| #define _FP_DECL(wc, X)			\ | 
 |   _FP_I_TYPE X##_c, X##_s, X##_e;	\ | 
 |   _FP_FRAC_DECL_##wc(X) | 
 |  | 
 | /* | 
 |  * Finish truely unpacking a native fp value by classifying the kind | 
 |  * of fp value and normalizing both the exponent and the fraction. | 
 |  */ | 
 |  | 
 | #define _FP_UNPACK_CANONICAL(fs, wc, X)					\ | 
 | do {									\ | 
 |   switch (X##_e)							\ | 
 |   {									\ | 
 |   default:								\ | 
 |     _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs;				\ | 
 |     _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\ | 
 |     X##_e -= _FP_EXPBIAS_##fs;						\ | 
 |     X##_c = FP_CLS_NORMAL;						\ | 
 |     break;								\ | 
 | 									\ | 
 |   case 0:								\ | 
 |     if (_FP_FRAC_ZEROP_##wc(X))						\ | 
 |       X##_c = FP_CLS_ZERO;						\ | 
 |     else								\ | 
 |       {									\ | 
 | 	/* a denormalized number */					\ | 
 | 	_FP_I_TYPE _shift;						\ | 
 | 	_FP_FRAC_CLZ_##wc(_shift, X);					\ | 
 | 	_shift -= _FP_FRACXBITS_##fs;					\ | 
 | 	_FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\ | 
 | 	X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\ | 
 | 	X##_c = FP_CLS_NORMAL;						\ | 
 |       }									\ | 
 |     break;								\ | 
 | 									\ | 
 |   case _FP_EXPMAX_##fs:							\ | 
 |     if (_FP_FRAC_ZEROP_##wc(X))						\ | 
 |       X##_c = FP_CLS_INF;						\ | 
 |     else								\ | 
 |       /* we don't differentiate between signaling and quiet nans */	\ | 
 |       X##_c = FP_CLS_NAN;						\ | 
 |     break;								\ | 
 |   }									\ | 
 | } while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Before packing the bits back into the native fp result, take care | 
 |  * of such mundane things as rounding and overflow.  Also, for some | 
 |  * kinds of fp values, the original parts may not have been fully | 
 |  * extracted -- but that is ok, we can regenerate them now. | 
 |  */ | 
 |  | 
 | #define _FP_PACK_CANONICAL(fs, wc, X)				\ | 
 | ({int __ret = 0;						\ | 
 |   switch (X##_c)						\ | 
 |   {								\ | 
 |   case FP_CLS_NORMAL:						\ | 
 |     X##_e += _FP_EXPBIAS_##fs;					\ | 
 |     if (X##_e > 0)						\ | 
 |       {								\ | 
 | 	__ret |= _FP_ROUND(wc, X);				\ | 
 | 	if (_FP_FRAC_OVERP_##wc(fs, X))				\ | 
 | 	  {							\ | 
 | 	    _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1));		\ | 
 | 	    X##_e++;						\ | 
 | 	  }							\ | 
 | 	else							\ | 
 | 	  _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\ | 
 | 	if (X##_e >= _FP_EXPMAX_##fs)				\ | 
 | 	  {							\ | 
 | 	    /* overflow to infinity */				\ | 
 | 	    X##_e = _FP_EXPMAX_##fs;				\ | 
 | 	    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\ | 
 |             __ret |= EFLAG_OVERFLOW;				\ | 
 | 	  }							\ | 
 |       }								\ | 
 |     else							\ | 
 |       {								\ | 
 | 	/* we've got a denormalized number */			\ | 
 | 	X##_e = -X##_e + 1;					\ | 
 | 	if (X##_e <= _FP_WFRACBITS_##fs)			\ | 
 | 	  {							\ | 
 | 	    _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\ | 
 | 	    _FP_FRAC_SLL_##wc(X, 1);				\ | 
 | 	    if (_FP_FRAC_OVERP_##wc(fs, X))			\ | 
 | 	      {							\ | 
 | 	        X##_e = 1;					\ | 
 | 	        _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\ | 
 | 	      }							\ | 
 | 	    else						\ | 
 | 	      {							\ | 
 | 		X##_e = 0;					\ | 
 | 		_FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1);		\ | 
 |                 __ret |= EFLAG_UNDERFLOW;			\ | 
 | 	      }							\ | 
 | 	  }							\ | 
 | 	else							\ | 
 | 	  {							\ | 
 | 	    /* underflow to zero */				\ | 
 | 	    X##_e = 0;						\ | 
 | 	    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\ | 
 |             __ret |= EFLAG_UNDERFLOW;				\ | 
 | 	  }							\ | 
 |       }								\ | 
 |     break;							\ | 
 | 								\ | 
 |   case FP_CLS_ZERO:						\ | 
 |     X##_e = 0;							\ | 
 |     _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\ | 
 |     break;							\ | 
 | 								\ | 
 |   case FP_CLS_INF:						\ | 
 |     X##_e = _FP_EXPMAX_##fs;					\ | 
 |     _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\ | 
 |     break;							\ | 
 | 								\ | 
 |   case FP_CLS_NAN:						\ | 
 |     X##_e = _FP_EXPMAX_##fs;					\ | 
 |     if (!_FP_KEEPNANFRACP)					\ | 
 |       {								\ | 
 | 	_FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\ | 
 | 	X##_s = 0;						\ | 
 |       }								\ | 
 |     else							\ | 
 |       _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs;		\ | 
 |     break;							\ | 
 |   }								\ | 
 |   __ret;							\ | 
 | }) | 
 |  | 
 |  | 
 | /* | 
 |  * Main addition routine.  The input values should be cooked. | 
 |  */ | 
 |  | 
 | #define _FP_ADD(fs, wc, R, X, Y)					     \ | 
 | do {									     \ | 
 |   switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \ | 
 |   {									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \ | 
 |     {									     \ | 
 |       /* shift the smaller number so that its exponent matches the larger */ \ | 
 |       _FP_I_TYPE diff = X##_e - Y##_e;					     \ | 
 | 									     \ | 
 |       if (diff < 0)							     \ | 
 | 	{								     \ | 
 | 	  diff = -diff;							     \ | 
 | 	  if (diff <= _FP_WFRACBITS_##fs)				     \ | 
 | 	    _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \ | 
 | 	  else if (!_FP_FRAC_ZEROP_##wc(X))				     \ | 
 | 	    _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \ | 
 | 	  else								     \ | 
 | 	    _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			     \ | 
 | 	  R##_e = Y##_e;						     \ | 
 | 	}								     \ | 
 |       else								     \ | 
 | 	{								     \ | 
 | 	  if (diff > 0)							     \ | 
 | 	    {								     \ | 
 | 	      if (diff <= _FP_WFRACBITS_##fs)				     \ | 
 | 	        _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \ | 
 | 	      else if (!_FP_FRAC_ZEROP_##wc(Y))				     \ | 
 | 	        _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \ | 
 | 	      else							     \ | 
 | 	        _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc);		     \ | 
 | 	    }								     \ | 
 | 	  R##_e = X##_e;						     \ | 
 | 	}								     \ | 
 | 									     \ | 
 |       R##_c = FP_CLS_NORMAL;						     \ | 
 | 									     \ | 
 |       if (X##_s == Y##_s)						     \ | 
 | 	{								     \ | 
 | 	  R##_s = X##_s;						     \ | 
 | 	  _FP_FRAC_ADD_##wc(R, X, Y);					     \ | 
 | 	  if (_FP_FRAC_OVERP_##wc(fs, R))				     \ | 
 | 	    {								     \ | 
 | 	      _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \ | 
 | 	      R##_e++;							     \ | 
 | 	    }								     \ | 
 | 	}								     \ | 
 |       else								     \ | 
 | 	{								     \ | 
 | 	  R##_s = X##_s;						     \ | 
 | 	  _FP_FRAC_SUB_##wc(R, X, Y);					     \ | 
 | 	  if (_FP_FRAC_ZEROP_##wc(R))					     \ | 
 | 	    {								     \ | 
 | 	      /* return an exact zero */				     \ | 
 | 	      if (FP_ROUNDMODE == FP_RND_MINF)				     \ | 
 | 		R##_s |= Y##_s;						     \ | 
 | 	      else							     \ | 
 | 		R##_s &= Y##_s;						     \ | 
 | 	      R##_c = FP_CLS_ZERO;					     \ | 
 | 	    }								     \ | 
 | 	  else								     \ | 
 | 	    {								     \ | 
 | 	      if (_FP_FRAC_NEGP_##wc(R))				     \ | 
 | 		{							     \ | 
 | 		  _FP_FRAC_SUB_##wc(R, Y, X);				     \ | 
 | 		  R##_s = Y##_s;					     \ | 
 | 		}							     \ | 
 | 									     \ | 
 | 	      /* renormalize after subtraction */			     \ | 
 | 	      _FP_FRAC_CLZ_##wc(diff, R);				     \ | 
 | 	      diff -= _FP_WFRACXBITS_##fs;				     \ | 
 | 	      if (diff)							     \ | 
 | 		{							     \ | 
 | 		  R##_e -= diff;					     \ | 
 | 		  _FP_FRAC_SLL_##wc(R, diff);				     \ | 
 | 		}							     \ | 
 | 	    }								     \ | 
 | 	}								     \ | 
 |       break;								     \ | 
 |     }									     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \ | 
 |     _FP_CHOOSENAN(fs, wc, R, X, Y);					     \ | 
 |     break;								     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \ | 
 |     R##_e = X##_e;							     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \ | 
 |     _FP_FRAC_COPY_##wc(R, X);						     \ | 
 |     R##_s = X##_s;							     \ | 
 |     R##_c = X##_c;							     \ | 
 |     break;								     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \ | 
 |     R##_e = Y##_e;							     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \ | 
 |     _FP_FRAC_COPY_##wc(R, Y);						     \ | 
 |     R##_s = Y##_s;							     \ | 
 |     R##_c = Y##_c;							     \ | 
 |     break;								     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \ | 
 |     if (X##_s != Y##_s)							     \ | 
 |       {									     \ | 
 | 	/* +INF + -INF => NAN */					     \ | 
 | 	_FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \ | 
 | 	R##_s = X##_s ^ Y##_s;						     \ | 
 | 	R##_c = FP_CLS_NAN;						     \ | 
 | 	break;								     \ | 
 |       }									     \ | 
 |     /* FALLTHRU */							     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \ | 
 |     R##_s = X##_s;							     \ | 
 |     R##_c = FP_CLS_INF;							     \ | 
 |     break;								     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \ | 
 |     R##_s = Y##_s;							     \ | 
 |     R##_c = FP_CLS_INF;							     \ | 
 |     break;								     \ | 
 | 									     \ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \ | 
 |     /* make sure the sign is correct */					     \ | 
 |     if (FP_ROUNDMODE == FP_RND_MINF)					     \ | 
 |       R##_s = X##_s | Y##_s;						     \ | 
 |     else								     \ | 
 |       R##_s = X##_s & Y##_s;						     \ | 
 |     R##_c = FP_CLS_ZERO;						     \ | 
 |     break;								     \ | 
 | 									     \ | 
 |   default:								     \ | 
 |     abort();								     \ | 
 |   }									     \ | 
 | } while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Main negation routine.  FIXME -- when we care about setting exception | 
 |  * bits reliably, this will not do.  We should examine all of the fp classes. | 
 |  */ | 
 |  | 
 | #define _FP_NEG(fs, wc, R, X)		\ | 
 |   do {					\ | 
 |     _FP_FRAC_COPY_##wc(R, X);		\ | 
 |     R##_c = X##_c;			\ | 
 |     R##_e = X##_e;			\ | 
 |     R##_s = 1 ^ X##_s;			\ | 
 |   } while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Main multiplication routine.  The input values should be cooked. | 
 |  */ | 
 |  | 
 | #define _FP_MUL(fs, wc, R, X, Y)			\ | 
 | do {							\ | 
 |   R##_s = X##_s ^ Y##_s;				\ | 
 |   switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\ | 
 |   {							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\ | 
 |     R##_c = FP_CLS_NORMAL;				\ | 
 |     R##_e = X##_e + Y##_e + 1;				\ | 
 | 							\ | 
 |     _FP_MUL_MEAT_##fs(R,X,Y);				\ | 
 | 							\ | 
 |     if (_FP_FRAC_OVERP_##wc(fs, R))			\ | 
 |       _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\ | 
 |     else						\ | 
 |       R##_e--;						\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\ | 
 |     _FP_CHOOSENAN(fs, wc, R, X, Y);			\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\ | 
 |     R##_s = X##_s;					\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\ | 
 |     _FP_FRAC_COPY_##wc(R, X);				\ | 
 |     R##_c = X##_c;					\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\ | 
 |     R##_s = Y##_s;					\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\ | 
 |     _FP_FRAC_COPY_##wc(R, Y);				\ | 
 |     R##_c = Y##_c;					\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\ | 
 |     R##_c = FP_CLS_NAN;					\ | 
 |     _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\ | 
 |     break;						\ | 
 | 							\ | 
 |   default:						\ | 
 |     abort();						\ | 
 |   }							\ | 
 | } while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Main division routine.  The input values should be cooked. | 
 |  */ | 
 |  | 
 | #define _FP_DIV(fs, wc, R, X, Y)			\ | 
 | do {							\ | 
 |   R##_s = X##_s ^ Y##_s;				\ | 
 |   switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\ | 
 |   {							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\ | 
 |     R##_c = FP_CLS_NORMAL;				\ | 
 |     R##_e = X##_e - Y##_e;				\ | 
 | 							\ | 
 |     _FP_DIV_MEAT_##fs(R,X,Y);				\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\ | 
 |     _FP_CHOOSENAN(fs, wc, R, X, Y);			\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\ | 
 |     R##_s = X##_s;					\ | 
 |     _FP_FRAC_COPY_##wc(R, X);				\ | 
 |     R##_c = X##_c;					\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\ | 
 |     R##_s = Y##_s;					\ | 
 |     _FP_FRAC_COPY_##wc(R, Y);				\ | 
 |     R##_c = Y##_c;					\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\ | 
 |     R##_c = FP_CLS_ZERO;				\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\ | 
 |     R##_c = FP_CLS_INF;					\ | 
 |     break;						\ | 
 | 							\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\ | 
 |   case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\ | 
 |     R##_c = FP_CLS_NAN;					\ | 
 |     _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\ | 
 |     break;						\ | 
 | 							\ | 
 |   default:						\ | 
 |     abort();						\ | 
 |   }							\ | 
 | } while (0) | 
 |  | 
 |  | 
 | /* | 
 |  * Main differential comparison routine.  The inputs should be raw not | 
 |  * cooked.  The return is -1,0,1 for normal values, 2 otherwise. | 
 |  */ | 
 |  | 
 | #define _FP_CMP(fs, wc, ret, X, Y, un)					\ | 
 |   do {									\ | 
 |     /* NANs are unordered */						\ | 
 |     if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\ | 
 | 	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\ | 
 |       {									\ | 
 | 	ret = un;							\ | 
 |       }									\ | 
 |     else								\ | 
 |       {									\ | 
 |         int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\ | 
 |         int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\ | 
 | 									\ | 
 | 	if (__x_zero && __y_zero)					\ | 
 | 	  ret = 0;							\ | 
 | 	else if (__x_zero)						\ | 
 | 	  ret = Y##_s ? 1 : -1;						\ | 
 | 	else if (__y_zero)						\ | 
 | 	  ret = X##_s ? -1 : 1;						\ | 
 | 	else if (X##_s != Y##_s)					\ | 
 | 	  ret = X##_s ? -1 : 1;						\ | 
 | 	else if (X##_e > Y##_e)						\ | 
 | 	  ret = X##_s ? -1 : 1;						\ | 
 | 	else if (X##_e < Y##_e)						\ | 
 | 	  ret = X##_s ? 1 : -1;						\ | 
 | 	else if (_FP_FRAC_GT_##wc(X, Y))				\ | 
 | 	  ret = X##_s ? -1 : 1;						\ | 
 | 	else if (_FP_FRAC_GT_##wc(Y, X))				\ | 
 | 	  ret = X##_s ? 1 : -1;						\ | 
 | 	else								\ | 
 | 	  ret = 0;							\ | 
 |       }									\ | 
 |   } while (0) | 
 |  | 
 |  | 
 | /* Simplification for strict equality.  */ | 
 |  | 
 | #define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \ | 
 |   do {									  \ | 
 |     /* NANs are unordered */						  \ | 
 |     if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \ | 
 | 	|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \ | 
 |       {									  \ | 
 | 	ret = 1;							  \ | 
 |       }									  \ | 
 |     else								  \ | 
 |       {									  \ | 
 | 	ret = !(X##_e == Y##_e						  \ | 
 | 		&& _FP_FRAC_EQ_##wc(X, Y)				  \ | 
 | 		&& (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ | 
 |       }									  \ | 
 |   } while (0) | 
 |  | 
 | /* | 
 |  * Main square root routine.  The input value should be cooked. | 
 |  */ | 
 |  | 
 | #define _FP_SQRT(fs, wc, R, X)						\ | 
 | do {									\ | 
 |     _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\ | 
 |     _FP_W_TYPE q;							\ | 
 |     switch (X##_c)							\ | 
 |     {									\ | 
 |     case FP_CLS_NAN:							\ | 
 |     	R##_s = 0;							\ | 
 |     	R##_c = FP_CLS_NAN;						\ | 
 |     	_FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\ | 
 |     	break;								\ | 
 |     case FP_CLS_INF:							\ | 
 |     	if (X##_s)							\ | 
 |     	  {								\ | 
 |     	    R##_s = 0;							\ | 
 | 	    R##_c = FP_CLS_NAN; /* sNAN */				\ | 
 |     	  }								\ | 
 |     	else								\ | 
 |     	  {								\ | 
 |     	    R##_s = 0;							\ | 
 |     	    R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\ | 
 |     	  }								\ | 
 |     	break;								\ | 
 |     case FP_CLS_ZERO:							\ | 
 | 	R##_s = X##_s;							\ | 
 |     	R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\ | 
 | 	break;								\ | 
 |     case FP_CLS_NORMAL:							\ | 
 |     	R##_s = 0;							\ | 
 |         if (X##_s)							\ | 
 |           {								\ | 
 | 	    R##_c = FP_CLS_NAN; /* sNAN */				\ | 
 | 	    break;							\ | 
 |           }								\ | 
 |     	R##_c = FP_CLS_NORMAL;						\ | 
 |         if (X##_e & 1)							\ | 
 |           _FP_FRAC_SLL_##wc(X, 1);					\ | 
 |         R##_e = X##_e >> 1;						\ | 
 |         _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\ | 
 |         _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\ | 
 |         q = _FP_OVERFLOW_##fs;						\ | 
 |         _FP_FRAC_SLL_##wc(X, 1);					\ | 
 |         _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\ | 
 |         _FP_FRAC_SRL_##wc(R, 1);					\ | 
 |     }									\ | 
 |   } while (0) | 
 |  | 
 | /* | 
 |  * Convert from FP to integer | 
 |  */ | 
 |  | 
 | /* "When a NaN, infinity, large positive argument >= 2147483648.0, or | 
 |  * large negative argument <= -2147483649.0 is converted to an integer, | 
 |  * the invalid_current bit...should be set and fp_exception_IEEE_754 should | 
 |  * be raised. If the floating point invalid trap is disabled, no trap occurs | 
 |  * and a numerical result is generated: if the sign bit of the operand | 
 |  * is 0, the result is 2147483647; if the sign bit of the operand is 1, | 
 |  * the result is -2147483648." | 
 |  * Similarly for conversion to extended ints, except that the boundaries | 
 |  * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and | 
 |  * -2^63 for s=1. | 
 |  * -- SPARC Architecture Manual V9, Appendix B, which specifies how | 
 |  * SPARCs resolve implementation dependencies in the IEEE-754 spec. | 
 |  * I don't believe that the code below follows this. I'm not even sure | 
 |  * it's right! | 
 |  * It doesn't cope with needing to convert to an n bit integer when there | 
 |  * is no n bit integer type. Fortunately gcc provides long long so this | 
 |  * isn't a problem for sparc32. | 
 |  * I have, however, fixed its NaN handling to conform as above. | 
 |  *         -- PMM 02/1998 | 
 |  * NB: rsigned is not 'is r declared signed?' but 'should the value stored | 
 |  * in r be signed or unsigned?'. r is always(?) declared unsigned. | 
 |  * Comments below are mine, BTW -- PMM | 
 |  */ | 
 | #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)			\ | 
 |   do {									\ | 
 |     switch (X##_c)							\ | 
 |       {									\ | 
 |       case FP_CLS_NORMAL:						\ | 
 | 	if (X##_e < 0)							\ | 
 | 	  {								\ | 
 | 	  /* case FP_CLS_NAN: see above! */				\ | 
 | 	  case FP_CLS_ZERO:						\ | 
 | 	    r = 0;							\ | 
 | 	  }								\ | 
 | 	else if (X##_e >= rsize - (rsigned != 0))			\ | 
 | 	  {	/* overflow */						\ | 
 | 	  case FP_CLS_NAN:                                              \ | 
 |           case FP_CLS_INF:						\ | 
 | 	    if (rsigned)						\ | 
 | 	      {								\ | 
 | 		r = 1;							\ | 
 | 		r <<= rsize - 1;					\ | 
 | 		r -= 1 - X##_s;						\ | 
 | 	      }								\ | 
 | 	    else							\ | 
 | 	      {								\ | 
 | 		r = 0;							\ | 
 | 		if (!X##_s)						\ | 
 | 		  r = ~r;						\ | 
 | 	      }								\ | 
 | 	  }								\ | 
 | 	else								\ | 
 | 	  {								\ | 
 | 	    if (_FP_W_TYPE_SIZE*wc < rsize)				\ | 
 | 	      {								\ | 
 | 		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\ | 
 | 		r <<= X##_e - _FP_WFRACBITS_##fs;			\ | 
 | 	      }								\ | 
 | 	    else							\ | 
 | 	      {								\ | 
 | 		if (X##_e >= _FP_WFRACBITS_##fs)			\ | 
 | 		  _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ | 
 | 		else							\ | 
 | 		  _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ | 
 | 		_FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\ | 
 | 	      }								\ | 
 | 	    if (rsigned && X##_s)					\ | 
 | 	      r = -r;							\ | 
 | 	  }								\ | 
 | 	break;								\ | 
 |       }									\ | 
 |   } while (0) | 
 |  | 
 | #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\ | 
 |   do {									\ | 
 |     if (r)								\ | 
 |       {									\ | 
 | 	X##_c = FP_CLS_NORMAL;						\ | 
 | 									\ | 
 | 	if ((X##_s = (r < 0)))						\ | 
 | 	  r = -r;							\ | 
 | 	/* Note that `r' is now considered unsigned, so we don't have	\ | 
 | 	   to worry about the single signed overflow case.  */		\ | 
 | 									\ | 
 | 	if (rsize <= _FP_W_TYPE_SIZE)					\ | 
 | 	  __FP_CLZ(X##_e, r);						\ | 
 | 	else								\ | 
 | 	  __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), 	\ | 
 | 		     (_FP_W_TYPE)r);					\ | 
 | 	if (rsize < _FP_W_TYPE_SIZE)					\ | 
 | 		X##_e -= (_FP_W_TYPE_SIZE - rsize);			\ | 
 | 	X##_e = rsize - X##_e - 1;					\ | 
 | 									\ | 
 | 	if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e)	\ | 
 | 	  __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize);	\ | 
 | 	r &= ~((_FP_W_TYPE)1 << X##_e);					\ | 
 | 	_FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize);	\ | 
 | 	_FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));		\ | 
 |       }									\ | 
 |     else								\ | 
 |       {									\ | 
 | 	X##_c = FP_CLS_ZERO, X##_s = 0;					\ | 
 |       }									\ | 
 |   } while (0) | 
 |  | 
 |  | 
 | #define FP_CONV(dfs,sfs,dwc,swc,D,S)			\ | 
 |   do {							\ | 
 |     _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\ | 
 |     D##_e = S##_e;					\ | 
 |     D##_c = S##_c;					\ | 
 |     D##_s = S##_s;					\ | 
 |   } while (0) | 
 |  | 
 | /* | 
 |  * Helper primitives. | 
 |  */ | 
 |  | 
 | /* Count leading zeros in a word.  */ | 
 |  | 
 | #ifndef __FP_CLZ | 
 | #if _FP_W_TYPE_SIZE < 64 | 
 | /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ | 
 | #define __FP_CLZ(r, x)				\ | 
 |   do {						\ | 
 |     _FP_W_TYPE _t = (x);			\ | 
 |     r = _FP_W_TYPE_SIZE - 1;			\ | 
 |     if (_t > 0xffff) r -= 16;			\ | 
 |     if (_t > 0xffff) _t >>= 16;			\ | 
 |     if (_t > 0xff) r -= 8;			\ | 
 |     if (_t > 0xff) _t >>= 8;			\ | 
 |     if (_t & 0xf0) r -= 4;			\ | 
 |     if (_t & 0xf0) _t >>= 4;			\ | 
 |     if (_t & 0xc) r -= 2;			\ | 
 |     if (_t & 0xc) _t >>= 2;			\ | 
 |     if (_t & 0x2) r -= 1;			\ | 
 |   } while (0) | 
 | #else /* not _FP_W_TYPE_SIZE < 64 */ | 
 | #define __FP_CLZ(r, x)				\ | 
 |   do {						\ | 
 |     _FP_W_TYPE _t = (x);			\ | 
 |     r = _FP_W_TYPE_SIZE - 1;			\ | 
 |     if (_t > 0xffffffff) r -= 32;		\ | 
 |     if (_t > 0xffffffff) _t >>= 32;		\ | 
 |     if (_t > 0xffff) r -= 16;			\ | 
 |     if (_t > 0xffff) _t >>= 16;			\ | 
 |     if (_t > 0xff) r -= 8;			\ | 
 |     if (_t > 0xff) _t >>= 8;			\ | 
 |     if (_t & 0xf0) r -= 4;			\ | 
 |     if (_t & 0xf0) _t >>= 4;			\ | 
 |     if (_t & 0xc) r -= 2;			\ | 
 |     if (_t & 0xc) _t >>= 2;			\ | 
 |     if (_t & 0x2) r -= 1;			\ | 
 |   } while (0) | 
 | #endif /* not _FP_W_TYPE_SIZE < 64 */ | 
 | #endif /* ndef __FP_CLZ */ | 
 |  | 
 | #define _FP_DIV_HELP_imm(q, r, n, d)		\ | 
 |   do {						\ | 
 |     q = n / d, r = n % d;			\ | 
 |   } while (0) | 
 |  |