|  | #ifndef __LINUX_PERCPU_H | 
|  | #define __LINUX_PERCPU_H | 
|  |  | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/cpumask.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <asm/percpu.h> | 
|  |  | 
|  | /* enough to cover all DEFINE_PER_CPUs in modules */ | 
|  | #ifdef CONFIG_MODULES | 
|  | #define PERCPU_MODULE_RESERVE		(8 << 10) | 
|  | #else | 
|  | #define PERCPU_MODULE_RESERVE		0 | 
|  | #endif | 
|  |  | 
|  | #ifndef PERCPU_ENOUGH_ROOM | 
|  | #define PERCPU_ENOUGH_ROOM						\ | 
|  | (ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES) +	\ | 
|  | PERCPU_MODULE_RESERVE) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Must be an lvalue. Since @var must be a simple identifier, | 
|  | * we force a syntax error here if it isn't. | 
|  | */ | 
|  | #define get_cpu_var(var) (*({				\ | 
|  | preempt_disable();				\ | 
|  | &__get_cpu_var(var); })) | 
|  |  | 
|  | /* | 
|  | * The weird & is necessary because sparse considers (void)(var) to be | 
|  | * a direct dereference of percpu variable (var). | 
|  | */ | 
|  | #define put_cpu_var(var) do {				\ | 
|  | (void)&(var);					\ | 
|  | preempt_enable();				\ | 
|  | } while (0) | 
|  |  | 
|  | #define get_cpu_ptr(var) ({				\ | 
|  | preempt_disable();				\ | 
|  | this_cpu_ptr(var); }) | 
|  |  | 
|  | #define put_cpu_ptr(var) do {				\ | 
|  | (void)(var);					\ | 
|  | preempt_enable();				\ | 
|  | } while (0) | 
|  |  | 
|  | /* minimum unit size, also is the maximum supported allocation size */ | 
|  | #define PCPU_MIN_UNIT_SIZE		PFN_ALIGN(32 << 10) | 
|  |  | 
|  | /* | 
|  | * Percpu allocator can serve percpu allocations before slab is | 
|  | * initialized which allows slab to depend on the percpu allocator. | 
|  | * The following two parameters decide how much resource to | 
|  | * preallocate for this.  Keep PERCPU_DYNAMIC_RESERVE equal to or | 
|  | * larger than PERCPU_DYNAMIC_EARLY_SIZE. | 
|  | */ | 
|  | #define PERCPU_DYNAMIC_EARLY_SLOTS	128 | 
|  | #define PERCPU_DYNAMIC_EARLY_SIZE	(12 << 10) | 
|  |  | 
|  | /* | 
|  | * PERCPU_DYNAMIC_RESERVE indicates the amount of free area to piggy | 
|  | * back on the first chunk for dynamic percpu allocation if arch is | 
|  | * manually allocating and mapping it for faster access (as a part of | 
|  | * large page mapping for example). | 
|  | * | 
|  | * The following values give between one and two pages of free space | 
|  | * after typical minimal boot (2-way SMP, single disk and NIC) with | 
|  | * both defconfig and a distro config on x86_64 and 32.  More | 
|  | * intelligent way to determine this would be nice. | 
|  | */ | 
|  | #if BITS_PER_LONG > 32 | 
|  | #define PERCPU_DYNAMIC_RESERVE		(20 << 10) | 
|  | #else | 
|  | #define PERCPU_DYNAMIC_RESERVE		(12 << 10) | 
|  | #endif | 
|  |  | 
|  | extern void *pcpu_base_addr; | 
|  | extern const unsigned long *pcpu_unit_offsets; | 
|  |  | 
|  | struct pcpu_group_info { | 
|  | int			nr_units;	/* aligned # of units */ | 
|  | unsigned long		base_offset;	/* base address offset */ | 
|  | unsigned int		*cpu_map;	/* unit->cpu map, empty | 
|  | * entries contain NR_CPUS */ | 
|  | }; | 
|  |  | 
|  | struct pcpu_alloc_info { | 
|  | size_t			static_size; | 
|  | size_t			reserved_size; | 
|  | size_t			dyn_size; | 
|  | size_t			unit_size; | 
|  | size_t			atom_size; | 
|  | size_t			alloc_size; | 
|  | size_t			__ai_size;	/* internal, don't use */ | 
|  | int			nr_groups;	/* 0 if grouping unnecessary */ | 
|  | struct pcpu_group_info	groups[]; | 
|  | }; | 
|  |  | 
|  | enum pcpu_fc { | 
|  | PCPU_FC_AUTO, | 
|  | PCPU_FC_EMBED, | 
|  | PCPU_FC_PAGE, | 
|  |  | 
|  | PCPU_FC_NR, | 
|  | }; | 
|  | extern const char *pcpu_fc_names[PCPU_FC_NR]; | 
|  |  | 
|  | extern enum pcpu_fc pcpu_chosen_fc; | 
|  |  | 
|  | typedef void * (*pcpu_fc_alloc_fn_t)(unsigned int cpu, size_t size, | 
|  | size_t align); | 
|  | typedef void (*pcpu_fc_free_fn_t)(void *ptr, size_t size); | 
|  | typedef void (*pcpu_fc_populate_pte_fn_t)(unsigned long addr); | 
|  | typedef int (pcpu_fc_cpu_distance_fn_t)(unsigned int from, unsigned int to); | 
|  |  | 
|  | extern struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, | 
|  | int nr_units); | 
|  | extern void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai); | 
|  |  | 
|  | extern int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, | 
|  | void *base_addr); | 
|  |  | 
|  | #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK | 
|  | extern int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, | 
|  | size_t atom_size, | 
|  | pcpu_fc_cpu_distance_fn_t cpu_distance_fn, | 
|  | pcpu_fc_alloc_fn_t alloc_fn, | 
|  | pcpu_fc_free_fn_t free_fn); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK | 
|  | extern int __init pcpu_page_first_chunk(size_t reserved_size, | 
|  | pcpu_fc_alloc_fn_t alloc_fn, | 
|  | pcpu_fc_free_fn_t free_fn, | 
|  | pcpu_fc_populate_pte_fn_t populate_pte_fn); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Use this to get to a cpu's version of the per-cpu object | 
|  | * dynamically allocated. Non-atomic access to the current CPU's | 
|  | * version should probably be combined with get_cpu()/put_cpu(). | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  | #define per_cpu_ptr(ptr, cpu)	SHIFT_PERCPU_PTR((ptr), per_cpu_offset((cpu))) | 
|  | #else | 
|  | #define per_cpu_ptr(ptr, cpu)	({ (void)(cpu); VERIFY_PERCPU_PTR((ptr)); }) | 
|  | #endif | 
|  |  | 
|  | extern void __percpu *__alloc_reserved_percpu(size_t size, size_t align); | 
|  | extern bool is_kernel_percpu_address(unsigned long addr); | 
|  |  | 
|  | #if !defined(CONFIG_SMP) || !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) | 
|  | extern void __init setup_per_cpu_areas(void); | 
|  | #endif | 
|  | extern void __init percpu_init_late(void); | 
|  |  | 
|  | extern void __percpu *__alloc_percpu(size_t size, size_t align); | 
|  | extern void free_percpu(void __percpu *__pdata); | 
|  | extern phys_addr_t per_cpu_ptr_to_phys(void *addr); | 
|  |  | 
|  | #define alloc_percpu(type)	\ | 
|  | (typeof(type) __percpu *)__alloc_percpu(sizeof(type), __alignof__(type)) | 
|  |  | 
|  | /* | 
|  | * Optional methods for optimized non-lvalue per-cpu variable access. | 
|  | * | 
|  | * @var can be a percpu variable or a field of it and its size should | 
|  | * equal char, int or long.  percpu_read() evaluates to a lvalue and | 
|  | * all others to void. | 
|  | * | 
|  | * These operations are guaranteed to be atomic. | 
|  | * The generic versions disable interrupts.  Archs are | 
|  | * encouraged to implement single-instruction alternatives which don't | 
|  | * require protection. | 
|  | */ | 
|  | #ifndef percpu_read | 
|  | # define percpu_read(var)						\ | 
|  | ({									\ | 
|  | typeof(var) *pr_ptr__ = &(var);					\ | 
|  | typeof(var) pr_ret__;						\ | 
|  | pr_ret__ = get_cpu_var(*pr_ptr__);				\ | 
|  | put_cpu_var(*pr_ptr__);						\ | 
|  | pr_ret__;							\ | 
|  | }) | 
|  | #endif | 
|  |  | 
|  | #define __percpu_generic_to_op(var, val, op)				\ | 
|  | do {									\ | 
|  | typeof(var) *pgto_ptr__ = &(var);				\ | 
|  | get_cpu_var(*pgto_ptr__) op val;				\ | 
|  | put_cpu_var(*pgto_ptr__);					\ | 
|  | } while (0) | 
|  |  | 
|  | #ifndef percpu_write | 
|  | # define percpu_write(var, val)		__percpu_generic_to_op(var, (val), =) | 
|  | #endif | 
|  |  | 
|  | #ifndef percpu_add | 
|  | # define percpu_add(var, val)		__percpu_generic_to_op(var, (val), +=) | 
|  | #endif | 
|  |  | 
|  | #ifndef percpu_sub | 
|  | # define percpu_sub(var, val)		__percpu_generic_to_op(var, (val), -=) | 
|  | #endif | 
|  |  | 
|  | #ifndef percpu_and | 
|  | # define percpu_and(var, val)		__percpu_generic_to_op(var, (val), &=) | 
|  | #endif | 
|  |  | 
|  | #ifndef percpu_or | 
|  | # define percpu_or(var, val)		__percpu_generic_to_op(var, (val), |=) | 
|  | #endif | 
|  |  | 
|  | #ifndef percpu_xor | 
|  | # define percpu_xor(var, val)		__percpu_generic_to_op(var, (val), ^=) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Branching function to split up a function into a set of functions that | 
|  | * are called for different scalar sizes of the objects handled. | 
|  | */ | 
|  |  | 
|  | extern void __bad_size_call_parameter(void); | 
|  |  | 
|  | #define __pcpu_size_call_return(stem, variable)				\ | 
|  | ({	typeof(variable) pscr_ret__;					\ | 
|  | __verify_pcpu_ptr(&(variable));					\ | 
|  | switch(sizeof(variable)) {					\ | 
|  | case 1: pscr_ret__ = stem##1(variable);break;			\ | 
|  | case 2: pscr_ret__ = stem##2(variable);break;			\ | 
|  | case 4: pscr_ret__ = stem##4(variable);break;			\ | 
|  | case 8: pscr_ret__ = stem##8(variable);break;			\ | 
|  | default:							\ | 
|  | __bad_size_call_parameter();break;			\ | 
|  | }								\ | 
|  | pscr_ret__;							\ | 
|  | }) | 
|  |  | 
|  | #define __pcpu_size_call_return2(stem, variable, ...)			\ | 
|  | ({									\ | 
|  | typeof(variable) pscr2_ret__;					\ | 
|  | __verify_pcpu_ptr(&(variable));					\ | 
|  | switch(sizeof(variable)) {					\ | 
|  | case 1: pscr2_ret__ = stem##1(variable, __VA_ARGS__); break;	\ | 
|  | case 2: pscr2_ret__ = stem##2(variable, __VA_ARGS__); break;	\ | 
|  | case 4: pscr2_ret__ = stem##4(variable, __VA_ARGS__); break;	\ | 
|  | case 8: pscr2_ret__ = stem##8(variable, __VA_ARGS__); break;	\ | 
|  | default:							\ | 
|  | __bad_size_call_parameter(); break;			\ | 
|  | }								\ | 
|  | pscr2_ret__;							\ | 
|  | }) | 
|  |  | 
|  | /* | 
|  | * Special handling for cmpxchg_double.  cmpxchg_double is passed two | 
|  | * percpu variables.  The first has to be aligned to a double word | 
|  | * boundary and the second has to follow directly thereafter. | 
|  | * We enforce this on all architectures even if they don't support | 
|  | * a double cmpxchg instruction, since it's a cheap requirement, and it | 
|  | * avoids breaking the requirement for architectures with the instruction. | 
|  | */ | 
|  | #define __pcpu_double_call_return_bool(stem, pcp1, pcp2, ...)		\ | 
|  | ({									\ | 
|  | bool pdcrb_ret__;						\ | 
|  | __verify_pcpu_ptr(&pcp1);					\ | 
|  | BUILD_BUG_ON(sizeof(pcp1) != sizeof(pcp2));			\ | 
|  | VM_BUG_ON((unsigned long)(&pcp1) % (2 * sizeof(pcp1)));		\ | 
|  | VM_BUG_ON((unsigned long)(&pcp2) !=				\ | 
|  | (unsigned long)(&pcp1) + sizeof(pcp1));		\ | 
|  | switch(sizeof(pcp1)) {						\ | 
|  | case 1: pdcrb_ret__ = stem##1(pcp1, pcp2, __VA_ARGS__); break;	\ | 
|  | case 2: pdcrb_ret__ = stem##2(pcp1, pcp2, __VA_ARGS__); break;	\ | 
|  | case 4: pdcrb_ret__ = stem##4(pcp1, pcp2, __VA_ARGS__); break;	\ | 
|  | case 8: pdcrb_ret__ = stem##8(pcp1, pcp2, __VA_ARGS__); break;	\ | 
|  | default:							\ | 
|  | __bad_size_call_parameter(); break;			\ | 
|  | }								\ | 
|  | pdcrb_ret__;							\ | 
|  | }) | 
|  |  | 
|  | #define __pcpu_size_call(stem, variable, ...)				\ | 
|  | do {									\ | 
|  | __verify_pcpu_ptr(&(variable));					\ | 
|  | switch(sizeof(variable)) {					\ | 
|  | case 1: stem##1(variable, __VA_ARGS__);break;		\ | 
|  | case 2: stem##2(variable, __VA_ARGS__);break;		\ | 
|  | case 4: stem##4(variable, __VA_ARGS__);break;		\ | 
|  | case 8: stem##8(variable, __VA_ARGS__);break;		\ | 
|  | default: 						\ | 
|  | __bad_size_call_parameter();break;		\ | 
|  | }								\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Optimized manipulation for memory allocated through the per cpu | 
|  | * allocator or for addresses of per cpu variables. | 
|  | * | 
|  | * These operation guarantee exclusivity of access for other operations | 
|  | * on the *same* processor. The assumption is that per cpu data is only | 
|  | * accessed by a single processor instance (the current one). | 
|  | * | 
|  | * The first group is used for accesses that must be done in a | 
|  | * preemption safe way since we know that the context is not preempt | 
|  | * safe. Interrupts may occur. If the interrupt modifies the variable | 
|  | * too then RMW actions will not be reliable. | 
|  | * | 
|  | * The arch code can provide optimized functions in two ways: | 
|  | * | 
|  | * 1. Override the function completely. F.e. define this_cpu_add(). | 
|  | *    The arch must then ensure that the various scalar format passed | 
|  | *    are handled correctly. | 
|  | * | 
|  | * 2. Provide functions for certain scalar sizes. F.e. provide | 
|  | *    this_cpu_add_2() to provide per cpu atomic operations for 2 byte | 
|  | *    sized RMW actions. If arch code does not provide operations for | 
|  | *    a scalar size then the fallback in the generic code will be | 
|  | *    used. | 
|  | */ | 
|  |  | 
|  | #define _this_cpu_generic_read(pcp)					\ | 
|  | ({	typeof(pcp) ret__;						\ | 
|  | preempt_disable();						\ | 
|  | ret__ = *this_cpu_ptr(&(pcp));					\ | 
|  | preempt_enable();						\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef this_cpu_read | 
|  | # ifndef this_cpu_read_1 | 
|  | #  define this_cpu_read_1(pcp)	_this_cpu_generic_read(pcp) | 
|  | # endif | 
|  | # ifndef this_cpu_read_2 | 
|  | #  define this_cpu_read_2(pcp)	_this_cpu_generic_read(pcp) | 
|  | # endif | 
|  | # ifndef this_cpu_read_4 | 
|  | #  define this_cpu_read_4(pcp)	_this_cpu_generic_read(pcp) | 
|  | # endif | 
|  | # ifndef this_cpu_read_8 | 
|  | #  define this_cpu_read_8(pcp)	_this_cpu_generic_read(pcp) | 
|  | # endif | 
|  | # define this_cpu_read(pcp)	__pcpu_size_call_return(this_cpu_read_, (pcp)) | 
|  | #endif | 
|  |  | 
|  | #define _this_cpu_generic_to_op(pcp, val, op)				\ | 
|  | do {									\ | 
|  | unsigned long flags;						\ | 
|  | local_irq_save(flags);						\ | 
|  | *__this_cpu_ptr(&(pcp)) op val;					\ | 
|  | local_irq_restore(flags);					\ | 
|  | } while (0) | 
|  |  | 
|  | #ifndef this_cpu_write | 
|  | # ifndef this_cpu_write_1 | 
|  | #  define this_cpu_write_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # ifndef this_cpu_write_2 | 
|  | #  define this_cpu_write_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # ifndef this_cpu_write_4 | 
|  | #  define this_cpu_write_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # ifndef this_cpu_write_8 | 
|  | #  define this_cpu_write_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # define this_cpu_write(pcp, val)	__pcpu_size_call(this_cpu_write_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_add | 
|  | # ifndef this_cpu_add_1 | 
|  | #  define this_cpu_add_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # ifndef this_cpu_add_2 | 
|  | #  define this_cpu_add_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # ifndef this_cpu_add_4 | 
|  | #  define this_cpu_add_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # ifndef this_cpu_add_8 | 
|  | #  define this_cpu_add_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # define this_cpu_add(pcp, val)		__pcpu_size_call(this_cpu_add_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_sub | 
|  | # define this_cpu_sub(pcp, val)		this_cpu_add((pcp), -(val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_inc | 
|  | # define this_cpu_inc(pcp)		this_cpu_add((pcp), 1) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_dec | 
|  | # define this_cpu_dec(pcp)		this_cpu_sub((pcp), 1) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_and | 
|  | # ifndef this_cpu_and_1 | 
|  | #  define this_cpu_and_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # ifndef this_cpu_and_2 | 
|  | #  define this_cpu_and_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # ifndef this_cpu_and_4 | 
|  | #  define this_cpu_and_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # ifndef this_cpu_and_8 | 
|  | #  define this_cpu_and_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # define this_cpu_and(pcp, val)		__pcpu_size_call(this_cpu_and_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_or | 
|  | # ifndef this_cpu_or_1 | 
|  | #  define this_cpu_or_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # ifndef this_cpu_or_2 | 
|  | #  define this_cpu_or_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # ifndef this_cpu_or_4 | 
|  | #  define this_cpu_or_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # ifndef this_cpu_or_8 | 
|  | #  define this_cpu_or_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # define this_cpu_or(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef this_cpu_xor | 
|  | # ifndef this_cpu_xor_1 | 
|  | #  define this_cpu_xor_1(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # ifndef this_cpu_xor_2 | 
|  | #  define this_cpu_xor_2(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # ifndef this_cpu_xor_4 | 
|  | #  define this_cpu_xor_4(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # ifndef this_cpu_xor_8 | 
|  | #  define this_cpu_xor_8(pcp, val)	_this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # define this_cpu_xor(pcp, val)		__pcpu_size_call(this_cpu_or_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #define _this_cpu_generic_add_return(pcp, val)				\ | 
|  | ({									\ | 
|  | typeof(pcp) ret__;						\ | 
|  | unsigned long flags;						\ | 
|  | local_irq_save(flags);						\ | 
|  | __this_cpu_add(pcp, val);					\ | 
|  | ret__ = __this_cpu_read(pcp);					\ | 
|  | local_irq_restore(flags);					\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef this_cpu_add_return | 
|  | # ifndef this_cpu_add_return_1 | 
|  | #  define this_cpu_add_return_1(pcp, val)	_this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # ifndef this_cpu_add_return_2 | 
|  | #  define this_cpu_add_return_2(pcp, val)	_this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # ifndef this_cpu_add_return_4 | 
|  | #  define this_cpu_add_return_4(pcp, val)	_this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # ifndef this_cpu_add_return_8 | 
|  | #  define this_cpu_add_return_8(pcp, val)	_this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # define this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val) | 
|  | #endif | 
|  |  | 
|  | #define this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(val)) | 
|  | #define this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1) | 
|  | #define this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1) | 
|  |  | 
|  | #define _this_cpu_generic_xchg(pcp, nval)				\ | 
|  | ({	typeof(pcp) ret__;						\ | 
|  | unsigned long flags;						\ | 
|  | local_irq_save(flags);						\ | 
|  | ret__ = __this_cpu_read(pcp);					\ | 
|  | __this_cpu_write(pcp, nval);					\ | 
|  | local_irq_restore(flags);					\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef this_cpu_xchg | 
|  | # ifndef this_cpu_xchg_1 | 
|  | #  define this_cpu_xchg_1(pcp, nval)	_this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # ifndef this_cpu_xchg_2 | 
|  | #  define this_cpu_xchg_2(pcp, nval)	_this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # ifndef this_cpu_xchg_4 | 
|  | #  define this_cpu_xchg_4(pcp, nval)	_this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # ifndef this_cpu_xchg_8 | 
|  | #  define this_cpu_xchg_8(pcp, nval)	_this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # define this_cpu_xchg(pcp, nval)	\ | 
|  | __pcpu_size_call_return2(this_cpu_xchg_, (pcp), nval) | 
|  | #endif | 
|  |  | 
|  | #define _this_cpu_generic_cmpxchg(pcp, oval, nval)			\ | 
|  | ({									\ | 
|  | typeof(pcp) ret__;						\ | 
|  | unsigned long flags;						\ | 
|  | local_irq_save(flags);						\ | 
|  | ret__ = __this_cpu_read(pcp);					\ | 
|  | if (ret__ == (oval))						\ | 
|  | __this_cpu_write(pcp, nval);				\ | 
|  | local_irq_restore(flags);					\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef this_cpu_cmpxchg | 
|  | # ifndef this_cpu_cmpxchg_1 | 
|  | #  define this_cpu_cmpxchg_1(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # ifndef this_cpu_cmpxchg_2 | 
|  | #  define this_cpu_cmpxchg_2(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # ifndef this_cpu_cmpxchg_4 | 
|  | #  define this_cpu_cmpxchg_4(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # ifndef this_cpu_cmpxchg_8 | 
|  | #  define this_cpu_cmpxchg_8(pcp, oval, nval)	_this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # define this_cpu_cmpxchg(pcp, oval, nval)	\ | 
|  | __pcpu_size_call_return2(this_cpu_cmpxchg_, pcp, oval, nval) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * cmpxchg_double replaces two adjacent scalars at once.  The first | 
|  | * two parameters are per cpu variables which have to be of the same | 
|  | * size.  A truth value is returned to indicate success or failure | 
|  | * (since a double register result is difficult to handle).  There is | 
|  | * very limited hardware support for these operations, so only certain | 
|  | * sizes may work. | 
|  | */ | 
|  | #define _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | ({									\ | 
|  | int ret__;							\ | 
|  | unsigned long flags;						\ | 
|  | local_irq_save(flags);						\ | 
|  | ret__ = __this_cpu_generic_cmpxchg_double(pcp1, pcp2,		\ | 
|  | oval1, oval2, nval1, nval2);			\ | 
|  | local_irq_restore(flags);					\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef this_cpu_cmpxchg_double | 
|  | # ifndef this_cpu_cmpxchg_double_1 | 
|  | #  define this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # ifndef this_cpu_cmpxchg_double_2 | 
|  | #  define this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # ifndef this_cpu_cmpxchg_double_4 | 
|  | #  define this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # ifndef this_cpu_cmpxchg_double_8 | 
|  | #  define this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | _this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # define this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | __pcpu_double_call_return_bool(this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Generic percpu operations for context that are safe from preemption/interrupts. | 
|  | * Either we do not care about races or the caller has the | 
|  | * responsibility of handling preemption/interrupt issues. Arch code can still | 
|  | * override these instructions since the arch per cpu code may be more | 
|  | * efficient and may actually get race freeness for free (that is the | 
|  | * case for x86 for example). | 
|  | * | 
|  | * If there is no other protection through preempt disable and/or | 
|  | * disabling interupts then one of these RMW operations can show unexpected | 
|  | * behavior because the execution thread was rescheduled on another processor | 
|  | * or an interrupt occurred and the same percpu variable was modified from | 
|  | * the interrupt context. | 
|  | */ | 
|  | #ifndef __this_cpu_read | 
|  | # ifndef __this_cpu_read_1 | 
|  | #  define __this_cpu_read_1(pcp)	(*__this_cpu_ptr(&(pcp))) | 
|  | # endif | 
|  | # ifndef __this_cpu_read_2 | 
|  | #  define __this_cpu_read_2(pcp)	(*__this_cpu_ptr(&(pcp))) | 
|  | # endif | 
|  | # ifndef __this_cpu_read_4 | 
|  | #  define __this_cpu_read_4(pcp)	(*__this_cpu_ptr(&(pcp))) | 
|  | # endif | 
|  | # ifndef __this_cpu_read_8 | 
|  | #  define __this_cpu_read_8(pcp)	(*__this_cpu_ptr(&(pcp))) | 
|  | # endif | 
|  | # define __this_cpu_read(pcp)	__pcpu_size_call_return(__this_cpu_read_, (pcp)) | 
|  | #endif | 
|  |  | 
|  | #define __this_cpu_generic_to_op(pcp, val, op)				\ | 
|  | do {									\ | 
|  | *__this_cpu_ptr(&(pcp)) op val;					\ | 
|  | } while (0) | 
|  |  | 
|  | #ifndef __this_cpu_write | 
|  | # ifndef __this_cpu_write_1 | 
|  | #  define __this_cpu_write_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # ifndef __this_cpu_write_2 | 
|  | #  define __this_cpu_write_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # ifndef __this_cpu_write_4 | 
|  | #  define __this_cpu_write_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # ifndef __this_cpu_write_8 | 
|  | #  define __this_cpu_write_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), =) | 
|  | # endif | 
|  | # define __this_cpu_write(pcp, val)	__pcpu_size_call(__this_cpu_write_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_add | 
|  | # ifndef __this_cpu_add_1 | 
|  | #  define __this_cpu_add_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # ifndef __this_cpu_add_2 | 
|  | #  define __this_cpu_add_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # ifndef __this_cpu_add_4 | 
|  | #  define __this_cpu_add_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # ifndef __this_cpu_add_8 | 
|  | #  define __this_cpu_add_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), +=) | 
|  | # endif | 
|  | # define __this_cpu_add(pcp, val)	__pcpu_size_call(__this_cpu_add_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_sub | 
|  | # define __this_cpu_sub(pcp, val)	__this_cpu_add((pcp), -(val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_inc | 
|  | # define __this_cpu_inc(pcp)		__this_cpu_add((pcp), 1) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_dec | 
|  | # define __this_cpu_dec(pcp)		__this_cpu_sub((pcp), 1) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_and | 
|  | # ifndef __this_cpu_and_1 | 
|  | #  define __this_cpu_and_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # ifndef __this_cpu_and_2 | 
|  | #  define __this_cpu_and_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # ifndef __this_cpu_and_4 | 
|  | #  define __this_cpu_and_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # ifndef __this_cpu_and_8 | 
|  | #  define __this_cpu_and_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), &=) | 
|  | # endif | 
|  | # define __this_cpu_and(pcp, val)	__pcpu_size_call(__this_cpu_and_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_or | 
|  | # ifndef __this_cpu_or_1 | 
|  | #  define __this_cpu_or_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # ifndef __this_cpu_or_2 | 
|  | #  define __this_cpu_or_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # ifndef __this_cpu_or_4 | 
|  | #  define __this_cpu_or_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # ifndef __this_cpu_or_8 | 
|  | #  define __this_cpu_or_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), |=) | 
|  | # endif | 
|  | # define __this_cpu_or(pcp, val)	__pcpu_size_call(__this_cpu_or_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #ifndef __this_cpu_xor | 
|  | # ifndef __this_cpu_xor_1 | 
|  | #  define __this_cpu_xor_1(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # ifndef __this_cpu_xor_2 | 
|  | #  define __this_cpu_xor_2(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # ifndef __this_cpu_xor_4 | 
|  | #  define __this_cpu_xor_4(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # ifndef __this_cpu_xor_8 | 
|  | #  define __this_cpu_xor_8(pcp, val)	__this_cpu_generic_to_op((pcp), (val), ^=) | 
|  | # endif | 
|  | # define __this_cpu_xor(pcp, val)	__pcpu_size_call(__this_cpu_xor_, (pcp), (val)) | 
|  | #endif | 
|  |  | 
|  | #define __this_cpu_generic_add_return(pcp, val)				\ | 
|  | ({									\ | 
|  | __this_cpu_add(pcp, val);					\ | 
|  | __this_cpu_read(pcp);						\ | 
|  | }) | 
|  |  | 
|  | #ifndef __this_cpu_add_return | 
|  | # ifndef __this_cpu_add_return_1 | 
|  | #  define __this_cpu_add_return_1(pcp, val)	__this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # ifndef __this_cpu_add_return_2 | 
|  | #  define __this_cpu_add_return_2(pcp, val)	__this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # ifndef __this_cpu_add_return_4 | 
|  | #  define __this_cpu_add_return_4(pcp, val)	__this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # ifndef __this_cpu_add_return_8 | 
|  | #  define __this_cpu_add_return_8(pcp, val)	__this_cpu_generic_add_return(pcp, val) | 
|  | # endif | 
|  | # define __this_cpu_add_return(pcp, val)	__pcpu_size_call_return2(this_cpu_add_return_, pcp, val) | 
|  | #endif | 
|  |  | 
|  | #define __this_cpu_sub_return(pcp, val)	this_cpu_add_return(pcp, -(val)) | 
|  | #define __this_cpu_inc_return(pcp)	this_cpu_add_return(pcp, 1) | 
|  | #define __this_cpu_dec_return(pcp)	this_cpu_add_return(pcp, -1) | 
|  |  | 
|  | #define __this_cpu_generic_xchg(pcp, nval)				\ | 
|  | ({	typeof(pcp) ret__;						\ | 
|  | ret__ = __this_cpu_read(pcp);					\ | 
|  | __this_cpu_write(pcp, nval);					\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef __this_cpu_xchg | 
|  | # ifndef __this_cpu_xchg_1 | 
|  | #  define __this_cpu_xchg_1(pcp, nval)	__this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # ifndef __this_cpu_xchg_2 | 
|  | #  define __this_cpu_xchg_2(pcp, nval)	__this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # ifndef __this_cpu_xchg_4 | 
|  | #  define __this_cpu_xchg_4(pcp, nval)	__this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # ifndef __this_cpu_xchg_8 | 
|  | #  define __this_cpu_xchg_8(pcp, nval)	__this_cpu_generic_xchg(pcp, nval) | 
|  | # endif | 
|  | # define __this_cpu_xchg(pcp, nval)	\ | 
|  | __pcpu_size_call_return2(__this_cpu_xchg_, (pcp), nval) | 
|  | #endif | 
|  |  | 
|  | #define __this_cpu_generic_cmpxchg(pcp, oval, nval)			\ | 
|  | ({									\ | 
|  | typeof(pcp) ret__;						\ | 
|  | ret__ = __this_cpu_read(pcp);					\ | 
|  | if (ret__ == (oval))						\ | 
|  | __this_cpu_write(pcp, nval);				\ | 
|  | ret__;								\ | 
|  | }) | 
|  |  | 
|  | #ifndef __this_cpu_cmpxchg | 
|  | # ifndef __this_cpu_cmpxchg_1 | 
|  | #  define __this_cpu_cmpxchg_1(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # ifndef __this_cpu_cmpxchg_2 | 
|  | #  define __this_cpu_cmpxchg_2(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # ifndef __this_cpu_cmpxchg_4 | 
|  | #  define __this_cpu_cmpxchg_4(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # ifndef __this_cpu_cmpxchg_8 | 
|  | #  define __this_cpu_cmpxchg_8(pcp, oval, nval)	__this_cpu_generic_cmpxchg(pcp, oval, nval) | 
|  | # endif | 
|  | # define __this_cpu_cmpxchg(pcp, oval, nval)	\ | 
|  | __pcpu_size_call_return2(__this_cpu_cmpxchg_, pcp, oval, nval) | 
|  | #endif | 
|  |  | 
|  | #define __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | ({									\ | 
|  | int __ret = 0;							\ | 
|  | if (__this_cpu_read(pcp1) == (oval1) &&				\ | 
|  | __this_cpu_read(pcp2)  == (oval2)) {		\ | 
|  | __this_cpu_write(pcp1, (nval1));			\ | 
|  | __this_cpu_write(pcp2, (nval2));			\ | 
|  | __ret = 1;						\ | 
|  | }								\ | 
|  | (__ret);							\ | 
|  | }) | 
|  |  | 
|  | #ifndef __this_cpu_cmpxchg_double | 
|  | # ifndef __this_cpu_cmpxchg_double_1 | 
|  | #  define __this_cpu_cmpxchg_double_1(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # ifndef __this_cpu_cmpxchg_double_2 | 
|  | #  define __this_cpu_cmpxchg_double_2(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # ifndef __this_cpu_cmpxchg_double_4 | 
|  | #  define __this_cpu_cmpxchg_double_4(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # ifndef __this_cpu_cmpxchg_double_8 | 
|  | #  define __this_cpu_cmpxchg_double_8(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | __this_cpu_generic_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2) | 
|  | # endif | 
|  | # define __this_cpu_cmpxchg_double(pcp1, pcp2, oval1, oval2, nval1, nval2)	\ | 
|  | __pcpu_double_call_return_bool(__this_cpu_cmpxchg_double_, (pcp1), (pcp2), (oval1), (oval2), (nval1), (nval2)) | 
|  | #endif | 
|  |  | 
|  | #endif /* __LINUX_PERCPU_H */ |