|  | /* | 
|  | * fs/dcache.c | 
|  | * | 
|  | * Complete reimplementation | 
|  | * (C) 1997 Thomas Schoebel-Theuer, | 
|  | * with heavy changes by Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Notes on the allocation strategy: | 
|  | * | 
|  | * The dcache is a master of the icache - whenever a dcache entry | 
|  | * exists, the inode will always exist. "iput()" is done either when | 
|  | * the dcache entry is deleted or garbage collected. | 
|  | */ | 
|  |  | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/file.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/seqlock.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bootmem.h> | 
|  |  | 
|  |  | 
|  | int sysctl_vfs_cache_pressure __read_mostly = 100; | 
|  | EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); | 
|  |  | 
|  | __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); | 
|  | static __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); | 
|  |  | 
|  | EXPORT_SYMBOL(dcache_lock); | 
|  |  | 
|  | static kmem_cache_t *dentry_cache __read_mostly; | 
|  |  | 
|  | #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) | 
|  |  | 
|  | /* | 
|  | * This is the single most critical data structure when it comes | 
|  | * to the dcache: the hashtable for lookups. Somebody should try | 
|  | * to make this good - I've just made it work. | 
|  | * | 
|  | * This hash-function tries to avoid losing too many bits of hash | 
|  | * information, yet avoid using a prime hash-size or similar. | 
|  | */ | 
|  | #define D_HASHBITS     d_hash_shift | 
|  | #define D_HASHMASK     d_hash_mask | 
|  |  | 
|  | static unsigned int d_hash_mask __read_mostly; | 
|  | static unsigned int d_hash_shift __read_mostly; | 
|  | static struct hlist_head *dentry_hashtable __read_mostly; | 
|  | static LIST_HEAD(dentry_unused); | 
|  |  | 
|  | /* Statistics gathering. */ | 
|  | struct dentry_stat_t dentry_stat = { | 
|  | .age_limit = 45, | 
|  | }; | 
|  |  | 
|  | static void d_callback(struct rcu_head *head) | 
|  | { | 
|  | struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu); | 
|  |  | 
|  | if (dname_external(dentry)) | 
|  | kfree(dentry->d_name.name); | 
|  | kmem_cache_free(dentry_cache, dentry); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry | 
|  | * inside dcache_lock. | 
|  | */ | 
|  | static void d_free(struct dentry *dentry) | 
|  | { | 
|  | if (dentry->d_op && dentry->d_op->d_release) | 
|  | dentry->d_op->d_release(dentry); | 
|  | call_rcu(&dentry->d_u.d_rcu, d_callback); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Release the dentry's inode, using the filesystem | 
|  | * d_iput() operation if defined. | 
|  | * Called with dcache_lock and per dentry lock held, drops both. | 
|  | */ | 
|  | static void dentry_iput(struct dentry * dentry) | 
|  | { | 
|  | struct inode *inode = dentry->d_inode; | 
|  | if (inode) { | 
|  | dentry->d_inode = NULL; | 
|  | list_del_init(&dentry->d_alias); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | if (!inode->i_nlink) | 
|  | fsnotify_inoderemove(inode); | 
|  | if (dentry->d_op && dentry->d_op->d_iput) | 
|  | dentry->d_op->d_iput(dentry, inode); | 
|  | else | 
|  | iput(inode); | 
|  | } else { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is dput | 
|  | * | 
|  | * This is complicated by the fact that we do not want to put | 
|  | * dentries that are no longer on any hash chain on the unused | 
|  | * list: we'd much rather just get rid of them immediately. | 
|  | * | 
|  | * However, that implies that we have to traverse the dentry | 
|  | * tree upwards to the parents which might _also_ now be | 
|  | * scheduled for deletion (it may have been only waiting for | 
|  | * its last child to go away). | 
|  | * | 
|  | * This tail recursion is done by hand as we don't want to depend | 
|  | * on the compiler to always get this right (gcc generally doesn't). | 
|  | * Real recursion would eat up our stack space. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * dput - release a dentry | 
|  | * @dentry: dentry to release | 
|  | * | 
|  | * Release a dentry. This will drop the usage count and if appropriate | 
|  | * call the dentry unlink method as well as removing it from the queues and | 
|  | * releasing its resources. If the parent dentries were scheduled for release | 
|  | * they too may now get deleted. | 
|  | * | 
|  | * no dcache lock, please. | 
|  | */ | 
|  |  | 
|  | void dput(struct dentry *dentry) | 
|  | { | 
|  | if (!dentry) | 
|  | return; | 
|  |  | 
|  | repeat: | 
|  | if (atomic_read(&dentry->d_count) == 1) | 
|  | might_sleep(); | 
|  | if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (atomic_read(&dentry->d_count)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * AV: ->d_delete() is _NOT_ allowed to block now. | 
|  | */ | 
|  | if (dentry->d_op && dentry->d_op->d_delete) { | 
|  | if (dentry->d_op->d_delete(dentry)) | 
|  | goto unhash_it; | 
|  | } | 
|  | /* Unreachable? Get rid of it */ | 
|  | if (d_unhashed(dentry)) | 
|  | goto kill_it; | 
|  | if (list_empty(&dentry->d_lru)) { | 
|  | dentry->d_flags |= DCACHE_REFERENCED; | 
|  | list_add(&dentry->d_lru, &dentry_unused); | 
|  | dentry_stat.nr_unused++; | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | return; | 
|  |  | 
|  | unhash_it: | 
|  | __d_drop(dentry); | 
|  |  | 
|  | kill_it: { | 
|  | struct dentry *parent; | 
|  |  | 
|  | /* If dentry was on d_lru list | 
|  | * delete it from there | 
|  | */ | 
|  | if (!list_empty(&dentry->d_lru)) { | 
|  | list_del(&dentry->d_lru); | 
|  | dentry_stat.nr_unused--; | 
|  | } | 
|  | list_del(&dentry->d_u.d_child); | 
|  | dentry_stat.nr_dentry--;	/* For d_free, below */ | 
|  | /*drops the locks, at that point nobody can reach this dentry */ | 
|  | dentry_iput(dentry); | 
|  | parent = dentry->d_parent; | 
|  | d_free(dentry); | 
|  | if (dentry == parent) | 
|  | return; | 
|  | dentry = parent; | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_invalidate - invalidate a dentry | 
|  | * @dentry: dentry to invalidate | 
|  | * | 
|  | * Try to invalidate the dentry if it turns out to be | 
|  | * possible. If there are other dentries that can be | 
|  | * reached through this one we can't delete it and we | 
|  | * return -EBUSY. On success we return 0. | 
|  | * | 
|  | * no dcache lock. | 
|  | */ | 
|  |  | 
|  | int d_invalidate(struct dentry * dentry) | 
|  | { | 
|  | /* | 
|  | * If it's already been dropped, return OK. | 
|  | */ | 
|  | spin_lock(&dcache_lock); | 
|  | if (d_unhashed(dentry)) { | 
|  | spin_unlock(&dcache_lock); | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * Check whether to do a partial shrink_dcache | 
|  | * to get rid of unused child entries. | 
|  | */ | 
|  | if (!list_empty(&dentry->d_subdirs)) { | 
|  | spin_unlock(&dcache_lock); | 
|  | shrink_dcache_parent(dentry); | 
|  | spin_lock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Somebody else still using it? | 
|  | * | 
|  | * If it's a directory, we can't drop it | 
|  | * for fear of somebody re-populating it | 
|  | * with children (even though dropping it | 
|  | * would make it unreachable from the root, | 
|  | * we might still populate it if it was a | 
|  | * working directory or similar). | 
|  | */ | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (atomic_read(&dentry->d_count) > 1) { | 
|  | if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | __d_drop(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This should be called _only_ with dcache_lock held */ | 
|  |  | 
|  | static inline struct dentry * __dget_locked(struct dentry *dentry) | 
|  | { | 
|  | atomic_inc(&dentry->d_count); | 
|  | if (!list_empty(&dentry->d_lru)) { | 
|  | dentry_stat.nr_unused--; | 
|  | list_del_init(&dentry->d_lru); | 
|  | } | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | struct dentry * dget_locked(struct dentry *dentry) | 
|  | { | 
|  | return __dget_locked(dentry); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_find_alias - grab a hashed alias of inode | 
|  | * @inode: inode in question | 
|  | * @want_discon:  flag, used by d_splice_alias, to request | 
|  | *          that only a DISCONNECTED alias be returned. | 
|  | * | 
|  | * If inode has a hashed alias, or is a directory and has any alias, | 
|  | * acquire the reference to alias and return it. Otherwise return NULL. | 
|  | * Notice that if inode is a directory there can be only one alias and | 
|  | * it can be unhashed only if it has no children, or if it is the root | 
|  | * of a filesystem. | 
|  | * | 
|  | * If the inode has a DCACHE_DISCONNECTED alias, then prefer | 
|  | * any other hashed alias over that one unless @want_discon is set, | 
|  | * in which case only return a DCACHE_DISCONNECTED alias. | 
|  | */ | 
|  |  | 
|  | static struct dentry * __d_find_alias(struct inode *inode, int want_discon) | 
|  | { | 
|  | struct list_head *head, *next, *tmp; | 
|  | struct dentry *alias, *discon_alias=NULL; | 
|  |  | 
|  | head = &inode->i_dentry; | 
|  | next = inode->i_dentry.next; | 
|  | while (next != head) { | 
|  | tmp = next; | 
|  | next = tmp->next; | 
|  | prefetch(next); | 
|  | alias = list_entry(tmp, struct dentry, d_alias); | 
|  | if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { | 
|  | if (alias->d_flags & DCACHE_DISCONNECTED) | 
|  | discon_alias = alias; | 
|  | else if (!want_discon) { | 
|  | __dget_locked(alias); | 
|  | return alias; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (discon_alias) | 
|  | __dget_locked(discon_alias); | 
|  | return discon_alias; | 
|  | } | 
|  |  | 
|  | struct dentry * d_find_alias(struct inode *inode) | 
|  | { | 
|  | struct dentry *de = NULL; | 
|  |  | 
|  | if (!list_empty(&inode->i_dentry)) { | 
|  | spin_lock(&dcache_lock); | 
|  | de = __d_find_alias(inode, 0); | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  | return de; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Try to kill dentries associated with this inode. | 
|  | * WARNING: you must own a reference to inode. | 
|  | */ | 
|  | void d_prune_aliases(struct inode *inode) | 
|  | { | 
|  | struct dentry *dentry; | 
|  | restart: | 
|  | spin_lock(&dcache_lock); | 
|  | list_for_each_entry(dentry, &inode->i_dentry, d_alias) { | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (!atomic_read(&dentry->d_count)) { | 
|  | __dget_locked(dentry); | 
|  | __d_drop(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | dput(dentry); | 
|  | goto restart; | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Throw away a dentry - free the inode, dput the parent.  This requires that | 
|  | * the LRU list has already been removed. | 
|  | * | 
|  | * Called with dcache_lock, drops it and then regains. | 
|  | * Called with dentry->d_lock held, drops it. | 
|  | */ | 
|  | static void prune_one_dentry(struct dentry * dentry) | 
|  | { | 
|  | struct dentry * parent; | 
|  |  | 
|  | __d_drop(dentry); | 
|  | list_del(&dentry->d_u.d_child); | 
|  | dentry_stat.nr_dentry--;	/* For d_free, below */ | 
|  | dentry_iput(dentry); | 
|  | parent = dentry->d_parent; | 
|  | d_free(dentry); | 
|  | if (parent != dentry) | 
|  | dput(parent); | 
|  | spin_lock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * prune_dcache - shrink the dcache | 
|  | * @count: number of entries to try and free | 
|  | * @sb: if given, ignore dentries for other superblocks | 
|  | *         which are being unmounted. | 
|  | * | 
|  | * Shrink the dcache. This is done when we need | 
|  | * more memory, or simply when we need to unmount | 
|  | * something (at which point we need to unuse | 
|  | * all dentries). | 
|  | * | 
|  | * This function may fail to free any resources if | 
|  | * all the dentries are in use. | 
|  | */ | 
|  |  | 
|  | static void prune_dcache(int count, struct super_block *sb) | 
|  | { | 
|  | spin_lock(&dcache_lock); | 
|  | for (; count ; count--) { | 
|  | struct dentry *dentry; | 
|  | struct list_head *tmp; | 
|  | struct rw_semaphore *s_umount; | 
|  |  | 
|  | cond_resched_lock(&dcache_lock); | 
|  |  | 
|  | tmp = dentry_unused.prev; | 
|  | if (sb) { | 
|  | /* Try to find a dentry for this sb, but don't try | 
|  | * too hard, if they aren't near the tail they will | 
|  | * be moved down again soon | 
|  | */ | 
|  | int skip = count; | 
|  | while (skip && tmp != &dentry_unused && | 
|  | list_entry(tmp, struct dentry, d_lru)->d_sb != sb) { | 
|  | skip--; | 
|  | tmp = tmp->prev; | 
|  | } | 
|  | } | 
|  | if (tmp == &dentry_unused) | 
|  | break; | 
|  | list_del_init(tmp); | 
|  | prefetch(dentry_unused.prev); | 
|  | dentry_stat.nr_unused--; | 
|  | dentry = list_entry(tmp, struct dentry, d_lru); | 
|  |  | 
|  | spin_lock(&dentry->d_lock); | 
|  | /* | 
|  | * We found an inuse dentry which was not removed from | 
|  | * dentry_unused because of laziness during lookup.  Do not free | 
|  | * it - just keep it off the dentry_unused list. | 
|  | */ | 
|  | if (atomic_read(&dentry->d_count)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | continue; | 
|  | } | 
|  | /* If the dentry was recently referenced, don't free it. */ | 
|  | if (dentry->d_flags & DCACHE_REFERENCED) { | 
|  | dentry->d_flags &= ~DCACHE_REFERENCED; | 
|  | list_add(&dentry->d_lru, &dentry_unused); | 
|  | dentry_stat.nr_unused++; | 
|  | spin_unlock(&dentry->d_lock); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * If the dentry is not DCACHED_REFERENCED, it is time | 
|  | * to remove it from the dcache, provided the super block is | 
|  | * NULL (which means we are trying to reclaim memory) | 
|  | * or this dentry belongs to the same super block that | 
|  | * we want to shrink. | 
|  | */ | 
|  | /* | 
|  | * If this dentry is for "my" filesystem, then I can prune it | 
|  | * without taking the s_umount lock (I already hold it). | 
|  | */ | 
|  | if (sb && dentry->d_sb == sb) { | 
|  | prune_one_dentry(dentry); | 
|  | continue; | 
|  | } | 
|  | /* | 
|  | * ...otherwise we need to be sure this filesystem isn't being | 
|  | * unmounted, otherwise we could race with | 
|  | * generic_shutdown_super(), and end up holding a reference to | 
|  | * an inode while the filesystem is unmounted. | 
|  | * So we try to get s_umount, and make sure s_root isn't NULL. | 
|  | * (Take a local copy of s_umount to avoid a use-after-free of | 
|  | * `dentry'). | 
|  | */ | 
|  | s_umount = &dentry->d_sb->s_umount; | 
|  | if (down_read_trylock(s_umount)) { | 
|  | if (dentry->d_sb->s_root != NULL) { | 
|  | prune_one_dentry(dentry); | 
|  | up_read(s_umount); | 
|  | continue; | 
|  | } | 
|  | up_read(s_umount); | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | /* Cannot remove the first dentry, and it isn't appropriate | 
|  | * to move it to the head of the list, so give up, and try | 
|  | * later | 
|  | */ | 
|  | break; | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shrink the dcache for the specified super block. | 
|  | * This allows us to unmount a device without disturbing | 
|  | * the dcache for the other devices. | 
|  | * | 
|  | * This implementation makes just two traversals of the | 
|  | * unused list.  On the first pass we move the selected | 
|  | * dentries to the most recent end, and on the second | 
|  | * pass we free them.  The second pass must restart after | 
|  | * each dput(), but since the target dentries are all at | 
|  | * the end, it's really just a single traversal. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * shrink_dcache_sb - shrink dcache for a superblock | 
|  | * @sb: superblock | 
|  | * | 
|  | * Shrink the dcache for the specified super block. This | 
|  | * is used to free the dcache before unmounting a file | 
|  | * system | 
|  | */ | 
|  |  | 
|  | void shrink_dcache_sb(struct super_block * sb) | 
|  | { | 
|  | struct list_head *tmp, *next; | 
|  | struct dentry *dentry; | 
|  |  | 
|  | /* | 
|  | * Pass one ... move the dentries for the specified | 
|  | * superblock to the most recent end of the unused list. | 
|  | */ | 
|  | spin_lock(&dcache_lock); | 
|  | list_for_each_safe(tmp, next, &dentry_unused) { | 
|  | dentry = list_entry(tmp, struct dentry, d_lru); | 
|  | if (dentry->d_sb != sb) | 
|  | continue; | 
|  | list_move(tmp, &dentry_unused); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pass two ... free the dentries for this superblock. | 
|  | */ | 
|  | repeat: | 
|  | list_for_each_safe(tmp, next, &dentry_unused) { | 
|  | dentry = list_entry(tmp, struct dentry, d_lru); | 
|  | if (dentry->d_sb != sb) | 
|  | continue; | 
|  | dentry_stat.nr_unused--; | 
|  | list_del_init(tmp); | 
|  | spin_lock(&dentry->d_lock); | 
|  | if (atomic_read(&dentry->d_count)) { | 
|  | spin_unlock(&dentry->d_lock); | 
|  | continue; | 
|  | } | 
|  | prune_one_dentry(dentry); | 
|  | cond_resched_lock(&dcache_lock); | 
|  | goto repeat; | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search for at least 1 mount point in the dentry's subdirs. | 
|  | * We descend to the next level whenever the d_subdirs | 
|  | * list is non-empty and continue searching. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * have_submounts - check for mounts over a dentry | 
|  | * @parent: dentry to check. | 
|  | * | 
|  | * Return true if the parent or its subdirectories contain | 
|  | * a mount point | 
|  | */ | 
|  |  | 
|  | int have_submounts(struct dentry *parent) | 
|  | { | 
|  | struct dentry *this_parent = parent; | 
|  | struct list_head *next; | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | if (d_mountpoint(parent)) | 
|  | goto positive; | 
|  | repeat: | 
|  | next = this_parent->d_subdirs.next; | 
|  | resume: | 
|  | while (next != &this_parent->d_subdirs) { | 
|  | struct list_head *tmp = next; | 
|  | struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | 
|  | next = tmp->next; | 
|  | /* Have we found a mount point ? */ | 
|  | if (d_mountpoint(dentry)) | 
|  | goto positive; | 
|  | if (!list_empty(&dentry->d_subdirs)) { | 
|  | this_parent = dentry; | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * All done at this level ... ascend and resume the search. | 
|  | */ | 
|  | if (this_parent != parent) { | 
|  | next = this_parent->d_u.d_child.next; | 
|  | this_parent = this_parent->d_parent; | 
|  | goto resume; | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | return 0; /* No mount points found in tree */ | 
|  | positive: | 
|  | spin_unlock(&dcache_lock); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Search the dentry child list for the specified parent, | 
|  | * and move any unused dentries to the end of the unused | 
|  | * list for prune_dcache(). We descend to the next level | 
|  | * whenever the d_subdirs list is non-empty and continue | 
|  | * searching. | 
|  | * | 
|  | * It returns zero iff there are no unused children, | 
|  | * otherwise  it returns the number of children moved to | 
|  | * the end of the unused list. This may not be the total | 
|  | * number of unused children, because select_parent can | 
|  | * drop the lock and return early due to latency | 
|  | * constraints. | 
|  | */ | 
|  | static int select_parent(struct dentry * parent) | 
|  | { | 
|  | struct dentry *this_parent = parent; | 
|  | struct list_head *next; | 
|  | int found = 0; | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | repeat: | 
|  | next = this_parent->d_subdirs.next; | 
|  | resume: | 
|  | while (next != &this_parent->d_subdirs) { | 
|  | struct list_head *tmp = next; | 
|  | struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | 
|  | next = tmp->next; | 
|  |  | 
|  | if (!list_empty(&dentry->d_lru)) { | 
|  | dentry_stat.nr_unused--; | 
|  | list_del_init(&dentry->d_lru); | 
|  | } | 
|  | /* | 
|  | * move only zero ref count dentries to the end | 
|  | * of the unused list for prune_dcache | 
|  | */ | 
|  | if (!atomic_read(&dentry->d_count)) { | 
|  | list_add_tail(&dentry->d_lru, &dentry_unused); | 
|  | dentry_stat.nr_unused++; | 
|  | found++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can return to the caller if we have found some (this | 
|  | * ensures forward progress). We'll be coming back to find | 
|  | * the rest. | 
|  | */ | 
|  | if (found && need_resched()) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * Descend a level if the d_subdirs list is non-empty. | 
|  | */ | 
|  | if (!list_empty(&dentry->d_subdirs)) { | 
|  | this_parent = dentry; | 
|  | goto repeat; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * All done at this level ... ascend and resume the search. | 
|  | */ | 
|  | if (this_parent != parent) { | 
|  | next = this_parent->d_u.d_child.next; | 
|  | this_parent = this_parent->d_parent; | 
|  | goto resume; | 
|  | } | 
|  | out: | 
|  | spin_unlock(&dcache_lock); | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * shrink_dcache_parent - prune dcache | 
|  | * @parent: parent of entries to prune | 
|  | * | 
|  | * Prune the dcache to remove unused children of the parent dentry. | 
|  | */ | 
|  |  | 
|  | void shrink_dcache_parent(struct dentry * parent) | 
|  | { | 
|  | int found; | 
|  |  | 
|  | while ((found = select_parent(parent)) != 0) | 
|  | prune_dcache(found, parent->d_sb); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Scan `nr' dentries and return the number which remain. | 
|  | * | 
|  | * We need to avoid reentering the filesystem if the caller is performing a | 
|  | * GFP_NOFS allocation attempt.  One example deadlock is: | 
|  | * | 
|  | * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> | 
|  | * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> | 
|  | * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. | 
|  | * | 
|  | * In this case we return -1 to tell the caller that we baled. | 
|  | */ | 
|  | static int shrink_dcache_memory(int nr, gfp_t gfp_mask) | 
|  | { | 
|  | if (nr) { | 
|  | if (!(gfp_mask & __GFP_FS)) | 
|  | return -1; | 
|  | prune_dcache(nr, NULL); | 
|  | } | 
|  | return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_alloc	-	allocate a dcache entry | 
|  | * @parent: parent of entry to allocate | 
|  | * @name: qstr of the name | 
|  | * | 
|  | * Allocates a dentry. It returns %NULL if there is insufficient memory | 
|  | * available. On a success the dentry is returned. The name passed in is | 
|  | * copied and the copy passed in may be reused after this call. | 
|  | */ | 
|  |  | 
|  | struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) | 
|  | { | 
|  | struct dentry *dentry; | 
|  | char *dname; | 
|  |  | 
|  | dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); | 
|  | if (!dentry) | 
|  | return NULL; | 
|  |  | 
|  | if (name->len > DNAME_INLINE_LEN-1) { | 
|  | dname = kmalloc(name->len + 1, GFP_KERNEL); | 
|  | if (!dname) { | 
|  | kmem_cache_free(dentry_cache, dentry); | 
|  | return NULL; | 
|  | } | 
|  | } else  { | 
|  | dname = dentry->d_iname; | 
|  | } | 
|  | dentry->d_name.name = dname; | 
|  |  | 
|  | dentry->d_name.len = name->len; | 
|  | dentry->d_name.hash = name->hash; | 
|  | memcpy(dname, name->name, name->len); | 
|  | dname[name->len] = 0; | 
|  |  | 
|  | atomic_set(&dentry->d_count, 1); | 
|  | dentry->d_flags = DCACHE_UNHASHED; | 
|  | spin_lock_init(&dentry->d_lock); | 
|  | dentry->d_inode = NULL; | 
|  | dentry->d_parent = NULL; | 
|  | dentry->d_sb = NULL; | 
|  | dentry->d_op = NULL; | 
|  | dentry->d_fsdata = NULL; | 
|  | dentry->d_mounted = 0; | 
|  | #ifdef CONFIG_PROFILING | 
|  | dentry->d_cookie = NULL; | 
|  | #endif | 
|  | INIT_HLIST_NODE(&dentry->d_hash); | 
|  | INIT_LIST_HEAD(&dentry->d_lru); | 
|  | INIT_LIST_HEAD(&dentry->d_subdirs); | 
|  | INIT_LIST_HEAD(&dentry->d_alias); | 
|  |  | 
|  | if (parent) { | 
|  | dentry->d_parent = dget(parent); | 
|  | dentry->d_sb = parent->d_sb; | 
|  | } else { | 
|  | INIT_LIST_HEAD(&dentry->d_u.d_child); | 
|  | } | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | if (parent) | 
|  | list_add(&dentry->d_u.d_child, &parent->d_subdirs); | 
|  | dentry_stat.nr_dentry++; | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | struct dentry *d_alloc_name(struct dentry *parent, const char *name) | 
|  | { | 
|  | struct qstr q; | 
|  |  | 
|  | q.name = name; | 
|  | q.len = strlen(name); | 
|  | q.hash = full_name_hash(q.name, q.len); | 
|  | return d_alloc(parent, &q); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_instantiate - fill in inode information for a dentry | 
|  | * @entry: dentry to complete | 
|  | * @inode: inode to attach to this dentry | 
|  | * | 
|  | * Fill in inode information in the entry. | 
|  | * | 
|  | * This turns negative dentries into productive full members | 
|  | * of society. | 
|  | * | 
|  | * NOTE! This assumes that the inode count has been incremented | 
|  | * (or otherwise set) by the caller to indicate that it is now | 
|  | * in use by the dcache. | 
|  | */ | 
|  |  | 
|  | void d_instantiate(struct dentry *entry, struct inode * inode) | 
|  | { | 
|  | BUG_ON(!list_empty(&entry->d_alias)); | 
|  | spin_lock(&dcache_lock); | 
|  | if (inode) | 
|  | list_add(&entry->d_alias, &inode->i_dentry); | 
|  | entry->d_inode = inode; | 
|  | fsnotify_d_instantiate(entry, inode); | 
|  | spin_unlock(&dcache_lock); | 
|  | security_d_instantiate(entry, inode); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_instantiate_unique - instantiate a non-aliased dentry | 
|  | * @entry: dentry to instantiate | 
|  | * @inode: inode to attach to this dentry | 
|  | * | 
|  | * Fill in inode information in the entry. On success, it returns NULL. | 
|  | * If an unhashed alias of "entry" already exists, then we return the | 
|  | * aliased dentry instead and drop one reference to inode. | 
|  | * | 
|  | * Note that in order to avoid conflicts with rename() etc, the caller | 
|  | * had better be holding the parent directory semaphore. | 
|  | * | 
|  | * This also assumes that the inode count has been incremented | 
|  | * (or otherwise set) by the caller to indicate that it is now | 
|  | * in use by the dcache. | 
|  | */ | 
|  | static struct dentry *__d_instantiate_unique(struct dentry *entry, | 
|  | struct inode *inode) | 
|  | { | 
|  | struct dentry *alias; | 
|  | int len = entry->d_name.len; | 
|  | const char *name = entry->d_name.name; | 
|  | unsigned int hash = entry->d_name.hash; | 
|  |  | 
|  | if (!inode) { | 
|  | entry->d_inode = NULL; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(alias, &inode->i_dentry, d_alias) { | 
|  | struct qstr *qstr = &alias->d_name; | 
|  |  | 
|  | if (qstr->hash != hash) | 
|  | continue; | 
|  | if (alias->d_parent != entry->d_parent) | 
|  | continue; | 
|  | if (qstr->len != len) | 
|  | continue; | 
|  | if (memcmp(qstr->name, name, len)) | 
|  | continue; | 
|  | dget_locked(alias); | 
|  | return alias; | 
|  | } | 
|  |  | 
|  | list_add(&entry->d_alias, &inode->i_dentry); | 
|  | entry->d_inode = inode; | 
|  | fsnotify_d_instantiate(entry, inode); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) | 
|  | { | 
|  | struct dentry *result; | 
|  |  | 
|  | BUG_ON(!list_empty(&entry->d_alias)); | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | result = __d_instantiate_unique(entry, inode); | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | if (!result) { | 
|  | security_d_instantiate(entry, inode); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | BUG_ON(!d_unhashed(result)); | 
|  | iput(inode); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(d_instantiate_unique); | 
|  |  | 
|  | /** | 
|  | * d_alloc_root - allocate root dentry | 
|  | * @root_inode: inode to allocate the root for | 
|  | * | 
|  | * Allocate a root ("/") dentry for the inode given. The inode is | 
|  | * instantiated and returned. %NULL is returned if there is insufficient | 
|  | * memory or the inode passed is %NULL. | 
|  | */ | 
|  |  | 
|  | struct dentry * d_alloc_root(struct inode * root_inode) | 
|  | { | 
|  | struct dentry *res = NULL; | 
|  |  | 
|  | if (root_inode) { | 
|  | static const struct qstr name = { .name = "/", .len = 1 }; | 
|  |  | 
|  | res = d_alloc(NULL, &name); | 
|  | if (res) { | 
|  | res->d_sb = root_inode->i_sb; | 
|  | res->d_parent = res; | 
|  | d_instantiate(res, root_inode); | 
|  | } | 
|  | } | 
|  | return res; | 
|  | } | 
|  |  | 
|  | static inline struct hlist_head *d_hash(struct dentry *parent, | 
|  | unsigned long hash) | 
|  | { | 
|  | hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; | 
|  | hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); | 
|  | return dentry_hashtable + (hash & D_HASHMASK); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_alloc_anon - allocate an anonymous dentry | 
|  | * @inode: inode to allocate the dentry for | 
|  | * | 
|  | * This is similar to d_alloc_root.  It is used by filesystems when | 
|  | * creating a dentry for a given inode, often in the process of | 
|  | * mapping a filehandle to a dentry.  The returned dentry may be | 
|  | * anonymous, or may have a full name (if the inode was already | 
|  | * in the cache).  The file system may need to make further | 
|  | * efforts to connect this dentry into the dcache properly. | 
|  | * | 
|  | * When called on a directory inode, we must ensure that | 
|  | * the inode only ever has one dentry.  If a dentry is | 
|  | * found, that is returned instead of allocating a new one. | 
|  | * | 
|  | * On successful return, the reference to the inode has been transferred | 
|  | * to the dentry.  If %NULL is returned (indicating kmalloc failure), | 
|  | * the reference on the inode has not been released. | 
|  | */ | 
|  |  | 
|  | struct dentry * d_alloc_anon(struct inode *inode) | 
|  | { | 
|  | static const struct qstr anonstring = { .name = "" }; | 
|  | struct dentry *tmp; | 
|  | struct dentry *res; | 
|  |  | 
|  | if ((res = d_find_alias(inode))) { | 
|  | iput(inode); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | tmp = d_alloc(NULL, &anonstring); | 
|  | if (!tmp) | 
|  | return NULL; | 
|  |  | 
|  | tmp->d_parent = tmp; /* make sure dput doesn't croak */ | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | res = __d_find_alias(inode, 0); | 
|  | if (!res) { | 
|  | /* attach a disconnected dentry */ | 
|  | res = tmp; | 
|  | tmp = NULL; | 
|  | spin_lock(&res->d_lock); | 
|  | res->d_sb = inode->i_sb; | 
|  | res->d_parent = res; | 
|  | res->d_inode = inode; | 
|  | res->d_flags |= DCACHE_DISCONNECTED; | 
|  | res->d_flags &= ~DCACHE_UNHASHED; | 
|  | list_add(&res->d_alias, &inode->i_dentry); | 
|  | hlist_add_head(&res->d_hash, &inode->i_sb->s_anon); | 
|  | spin_unlock(&res->d_lock); | 
|  |  | 
|  | inode = NULL; /* don't drop reference */ | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | if (inode) | 
|  | iput(inode); | 
|  | if (tmp) | 
|  | dput(tmp); | 
|  | return res; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * d_splice_alias - splice a disconnected dentry into the tree if one exists | 
|  | * @inode:  the inode which may have a disconnected dentry | 
|  | * @dentry: a negative dentry which we want to point to the inode. | 
|  | * | 
|  | * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and | 
|  | * DCACHE_DISCONNECTED), then d_move that in place of the given dentry | 
|  | * and return it, else simply d_add the inode to the dentry and return NULL. | 
|  | * | 
|  | * This is needed in the lookup routine of any filesystem that is exportable | 
|  | * (via knfsd) so that we can build dcache paths to directories effectively. | 
|  | * | 
|  | * If a dentry was found and moved, then it is returned.  Otherwise NULL | 
|  | * is returned.  This matches the expected return value of ->lookup. | 
|  | * | 
|  | */ | 
|  | struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) | 
|  | { | 
|  | struct dentry *new = NULL; | 
|  |  | 
|  | if (inode) { | 
|  | spin_lock(&dcache_lock); | 
|  | new = __d_find_alias(inode, 1); | 
|  | if (new) { | 
|  | BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); | 
|  | fsnotify_d_instantiate(new, inode); | 
|  | spin_unlock(&dcache_lock); | 
|  | security_d_instantiate(new, inode); | 
|  | d_rehash(dentry); | 
|  | d_move(new, dentry); | 
|  | iput(inode); | 
|  | } else { | 
|  | /* d_instantiate takes dcache_lock, so we do it by hand */ | 
|  | list_add(&dentry->d_alias, &inode->i_dentry); | 
|  | dentry->d_inode = inode; | 
|  | fsnotify_d_instantiate(dentry, inode); | 
|  | spin_unlock(&dcache_lock); | 
|  | security_d_instantiate(dentry, inode); | 
|  | d_rehash(dentry); | 
|  | } | 
|  | } else | 
|  | d_add(dentry, inode); | 
|  | return new; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * d_lookup - search for a dentry | 
|  | * @parent: parent dentry | 
|  | * @name: qstr of name we wish to find | 
|  | * | 
|  | * Searches the children of the parent dentry for the name in question. If | 
|  | * the dentry is found its reference count is incremented and the dentry | 
|  | * is returned. The caller must use d_put to free the entry when it has | 
|  | * finished using it. %NULL is returned on failure. | 
|  | * | 
|  | * __d_lookup is dcache_lock free. The hash list is protected using RCU. | 
|  | * Memory barriers are used while updating and doing lockless traversal. | 
|  | * To avoid races with d_move while rename is happening, d_lock is used. | 
|  | * | 
|  | * Overflows in memcmp(), while d_move, are avoided by keeping the length | 
|  | * and name pointer in one structure pointed by d_qstr. | 
|  | * | 
|  | * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while | 
|  | * lookup is going on. | 
|  | * | 
|  | * dentry_unused list is not updated even if lookup finds the required dentry | 
|  | * in there. It is updated in places such as prune_dcache, shrink_dcache_sb, | 
|  | * select_parent and __dget_locked. This laziness saves lookup from dcache_lock | 
|  | * acquisition. | 
|  | * | 
|  | * d_lookup() is protected against the concurrent renames in some unrelated | 
|  | * directory using the seqlockt_t rename_lock. | 
|  | */ | 
|  |  | 
|  | struct dentry * d_lookup(struct dentry * parent, struct qstr * name) | 
|  | { | 
|  | struct dentry * dentry = NULL; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&rename_lock); | 
|  | dentry = __d_lookup(parent, name); | 
|  | if (dentry) | 
|  | break; | 
|  | } while (read_seqretry(&rename_lock, seq)); | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) | 
|  | { | 
|  | unsigned int len = name->len; | 
|  | unsigned int hash = name->hash; | 
|  | const unsigned char *str = name->name; | 
|  | struct hlist_head *head = d_hash(parent,hash); | 
|  | struct dentry *found = NULL; | 
|  | struct hlist_node *node; | 
|  | struct dentry *dentry; | 
|  |  | 
|  | rcu_read_lock(); | 
|  |  | 
|  | hlist_for_each_entry_rcu(dentry, node, head, d_hash) { | 
|  | struct qstr *qstr; | 
|  |  | 
|  | if (dentry->d_name.hash != hash) | 
|  | continue; | 
|  | if (dentry->d_parent != parent) | 
|  | continue; | 
|  |  | 
|  | spin_lock(&dentry->d_lock); | 
|  |  | 
|  | /* | 
|  | * Recheck the dentry after taking the lock - d_move may have | 
|  | * changed things.  Don't bother checking the hash because we're | 
|  | * about to compare the whole name anyway. | 
|  | */ | 
|  | if (dentry->d_parent != parent) | 
|  | goto next; | 
|  |  | 
|  | /* | 
|  | * It is safe to compare names since d_move() cannot | 
|  | * change the qstr (protected by d_lock). | 
|  | */ | 
|  | qstr = &dentry->d_name; | 
|  | if (parent->d_op && parent->d_op->d_compare) { | 
|  | if (parent->d_op->d_compare(parent, qstr, name)) | 
|  | goto next; | 
|  | } else { | 
|  | if (qstr->len != len) | 
|  | goto next; | 
|  | if (memcmp(qstr->name, str, len)) | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | if (!d_unhashed(dentry)) { | 
|  | atomic_inc(&dentry->d_count); | 
|  | found = dentry; | 
|  | } | 
|  | spin_unlock(&dentry->d_lock); | 
|  | break; | 
|  | next: | 
|  | spin_unlock(&dentry->d_lock); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return found; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_hash_and_lookup - hash the qstr then search for a dentry | 
|  | * @dir: Directory to search in | 
|  | * @name: qstr of name we wish to find | 
|  | * | 
|  | * On hash failure or on lookup failure NULL is returned. | 
|  | */ | 
|  | struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) | 
|  | { | 
|  | struct dentry *dentry = NULL; | 
|  |  | 
|  | /* | 
|  | * Check for a fs-specific hash function. Note that we must | 
|  | * calculate the standard hash first, as the d_op->d_hash() | 
|  | * routine may choose to leave the hash value unchanged. | 
|  | */ | 
|  | name->hash = full_name_hash(name->name, name->len); | 
|  | if (dir->d_op && dir->d_op->d_hash) { | 
|  | if (dir->d_op->d_hash(dir, name) < 0) | 
|  | goto out; | 
|  | } | 
|  | dentry = d_lookup(dir, name); | 
|  | out: | 
|  | return dentry; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_validate - verify dentry provided from insecure source | 
|  | * @dentry: The dentry alleged to be valid child of @dparent | 
|  | * @dparent: The parent dentry (known to be valid) | 
|  | * @hash: Hash of the dentry | 
|  | * @len: Length of the name | 
|  | * | 
|  | * An insecure source has sent us a dentry, here we verify it and dget() it. | 
|  | * This is used by ncpfs in its readdir implementation. | 
|  | * Zero is returned in the dentry is invalid. | 
|  | */ | 
|  |  | 
|  | int d_validate(struct dentry *dentry, struct dentry *dparent) | 
|  | { | 
|  | struct hlist_head *base; | 
|  | struct hlist_node *lhp; | 
|  |  | 
|  | /* Check whether the ptr might be valid at all.. */ | 
|  | if (!kmem_ptr_validate(dentry_cache, dentry)) | 
|  | goto out; | 
|  |  | 
|  | if (dentry->d_parent != dparent) | 
|  | goto out; | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | base = d_hash(dparent, dentry->d_name.hash); | 
|  | hlist_for_each(lhp,base) { | 
|  | /* hlist_for_each_entry_rcu() not required for d_hash list | 
|  | * as it is parsed under dcache_lock | 
|  | */ | 
|  | if (dentry == hlist_entry(lhp, struct dentry, d_hash)) { | 
|  | __dget_locked(dentry); | 
|  | spin_unlock(&dcache_lock); | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | out: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When a file is deleted, we have two options: | 
|  | * - turn this dentry into a negative dentry | 
|  | * - unhash this dentry and free it. | 
|  | * | 
|  | * Usually, we want to just turn this into | 
|  | * a negative dentry, but if anybody else is | 
|  | * currently using the dentry or the inode | 
|  | * we can't do that and we fall back on removing | 
|  | * it from the hash queues and waiting for | 
|  | * it to be deleted later when it has no users | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * d_delete - delete a dentry | 
|  | * @dentry: The dentry to delete | 
|  | * | 
|  | * Turn the dentry into a negative dentry if possible, otherwise | 
|  | * remove it from the hash queues so it can be deleted later | 
|  | */ | 
|  |  | 
|  | void d_delete(struct dentry * dentry) | 
|  | { | 
|  | int isdir = 0; | 
|  | /* | 
|  | * Are we the only user? | 
|  | */ | 
|  | spin_lock(&dcache_lock); | 
|  | spin_lock(&dentry->d_lock); | 
|  | isdir = S_ISDIR(dentry->d_inode->i_mode); | 
|  | if (atomic_read(&dentry->d_count) == 1) { | 
|  | dentry_iput(dentry); | 
|  | fsnotify_nameremove(dentry, isdir); | 
|  |  | 
|  | /* remove this and other inotify debug checks after 2.6.18 */ | 
|  | dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!d_unhashed(dentry)) | 
|  | __d_drop(dentry); | 
|  |  | 
|  | spin_unlock(&dentry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | fsnotify_nameremove(dentry, isdir); | 
|  | } | 
|  |  | 
|  | static void __d_rehash(struct dentry * entry, struct hlist_head *list) | 
|  | { | 
|  |  | 
|  | entry->d_flags &= ~DCACHE_UNHASHED; | 
|  | hlist_add_head_rcu(&entry->d_hash, list); | 
|  | } | 
|  |  | 
|  | static void _d_rehash(struct dentry * entry) | 
|  | { | 
|  | __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_rehash	- add an entry back to the hash | 
|  | * @entry: dentry to add to the hash | 
|  | * | 
|  | * Adds a dentry to the hash according to its name. | 
|  | */ | 
|  |  | 
|  | void d_rehash(struct dentry * entry) | 
|  | { | 
|  | spin_lock(&dcache_lock); | 
|  | spin_lock(&entry->d_lock); | 
|  | _d_rehash(entry); | 
|  | spin_unlock(&entry->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | #define do_switch(x,y) do { \ | 
|  | __typeof__ (x) __tmp = x; \ | 
|  | x = y; y = __tmp; } while (0) | 
|  |  | 
|  | /* | 
|  | * When switching names, the actual string doesn't strictly have to | 
|  | * be preserved in the target - because we're dropping the target | 
|  | * anyway. As such, we can just do a simple memcpy() to copy over | 
|  | * the new name before we switch. | 
|  | * | 
|  | * Note that we have to be a lot more careful about getting the hash | 
|  | * switched - we have to switch the hash value properly even if it | 
|  | * then no longer matches the actual (corrupted) string of the target. | 
|  | * The hash value has to match the hash queue that the dentry is on.. | 
|  | */ | 
|  | static void switch_names(struct dentry *dentry, struct dentry *target) | 
|  | { | 
|  | if (dname_external(target)) { | 
|  | if (dname_external(dentry)) { | 
|  | /* | 
|  | * Both external: swap the pointers | 
|  | */ | 
|  | do_switch(target->d_name.name, dentry->d_name.name); | 
|  | } else { | 
|  | /* | 
|  | * dentry:internal, target:external.  Steal target's | 
|  | * storage and make target internal. | 
|  | */ | 
|  | dentry->d_name.name = target->d_name.name; | 
|  | target->d_name.name = target->d_iname; | 
|  | } | 
|  | } else { | 
|  | if (dname_external(dentry)) { | 
|  | /* | 
|  | * dentry:external, target:internal.  Give dentry's | 
|  | * storage to target and make dentry internal | 
|  | */ | 
|  | memcpy(dentry->d_iname, target->d_name.name, | 
|  | target->d_name.len + 1); | 
|  | target->d_name.name = dentry->d_name.name; | 
|  | dentry->d_name.name = dentry->d_iname; | 
|  | } else { | 
|  | /* | 
|  | * Both are internal.  Just copy target to dentry | 
|  | */ | 
|  | memcpy(dentry->d_iname, target->d_name.name, | 
|  | target->d_name.len + 1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We cannibalize "target" when moving dentry on top of it, | 
|  | * because it's going to be thrown away anyway. We could be more | 
|  | * polite about it, though. | 
|  | * | 
|  | * This forceful removal will result in ugly /proc output if | 
|  | * somebody holds a file open that got deleted due to a rename. | 
|  | * We could be nicer about the deleted file, and let it show | 
|  | * up under the name it got deleted rather than the name that | 
|  | * deleted it. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * d_move - move a dentry | 
|  | * @dentry: entry to move | 
|  | * @target: new dentry | 
|  | * | 
|  | * Update the dcache to reflect the move of a file name. Negative | 
|  | * dcache entries should not be moved in this way. | 
|  | */ | 
|  |  | 
|  | void d_move(struct dentry * dentry, struct dentry * target) | 
|  | { | 
|  | struct hlist_head *list; | 
|  |  | 
|  | if (!dentry->d_inode) | 
|  | printk(KERN_WARNING "VFS: moving negative dcache entry\n"); | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | write_seqlock(&rename_lock); | 
|  | /* | 
|  | * XXXX: do we really need to take target->d_lock? | 
|  | */ | 
|  | if (target < dentry) { | 
|  | spin_lock(&target->d_lock); | 
|  | spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | } else { | 
|  | spin_lock(&dentry->d_lock); | 
|  | spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED); | 
|  | } | 
|  |  | 
|  | /* Move the dentry to the target hash queue, if on different bucket */ | 
|  | if (dentry->d_flags & DCACHE_UNHASHED) | 
|  | goto already_unhashed; | 
|  |  | 
|  | hlist_del_rcu(&dentry->d_hash); | 
|  |  | 
|  | already_unhashed: | 
|  | list = d_hash(target->d_parent, target->d_name.hash); | 
|  | __d_rehash(dentry, list); | 
|  |  | 
|  | /* Unhash the target: dput() will then get rid of it */ | 
|  | __d_drop(target); | 
|  |  | 
|  | list_del(&dentry->d_u.d_child); | 
|  | list_del(&target->d_u.d_child); | 
|  |  | 
|  | /* Switch the names.. */ | 
|  | switch_names(dentry, target); | 
|  | do_switch(dentry->d_name.len, target->d_name.len); | 
|  | do_switch(dentry->d_name.hash, target->d_name.hash); | 
|  |  | 
|  | /* ... and switch the parents */ | 
|  | if (IS_ROOT(dentry)) { | 
|  | dentry->d_parent = target->d_parent; | 
|  | target->d_parent = target; | 
|  | INIT_LIST_HEAD(&target->d_u.d_child); | 
|  | } else { | 
|  | do_switch(dentry->d_parent, target->d_parent); | 
|  |  | 
|  | /* And add them back to the (new) parent lists */ | 
|  | list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); | 
|  | } | 
|  |  | 
|  | list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); | 
|  | spin_unlock(&target->d_lock); | 
|  | fsnotify_d_move(dentry); | 
|  | spin_unlock(&dentry->d_lock); | 
|  | write_sequnlock(&rename_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare an anonymous dentry for life in the superblock's dentry tree as a | 
|  | * named dentry in place of the dentry to be replaced. | 
|  | */ | 
|  | static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) | 
|  | { | 
|  | struct dentry *dparent, *aparent; | 
|  |  | 
|  | switch_names(dentry, anon); | 
|  | do_switch(dentry->d_name.len, anon->d_name.len); | 
|  | do_switch(dentry->d_name.hash, anon->d_name.hash); | 
|  |  | 
|  | dparent = dentry->d_parent; | 
|  | aparent = anon->d_parent; | 
|  |  | 
|  | dentry->d_parent = (aparent == anon) ? dentry : aparent; | 
|  | list_del(&dentry->d_u.d_child); | 
|  | if (!IS_ROOT(dentry)) | 
|  | list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); | 
|  | else | 
|  | INIT_LIST_HEAD(&dentry->d_u.d_child); | 
|  |  | 
|  | anon->d_parent = (dparent == dentry) ? anon : dparent; | 
|  | list_del(&anon->d_u.d_child); | 
|  | if (!IS_ROOT(anon)) | 
|  | list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); | 
|  | else | 
|  | INIT_LIST_HEAD(&anon->d_u.d_child); | 
|  |  | 
|  | anon->d_flags &= ~DCACHE_DISCONNECTED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_materialise_unique - introduce an inode into the tree | 
|  | * @dentry: candidate dentry | 
|  | * @inode: inode to bind to the dentry, to which aliases may be attached | 
|  | * | 
|  | * Introduces an dentry into the tree, substituting an extant disconnected | 
|  | * root directory alias in its place if there is one | 
|  | */ | 
|  | struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) | 
|  | { | 
|  | struct dentry *alias, *actual; | 
|  |  | 
|  | BUG_ON(!d_unhashed(dentry)); | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  |  | 
|  | if (!inode) { | 
|  | actual = dentry; | 
|  | dentry->d_inode = NULL; | 
|  | goto found_lock; | 
|  | } | 
|  |  | 
|  | /* See if a disconnected directory already exists as an anonymous root | 
|  | * that we should splice into the tree instead */ | 
|  | if (S_ISDIR(inode->i_mode) && (alias = __d_find_alias(inode, 1))) { | 
|  | spin_lock(&alias->d_lock); | 
|  |  | 
|  | /* Is this a mountpoint that we could splice into our tree? */ | 
|  | if (IS_ROOT(alias)) | 
|  | goto connect_mountpoint; | 
|  |  | 
|  | if (alias->d_name.len == dentry->d_name.len && | 
|  | alias->d_parent == dentry->d_parent && | 
|  | memcmp(alias->d_name.name, | 
|  | dentry->d_name.name, | 
|  | dentry->d_name.len) == 0) | 
|  | goto replace_with_alias; | 
|  |  | 
|  | spin_unlock(&alias->d_lock); | 
|  |  | 
|  | /* Doh! Seem to be aliasing directories for some reason... */ | 
|  | dput(alias); | 
|  | } | 
|  |  | 
|  | /* Add a unique reference */ | 
|  | actual = __d_instantiate_unique(dentry, inode); | 
|  | if (!actual) | 
|  | actual = dentry; | 
|  | else if (unlikely(!d_unhashed(actual))) | 
|  | goto shouldnt_be_hashed; | 
|  |  | 
|  | found_lock: | 
|  | spin_lock(&actual->d_lock); | 
|  | found: | 
|  | _d_rehash(actual); | 
|  | spin_unlock(&actual->d_lock); | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | if (actual == dentry) { | 
|  | security_d_instantiate(dentry, inode); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | iput(inode); | 
|  | return actual; | 
|  |  | 
|  | /* Convert the anonymous/root alias into an ordinary dentry */ | 
|  | connect_mountpoint: | 
|  | __d_materialise_dentry(dentry, alias); | 
|  |  | 
|  | /* Replace the candidate dentry with the alias in the tree */ | 
|  | replace_with_alias: | 
|  | __d_drop(alias); | 
|  | actual = alias; | 
|  | goto found; | 
|  |  | 
|  | shouldnt_be_hashed: | 
|  | spin_unlock(&dcache_lock); | 
|  | BUG(); | 
|  | goto shouldnt_be_hashed; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * d_path - return the path of a dentry | 
|  | * @dentry: dentry to report | 
|  | * @vfsmnt: vfsmnt to which the dentry belongs | 
|  | * @root: root dentry | 
|  | * @rootmnt: vfsmnt to which the root dentry belongs | 
|  | * @buffer: buffer to return value in | 
|  | * @buflen: buffer length | 
|  | * | 
|  | * Convert a dentry into an ASCII path name. If the entry has been deleted | 
|  | * the string " (deleted)" is appended. Note that this is ambiguous. | 
|  | * | 
|  | * Returns the buffer or an error code if the path was too long. | 
|  | * | 
|  | * "buflen" should be positive. Caller holds the dcache_lock. | 
|  | */ | 
|  | static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt, | 
|  | struct dentry *root, struct vfsmount *rootmnt, | 
|  | char *buffer, int buflen) | 
|  | { | 
|  | char * end = buffer+buflen; | 
|  | char * retval; | 
|  | int namelen; | 
|  |  | 
|  | *--end = '\0'; | 
|  | buflen--; | 
|  | if (!IS_ROOT(dentry) && d_unhashed(dentry)) { | 
|  | buflen -= 10; | 
|  | end -= 10; | 
|  | if (buflen < 0) | 
|  | goto Elong; | 
|  | memcpy(end, " (deleted)", 10); | 
|  | } | 
|  |  | 
|  | if (buflen < 1) | 
|  | goto Elong; | 
|  | /* Get '/' right */ | 
|  | retval = end-1; | 
|  | *retval = '/'; | 
|  |  | 
|  | for (;;) { | 
|  | struct dentry * parent; | 
|  |  | 
|  | if (dentry == root && vfsmnt == rootmnt) | 
|  | break; | 
|  | if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { | 
|  | /* Global root? */ | 
|  | spin_lock(&vfsmount_lock); | 
|  | if (vfsmnt->mnt_parent == vfsmnt) { | 
|  | spin_unlock(&vfsmount_lock); | 
|  | goto global_root; | 
|  | } | 
|  | dentry = vfsmnt->mnt_mountpoint; | 
|  | vfsmnt = vfsmnt->mnt_parent; | 
|  | spin_unlock(&vfsmount_lock); | 
|  | continue; | 
|  | } | 
|  | parent = dentry->d_parent; | 
|  | prefetch(parent); | 
|  | namelen = dentry->d_name.len; | 
|  | buflen -= namelen + 1; | 
|  | if (buflen < 0) | 
|  | goto Elong; | 
|  | end -= namelen; | 
|  | memcpy(end, dentry->d_name.name, namelen); | 
|  | *--end = '/'; | 
|  | retval = end; | 
|  | dentry = parent; | 
|  | } | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | global_root: | 
|  | namelen = dentry->d_name.len; | 
|  | buflen -= namelen; | 
|  | if (buflen < 0) | 
|  | goto Elong; | 
|  | retval -= namelen-1;	/* hit the slash */ | 
|  | memcpy(retval, dentry->d_name.name, namelen); | 
|  | return retval; | 
|  | Elong: | 
|  | return ERR_PTR(-ENAMETOOLONG); | 
|  | } | 
|  |  | 
|  | /* write full pathname into buffer and return start of pathname */ | 
|  | char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt, | 
|  | char *buf, int buflen) | 
|  | { | 
|  | char *res; | 
|  | struct vfsmount *rootmnt; | 
|  | struct dentry *root; | 
|  |  | 
|  | read_lock(¤t->fs->lock); | 
|  | rootmnt = mntget(current->fs->rootmnt); | 
|  | root = dget(current->fs->root); | 
|  | read_unlock(¤t->fs->lock); | 
|  | spin_lock(&dcache_lock); | 
|  | res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen); | 
|  | spin_unlock(&dcache_lock); | 
|  | dput(root); | 
|  | mntput(rootmnt); | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE! The user-level library version returns a | 
|  | * character pointer. The kernel system call just | 
|  | * returns the length of the buffer filled (which | 
|  | * includes the ending '\0' character), or a negative | 
|  | * error value. So libc would do something like | 
|  | * | 
|  | *	char *getcwd(char * buf, size_t size) | 
|  | *	{ | 
|  | *		int retval; | 
|  | * | 
|  | *		retval = sys_getcwd(buf, size); | 
|  | *		if (retval >= 0) | 
|  | *			return buf; | 
|  | *		errno = -retval; | 
|  | *		return NULL; | 
|  | *	} | 
|  | */ | 
|  | asmlinkage long sys_getcwd(char __user *buf, unsigned long size) | 
|  | { | 
|  | int error; | 
|  | struct vfsmount *pwdmnt, *rootmnt; | 
|  | struct dentry *pwd, *root; | 
|  | char *page = (char *) __get_free_page(GFP_USER); | 
|  |  | 
|  | if (!page) | 
|  | return -ENOMEM; | 
|  |  | 
|  | read_lock(¤t->fs->lock); | 
|  | pwdmnt = mntget(current->fs->pwdmnt); | 
|  | pwd = dget(current->fs->pwd); | 
|  | rootmnt = mntget(current->fs->rootmnt); | 
|  | root = dget(current->fs->root); | 
|  | read_unlock(¤t->fs->lock); | 
|  |  | 
|  | error = -ENOENT; | 
|  | /* Has the current directory has been unlinked? */ | 
|  | spin_lock(&dcache_lock); | 
|  | if (pwd->d_parent == pwd || !d_unhashed(pwd)) { | 
|  | unsigned long len; | 
|  | char * cwd; | 
|  |  | 
|  | cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE); | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | error = PTR_ERR(cwd); | 
|  | if (IS_ERR(cwd)) | 
|  | goto out; | 
|  |  | 
|  | error = -ERANGE; | 
|  | len = PAGE_SIZE + page - cwd; | 
|  | if (len <= size) { | 
|  | error = len; | 
|  | if (copy_to_user(buf, cwd, len)) | 
|  | error = -EFAULT; | 
|  | } | 
|  | } else | 
|  | spin_unlock(&dcache_lock); | 
|  |  | 
|  | out: | 
|  | dput(pwd); | 
|  | mntput(pwdmnt); | 
|  | dput(root); | 
|  | mntput(rootmnt); | 
|  | free_page((unsigned long) page); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test whether new_dentry is a subdirectory of old_dentry. | 
|  | * | 
|  | * Trivially implemented using the dcache structure | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * is_subdir - is new dentry a subdirectory of old_dentry | 
|  | * @new_dentry: new dentry | 
|  | * @old_dentry: old dentry | 
|  | * | 
|  | * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). | 
|  | * Returns 0 otherwise. | 
|  | * Caller must ensure that "new_dentry" is pinned before calling is_subdir() | 
|  | */ | 
|  |  | 
|  | int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry) | 
|  | { | 
|  | int result; | 
|  | struct dentry * saved = new_dentry; | 
|  | unsigned long seq; | 
|  |  | 
|  | /* need rcu_readlock to protect against the d_parent trashing due to | 
|  | * d_move | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | do { | 
|  | /* for restarting inner loop in case of seq retry */ | 
|  | new_dentry = saved; | 
|  | result = 0; | 
|  | seq = read_seqbegin(&rename_lock); | 
|  | for (;;) { | 
|  | if (new_dentry != old_dentry) { | 
|  | struct dentry * parent = new_dentry->d_parent; | 
|  | if (parent == new_dentry) | 
|  | break; | 
|  | new_dentry = parent; | 
|  | continue; | 
|  | } | 
|  | result = 1; | 
|  | break; | 
|  | } | 
|  | } while (read_seqretry(&rename_lock, seq)); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | void d_genocide(struct dentry *root) | 
|  | { | 
|  | struct dentry *this_parent = root; | 
|  | struct list_head *next; | 
|  |  | 
|  | spin_lock(&dcache_lock); | 
|  | repeat: | 
|  | next = this_parent->d_subdirs.next; | 
|  | resume: | 
|  | while (next != &this_parent->d_subdirs) { | 
|  | struct list_head *tmp = next; | 
|  | struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); | 
|  | next = tmp->next; | 
|  | if (d_unhashed(dentry)||!dentry->d_inode) | 
|  | continue; | 
|  | if (!list_empty(&dentry->d_subdirs)) { | 
|  | this_parent = dentry; | 
|  | goto repeat; | 
|  | } | 
|  | atomic_dec(&dentry->d_count); | 
|  | } | 
|  | if (this_parent != root) { | 
|  | next = this_parent->d_u.d_child.next; | 
|  | atomic_dec(&this_parent->d_count); | 
|  | this_parent = this_parent->d_parent; | 
|  | goto resume; | 
|  | } | 
|  | spin_unlock(&dcache_lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_inode_number - check for dentry with name | 
|  | * @dir: directory to check | 
|  | * @name: Name to find. | 
|  | * | 
|  | * Check whether a dentry already exists for the given name, | 
|  | * and return the inode number if it has an inode. Otherwise | 
|  | * 0 is returned. | 
|  | * | 
|  | * This routine is used to post-process directory listings for | 
|  | * filesystems using synthetic inode numbers, and is necessary | 
|  | * to keep getcwd() working. | 
|  | */ | 
|  |  | 
|  | ino_t find_inode_number(struct dentry *dir, struct qstr *name) | 
|  | { | 
|  | struct dentry * dentry; | 
|  | ino_t ino = 0; | 
|  |  | 
|  | dentry = d_hash_and_lookup(dir, name); | 
|  | if (dentry) { | 
|  | if (dentry->d_inode) | 
|  | ino = dentry->d_inode->i_ino; | 
|  | dput(dentry); | 
|  | } | 
|  | return ino; | 
|  | } | 
|  |  | 
|  | static __initdata unsigned long dhash_entries; | 
|  | static int __init set_dhash_entries(char *str) | 
|  | { | 
|  | if (!str) | 
|  | return 0; | 
|  | dhash_entries = simple_strtoul(str, &str, 0); | 
|  | return 1; | 
|  | } | 
|  | __setup("dhash_entries=", set_dhash_entries); | 
|  |  | 
|  | static void __init dcache_init_early(void) | 
|  | { | 
|  | int loop; | 
|  |  | 
|  | /* If hashes are distributed across NUMA nodes, defer | 
|  | * hash allocation until vmalloc space is available. | 
|  | */ | 
|  | if (hashdist) | 
|  | return; | 
|  |  | 
|  | dentry_hashtable = | 
|  | alloc_large_system_hash("Dentry cache", | 
|  | sizeof(struct hlist_head), | 
|  | dhash_entries, | 
|  | 13, | 
|  | HASH_EARLY, | 
|  | &d_hash_shift, | 
|  | &d_hash_mask, | 
|  | 0); | 
|  |  | 
|  | for (loop = 0; loop < (1 << d_hash_shift); loop++) | 
|  | INIT_HLIST_HEAD(&dentry_hashtable[loop]); | 
|  | } | 
|  |  | 
|  | static void __init dcache_init(unsigned long mempages) | 
|  | { | 
|  | int loop; | 
|  |  | 
|  | /* | 
|  | * A constructor could be added for stable state like the lists, | 
|  | * but it is probably not worth it because of the cache nature | 
|  | * of the dcache. | 
|  | */ | 
|  | dentry_cache = kmem_cache_create("dentry_cache", | 
|  | sizeof(struct dentry), | 
|  | 0, | 
|  | (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| | 
|  | SLAB_MEM_SPREAD), | 
|  | NULL, NULL); | 
|  |  | 
|  | set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory); | 
|  |  | 
|  | /* Hash may have been set up in dcache_init_early */ | 
|  | if (!hashdist) | 
|  | return; | 
|  |  | 
|  | dentry_hashtable = | 
|  | alloc_large_system_hash("Dentry cache", | 
|  | sizeof(struct hlist_head), | 
|  | dhash_entries, | 
|  | 13, | 
|  | 0, | 
|  | &d_hash_shift, | 
|  | &d_hash_mask, | 
|  | 0); | 
|  |  | 
|  | for (loop = 0; loop < (1 << d_hash_shift); loop++) | 
|  | INIT_HLIST_HEAD(&dentry_hashtable[loop]); | 
|  | } | 
|  |  | 
|  | /* SLAB cache for __getname() consumers */ | 
|  | kmem_cache_t *names_cachep __read_mostly; | 
|  |  | 
|  | /* SLAB cache for file structures */ | 
|  | kmem_cache_t *filp_cachep __read_mostly; | 
|  |  | 
|  | EXPORT_SYMBOL(d_genocide); | 
|  |  | 
|  | extern void bdev_cache_init(void); | 
|  | extern void chrdev_init(void); | 
|  |  | 
|  | void __init vfs_caches_init_early(void) | 
|  | { | 
|  | dcache_init_early(); | 
|  | inode_init_early(); | 
|  | } | 
|  |  | 
|  | void __init vfs_caches_init(unsigned long mempages) | 
|  | { | 
|  | unsigned long reserve; | 
|  |  | 
|  | /* Base hash sizes on available memory, with a reserve equal to | 
|  | 150% of current kernel size */ | 
|  |  | 
|  | reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); | 
|  | mempages -= reserve; | 
|  |  | 
|  | names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  |  | 
|  | filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  |  | 
|  | dcache_init(mempages); | 
|  | inode_init(mempages); | 
|  | files_init(mempages); | 
|  | mnt_init(mempages); | 
|  | bdev_cache_init(); | 
|  | chrdev_init(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(d_alloc); | 
|  | EXPORT_SYMBOL(d_alloc_anon); | 
|  | EXPORT_SYMBOL(d_alloc_root); | 
|  | EXPORT_SYMBOL(d_delete); | 
|  | EXPORT_SYMBOL(d_find_alias); | 
|  | EXPORT_SYMBOL(d_instantiate); | 
|  | EXPORT_SYMBOL(d_invalidate); | 
|  | EXPORT_SYMBOL(d_lookup); | 
|  | EXPORT_SYMBOL(d_move); | 
|  | EXPORT_SYMBOL_GPL(d_materialise_unique); | 
|  | EXPORT_SYMBOL(d_path); | 
|  | EXPORT_SYMBOL(d_prune_aliases); | 
|  | EXPORT_SYMBOL(d_rehash); | 
|  | EXPORT_SYMBOL(d_splice_alias); | 
|  | EXPORT_SYMBOL(d_validate); | 
|  | EXPORT_SYMBOL(dget_locked); | 
|  | EXPORT_SYMBOL(dput); | 
|  | EXPORT_SYMBOL(find_inode_number); | 
|  | EXPORT_SYMBOL(have_submounts); | 
|  | EXPORT_SYMBOL(names_cachep); | 
|  | EXPORT_SYMBOL(shrink_dcache_parent); | 
|  | EXPORT_SYMBOL(shrink_dcache_sb); |