|  | /* | 
|  | *  Copyright (C) 1995  Linus Torvalds | 
|  | * | 
|  | *  Pentium III FXSR, SSE support | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This file handles the architecture-dependent parts of process handling.. | 
|  | */ | 
|  |  | 
|  | #include <stdarg.h> | 
|  |  | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mc146818rtc.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/prctl.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/ldt.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/desc.h> | 
|  | #ifdef CONFIG_MATH_EMULATION | 
|  | #include <asm/math_emu.h> | 
|  | #endif | 
|  |  | 
|  | #include <linux/err.h> | 
|  |  | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/cpu.h> | 
|  | #include <asm/kdebug.h> | 
|  |  | 
|  | asmlinkage void ret_from_fork(void) __asm__("ret_from_fork"); | 
|  |  | 
|  | static int hlt_counter; | 
|  |  | 
|  | unsigned long boot_option_idle_override = 0; | 
|  | EXPORT_SYMBOL(boot_option_idle_override); | 
|  |  | 
|  | DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task; | 
|  | EXPORT_PER_CPU_SYMBOL(current_task); | 
|  |  | 
|  | DEFINE_PER_CPU(int, cpu_number); | 
|  | EXPORT_PER_CPU_SYMBOL(cpu_number); | 
|  |  | 
|  | /* | 
|  | * Return saved PC of a blocked thread. | 
|  | */ | 
|  | unsigned long thread_saved_pc(struct task_struct *tsk) | 
|  | { | 
|  | return ((unsigned long *)tsk->thread.sp)[3]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Powermanagement idle function, if any.. | 
|  | */ | 
|  | void (*pm_idle)(void); | 
|  | EXPORT_SYMBOL(pm_idle); | 
|  |  | 
|  | void disable_hlt(void) | 
|  | { | 
|  | hlt_counter++; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(disable_hlt); | 
|  |  | 
|  | void enable_hlt(void) | 
|  | { | 
|  | hlt_counter--; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(enable_hlt); | 
|  |  | 
|  | /* | 
|  | * We use this if we don't have any better | 
|  | * idle routine.. | 
|  | */ | 
|  | void default_idle(void) | 
|  | { | 
|  | if (!hlt_counter && boot_cpu_data.hlt_works_ok) { | 
|  | current_thread_info()->status &= ~TS_POLLING; | 
|  | /* | 
|  | * TS_POLLING-cleared state must be visible before we | 
|  | * test NEED_RESCHED: | 
|  | */ | 
|  | smp_mb(); | 
|  |  | 
|  | local_irq_disable(); | 
|  | if (!need_resched()) { | 
|  | safe_halt();	/* enables interrupts racelessly */ | 
|  | local_irq_disable(); | 
|  | } | 
|  | local_irq_enable(); | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  | } else { | 
|  | local_irq_enable(); | 
|  | /* loop is done by the caller */ | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_APM_MODULE | 
|  | EXPORT_SYMBOL(default_idle); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On SMP it's slightly faster (but much more power-consuming!) | 
|  | * to poll the ->work.need_resched flag instead of waiting for the | 
|  | * cross-CPU IPI to arrive. Use this option with caution. | 
|  | */ | 
|  | static void poll_idle(void) | 
|  | { | 
|  | local_irq_enable(); | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | #include <asm/nmi.h> | 
|  | /* We don't actually take CPU down, just spin without interrupts. */ | 
|  | static inline void play_dead(void) | 
|  | { | 
|  | /* This must be done before dead CPU ack */ | 
|  | cpu_exit_clear(); | 
|  | wbinvd(); | 
|  | mb(); | 
|  | /* Ack it */ | 
|  | __get_cpu_var(cpu_state) = CPU_DEAD; | 
|  |  | 
|  | /* | 
|  | * With physical CPU hotplug, we should halt the cpu | 
|  | */ | 
|  | local_irq_disable(); | 
|  | while (1) | 
|  | halt(); | 
|  | } | 
|  | #else | 
|  | static inline void play_dead(void) | 
|  | { | 
|  | BUG(); | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | /* | 
|  | * The idle thread. There's no useful work to be | 
|  | * done, so just try to conserve power and have a | 
|  | * low exit latency (ie sit in a loop waiting for | 
|  | * somebody to say that they'd like to reschedule) | 
|  | */ | 
|  | void cpu_idle(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | current_thread_info()->status |= TS_POLLING; | 
|  |  | 
|  | /* endless idle loop with no priority at all */ | 
|  | while (1) { | 
|  | tick_nohz_stop_sched_tick(); | 
|  | while (!need_resched()) { | 
|  | void (*idle)(void); | 
|  |  | 
|  | check_pgt_cache(); | 
|  | rmb(); | 
|  | idle = pm_idle; | 
|  |  | 
|  | if (rcu_pending(cpu)) | 
|  | rcu_check_callbacks(cpu, 0); | 
|  |  | 
|  | if (!idle) | 
|  | idle = default_idle; | 
|  |  | 
|  | if (cpu_is_offline(cpu)) | 
|  | play_dead(); | 
|  |  | 
|  | __get_cpu_var(irq_stat).idle_timestamp = jiffies; | 
|  | idle(); | 
|  | } | 
|  | tick_nohz_restart_sched_tick(); | 
|  | preempt_enable_no_resched(); | 
|  | schedule(); | 
|  | preempt_disable(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_nothing(void *unused) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * cpu_idle_wait - Used to ensure that all the CPUs discard old value of | 
|  | * pm_idle and update to new pm_idle value. Required while changing pm_idle | 
|  | * handler on SMP systems. | 
|  | * | 
|  | * Caller must have changed pm_idle to the new value before the call. Old | 
|  | * pm_idle value will not be used by any CPU after the return of this function. | 
|  | */ | 
|  | void cpu_idle_wait(void) | 
|  | { | 
|  | smp_mb(); | 
|  | /* kick all the CPUs so that they exit out of pm_idle */ | 
|  | smp_call_function(do_nothing, NULL, 0, 1); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(cpu_idle_wait); | 
|  |  | 
|  | /* | 
|  | * This uses new MONITOR/MWAIT instructions on P4 processors with PNI, | 
|  | * which can obviate IPI to trigger checking of need_resched. | 
|  | * We execute MONITOR against need_resched and enter optimized wait state | 
|  | * through MWAIT. Whenever someone changes need_resched, we would be woken | 
|  | * up from MWAIT (without an IPI). | 
|  | * | 
|  | * New with Core Duo processors, MWAIT can take some hints based on CPU | 
|  | * capability. | 
|  | */ | 
|  | void mwait_idle_with_hints(unsigned long ax, unsigned long cx) | 
|  | { | 
|  | if (!need_resched()) { | 
|  | __monitor((void *)¤t_thread_info()->flags, 0, 0); | 
|  | smp_mb(); | 
|  | if (!need_resched()) | 
|  | __sti_mwait(ax, cx); | 
|  | else | 
|  | local_irq_enable(); | 
|  | } else | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /* Default MONITOR/MWAIT with no hints, used for default C1 state */ | 
|  | static void mwait_idle(void) | 
|  | { | 
|  | local_irq_enable(); | 
|  | mwait_idle_with_hints(0, 0); | 
|  | } | 
|  |  | 
|  | static int __cpuinit mwait_usable(const struct cpuinfo_x86 *c) | 
|  | { | 
|  | if (force_mwait) | 
|  | return 1; | 
|  | /* Any C1 states supported? */ | 
|  | return c->cpuid_level >= 5 && ((cpuid_edx(5) >> 4) & 0xf) > 0; | 
|  | } | 
|  |  | 
|  | void __cpuinit select_idle_routine(const struct cpuinfo_x86 *c) | 
|  | { | 
|  | static int selected; | 
|  |  | 
|  | if (selected) | 
|  | return; | 
|  | #ifdef CONFIG_X86_SMP | 
|  | if (pm_idle == poll_idle && smp_num_siblings > 1) { | 
|  | printk(KERN_WARNING "WARNING: polling idle and HT enabled," | 
|  | " performance may degrade.\n"); | 
|  | } | 
|  | #endif | 
|  | if (cpu_has(c, X86_FEATURE_MWAIT) && mwait_usable(c)) { | 
|  | /* | 
|  | * Skip, if setup has overridden idle. | 
|  | * One CPU supports mwait => All CPUs supports mwait | 
|  | */ | 
|  | if (!pm_idle) { | 
|  | printk(KERN_INFO "using mwait in idle threads.\n"); | 
|  | pm_idle = mwait_idle; | 
|  | } | 
|  | } | 
|  | selected = 1; | 
|  | } | 
|  |  | 
|  | static int __init idle_setup(char *str) | 
|  | { | 
|  | if (!strcmp(str, "poll")) { | 
|  | printk("using polling idle threads.\n"); | 
|  | pm_idle = poll_idle; | 
|  | } else if (!strcmp(str, "mwait")) | 
|  | force_mwait = 1; | 
|  | else | 
|  | return -1; | 
|  |  | 
|  | boot_option_idle_override = 1; | 
|  | return 0; | 
|  | } | 
|  | early_param("idle", idle_setup); | 
|  |  | 
|  | void __show_registers(struct pt_regs *regs, int all) | 
|  | { | 
|  | unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L; | 
|  | unsigned long d0, d1, d2, d3, d6, d7; | 
|  | unsigned long sp; | 
|  | unsigned short ss, gs; | 
|  |  | 
|  | if (user_mode_vm(regs)) { | 
|  | sp = regs->sp; | 
|  | ss = regs->ss & 0xffff; | 
|  | savesegment(gs, gs); | 
|  | } else { | 
|  | sp = (unsigned long) (®s->sp); | 
|  | savesegment(ss, ss); | 
|  | savesegment(gs, gs); | 
|  | } | 
|  |  | 
|  | printk("\n"); | 
|  | printk("Pid: %d, comm: %s %s (%s %.*s)\n", | 
|  | task_pid_nr(current), current->comm, | 
|  | print_tainted(), init_utsname()->release, | 
|  | (int)strcspn(init_utsname()->version, " "), | 
|  | init_utsname()->version); | 
|  |  | 
|  | printk("EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n", | 
|  | (u16)regs->cs, regs->ip, regs->flags, | 
|  | smp_processor_id()); | 
|  | print_symbol("EIP is at %s\n", regs->ip); | 
|  |  | 
|  | printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n", | 
|  | regs->ax, regs->bx, regs->cx, regs->dx); | 
|  | printk("ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n", | 
|  | regs->si, regs->di, regs->bp, sp); | 
|  | printk(" DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n", | 
|  | (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss); | 
|  |  | 
|  | if (!all) | 
|  | return; | 
|  |  | 
|  | cr0 = read_cr0(); | 
|  | cr2 = read_cr2(); | 
|  | cr3 = read_cr3(); | 
|  | cr4 = read_cr4_safe(); | 
|  | printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", | 
|  | cr0, cr2, cr3, cr4); | 
|  |  | 
|  | get_debugreg(d0, 0); | 
|  | get_debugreg(d1, 1); | 
|  | get_debugreg(d2, 2); | 
|  | get_debugreg(d3, 3); | 
|  | printk("DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n", | 
|  | d0, d1, d2, d3); | 
|  |  | 
|  | get_debugreg(d6, 6); | 
|  | get_debugreg(d7, 7); | 
|  | printk("DR6: %08lx DR7: %08lx\n", | 
|  | d6, d7); | 
|  | } | 
|  |  | 
|  | void show_regs(struct pt_regs *regs) | 
|  | { | 
|  | __show_registers(regs, 1); | 
|  | show_trace(NULL, regs, ®s->sp, regs->bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This gets run with %bx containing the | 
|  | * function to call, and %dx containing | 
|  | * the "args". | 
|  | */ | 
|  | extern void kernel_thread_helper(void); | 
|  |  | 
|  | /* | 
|  | * Create a kernel thread | 
|  | */ | 
|  | int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags) | 
|  | { | 
|  | struct pt_regs regs; | 
|  |  | 
|  | memset(®s, 0, sizeof(regs)); | 
|  |  | 
|  | regs.bx = (unsigned long) fn; | 
|  | regs.dx = (unsigned long) arg; | 
|  |  | 
|  | regs.ds = __USER_DS; | 
|  | regs.es = __USER_DS; | 
|  | regs.fs = __KERNEL_PERCPU; | 
|  | regs.orig_ax = -1; | 
|  | regs.ip = (unsigned long) kernel_thread_helper; | 
|  | regs.cs = __KERNEL_CS | get_kernel_rpl(); | 
|  | regs.flags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2; | 
|  |  | 
|  | /* Ok, create the new process.. */ | 
|  | return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL, NULL); | 
|  | } | 
|  | EXPORT_SYMBOL(kernel_thread); | 
|  |  | 
|  | /* | 
|  | * Free current thread data structures etc.. | 
|  | */ | 
|  | void exit_thread(void) | 
|  | { | 
|  | /* The process may have allocated an io port bitmap... nuke it. */ | 
|  | if (unlikely(test_thread_flag(TIF_IO_BITMAP))) { | 
|  | struct task_struct *tsk = current; | 
|  | struct thread_struct *t = &tsk->thread; | 
|  | int cpu = get_cpu(); | 
|  | struct tss_struct *tss = &per_cpu(init_tss, cpu); | 
|  |  | 
|  | kfree(t->io_bitmap_ptr); | 
|  | t->io_bitmap_ptr = NULL; | 
|  | clear_thread_flag(TIF_IO_BITMAP); | 
|  | /* | 
|  | * Careful, clear this in the TSS too: | 
|  | */ | 
|  | memset(tss->io_bitmap, 0xff, tss->io_bitmap_max); | 
|  | t->io_bitmap_max = 0; | 
|  | tss->io_bitmap_owner = NULL; | 
|  | tss->io_bitmap_max = 0; | 
|  | tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; | 
|  | put_cpu(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void flush_thread(void) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | tsk->thread.debugreg0 = 0; | 
|  | tsk->thread.debugreg1 = 0; | 
|  | tsk->thread.debugreg2 = 0; | 
|  | tsk->thread.debugreg3 = 0; | 
|  | tsk->thread.debugreg6 = 0; | 
|  | tsk->thread.debugreg7 = 0; | 
|  | memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array)); | 
|  | clear_tsk_thread_flag(tsk, TIF_DEBUG); | 
|  | /* | 
|  | * Forget coprocessor state.. | 
|  | */ | 
|  | clear_fpu(tsk); | 
|  | clear_used_math(); | 
|  | } | 
|  |  | 
|  | void release_thread(struct task_struct *dead_task) | 
|  | { | 
|  | BUG_ON(dead_task->mm); | 
|  | release_vm86_irqs(dead_task); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This gets called before we allocate a new thread and copy | 
|  | * the current task into it. | 
|  | */ | 
|  | void prepare_to_copy(struct task_struct *tsk) | 
|  | { | 
|  | unlazy_fpu(tsk); | 
|  | } | 
|  |  | 
|  | int copy_thread(int nr, unsigned long clone_flags, unsigned long sp, | 
|  | unsigned long unused, | 
|  | struct task_struct * p, struct pt_regs * regs) | 
|  | { | 
|  | struct pt_regs * childregs; | 
|  | struct task_struct *tsk; | 
|  | int err; | 
|  |  | 
|  | childregs = task_pt_regs(p); | 
|  | *childregs = *regs; | 
|  | childregs->ax = 0; | 
|  | childregs->sp = sp; | 
|  |  | 
|  | p->thread.sp = (unsigned long) childregs; | 
|  | p->thread.sp0 = (unsigned long) (childregs+1); | 
|  |  | 
|  | p->thread.ip = (unsigned long) ret_from_fork; | 
|  |  | 
|  | savesegment(gs, p->thread.gs); | 
|  |  | 
|  | tsk = current; | 
|  | if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) { | 
|  | p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr, | 
|  | IO_BITMAP_BYTES, GFP_KERNEL); | 
|  | if (!p->thread.io_bitmap_ptr) { | 
|  | p->thread.io_bitmap_max = 0; | 
|  | return -ENOMEM; | 
|  | } | 
|  | set_tsk_thread_flag(p, TIF_IO_BITMAP); | 
|  | } | 
|  |  | 
|  | err = 0; | 
|  |  | 
|  | /* | 
|  | * Set a new TLS for the child thread? | 
|  | */ | 
|  | if (clone_flags & CLONE_SETTLS) | 
|  | err = do_set_thread_area(p, -1, | 
|  | (struct user_desc __user *)childregs->si, 0); | 
|  |  | 
|  | if (err && p->thread.io_bitmap_ptr) { | 
|  | kfree(p->thread.io_bitmap_ptr); | 
|  | p->thread.io_bitmap_max = 0; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | void | 
|  | start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp) | 
|  | { | 
|  | __asm__("movl %0, %%gs" :: "r"(0)); | 
|  | regs->fs		= 0; | 
|  | set_fs(USER_DS); | 
|  | regs->ds		= __USER_DS; | 
|  | regs->es		= __USER_DS; | 
|  | regs->ss		= __USER_DS; | 
|  | regs->cs		= __USER_CS; | 
|  | regs->ip		= new_ip; | 
|  | regs->sp		= new_sp; | 
|  | /* | 
|  | * Free the old FP and other extended state | 
|  | */ | 
|  | free_thread_xstate(current); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(start_thread); | 
|  |  | 
|  | static void hard_disable_TSC(void) | 
|  | { | 
|  | write_cr4(read_cr4() | X86_CR4_TSD); | 
|  | } | 
|  |  | 
|  | void disable_TSC(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (!test_and_set_thread_flag(TIF_NOTSC)) | 
|  | /* | 
|  | * Must flip the CPU state synchronously with | 
|  | * TIF_NOTSC in the current running context. | 
|  | */ | 
|  | hard_disable_TSC(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void hard_enable_TSC(void) | 
|  | { | 
|  | write_cr4(read_cr4() & ~X86_CR4_TSD); | 
|  | } | 
|  |  | 
|  | static void enable_TSC(void) | 
|  | { | 
|  | preempt_disable(); | 
|  | if (test_and_clear_thread_flag(TIF_NOTSC)) | 
|  | /* | 
|  | * Must flip the CPU state synchronously with | 
|  | * TIF_NOTSC in the current running context. | 
|  | */ | 
|  | hard_enable_TSC(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | int get_tsc_mode(unsigned long adr) | 
|  | { | 
|  | unsigned int val; | 
|  |  | 
|  | if (test_thread_flag(TIF_NOTSC)) | 
|  | val = PR_TSC_SIGSEGV; | 
|  | else | 
|  | val = PR_TSC_ENABLE; | 
|  |  | 
|  | return put_user(val, (unsigned int __user *)adr); | 
|  | } | 
|  |  | 
|  | int set_tsc_mode(unsigned int val) | 
|  | { | 
|  | if (val == PR_TSC_SIGSEGV) | 
|  | disable_TSC(); | 
|  | else if (val == PR_TSC_ENABLE) | 
|  | enable_TSC(); | 
|  | else | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static noinline void | 
|  | __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p, | 
|  | struct tss_struct *tss) | 
|  | { | 
|  | struct thread_struct *prev, *next; | 
|  | unsigned long debugctl; | 
|  |  | 
|  | prev = &prev_p->thread; | 
|  | next = &next_p->thread; | 
|  |  | 
|  | debugctl = prev->debugctlmsr; | 
|  | if (next->ds_area_msr != prev->ds_area_msr) { | 
|  | /* we clear debugctl to make sure DS | 
|  | * is not in use when we change it */ | 
|  | debugctl = 0; | 
|  | update_debugctlmsr(0); | 
|  | wrmsr(MSR_IA32_DS_AREA, next->ds_area_msr, 0); | 
|  | } | 
|  |  | 
|  | if (next->debugctlmsr != debugctl) | 
|  | update_debugctlmsr(next->debugctlmsr); | 
|  |  | 
|  | if (test_tsk_thread_flag(next_p, TIF_DEBUG)) { | 
|  | set_debugreg(next->debugreg0, 0); | 
|  | set_debugreg(next->debugreg1, 1); | 
|  | set_debugreg(next->debugreg2, 2); | 
|  | set_debugreg(next->debugreg3, 3); | 
|  | /* no 4 and 5 */ | 
|  | set_debugreg(next->debugreg6, 6); | 
|  | set_debugreg(next->debugreg7, 7); | 
|  | } | 
|  |  | 
|  | if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^ | 
|  | test_tsk_thread_flag(next_p, TIF_NOTSC)) { | 
|  | /* prev and next are different */ | 
|  | if (test_tsk_thread_flag(next_p, TIF_NOTSC)) | 
|  | hard_disable_TSC(); | 
|  | else | 
|  | hard_enable_TSC(); | 
|  | } | 
|  |  | 
|  | #ifdef X86_BTS | 
|  | if (test_tsk_thread_flag(prev_p, TIF_BTS_TRACE_TS)) | 
|  | ptrace_bts_take_timestamp(prev_p, BTS_TASK_DEPARTS); | 
|  |  | 
|  | if (test_tsk_thread_flag(next_p, TIF_BTS_TRACE_TS)) | 
|  | ptrace_bts_take_timestamp(next_p, BTS_TASK_ARRIVES); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | if (!test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) { | 
|  | /* | 
|  | * Disable the bitmap via an invalid offset. We still cache | 
|  | * the previous bitmap owner and the IO bitmap contents: | 
|  | */ | 
|  | tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (likely(next == tss->io_bitmap_owner)) { | 
|  | /* | 
|  | * Previous owner of the bitmap (hence the bitmap content) | 
|  | * matches the next task, we dont have to do anything but | 
|  | * to set a valid offset in the TSS: | 
|  | */ | 
|  | tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Lazy TSS's I/O bitmap copy. We set an invalid offset here | 
|  | * and we let the task to get a GPF in case an I/O instruction | 
|  | * is performed.  The handler of the GPF will verify that the | 
|  | * faulting task has a valid I/O bitmap and, it true, does the | 
|  | * real copy and restart the instruction.  This will save us | 
|  | * redundant copies when the currently switched task does not | 
|  | * perform any I/O during its timeslice. | 
|  | */ | 
|  | tss->x86_tss.io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	switch_to(x,yn) should switch tasks from x to y. | 
|  | * | 
|  | * We fsave/fwait so that an exception goes off at the right time | 
|  | * (as a call from the fsave or fwait in effect) rather than to | 
|  | * the wrong process. Lazy FP saving no longer makes any sense | 
|  | * with modern CPU's, and this simplifies a lot of things (SMP | 
|  | * and UP become the same). | 
|  | * | 
|  | * NOTE! We used to use the x86 hardware context switching. The | 
|  | * reason for not using it any more becomes apparent when you | 
|  | * try to recover gracefully from saved state that is no longer | 
|  | * valid (stale segment register values in particular). With the | 
|  | * hardware task-switch, there is no way to fix up bad state in | 
|  | * a reasonable manner. | 
|  | * | 
|  | * The fact that Intel documents the hardware task-switching to | 
|  | * be slow is a fairly red herring - this code is not noticeably | 
|  | * faster. However, there _is_ some room for improvement here, | 
|  | * so the performance issues may eventually be a valid point. | 
|  | * More important, however, is the fact that this allows us much | 
|  | * more flexibility. | 
|  | * | 
|  | * The return value (in %ax) will be the "prev" task after | 
|  | * the task-switch, and shows up in ret_from_fork in entry.S, | 
|  | * for example. | 
|  | */ | 
|  | struct task_struct * __switch_to(struct task_struct *prev_p, struct task_struct *next_p) | 
|  | { | 
|  | struct thread_struct *prev = &prev_p->thread, | 
|  | *next = &next_p->thread; | 
|  | int cpu = smp_processor_id(); | 
|  | struct tss_struct *tss = &per_cpu(init_tss, cpu); | 
|  |  | 
|  | /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */ | 
|  |  | 
|  | __unlazy_fpu(prev_p); | 
|  |  | 
|  |  | 
|  | /* we're going to use this soon, after a few expensive things */ | 
|  | if (next_p->fpu_counter > 5) | 
|  | prefetch(next->xstate); | 
|  |  | 
|  | /* | 
|  | * Reload esp0. | 
|  | */ | 
|  | load_sp0(tss, next); | 
|  |  | 
|  | /* | 
|  | * Save away %gs. No need to save %fs, as it was saved on the | 
|  | * stack on entry.  No need to save %es and %ds, as those are | 
|  | * always kernel segments while inside the kernel.  Doing this | 
|  | * before setting the new TLS descriptors avoids the situation | 
|  | * where we temporarily have non-reloadable segments in %fs | 
|  | * and %gs.  This could be an issue if the NMI handler ever | 
|  | * used %fs or %gs (it does not today), or if the kernel is | 
|  | * running inside of a hypervisor layer. | 
|  | */ | 
|  | savesegment(gs, prev->gs); | 
|  |  | 
|  | /* | 
|  | * Load the per-thread Thread-Local Storage descriptor. | 
|  | */ | 
|  | load_TLS(next, cpu); | 
|  |  | 
|  | /* | 
|  | * Restore IOPL if needed.  In normal use, the flags restore | 
|  | * in the switch assembly will handle this.  But if the kernel | 
|  | * is running virtualized at a non-zero CPL, the popf will | 
|  | * not restore flags, so it must be done in a separate step. | 
|  | */ | 
|  | if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl)) | 
|  | set_iopl_mask(next->iopl); | 
|  |  | 
|  | /* | 
|  | * Now maybe handle debug registers and/or IO bitmaps | 
|  | */ | 
|  | if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV || | 
|  | task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT)) | 
|  | __switch_to_xtra(prev_p, next_p, tss); | 
|  |  | 
|  | /* | 
|  | * Leave lazy mode, flushing any hypercalls made here. | 
|  | * This must be done before restoring TLS segments so | 
|  | * the GDT and LDT are properly updated, and must be | 
|  | * done before math_state_restore, so the TS bit is up | 
|  | * to date. | 
|  | */ | 
|  | arch_leave_lazy_cpu_mode(); | 
|  |  | 
|  | /* If the task has used fpu the last 5 timeslices, just do a full | 
|  | * restore of the math state immediately to avoid the trap; the | 
|  | * chances of needing FPU soon are obviously high now | 
|  | */ | 
|  | if (next_p->fpu_counter > 5) | 
|  | math_state_restore(); | 
|  |  | 
|  | /* | 
|  | * Restore %gs if needed (which is common) | 
|  | */ | 
|  | if (prev->gs | next->gs) | 
|  | loadsegment(gs, next->gs); | 
|  |  | 
|  | x86_write_percpu(current_task, next_p); | 
|  |  | 
|  | return prev_p; | 
|  | } | 
|  |  | 
|  | asmlinkage int sys_fork(struct pt_regs regs) | 
|  | { | 
|  | return do_fork(SIGCHLD, regs.sp, ®s, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | asmlinkage int sys_clone(struct pt_regs regs) | 
|  | { | 
|  | unsigned long clone_flags; | 
|  | unsigned long newsp; | 
|  | int __user *parent_tidptr, *child_tidptr; | 
|  |  | 
|  | clone_flags = regs.bx; | 
|  | newsp = regs.cx; | 
|  | parent_tidptr = (int __user *)regs.dx; | 
|  | child_tidptr = (int __user *)regs.di; | 
|  | if (!newsp) | 
|  | newsp = regs.sp; | 
|  | return do_fork(clone_flags, newsp, ®s, 0, parent_tidptr, child_tidptr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is trivial, and on the face of it looks like it | 
|  | * could equally well be done in user mode. | 
|  | * | 
|  | * Not so, for quite unobvious reasons - register pressure. | 
|  | * In user mode vfork() cannot have a stack frame, and if | 
|  | * done by calling the "clone()" system call directly, you | 
|  | * do not have enough call-clobbered registers to hold all | 
|  | * the information you need. | 
|  | */ | 
|  | asmlinkage int sys_vfork(struct pt_regs regs) | 
|  | { | 
|  | return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.sp, ®s, 0, NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_execve() executes a new program. | 
|  | */ | 
|  | asmlinkage int sys_execve(struct pt_regs regs) | 
|  | { | 
|  | int error; | 
|  | char * filename; | 
|  |  | 
|  | filename = getname((char __user *) regs.bx); | 
|  | error = PTR_ERR(filename); | 
|  | if (IS_ERR(filename)) | 
|  | goto out; | 
|  | error = do_execve(filename, | 
|  | (char __user * __user *) regs.cx, | 
|  | (char __user * __user *) regs.dx, | 
|  | ®s); | 
|  | if (error == 0) { | 
|  | /* Make sure we don't return using sysenter.. */ | 
|  | set_thread_flag(TIF_IRET); | 
|  | } | 
|  | putname(filename); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #define top_esp                (THREAD_SIZE - sizeof(unsigned long)) | 
|  | #define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long)) | 
|  |  | 
|  | unsigned long get_wchan(struct task_struct *p) | 
|  | { | 
|  | unsigned long bp, sp, ip; | 
|  | unsigned long stack_page; | 
|  | int count = 0; | 
|  | if (!p || p == current || p->state == TASK_RUNNING) | 
|  | return 0; | 
|  | stack_page = (unsigned long)task_stack_page(p); | 
|  | sp = p->thread.sp; | 
|  | if (!stack_page || sp < stack_page || sp > top_esp+stack_page) | 
|  | return 0; | 
|  | /* include/asm-i386/system.h:switch_to() pushes bp last. */ | 
|  | bp = *(unsigned long *) sp; | 
|  | do { | 
|  | if (bp < stack_page || bp > top_ebp+stack_page) | 
|  | return 0; | 
|  | ip = *(unsigned long *) (bp+4); | 
|  | if (!in_sched_functions(ip)) | 
|  | return ip; | 
|  | bp = *(unsigned long *) bp; | 
|  | } while (count++ < 16); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long arch_align_stack(unsigned long sp) | 
|  | { | 
|  | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
|  | sp -= get_random_int() % 8192; | 
|  | return sp & ~0xf; | 
|  | } | 
|  |  | 
|  | unsigned long arch_randomize_brk(struct mm_struct *mm) | 
|  | { | 
|  | unsigned long range_end = mm->brk + 0x02000000; | 
|  | return randomize_range(mm->brk, range_end, 0) ? : mm->brk; | 
|  | } |