x%x\n", | 
 | 		       __func__, svm->vmcb->control.exit_int_info, | 
 | 		       exit_code); | 
 |  | 
 | 	if (exit_code >= ARRAY_SIZE(svm_exit_handlers) | 
 | 	    || !svm_exit_handlers[exit_code]) { | 
 | 		kvm_run->exit_reason = KVM_EXIT_UNKNOWN; | 
 | 		kvm_run->hw.hardware_exit_reason = exit_code; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return svm_exit_handlers[exit_code](svm); | 
 | } | 
 |  | 
 | static void reload_tss(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
 | 	sd->tss_desc->type = 9; /* available 32/64-bit TSS */ | 
 | 	load_TR_desc(); | 
 | } | 
 |  | 
 | static void pre_svm_run(struct vcpu_svm *svm) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	struct svm_cpu_data *sd = per_cpu(svm_data, cpu); | 
 |  | 
 | 	/* FIXME: handle wraparound of asid_generation */ | 
 | 	if (svm->asid_generation != sd->asid_generation) | 
 | 		new_asid(svm, sd); | 
 | } | 
 |  | 
 | static void svm_inject_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI; | 
 | 	vcpu->arch.hflags |= HF_NMI_MASK; | 
 | 	set_intercept(svm, INTERCEPT_IRET); | 
 | 	++vcpu->stat.nmi_injections; | 
 | } | 
 |  | 
 | static inline void svm_inject_irq(struct vcpu_svm *svm, int irq) | 
 | { | 
 | 	struct vmcb_control_area *control; | 
 |  | 
 | 	control = &svm->vmcb->control; | 
 | 	control->int_vector = irq; | 
 | 	control->int_ctl &= ~V_INTR_PRIO_MASK; | 
 | 	control->int_ctl |= V_IRQ_MASK | | 
 | 		((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); | 
 | 	mark_dirty(svm->vmcb, VMCB_INTR); | 
 | } | 
 |  | 
 | static void svm_set_irq(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	BUG_ON(!(gif_set(svm))); | 
 |  | 
 | 	trace_kvm_inj_virq(vcpu->arch.interrupt.nr); | 
 | 	++vcpu->stat.irq_injections; | 
 |  | 
 | 	svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr | | 
 | 		SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR; | 
 | } | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK)) | 
 | 		return; | 
 |  | 
 | 	if (irr == -1) | 
 | 		return; | 
 |  | 
 | 	if (tpr >= irr) | 
 | 		set_cr_intercept(svm, INTERCEPT_CR8_WRITE); | 
 | } | 
 |  | 
 | static int svm_nmi_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	int ret; | 
 | 	ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) && | 
 | 	      !(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
 | 	ret = ret && gif_set(svm) && nested_svm_nmi(svm); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	return !!(svm->vcpu.arch.hflags & HF_NMI_MASK); | 
 | } | 
 |  | 
 | static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (masked) { | 
 | 		svm->vcpu.arch.hflags |= HF_NMI_MASK; | 
 | 		set_intercept(svm, INTERCEPT_IRET); | 
 | 	} else { | 
 | 		svm->vcpu.arch.hflags &= ~HF_NMI_MASK; | 
 | 		clr_intercept(svm, INTERCEPT_IRET); | 
 | 	} | 
 | } | 
 |  | 
 | static int svm_interrupt_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb *vmcb = svm->vmcb; | 
 | 	int ret; | 
 |  | 
 | 	if (!gif_set(svm) || | 
 | 	     (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)) | 
 | 		return 0; | 
 |  | 
 | 	ret = !!(vmcb->save.rflags & X86_EFLAGS_IF); | 
 |  | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void enable_irq_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes | 
 | 	 * 1, because that's a separate STGI/VMRUN intercept.  The next time we | 
 | 	 * get that intercept, this function will be called again though and | 
 | 	 * we'll get the vintr intercept. | 
 | 	 */ | 
 | 	if (gif_set(svm) && nested_svm_intr(svm)) { | 
 | 		svm_set_vintr(svm); | 
 | 		svm_inject_irq(svm, 0x0); | 
 | 	} | 
 | } | 
 |  | 
 | static void enable_nmi_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK)) | 
 | 	    == HF_NMI_MASK) | 
 | 		return; /* IRET will cause a vm exit */ | 
 |  | 
 | 	/* | 
 | 	 * Something prevents NMI from been injected. Single step over possible | 
 | 	 * problem (IRET or exception injection or interrupt shadow) | 
 | 	 */ | 
 | 	svm->nmi_singlestep = true; | 
 | 	svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF); | 
 | 	update_db_intercept(vcpu); | 
 | } | 
 |  | 
 | static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_flush_tlb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (static_cpu_has(X86_FEATURE_FLUSHBYASID)) | 
 | 		svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID; | 
 | 	else | 
 | 		svm->asid_generation--; | 
 | } | 
 |  | 
 | static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK)) | 
 | 		return; | 
 |  | 
 | 	if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) { | 
 | 		int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK; | 
 | 		kvm_set_cr8(vcpu, cr8); | 
 | 	} | 
 | } | 
 |  | 
 | static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	u64 cr8; | 
 |  | 
 | 	if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK)) | 
 | 		return; | 
 |  | 
 | 	cr8 = kvm_get_cr8(vcpu); | 
 | 	svm->vmcb->control.int_ctl &= ~V_TPR_MASK; | 
 | 	svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK; | 
 | } | 
 |  | 
 | static void svm_complete_interrupts(struct vcpu_svm *svm) | 
 | { | 
 | 	u8 vector; | 
 | 	int type; | 
 | 	u32 exitintinfo = svm->vmcb->control.exit_int_info; | 
 | 	unsigned int3_injected = svm->int3_injected; | 
 |  | 
 | 	svm->int3_injected = 0; | 
 |  | 
 | 	if (svm->vcpu.arch.hflags & HF_IRET_MASK) { | 
 | 		svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK); | 
 | 		kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 | 	} | 
 |  | 
 | 	svm->vcpu.arch.nmi_injected = false; | 
 | 	kvm_clear_exception_queue(&svm->vcpu); | 
 | 	kvm_clear_interrupt_queue(&svm->vcpu); | 
 |  | 
 | 	if (!(exitintinfo & SVM_EXITINTINFO_VALID)) | 
 | 		return; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, &svm->vcpu); | 
 |  | 
 | 	vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK; | 
 | 	type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK; | 
 |  | 
 | 	switch (type) { | 
 | 	case SVM_EXITINTINFO_TYPE_NMI: | 
 | 		svm->vcpu.arch.nmi_injected = true; | 
 | 		break; | 
 | 	case SVM_EXITINTINFO_TYPE_EXEPT: | 
 | 		/* | 
 | 		 * In case of software exceptions, do not reinject the vector, | 
 | 		 * but re-execute the instruction instead. Rewind RIP first | 
 | 		 * if we emulated INT3 before. | 
 | 		 */ | 
 | 		if (kvm_exception_is_soft(vector)) { | 
 | 			if (vector == BP_VECTOR && int3_injected && | 
 | 			    kvm_is_linear_rip(&svm->vcpu, svm->int3_rip)) | 
 | 				kvm_rip_write(&svm->vcpu, | 
 | 					      kvm_rip_read(&svm->vcpu) - | 
 | 					      int3_injected); | 
 | 			break; | 
 | 		} | 
 | 		if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) { | 
 | 			u32 err = svm->vmcb->control.exit_int_info_err; | 
 | 			kvm_requeue_exception_e(&svm->vcpu, vector, err); | 
 |  | 
 | 		} else | 
 | 			kvm_requeue_exception(&svm->vcpu, vector); | 
 | 		break; | 
 | 	case SVM_EXITINTINFO_TYPE_INTR: | 
 | 		kvm_queue_interrupt(&svm->vcpu, vector, false); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void svm_cancel_injection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 | 	struct vmcb_control_area *control = &svm->vmcb->control; | 
 |  | 
 | 	control->exit_int_info = control->event_inj; | 
 | 	control->exit_int_info_err = control->event_inj_err; | 
 | 	control->event_inj = 0; | 
 | 	svm_complete_interrupts(svm); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | #define R "r" | 
 | #else | 
 | #define R "e" | 
 | #endif | 
 |  | 
 | static void svm_vcpu_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX]; | 
 | 	svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP]; | 
 | 	svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP]; | 
 |  | 
 | 	/* | 
 | 	 * A vmexit emulation is required before the vcpu can be executed | 
 | 	 * again. | 
 | 	 */ | 
 | 	if (unlikely(svm->nested.exit_required)) | 
 | 		return; | 
 |  | 
 | 	pre_svm_run(svm); | 
 |  | 
 | 	sync_lapic_to_cr8(vcpu); | 
 |  | 
 | 	svm->vmcb->save.cr2 = vcpu->arch.cr2; | 
 |  | 
 | 	clgi(); | 
 |  | 
 | 	local_irq_enable(); | 
 |  | 
 | 	asm volatile ( | 
 | 		"push %%"R"bp; \n\t" | 
 | 		"mov %c[rbx](%[svm]), %%"R"bx \n\t" | 
 | 		"mov %c[rcx](%[svm]), %%"R"cx \n\t" | 
 | 		"mov %c[rdx](%[svm]), %%"R"dx \n\t" | 
 | 		"mov %c[rsi](%[svm]), %%"R"si \n\t" | 
 | 		"mov %c[rdi](%[svm]), %%"R"di \n\t" | 
 | 		"mov %c[rbp](%[svm]), %%"R"bp \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %c[r8](%[svm]),  %%r8  \n\t" | 
 | 		"mov %c[r9](%[svm]),  %%r9  \n\t" | 
 | 		"mov %c[r10](%[svm]), %%r10 \n\t" | 
 | 		"mov %c[r11](%[svm]), %%r11 \n\t" | 
 | 		"mov %c[r12](%[svm]), %%r12 \n\t" | 
 | 		"mov %c[r13](%[svm]), %%r13 \n\t" | 
 | 		"mov %c[r14](%[svm]), %%r14 \n\t" | 
 | 		"mov %c[r15](%[svm]), %%r15 \n\t" | 
 | #endif | 
 |  | 
 | 		/* Enter guest mode */ | 
 | 		"push %%"R"ax \n\t" | 
 | 		"mov %c[vmcb](%[svm]), %%"R"ax \n\t" | 
 | 		__ex(SVM_VMLOAD) "\n\t" | 
 | 		__ex(SVM_VMRUN) "\n\t" | 
 | 		__ex(SVM_VMSAVE) "\n\t" | 
 | 		"pop %%"R"ax \n\t" | 
 |  | 
 | 		/* Save guest registers, load host registers */ | 
 | 		"mov %%"R"bx, %c[rbx](%[svm]) \n\t" | 
 | 		"mov %%"R"cx, %c[rcx](%[svm]) \n\t" | 
 | 		"mov %%"R"dx, %c[rdx](%[svm]) \n\t" | 
 | 		"mov %%"R"si, %c[rsi](%[svm]) \n\t" | 
 | 		"mov %%"R"di, %c[rdi](%[svm]) \n\t" | 
 | 		"mov %%"R"bp, %c[rbp](%[svm]) \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %%r8,  %c[r8](%[svm]) \n\t" | 
 | 		"mov %%r9,  %c[r9](%[svm]) \n\t" | 
 | 		"mov %%r10, %c[r10](%[svm]) \n\t" | 
 | 		"mov %%r11, %c[r11](%[svm]) \n\t" | 
 | 		"mov %%r12, %c[r12](%[svm]) \n\t" | 
 | 		"mov %%r13, %c[r13](%[svm]) \n\t" | 
 | 		"mov %%r14, %c[r14](%[svm]) \n\t" | 
 | 		"mov %%r15, %c[r15](%[svm]) \n\t" | 
 | #endif | 
 | 		"pop %%"R"bp" | 
 | 		: | 
 | 		: [svm]"a"(svm), | 
 | 		  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), | 
 | 		  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])), | 
 | 		  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])), | 
 | 		  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])), | 
 | 		  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])), | 
 | 		  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])), | 
 | 		  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP])) | 
 | #ifdef CONFIG_X86_64 | 
 | 		  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])), | 
 | 		  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])), | 
 | 		  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])), | 
 | 		  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])), | 
 | 		  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])), | 
 | 		  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])), | 
 | 		  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])), | 
 | 		  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15])) | 
 | #endif | 
 | 		: "cc", "memory" | 
 | 		, R"bx", R"cx", R"dx", R"si", R"di" | 
 | #ifdef CONFIG_X86_64 | 
 | 		, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15" | 
 | #endif | 
 | 		); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	wrmsrl(MSR_GS_BASE, svm->host.gs_base); | 
 | #else | 
 | 	loadsegment(fs, svm->host.fs); | 
 | #endif | 
 |  | 
 | 	reload_tss(vcpu); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	stgi(); | 
 |  | 
 | 	vcpu->arch.cr2 = svm->vmcb->save.cr2; | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax; | 
 | 	vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp; | 
 | 	vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip; | 
 |  | 
 | 	sync_cr8_to_lapic(vcpu); | 
 |  | 
 | 	svm->next_rip = 0; | 
 |  | 
 | 	svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; | 
 |  | 
 | 	/* if exit due to PF check for async PF */ | 
 | 	if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) | 
 | 		svm->apf_reason = kvm_read_and_reset_pf_reason(); | 
 |  | 
 | 	if (npt_enabled) { | 
 | 		vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR); | 
 | 		vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We need to handle MC intercepts here before the vcpu has a chance to | 
 | 	 * change the physical cpu | 
 | 	 */ | 
 | 	if (unlikely(svm->vmcb->control.exit_code == | 
 | 		     SVM_EXIT_EXCP_BASE + MC_VECTOR)) | 
 | 		svm_handle_mce(svm); | 
 |  | 
 | 	mark_all_clean(svm->vmcb); | 
 | } | 
 |  | 
 | #undef R | 
 |  | 
 | static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->save.cr3 = root; | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 | 	svm_flush_tlb(vcpu); | 
 | } | 
 |  | 
 | static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	svm->vmcb->control.nested_cr3 = root; | 
 | 	mark_dirty(svm->vmcb, VMCB_NPT); | 
 |  | 
 | 	/* Also sync guest cr3 here in case we live migrate */ | 
 | 	svm->vmcb->save.cr3 = kvm_read_cr3(vcpu); | 
 | 	mark_dirty(svm->vmcb, VMCB_CR); | 
 |  | 
 | 	svm_flush_tlb(vcpu); | 
 | } | 
 |  | 
 | static int is_disabled(void) | 
 | { | 
 | 	u64 vm_cr; | 
 |  | 
 | 	rdmsrl(MSR_VM_CR, vm_cr); | 
 | 	if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE)) | 
 | 		return 1; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void | 
 | svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
 | { | 
 | 	/* | 
 | 	 * Patch in the VMMCALL instruction: | 
 | 	 */ | 
 | 	hypercall[0] = 0x0f; | 
 | 	hypercall[1] = 0x01; | 
 | 	hypercall[2] = 0xd9; | 
 | } | 
 |  | 
 | static void svm_check_processor_compat(void *rtn) | 
 | { | 
 | 	*(int *)rtn = 0; | 
 | } | 
 |  | 
 | static bool svm_cpu_has_accelerated_tpr(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void svm_cpuid_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 
 | { | 
 | 	switch (func) { | 
 | 	case 0x80000001: | 
 | 		if (nested) | 
 | 			entry->ecx |= (1 << 2); /* Set SVM bit */ | 
 | 		break; | 
 | 	case 0x8000000A: | 
 | 		entry->eax = 1; /* SVM revision 1 */ | 
 | 		entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper | 
 | 				   ASID emulation to nested SVM */ | 
 | 		entry->ecx = 0; /* Reserved */ | 
 | 		entry->edx = 0; /* Per default do not support any | 
 | 				   additional features */ | 
 |  | 
 | 		/* Support next_rip if host supports it */ | 
 | 		if (boot_cpu_has(X86_FEATURE_NRIPS)) | 
 | 			entry->edx |= SVM_FEATURE_NRIP; | 
 |  | 
 | 		/* Support NPT for the guest if enabled */ | 
 | 		if (npt_enabled) | 
 | 			entry->edx |= SVM_FEATURE_NPT; | 
 |  | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static const struct trace_print_flags svm_exit_reasons_str[] = { | 
 | 	{ SVM_EXIT_READ_CR0,			"read_cr0" }, | 
 | 	{ SVM_EXIT_READ_CR3,			"read_cr3" }, | 
 | 	{ SVM_EXIT_READ_CR4,			"read_cr4" }, | 
 | 	{ SVM_EXIT_READ_CR8,			"read_cr8" }, | 
 | 	{ SVM_EXIT_WRITE_CR0,			"write_cr0" }, | 
 | 	{ SVM_EXIT_WRITE_CR3,			"write_cr3" }, | 
 | 	{ SVM_EXIT_WRITE_CR4,			"write_cr4" }, | 
 | 	{ SVM_EXIT_WRITE_CR8,			"write_cr8" }, | 
 | 	{ SVM_EXIT_READ_DR0,			"read_dr0" }, | 
 | 	{ SVM_EXIT_READ_DR1,			"read_dr1" }, | 
 | 	{ SVM_EXIT_READ_DR2,			"read_dr2" }, | 
 | 	{ SVM_EXIT_READ_DR3,			"read_dr3" }, | 
 | 	{ SVM_EXIT_WRITE_DR0,			"write_dr0" }, | 
 | 	{ SVM_EXIT_WRITE_DR1,			"write_dr1" }, | 
 | 	{ SVM_EXIT_WRITE_DR2,			"write_dr2" }, | 
 | 	{ SVM_EXIT_WRITE_DR3,			"write_dr3" }, | 
 | 	{ SVM_EXIT_WRITE_DR5,			"write_dr5" }, | 
 | 	{ SVM_EXIT_WRITE_DR7,			"write_dr7" }, | 
 | 	{ SVM_EXIT_EXCP_BASE + DB_VECTOR,	"DB excp" }, | 
 | 	{ SVM_EXIT_EXCP_BASE + BP_VECTOR,	"BP excp" }, | 
 | 	{ SVM_EXIT_EXCP_BASE + UD_VECTOR,	"UD excp" }, | 
 | 	{ SVM_EXIT_EXCP_BASE + PF_VECTOR,	"PF excp" }, | 
 | 	{ SVM_EXIT_EXCP_BASE + NM_VECTOR,	"NM excp" }, | 
 | 	{ SVM_EXIT_EXCP_BASE + MC_VECTOR,	"MC excp" }, | 
 | 	{ SVM_EXIT_INTR,			"interrupt" }, | 
 | 	{ SVM_EXIT_NMI,				"nmi" }, | 
 | 	{ SVM_EXIT_SMI,				"smi" }, | 
 | 	{ SVM_EXIT_INIT,			"init" }, | 
 | 	{ SVM_EXIT_VINTR,			"vintr" }, | 
 | 	{ SVM_EXIT_CPUID,			"cpuid" }, | 
 | 	{ SVM_EXIT_INVD,			"invd" }, | 
 | 	{ SVM_EXIT_HLT,				"hlt" }, | 
 | 	{ SVM_EXIT_INVLPG,			"invlpg" }, | 
 | 	{ SVM_EXIT_INVLPGA,			"invlpga" }, | 
 | 	{ SVM_EXIT_IOIO,			"io" }, | 
 | 	{ SVM_EXIT_MSR,				"msr" }, | 
 | 	{ SVM_EXIT_TASK_SWITCH,			"task_switch" }, | 
 | 	{ SVM_EXIT_SHUTDOWN,			"shutdown" }, | 
 | 	{ SVM_EXIT_VMRUN,			"vmrun" }, | 
 | 	{ SVM_EXIT_VMMCALL,			"hypercall" }, | 
 | 	{ SVM_EXIT_VMLOAD,			"vmload" }, | 
 | 	{ SVM_EXIT_VMSAVE,			"vmsave" }, | 
 | 	{ SVM_EXIT_STGI,			"stgi" }, | 
 | 	{ SVM_EXIT_CLGI,			"clgi" }, | 
 | 	{ SVM_EXIT_SKINIT,			"skinit" }, | 
 | 	{ SVM_EXIT_WBINVD,			"wbinvd" }, | 
 | 	{ SVM_EXIT_MONITOR,			"monitor" }, | 
 | 	{ SVM_EXIT_MWAIT,			"mwait" }, | 
 | 	{ SVM_EXIT_XSETBV,			"xsetbv" }, | 
 | 	{ SVM_EXIT_NPF,				"npf" }, | 
 | 	{ -1, NULL } | 
 | }; | 
 |  | 
 | static int svm_get_lpage_level(void) | 
 | { | 
 | 	return PT_PDPE_LEVEL; | 
 | } | 
 |  | 
 | static bool svm_rdtscp_supported(void) | 
 | { | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool svm_has_wbinvd_exit(void) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static void svm_fpu_deactivate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_svm *svm = to_svm(vcpu); | 
 |  | 
 | 	set_exception_intercept(svm, NM_VECTOR); | 
 | 	update_cr0_intercept(svm); | 
 | } | 
 |  | 
 | static struct kvm_x86_ops svm_x86_ops = { | 
 | 	.cpu_has_kvm_support = has_svm, | 
 | 	.disabled_by_bios = is_disabled, | 
 | 	.hardware_setup = svm_hardware_setup, | 
 | 	.hardware_unsetup = svm_hardware_unsetup, | 
 | 	.check_processor_compatibility = svm_check_processor_compat, | 
 | 	.hardware_enable = svm_hardware_enable, | 
 | 	.hardware_disable = svm_hardware_disable, | 
 | 	.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr, | 
 |  | 
 | 	.vcpu_create = svm_create_vcpu, | 
 | 	.vcpu_free = svm_free_vcpu, | 
 | 	.vcpu_reset = svm_vcpu_reset, | 
 |  | 
 | 	.prepare_guest_switch = svm_prepare_guest_switch, | 
 | 	.vcpu_load = svm_vcpu_load, | 
 | 	.vcpu_put = svm_vcpu_put, | 
 |  | 
 | 	.set_guest_debug = svm_guest_debug, | 
 | 	.get_msr = svm_get_msr, | 
 | 	.set_msr = svm_set_msr, | 
 | 	.get_segment_base = svm_get_segment_base, | 
 | 	.get_segment = svm_get_segment, | 
 | 	.set_segment = svm_set_segment, | 
 | 	.get_cpl = svm_get_cpl, | 
 | 	.get_cs_db_l_bits = kvm_get_cs_db_l_bits, | 
 | 	.decache_cr0_guest_bits = svm_decache_cr0_guest_bits, | 
 | 	.decache_cr3 = svm_decache_cr3, | 
 | 	.decache_cr4_guest_bits = svm_decache_cr4_guest_bits, | 
 | 	.set_cr0 = svm_set_cr0, | 
 | 	.set_cr3 = svm_set_cr3, | 
 | 	.set_cr4 = svm_set_cr4, | 
 | 	.set_efer = svm_set_efer, | 
 | 	.get_idt = svm_get_idt, | 
 | 	.set_idt = svm_set_idt, | 
 | 	.get_gdt = svm_get_gdt, | 
 | 	.set_gdt = svm_set_gdt, | 
 | 	.set_dr7 = svm_set_dr7, | 
 | 	.cache_reg = svm_cache_reg, | 
 | 	.get_rflags = svm_get_rflags, | 
 | 	.set_rflags = svm_set_rflags, | 
 | 	.fpu_activate = svm_fpu_activate, | 
 | 	.fpu_deactivate = svm_fpu_deactivate, | 
 |  | 
 | 	.tlb_flush = svm_flush_tlb, | 
 |  | 
 | 	.run = svm_vcpu_run, | 
 | 	.handle_exit = handle_exit, | 
 | 	.skip_emulated_instruction = skip_emulated_instruction, | 
 | 	.set_interrupt_shadow = svm_set_interrupt_shadow, | 
 | 	.get_interrupt_shadow = svm_get_interrupt_shadow, | 
 | 	.patch_hypercall = svm_patch_hypercall, | 
 | 	.set_irq = svm_set_irq, | 
 | 	.set_nmi = svm_inject_nmi, | 
 | 	.queue_exception = svm_queue_exception, | 
 | 	.cancel_injection = svm_cancel_injection, | 
 | 	.interrupt_allowed = svm_interrupt_allowed, | 
 | 	.nmi_allowed = svm_nmi_allowed, | 
 | 	.get_nmi_mask = svm_get_nmi_mask, | 
 | 	.set_nmi_mask = svm_set_nmi_mask, | 
 | 	.enable_nmi_window = enable_nmi_window, | 
 | 	.enable_irq_window = enable_irq_window, | 
 | 	.update_cr8_intercept = update_cr8_intercept, | 
 |  | 
 | 	.set_tss_addr = svm_set_tss_addr, | 
 | 	.get_tdp_level = get_npt_level, | 
 | 	.get_mt_mask = svm_get_mt_mask, | 
 |  | 
 | 	.get_exit_info = svm_get_exit_info, | 
 | 	.exit_reasons_str = svm_exit_reasons_str, | 
 |  | 
 | 	.get_lpage_level = svm_get_lpage_level, | 
 |  | 
 | 	.cpuid_update = svm_cpuid_update, | 
 |  | 
 | 	.rdtscp_supported = svm_rdtscp_supported, | 
 |  | 
 | 	.set_supported_cpuid = svm_set_supported_cpuid, | 
 |  | 
 | 	.has_wbinvd_exit = svm_has_wbinvd_exit, | 
 |  | 
 | 	.write_tsc_offset = svm_write_tsc_offset, | 
 | 	.adjust_tsc_offset = svm_adjust_tsc_offset, | 
 |  | 
 | 	.set_tdp_cr3 = set_tdp_cr3, | 
 | }; | 
 |  | 
 | static int __init svm_init(void) | 
 | { | 
 | 	return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm), | 
 | 			__alignof__(struct vcpu_svm), THIS_MODULE); | 
 | } | 
 |  | 
 | static void __exit svm_exit(void) | 
 | { | 
 | 	kvm_exit(); | 
 | } | 
 |  | 
 | module_init(svm_init) | 
 | module_exit(svm_exit) |