|  | /* | 
|  | *  linux/kernel/time/tick-sched.c | 
|  | * | 
|  | *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> | 
|  | *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar | 
|  | *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner | 
|  | * | 
|  | *  No idle tick implementation for low and high resolution timers | 
|  | * | 
|  | *  Started by: Thomas Gleixner and Ingo Molnar | 
|  | * | 
|  | *  Distribute under GPLv2. | 
|  | */ | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/err.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/tick.h> | 
|  |  | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | #include "tick-internal.h" | 
|  |  | 
|  | /* | 
|  | * Per cpu nohz control structure | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched); | 
|  |  | 
|  | /* | 
|  | * The time, when the last jiffy update happened. Protected by xtime_lock. | 
|  | */ | 
|  | static ktime_t last_jiffies_update; | 
|  |  | 
|  | struct tick_sched *tick_get_tick_sched(int cpu) | 
|  | { | 
|  | return &per_cpu(tick_cpu_sched, cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Must be called with interrupts disabled ! | 
|  | */ | 
|  | static void tick_do_update_jiffies64(ktime_t now) | 
|  | { | 
|  | unsigned long ticks = 0; | 
|  | ktime_t delta; | 
|  |  | 
|  | /* Reevalute with xtime_lock held */ | 
|  | write_seqlock(&xtime_lock); | 
|  |  | 
|  | delta = ktime_sub(now, last_jiffies_update); | 
|  | if (delta.tv64 >= tick_period.tv64) { | 
|  |  | 
|  | delta = ktime_sub(delta, tick_period); | 
|  | last_jiffies_update = ktime_add(last_jiffies_update, | 
|  | tick_period); | 
|  |  | 
|  | /* Slow path for long timeouts */ | 
|  | if (unlikely(delta.tv64 >= tick_period.tv64)) { | 
|  | s64 incr = ktime_to_ns(tick_period); | 
|  |  | 
|  | ticks = ktime_divns(delta, incr); | 
|  |  | 
|  | last_jiffies_update = ktime_add_ns(last_jiffies_update, | 
|  | incr * ticks); | 
|  | } | 
|  | do_timer(++ticks); | 
|  | } | 
|  | write_sequnlock(&xtime_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize and return retrieve the jiffies update. | 
|  | */ | 
|  | static ktime_t tick_init_jiffy_update(void) | 
|  | { | 
|  | ktime_t period; | 
|  |  | 
|  | write_seqlock(&xtime_lock); | 
|  | /* Did we start the jiffies update yet ? */ | 
|  | if (last_jiffies_update.tv64 == 0) | 
|  | last_jiffies_update = tick_next_period; | 
|  | period = last_jiffies_update; | 
|  | write_sequnlock(&xtime_lock); | 
|  | return period; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOHZ - aka dynamic tick functionality | 
|  | */ | 
|  | #ifdef CONFIG_NO_HZ | 
|  | /* | 
|  | * NO HZ enabled ? | 
|  | */ | 
|  | static int tick_nohz_enabled __read_mostly  = 1; | 
|  |  | 
|  | /* | 
|  | * Enable / Disable tickless mode | 
|  | */ | 
|  | static int __init setup_tick_nohz(char *str) | 
|  | { | 
|  | if (!strcmp(str, "off")) | 
|  | tick_nohz_enabled = 0; | 
|  | else if (!strcmp(str, "on")) | 
|  | tick_nohz_enabled = 1; | 
|  | else | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("nohz=", setup_tick_nohz); | 
|  |  | 
|  | /** | 
|  | * tick_nohz_update_jiffies - update jiffies when idle was interrupted | 
|  | * | 
|  | * Called from interrupt entry when the CPU was idle | 
|  | * | 
|  | * In case the sched_tick was stopped on this CPU, we have to check if jiffies | 
|  | * must be updated. Otherwise an interrupt handler could use a stale jiffy | 
|  | * value. We do this unconditionally on any cpu, as we don't know whether the | 
|  | * cpu, which has the update task assigned is in a long sleep. | 
|  | */ | 
|  | void tick_nohz_update_jiffies(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|  | unsigned long flags; | 
|  | ktime_t now; | 
|  |  | 
|  | if (!ts->tick_stopped) | 
|  | return; | 
|  |  | 
|  | touch_softlockup_watchdog(); | 
|  |  | 
|  | cpu_clear(cpu, nohz_cpu_mask); | 
|  | now = ktime_get(); | 
|  | ts->idle_waketime = now; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | tick_do_update_jiffies64(now); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | void tick_nohz_stop_idle(int cpu) | 
|  | { | 
|  | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|  |  | 
|  | if (ts->idle_active) { | 
|  | ktime_t now, delta; | 
|  | now = ktime_get(); | 
|  | delta = ktime_sub(now, ts->idle_entrytime); | 
|  | ts->idle_lastupdate = now; | 
|  | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | 
|  | ts->idle_active = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static ktime_t tick_nohz_start_idle(struct tick_sched *ts) | 
|  | { | 
|  | ktime_t now, delta; | 
|  |  | 
|  | now = ktime_get(); | 
|  | if (ts->idle_active) { | 
|  | delta = ktime_sub(now, ts->idle_entrytime); | 
|  | ts->idle_lastupdate = now; | 
|  | ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta); | 
|  | } | 
|  | ts->idle_entrytime = now; | 
|  | ts->idle_active = 1; | 
|  | return now; | 
|  | } | 
|  |  | 
|  | u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time) | 
|  | { | 
|  | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|  |  | 
|  | *last_update_time = ktime_to_us(ts->idle_lastupdate); | 
|  | return ktime_to_us(ts->idle_sleeptime); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_nohz_stop_sched_tick - stop the idle tick from the idle task | 
|  | * | 
|  | * When the next event is more than a tick into the future, stop the idle tick | 
|  | * Called either from the idle loop or from irq_exit() when an idle period was | 
|  | * just interrupted by an interrupt which did not cause a reschedule. | 
|  | */ | 
|  | void tick_nohz_stop_sched_tick(void) | 
|  | { | 
|  | unsigned long seq, last_jiffies, next_jiffies, delta_jiffies, flags; | 
|  | struct tick_sched *ts; | 
|  | ktime_t last_update, expires, now; | 
|  | struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev; | 
|  | int cpu; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  | ts = &per_cpu(tick_cpu_sched, cpu); | 
|  | now = tick_nohz_start_idle(ts); | 
|  |  | 
|  | /* | 
|  | * If this cpu is offline and it is the one which updates | 
|  | * jiffies, then give up the assignment and let it be taken by | 
|  | * the cpu which runs the tick timer next. If we don't drop | 
|  | * this here the jiffies might be stale and do_timer() never | 
|  | * invoked. | 
|  | */ | 
|  | if (unlikely(!cpu_online(cpu))) { | 
|  | if (cpu == tick_do_timer_cpu) | 
|  | tick_do_timer_cpu = -1; | 
|  | } | 
|  |  | 
|  | if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) | 
|  | goto end; | 
|  |  | 
|  | if (need_resched()) | 
|  | goto end; | 
|  |  | 
|  | if (unlikely(local_softirq_pending())) { | 
|  | static int ratelimit; | 
|  |  | 
|  | if (ratelimit < 10) { | 
|  | printk(KERN_ERR "NOHZ: local_softirq_pending %02x\n", | 
|  | local_softirq_pending()); | 
|  | ratelimit++; | 
|  | } | 
|  | } | 
|  |  | 
|  | ts->idle_calls++; | 
|  | /* Read jiffies and the time when jiffies were updated last */ | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | last_update = last_jiffies_update; | 
|  | last_jiffies = jiffies; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | /* Get the next timer wheel timer */ | 
|  | next_jiffies = get_next_timer_interrupt(last_jiffies); | 
|  | delta_jiffies = next_jiffies - last_jiffies; | 
|  |  | 
|  | if (rcu_needs_cpu(cpu)) | 
|  | delta_jiffies = 1; | 
|  | /* | 
|  | * Do not stop the tick, if we are only one off | 
|  | * or if the cpu is required for rcu | 
|  | */ | 
|  | if (!ts->tick_stopped && delta_jiffies == 1) | 
|  | goto out; | 
|  |  | 
|  | /* Schedule the tick, if we are at least one jiffie off */ | 
|  | if ((long)delta_jiffies >= 1) { | 
|  |  | 
|  | if (delta_jiffies > 1) | 
|  | cpu_set(cpu, nohz_cpu_mask); | 
|  | /* | 
|  | * nohz_stop_sched_tick can be called several times before | 
|  | * the nohz_restart_sched_tick is called. This happens when | 
|  | * interrupts arrive which do not cause a reschedule. In the | 
|  | * first call we save the current tick time, so we can restart | 
|  | * the scheduler tick in nohz_restart_sched_tick. | 
|  | */ | 
|  | if (!ts->tick_stopped) { | 
|  | if (select_nohz_load_balancer(1)) { | 
|  | /* | 
|  | * sched tick not stopped! | 
|  | */ | 
|  | cpu_clear(cpu, nohz_cpu_mask); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ts->idle_tick = ts->sched_timer.expires; | 
|  | ts->tick_stopped = 1; | 
|  | ts->idle_jiffies = last_jiffies; | 
|  | rcu_enter_nohz(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this cpu is the one which updates jiffies, then | 
|  | * give up the assignment and let it be taken by the | 
|  | * cpu which runs the tick timer next, which might be | 
|  | * this cpu as well. If we don't drop this here the | 
|  | * jiffies might be stale and do_timer() never | 
|  | * invoked. | 
|  | */ | 
|  | if (cpu == tick_do_timer_cpu) | 
|  | tick_do_timer_cpu = -1; | 
|  |  | 
|  | ts->idle_sleeps++; | 
|  |  | 
|  | /* | 
|  | * delta_jiffies >= NEXT_TIMER_MAX_DELTA signals that | 
|  | * there is no timer pending or at least extremly far | 
|  | * into the future (12 days for HZ=1000). In this case | 
|  | * we simply stop the tick timer: | 
|  | */ | 
|  | if (unlikely(delta_jiffies >= NEXT_TIMER_MAX_DELTA)) { | 
|  | ts->idle_expires.tv64 = KTIME_MAX; | 
|  | if (ts->nohz_mode == NOHZ_MODE_HIGHRES) | 
|  | hrtimer_cancel(&ts->sched_timer); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * calculate the expiry time for the next timer wheel | 
|  | * timer | 
|  | */ | 
|  | expires = ktime_add_ns(last_update, tick_period.tv64 * | 
|  | delta_jiffies); | 
|  | ts->idle_expires = expires; | 
|  |  | 
|  | if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | 
|  | hrtimer_start(&ts->sched_timer, expires, | 
|  | HRTIMER_MODE_ABS); | 
|  | /* Check, if the timer was already in the past */ | 
|  | if (hrtimer_active(&ts->sched_timer)) | 
|  | goto out; | 
|  | } else if (!tick_program_event(expires, 0)) | 
|  | goto out; | 
|  | /* | 
|  | * We are past the event already. So we crossed a | 
|  | * jiffie boundary. Update jiffies and raise the | 
|  | * softirq. | 
|  | */ | 
|  | tick_do_update_jiffies64(ktime_get()); | 
|  | cpu_clear(cpu, nohz_cpu_mask); | 
|  | } | 
|  | raise_softirq_irqoff(TIMER_SOFTIRQ); | 
|  | out: | 
|  | ts->next_jiffies = next_jiffies; | 
|  | ts->last_jiffies = last_jiffies; | 
|  | ts->sleep_length = ktime_sub(dev->next_event, now); | 
|  | end: | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_nohz_get_sleep_length - return the length of the current sleep | 
|  | * | 
|  | * Called from power state control code with interrupts disabled | 
|  | */ | 
|  | ktime_t tick_nohz_get_sleep_length(void) | 
|  | { | 
|  | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
|  |  | 
|  | return ts->sleep_length; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_nohz_restart_sched_tick - restart the idle tick from the idle task | 
|  | * | 
|  | * Restart the idle tick when the CPU is woken up from idle | 
|  | */ | 
|  | void tick_nohz_restart_sched_tick(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|  | unsigned long ticks; | 
|  | ktime_t now; | 
|  |  | 
|  | local_irq_disable(); | 
|  | tick_nohz_stop_idle(cpu); | 
|  |  | 
|  | if (!ts->tick_stopped) { | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | rcu_exit_nohz(); | 
|  |  | 
|  | /* Update jiffies first */ | 
|  | select_nohz_load_balancer(0); | 
|  | now = ktime_get(); | 
|  | tick_do_update_jiffies64(now); | 
|  | cpu_clear(cpu, nohz_cpu_mask); | 
|  |  | 
|  | /* | 
|  | * We stopped the tick in idle. Update process times would miss the | 
|  | * time we slept as update_process_times does only a 1 tick | 
|  | * accounting. Enforce that this is accounted to idle ! | 
|  | */ | 
|  | ticks = jiffies - ts->idle_jiffies; | 
|  | /* | 
|  | * We might be one off. Do not randomly account a huge number of ticks! | 
|  | */ | 
|  | if (ticks && ticks < LONG_MAX) { | 
|  | add_preempt_count(HARDIRQ_OFFSET); | 
|  | account_system_time(current, HARDIRQ_OFFSET, | 
|  | jiffies_to_cputime(ticks)); | 
|  | sub_preempt_count(HARDIRQ_OFFSET); | 
|  | } | 
|  |  | 
|  | touch_softlockup_watchdog(); | 
|  | /* | 
|  | * Cancel the scheduled timer and restore the tick | 
|  | */ | 
|  | ts->tick_stopped  = 0; | 
|  | ts->idle_exittime = now; | 
|  | hrtimer_cancel(&ts->sched_timer); | 
|  | ts->sched_timer.expires = ts->idle_tick; | 
|  |  | 
|  | while (1) { | 
|  | /* Forward the time to expire in the future */ | 
|  | hrtimer_forward(&ts->sched_timer, now, tick_period); | 
|  |  | 
|  | if (ts->nohz_mode == NOHZ_MODE_HIGHRES) { | 
|  | hrtimer_start(&ts->sched_timer, | 
|  | ts->sched_timer.expires, | 
|  | HRTIMER_MODE_ABS); | 
|  | /* Check, if the timer was already in the past */ | 
|  | if (hrtimer_active(&ts->sched_timer)) | 
|  | break; | 
|  | } else { | 
|  | if (!tick_program_event(ts->sched_timer.expires, 0)) | 
|  | break; | 
|  | } | 
|  | /* Update jiffies and reread time */ | 
|  | tick_do_update_jiffies64(now); | 
|  | now = ktime_get(); | 
|  | } | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now) | 
|  | { | 
|  | hrtimer_forward(&ts->sched_timer, now, tick_period); | 
|  | return tick_program_event(ts->sched_timer.expires, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The nohz low res interrupt handler | 
|  | */ | 
|  | static void tick_nohz_handler(struct clock_event_device *dev) | 
|  | { | 
|  | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  | int cpu = smp_processor_id(); | 
|  | ktime_t now = ktime_get(); | 
|  |  | 
|  | dev->next_event.tv64 = KTIME_MAX; | 
|  |  | 
|  | /* | 
|  | * Check if the do_timer duty was dropped. We don't care about | 
|  | * concurrency: This happens only when the cpu in charge went | 
|  | * into a long sleep. If two cpus happen to assign themself to | 
|  | * this duty, then the jiffies update is still serialized by | 
|  | * xtime_lock. | 
|  | */ | 
|  | if (unlikely(tick_do_timer_cpu == -1)) | 
|  | tick_do_timer_cpu = cpu; | 
|  |  | 
|  | /* Check, if the jiffies need an update */ | 
|  | if (tick_do_timer_cpu == cpu) | 
|  | tick_do_update_jiffies64(now); | 
|  |  | 
|  | /* | 
|  | * When we are idle and the tick is stopped, we have to touch | 
|  | * the watchdog as we might not schedule for a really long | 
|  | * time. This happens on complete idle SMP systems while | 
|  | * waiting on the login prompt. We also increment the "start | 
|  | * of idle" jiffy stamp so the idle accounting adjustment we | 
|  | * do when we go busy again does not account too much ticks. | 
|  | */ | 
|  | if (ts->tick_stopped) { | 
|  | touch_softlockup_watchdog(); | 
|  | ts->idle_jiffies++; | 
|  | } | 
|  |  | 
|  | update_process_times(user_mode(regs)); | 
|  | profile_tick(CPU_PROFILING); | 
|  |  | 
|  | /* Do not restart, when we are in the idle loop */ | 
|  | if (ts->tick_stopped) | 
|  | return; | 
|  |  | 
|  | while (tick_nohz_reprogram(ts, now)) { | 
|  | now = ktime_get(); | 
|  | tick_do_update_jiffies64(now); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_nohz_switch_to_nohz - switch to nohz mode | 
|  | */ | 
|  | static void tick_nohz_switch_to_nohz(void) | 
|  | { | 
|  | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
|  | ktime_t next; | 
|  |  | 
|  | if (!tick_nohz_enabled) | 
|  | return; | 
|  |  | 
|  | local_irq_disable(); | 
|  | if (tick_switch_to_oneshot(tick_nohz_handler)) { | 
|  | local_irq_enable(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ts->nohz_mode = NOHZ_MODE_LOWRES; | 
|  |  | 
|  | /* | 
|  | * Recycle the hrtimer in ts, so we can share the | 
|  | * hrtimer_forward with the highres code. | 
|  | */ | 
|  | hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
|  | /* Get the next period */ | 
|  | next = tick_init_jiffy_update(); | 
|  |  | 
|  | for (;;) { | 
|  | ts->sched_timer.expires = next; | 
|  | if (!tick_program_event(next, 0)) | 
|  | break; | 
|  | next = ktime_add(next, tick_period); | 
|  | } | 
|  | local_irq_enable(); | 
|  |  | 
|  | printk(KERN_INFO "Switched to NOHz mode on CPU #%d\n", | 
|  | smp_processor_id()); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void tick_nohz_switch_to_nohz(void) { } | 
|  |  | 
|  | #endif /* NO_HZ */ | 
|  |  | 
|  | /* | 
|  | * High resolution timer specific code | 
|  | */ | 
|  | #ifdef CONFIG_HIGH_RES_TIMERS | 
|  | /* | 
|  | * We rearm the timer until we get disabled by the idle code. | 
|  | * Called with interrupts disabled and timer->base->cpu_base->lock held. | 
|  | */ | 
|  | static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct tick_sched *ts = | 
|  | container_of(timer, struct tick_sched, sched_timer); | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  | ktime_t now = ktime_get(); | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | /* | 
|  | * Check if the do_timer duty was dropped. We don't care about | 
|  | * concurrency: This happens only when the cpu in charge went | 
|  | * into a long sleep. If two cpus happen to assign themself to | 
|  | * this duty, then the jiffies update is still serialized by | 
|  | * xtime_lock. | 
|  | */ | 
|  | if (unlikely(tick_do_timer_cpu == -1)) | 
|  | tick_do_timer_cpu = cpu; | 
|  | #endif | 
|  |  | 
|  | /* Check, if the jiffies need an update */ | 
|  | if (tick_do_timer_cpu == cpu) | 
|  | tick_do_update_jiffies64(now); | 
|  |  | 
|  | /* | 
|  | * Do not call, when we are not in irq context and have | 
|  | * no valid regs pointer | 
|  | */ | 
|  | if (regs) { | 
|  | /* | 
|  | * When we are idle and the tick is stopped, we have to touch | 
|  | * the watchdog as we might not schedule for a really long | 
|  | * time. This happens on complete idle SMP systems while | 
|  | * waiting on the login prompt. We also increment the "start of | 
|  | * idle" jiffy stamp so the idle accounting adjustment we do | 
|  | * when we go busy again does not account too much ticks. | 
|  | */ | 
|  | if (ts->tick_stopped) { | 
|  | touch_softlockup_watchdog(); | 
|  | ts->idle_jiffies++; | 
|  | } | 
|  | update_process_times(user_mode(regs)); | 
|  | profile_tick(CPU_PROFILING); | 
|  | } | 
|  |  | 
|  | /* Do not restart, when we are in the idle loop */ | 
|  | if (ts->tick_stopped) | 
|  | return HRTIMER_NORESTART; | 
|  |  | 
|  | hrtimer_forward(timer, now, tick_period); | 
|  |  | 
|  | return HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * tick_setup_sched_timer - setup the tick emulation timer | 
|  | */ | 
|  | void tick_setup_sched_timer(void) | 
|  | { | 
|  | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
|  | ktime_t now = ktime_get(); | 
|  | u64 offset; | 
|  |  | 
|  | /* | 
|  | * Emulate tick processing via per-CPU hrtimers: | 
|  | */ | 
|  | hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS); | 
|  | ts->sched_timer.function = tick_sched_timer; | 
|  | ts->sched_timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_SOFTIRQ; | 
|  |  | 
|  | /* Get the next period (per cpu) */ | 
|  | ts->sched_timer.expires = tick_init_jiffy_update(); | 
|  | offset = ktime_to_ns(tick_period) >> 1; | 
|  | do_div(offset, num_possible_cpus()); | 
|  | offset *= smp_processor_id(); | 
|  | ts->sched_timer.expires = ktime_add_ns(ts->sched_timer.expires, offset); | 
|  |  | 
|  | for (;;) { | 
|  | hrtimer_forward(&ts->sched_timer, now, tick_period); | 
|  | hrtimer_start(&ts->sched_timer, ts->sched_timer.expires, | 
|  | HRTIMER_MODE_ABS); | 
|  | /* Check, if the timer was already in the past */ | 
|  | if (hrtimer_active(&ts->sched_timer)) | 
|  | break; | 
|  | now = ktime_get(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | if (tick_nohz_enabled) | 
|  | ts->nohz_mode = NOHZ_MODE_HIGHRES; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void tick_cancel_sched_timer(int cpu) | 
|  | { | 
|  | struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu); | 
|  |  | 
|  | if (ts->sched_timer.base) | 
|  | hrtimer_cancel(&ts->sched_timer); | 
|  |  | 
|  | ts->nohz_mode = NOHZ_MODE_INACTIVE; | 
|  | } | 
|  | #endif /* HIGH_RES_TIMERS */ | 
|  |  | 
|  | /** | 
|  | * Async notification about clocksource changes | 
|  | */ | 
|  | void tick_clock_notify(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Async notification about clock event changes | 
|  | */ | 
|  | void tick_oneshot_notify(void) | 
|  | { | 
|  | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
|  |  | 
|  | set_bit(0, &ts->check_clocks); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * Check, if a change happened, which makes oneshot possible. | 
|  | * | 
|  | * Called cyclic from the hrtimer softirq (driven by the timer | 
|  | * softirq) allow_nohz signals, that we can switch into low-res nohz | 
|  | * mode, because high resolution timers are disabled (either compile | 
|  | * or runtime). | 
|  | */ | 
|  | int tick_check_oneshot_change(int allow_nohz) | 
|  | { | 
|  | struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched); | 
|  |  | 
|  | if (!test_and_clear_bit(0, &ts->check_clocks)) | 
|  | return 0; | 
|  |  | 
|  | if (ts->nohz_mode != NOHZ_MODE_INACTIVE) | 
|  | return 0; | 
|  |  | 
|  | if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available()) | 
|  | return 0; | 
|  |  | 
|  | if (!allow_nohz) | 
|  | return 1; | 
|  |  | 
|  | tick_nohz_switch_to_nohz(); | 
|  | return 0; | 
|  | } |