|  | /* | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  Pentium III FXSR, SSE support | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * 'Traps.c' handles hardware traps and faults after we have saved some | 
|  | * state in 'asm.s'. | 
|  | */ | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/kallsyms.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/kdebug.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/unwind.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bug.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/mm.h> | 
|  |  | 
|  | #ifdef CONFIG_EISA | 
|  | #include <linux/ioport.h> | 
|  | #include <linux/eisa.h> | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MCA | 
|  | #include <linux/mca.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(CONFIG_EDAC) | 
|  | #include <linux/edac.h> | 
|  | #endif | 
|  |  | 
|  | #include <asm/arch_hooks.h> | 
|  | #include <asm/stacktrace.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/debugreg.h> | 
|  | #include <asm/atomic.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/unwind.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/i387.h> | 
|  | #include <asm/nmi.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/io.h> | 
|  |  | 
|  | #include "mach_traps.h" | 
|  |  | 
|  | int panic_on_unrecovered_nmi; | 
|  |  | 
|  | DECLARE_BITMAP(used_vectors, NR_VECTORS); | 
|  | EXPORT_SYMBOL_GPL(used_vectors); | 
|  |  | 
|  | asmlinkage int system_call(void); | 
|  |  | 
|  | /* Do we ignore FPU interrupts ? */ | 
|  | char ignore_fpu_irq; | 
|  |  | 
|  | /* | 
|  | * The IDT has to be page-aligned to simplify the Pentium | 
|  | * F0 0F bug workaround.. We have a special link segment | 
|  | * for this. | 
|  | */ | 
|  | gate_desc idt_table[256] | 
|  | __attribute__((__section__(".data.idt"))) = { { { { 0, 0 } } }, }; | 
|  |  | 
|  | asmlinkage void divide_error(void); | 
|  | asmlinkage void debug(void); | 
|  | asmlinkage void nmi(void); | 
|  | asmlinkage void int3(void); | 
|  | asmlinkage void overflow(void); | 
|  | asmlinkage void bounds(void); | 
|  | asmlinkage void invalid_op(void); | 
|  | asmlinkage void device_not_available(void); | 
|  | asmlinkage void coprocessor_segment_overrun(void); | 
|  | asmlinkage void invalid_TSS(void); | 
|  | asmlinkage void segment_not_present(void); | 
|  | asmlinkage void stack_segment(void); | 
|  | asmlinkage void general_protection(void); | 
|  | asmlinkage void page_fault(void); | 
|  | asmlinkage void coprocessor_error(void); | 
|  | asmlinkage void simd_coprocessor_error(void); | 
|  | asmlinkage void alignment_check(void); | 
|  | asmlinkage void spurious_interrupt_bug(void); | 
|  | asmlinkage void machine_check(void); | 
|  |  | 
|  | int kstack_depth_to_print = 24; | 
|  | static unsigned int code_bytes = 64; | 
|  |  | 
|  | void printk_address(unsigned long address, int reliable) | 
|  | { | 
|  | #ifdef CONFIG_KALLSYMS | 
|  | char namebuf[KSYM_NAME_LEN]; | 
|  | unsigned long offset = 0; | 
|  | unsigned long symsize; | 
|  | const char *symname; | 
|  | char reliab[4] = ""; | 
|  | char *delim = ":"; | 
|  | char *modname; | 
|  |  | 
|  | symname = kallsyms_lookup(address, &symsize, &offset, | 
|  | &modname, namebuf); | 
|  | if (!symname) { | 
|  | printk(" [<%08lx>]\n", address); | 
|  | return; | 
|  | } | 
|  | if (!reliable) | 
|  | strcpy(reliab, "? "); | 
|  |  | 
|  | if (!modname) | 
|  | modname = delim = ""; | 
|  | printk(" [<%08lx>] %s%s%s%s%s+0x%lx/0x%lx\n", | 
|  | address, reliab, delim, modname, delim, symname, offset, symsize); | 
|  | #else | 
|  | printk(" [<%08lx>]\n", address); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline int valid_stack_ptr(struct thread_info *tinfo, void *p, unsigned size) | 
|  | { | 
|  | return	p > (void *)tinfo && | 
|  | p <= (void *)tinfo + THREAD_SIZE - size; | 
|  | } | 
|  |  | 
|  | /* The form of the top of the frame on the stack */ | 
|  | struct stack_frame { | 
|  | struct stack_frame	*next_frame; | 
|  | unsigned long		return_address; | 
|  | }; | 
|  |  | 
|  | static inline unsigned long | 
|  | print_context_stack(struct thread_info *tinfo, | 
|  | unsigned long *stack, unsigned long bp, | 
|  | const struct stacktrace_ops *ops, void *data) | 
|  | { | 
|  | struct stack_frame *frame = (struct stack_frame *)bp; | 
|  |  | 
|  | while (valid_stack_ptr(tinfo, stack, sizeof(*stack))) { | 
|  | unsigned long addr; | 
|  |  | 
|  | addr = *stack; | 
|  | if (__kernel_text_address(addr)) { | 
|  | if ((unsigned long) stack == bp + 4) { | 
|  | ops->address(data, addr, 1); | 
|  | frame = frame->next_frame; | 
|  | bp = (unsigned long) frame; | 
|  | } else { | 
|  | ops->address(data, addr, bp == 0); | 
|  | } | 
|  | } | 
|  | stack++; | 
|  | } | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | #define MSG(msg)		ops->warning(data, msg) | 
|  |  | 
|  | void dump_trace(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *stack, unsigned long bp, | 
|  | const struct stacktrace_ops *ops, void *data) | 
|  | { | 
|  | if (!task) | 
|  | task = current; | 
|  |  | 
|  | if (!stack) { | 
|  | unsigned long dummy; | 
|  |  | 
|  | stack = &dummy; | 
|  | if (task != current) | 
|  | stack = (unsigned long *)task->thread.sp; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | if (!bp) { | 
|  | if (task == current) { | 
|  | /* Grab bp right from our regs */ | 
|  | asm("movl %%ebp, %0" : "=r" (bp) :); | 
|  | } else { | 
|  | /* bp is the last reg pushed by switch_to */ | 
|  | bp = *(unsigned long *) task->thread.sp; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | while (1) { | 
|  | struct thread_info *context; | 
|  |  | 
|  | context = (struct thread_info *) | 
|  | ((unsigned long)stack & (~(THREAD_SIZE - 1))); | 
|  | bp = print_context_stack(context, stack, bp, ops, data); | 
|  | /* | 
|  | * Should be after the line below, but somewhere | 
|  | * in early boot context comes out corrupted and we | 
|  | * can't reference it: | 
|  | */ | 
|  | if (ops->stack(data, "IRQ") < 0) | 
|  | break; | 
|  | stack = (unsigned long *)context->previous_esp; | 
|  | if (!stack) | 
|  | break; | 
|  | touch_nmi_watchdog(); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(dump_trace); | 
|  |  | 
|  | static void | 
|  | print_trace_warning_symbol(void *data, char *msg, unsigned long symbol) | 
|  | { | 
|  | printk(data); | 
|  | print_symbol(msg, symbol); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | static void print_trace_warning(void *data, char *msg) | 
|  | { | 
|  | printk("%s%s\n", (char *)data, msg); | 
|  | } | 
|  |  | 
|  | static int print_trace_stack(void *data, char *name) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Print one address/symbol entries per line. | 
|  | */ | 
|  | static void print_trace_address(void *data, unsigned long addr, int reliable) | 
|  | { | 
|  | printk("%s [<%08lx>] ", (char *)data, addr); | 
|  | if (!reliable) | 
|  | printk("? "); | 
|  | print_symbol("%s\n", addr); | 
|  | touch_nmi_watchdog(); | 
|  | } | 
|  |  | 
|  | static const struct stacktrace_ops print_trace_ops = { | 
|  | .warning		= print_trace_warning, | 
|  | .warning_symbol		= print_trace_warning_symbol, | 
|  | .stack			= print_trace_stack, | 
|  | .address		= print_trace_address, | 
|  | }; | 
|  |  | 
|  | static void | 
|  | show_trace_log_lvl(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *stack, unsigned long bp, char *log_lvl) | 
|  | { | 
|  | dump_trace(task, regs, stack, bp, &print_trace_ops, log_lvl); | 
|  | printk("%s =======================\n", log_lvl); | 
|  | } | 
|  |  | 
|  | void show_trace(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *stack, unsigned long bp) | 
|  | { | 
|  | show_trace_log_lvl(task, regs, stack, bp, ""); | 
|  | } | 
|  |  | 
|  | static void | 
|  | show_stack_log_lvl(struct task_struct *task, struct pt_regs *regs, | 
|  | unsigned long *sp, unsigned long bp, char *log_lvl) | 
|  | { | 
|  | unsigned long *stack; | 
|  | int i; | 
|  |  | 
|  | if (sp == NULL) { | 
|  | if (task) | 
|  | sp = (unsigned long *)task->thread.sp; | 
|  | else | 
|  | sp = (unsigned long *)&sp; | 
|  | } | 
|  |  | 
|  | stack = sp; | 
|  | for (i = 0; i < kstack_depth_to_print; i++) { | 
|  | if (kstack_end(stack)) | 
|  | break; | 
|  | if (i && ((i % 8) == 0)) | 
|  | printk("\n%s       ", log_lvl); | 
|  | printk("%08lx ", *stack++); | 
|  | } | 
|  | printk("\n%sCall Trace:\n", log_lvl); | 
|  |  | 
|  | show_trace_log_lvl(task, regs, sp, bp, log_lvl); | 
|  | } | 
|  |  | 
|  | void show_stack(struct task_struct *task, unsigned long *sp) | 
|  | { | 
|  | printk("       "); | 
|  | show_stack_log_lvl(task, NULL, sp, 0, ""); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The architecture-independent dump_stack generator | 
|  | */ | 
|  | void dump_stack(void) | 
|  | { | 
|  | unsigned long bp = 0; | 
|  | unsigned long stack; | 
|  |  | 
|  | #ifdef CONFIG_FRAME_POINTER | 
|  | if (!bp) | 
|  | asm("movl %%ebp, %0" : "=r" (bp):); | 
|  | #endif | 
|  |  | 
|  | printk("Pid: %d, comm: %.20s %s %s %.*s\n", | 
|  | current->pid, current->comm, print_tainted(), | 
|  | init_utsname()->release, | 
|  | (int)strcspn(init_utsname()->version, " "), | 
|  | init_utsname()->version); | 
|  |  | 
|  | show_trace(current, NULL, &stack, bp); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(dump_stack); | 
|  |  | 
|  | void show_registers(struct pt_regs *regs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | print_modules(); | 
|  | __show_registers(regs, 0); | 
|  |  | 
|  | printk(KERN_EMERG "Process %.*s (pid: %d, ti=%p task=%p task.ti=%p)", | 
|  | TASK_COMM_LEN, current->comm, task_pid_nr(current), | 
|  | current_thread_info(), current, task_thread_info(current)); | 
|  | /* | 
|  | * When in-kernel, we also print out the stack and code at the | 
|  | * time of the fault.. | 
|  | */ | 
|  | if (!user_mode_vm(regs)) { | 
|  | unsigned int code_prologue = code_bytes * 43 / 64; | 
|  | unsigned int code_len = code_bytes; | 
|  | unsigned char c; | 
|  | u8 *ip; | 
|  |  | 
|  | printk("\n" KERN_EMERG "Stack: "); | 
|  | show_stack_log_lvl(NULL, regs, ®s->sp, 0, KERN_EMERG); | 
|  |  | 
|  | printk(KERN_EMERG "Code: "); | 
|  |  | 
|  | ip = (u8 *)regs->ip - code_prologue; | 
|  | if (ip < (u8 *)PAGE_OFFSET || | 
|  | probe_kernel_address(ip, c)) { | 
|  | /* try starting at EIP */ | 
|  | ip = (u8 *)regs->ip; | 
|  | code_len = code_len - code_prologue + 1; | 
|  | } | 
|  | for (i = 0; i < code_len; i++, ip++) { | 
|  | if (ip < (u8 *)PAGE_OFFSET || | 
|  | probe_kernel_address(ip, c)) { | 
|  | printk(" Bad EIP value."); | 
|  | break; | 
|  | } | 
|  | if (ip == (u8 *)regs->ip) | 
|  | printk("<%02x> ", c); | 
|  | else | 
|  | printk("%02x ", c); | 
|  | } | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | int is_valid_bugaddr(unsigned long ip) | 
|  | { | 
|  | unsigned short ud2; | 
|  |  | 
|  | if (ip < PAGE_OFFSET) | 
|  | return 0; | 
|  | if (probe_kernel_address((unsigned short *)ip, ud2)) | 
|  | return 0; | 
|  |  | 
|  | return ud2 == 0x0b0f; | 
|  | } | 
|  |  | 
|  | static int die_counter; | 
|  |  | 
|  | int __kprobes __die(const char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | unsigned short ss; | 
|  | unsigned long sp; | 
|  |  | 
|  | printk(KERN_EMERG "%s: %04lx [#%d] ", str, err & 0xffff, ++die_counter); | 
|  | #ifdef CONFIG_PREEMPT | 
|  | printk("PREEMPT "); | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | printk("SMP "); | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_PAGEALLOC | 
|  | printk("DEBUG_PAGEALLOC"); | 
|  | #endif | 
|  | printk("\n"); | 
|  |  | 
|  | if (notify_die(DIE_OOPS, str, regs, err, | 
|  | current->thread.trap_no, SIGSEGV) != NOTIFY_STOP) { | 
|  |  | 
|  | show_registers(regs); | 
|  | /* Executive summary in case the oops scrolled away */ | 
|  | sp = (unsigned long) (®s->sp); | 
|  | savesegment(ss, ss); | 
|  | if (user_mode(regs)) { | 
|  | sp = regs->sp; | 
|  | ss = regs->ss & 0xffff; | 
|  | } | 
|  | printk(KERN_EMERG "EIP: [<%08lx>] ", regs->ip); | 
|  | print_symbol("%s", regs->ip); | 
|  | printk(" SS:ESP %04x:%08lx\n", ss, sp); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is gone through when something in the kernel has done something bad | 
|  | * and is about to be terminated: | 
|  | */ | 
|  | void die(const char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | static struct { | 
|  | raw_spinlock_t lock; | 
|  | u32 lock_owner; | 
|  | int lock_owner_depth; | 
|  | } die = { | 
|  | .lock =			__RAW_SPIN_LOCK_UNLOCKED, | 
|  | .lock_owner =		-1, | 
|  | .lock_owner_depth =	0 | 
|  | }; | 
|  | unsigned long flags; | 
|  |  | 
|  | oops_enter(); | 
|  |  | 
|  | if (die.lock_owner != raw_smp_processor_id()) { | 
|  | console_verbose(); | 
|  | raw_local_irq_save(flags); | 
|  | __raw_spin_lock(&die.lock); | 
|  | die.lock_owner = smp_processor_id(); | 
|  | die.lock_owner_depth = 0; | 
|  | bust_spinlocks(1); | 
|  | } else { | 
|  | raw_local_irq_save(flags); | 
|  | } | 
|  |  | 
|  | if (++die.lock_owner_depth < 3) { | 
|  | report_bug(regs->ip, regs); | 
|  |  | 
|  | if (__die(str, regs, err)) | 
|  | regs = NULL; | 
|  | } else { | 
|  | printk(KERN_EMERG "Recursive die() failure, output suppressed\n"); | 
|  | } | 
|  |  | 
|  | bust_spinlocks(0); | 
|  | die.lock_owner = -1; | 
|  | add_taint(TAINT_DIE); | 
|  | __raw_spin_unlock(&die.lock); | 
|  | raw_local_irq_restore(flags); | 
|  |  | 
|  | if (!regs) | 
|  | return; | 
|  |  | 
|  | if (kexec_should_crash(current)) | 
|  | crash_kexec(regs); | 
|  |  | 
|  | if (in_interrupt()) | 
|  | panic("Fatal exception in interrupt"); | 
|  |  | 
|  | if (panic_on_oops) | 
|  | panic("Fatal exception"); | 
|  |  | 
|  | oops_exit(); | 
|  | do_exit(SIGSEGV); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | die_if_kernel(const char *str, struct pt_regs *regs, long err) | 
|  | { | 
|  | if (!user_mode_vm(regs)) | 
|  | die(str, regs, err); | 
|  | } | 
|  |  | 
|  | static void __kprobes | 
|  | do_trap(int trapnr, int signr, char *str, int vm86, struct pt_regs *regs, | 
|  | long error_code, siginfo_t *info) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  |  | 
|  | if (regs->flags & X86_VM_MASK) { | 
|  | if (vm86) | 
|  | goto vm86_trap; | 
|  | goto trap_signal; | 
|  | } | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | goto kernel_trap; | 
|  |  | 
|  | trap_signal: | 
|  | /* | 
|  | * We want error_code and trap_no set for userspace faults and | 
|  | * kernelspace faults which result in die(), but not | 
|  | * kernelspace faults which are fixed up.  die() gives the | 
|  | * process no chance to handle the signal and notice the | 
|  | * kernel fault information, so that won't result in polluting | 
|  | * the information about previously queued, but not yet | 
|  | * delivered, faults.  See also do_general_protection below. | 
|  | */ | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = trapnr; | 
|  |  | 
|  | if (info) | 
|  | force_sig_info(signr, info, tsk); | 
|  | else | 
|  | force_sig(signr, tsk); | 
|  | return; | 
|  |  | 
|  | kernel_trap: | 
|  | if (!fixup_exception(regs)) { | 
|  | tsk->thread.error_code = error_code; | 
|  | tsk->thread.trap_no = trapnr; | 
|  | die(str, regs, error_code); | 
|  | } | 
|  | return; | 
|  |  | 
|  | vm86_trap: | 
|  | if (handle_vm86_trap((struct kernel_vm86_regs *) regs, | 
|  | error_code, trapnr)) | 
|  | goto trap_signal; | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define DO_ERROR(trapnr, signr, str, name)				\ | 
|  | void do_##name(struct pt_regs *regs, long error_code)			\ | 
|  | {									\ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
|  | == NOTIFY_STOP)		\ | 
|  | return;							\ | 
|  | do_trap(trapnr, signr, str, 0, regs, error_code, NULL);		\ | 
|  | } | 
|  |  | 
|  | #define DO_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr, irq)	\ | 
|  | void do_##name(struct pt_regs *regs, long error_code)			\ | 
|  | {									\ | 
|  | siginfo_t info;							\ | 
|  | if (irq)							\ | 
|  | local_irq_enable();					\ | 
|  | info.si_signo = signr;						\ | 
|  | info.si_errno = 0;						\ | 
|  | info.si_code = sicode;						\ | 
|  | info.si_addr = (void __user *)siaddr;				\ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
|  | == NOTIFY_STOP)		\ | 
|  | return;							\ | 
|  | do_trap(trapnr, signr, str, 0, regs, error_code, &info);	\ | 
|  | } | 
|  |  | 
|  | #define DO_VM86_ERROR(trapnr, signr, str, name)				\ | 
|  | void do_##name(struct pt_regs *regs, long error_code)			\ | 
|  | {									\ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
|  | == NOTIFY_STOP)		\ | 
|  | return;							\ | 
|  | do_trap(trapnr, signr, str, 1, regs, error_code, NULL);		\ | 
|  | } | 
|  |  | 
|  | #define DO_VM86_ERROR_INFO(trapnr, signr, str, name, sicode, siaddr)	\ | 
|  | void do_##name(struct pt_regs *regs, long error_code)			\ | 
|  | {									\ | 
|  | siginfo_t info;							\ | 
|  | info.si_signo = signr;						\ | 
|  | info.si_errno = 0;						\ | 
|  | info.si_code = sicode;						\ | 
|  | info.si_addr = (void __user *)siaddr;				\ | 
|  | trace_hardirqs_fixup();						\ | 
|  | if (notify_die(DIE_TRAP, str, regs, error_code, trapnr, signr)	\ | 
|  | == NOTIFY_STOP)		\ | 
|  | return;							\ | 
|  | do_trap(trapnr, signr, str, 1, regs, error_code, &info);	\ | 
|  | } | 
|  |  | 
|  | DO_VM86_ERROR_INFO(0, SIGFPE,  "divide error", divide_error, FPE_INTDIV, regs->ip) | 
|  | #ifndef CONFIG_KPROBES | 
|  | DO_VM86_ERROR(3, SIGTRAP, "int3", int3) | 
|  | #endif | 
|  | DO_VM86_ERROR(4, SIGSEGV, "overflow", overflow) | 
|  | DO_VM86_ERROR(5, SIGSEGV, "bounds", bounds) | 
|  | DO_ERROR_INFO(6, SIGILL,  "invalid opcode", invalid_op, ILL_ILLOPN, regs->ip, 0) | 
|  | DO_ERROR(9, SIGFPE,  "coprocessor segment overrun", coprocessor_segment_overrun) | 
|  | DO_ERROR(10, SIGSEGV, "invalid TSS", invalid_TSS) | 
|  | DO_ERROR(11, SIGBUS,  "segment not present", segment_not_present) | 
|  | DO_ERROR(12, SIGBUS,  "stack segment", stack_segment) | 
|  | DO_ERROR_INFO(17, SIGBUS, "alignment check", alignment_check, BUS_ADRALN, 0, 0) | 
|  | DO_ERROR_INFO(32, SIGSEGV, "iret exception", iret_error, ILL_BADSTK, 0, 1) | 
|  |  | 
|  | void __kprobes do_general_protection(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | struct thread_struct *thread; | 
|  | struct tss_struct *tss; | 
|  | int cpu; | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | tss = &per_cpu(init_tss, cpu); | 
|  | thread = ¤t->thread; | 
|  |  | 
|  | /* | 
|  | * Perform the lazy TSS's I/O bitmap copy. If the TSS has an | 
|  | * invalid offset set (the LAZY one) and the faulting thread has | 
|  | * a valid I/O bitmap pointer, we copy the I/O bitmap in the TSS | 
|  | * and we set the offset field correctly. Then we let the CPU to | 
|  | * restart the faulting instruction. | 
|  | */ | 
|  | if (tss->x86_tss.io_bitmap_base == INVALID_IO_BITMAP_OFFSET_LAZY && | 
|  | thread->io_bitmap_ptr) { | 
|  | memcpy(tss->io_bitmap, thread->io_bitmap_ptr, | 
|  | thread->io_bitmap_max); | 
|  | /* | 
|  | * If the previously set map was extending to higher ports | 
|  | * than the current one, pad extra space with 0xff (no access). | 
|  | */ | 
|  | if (thread->io_bitmap_max < tss->io_bitmap_max) { | 
|  | memset((char *) tss->io_bitmap + | 
|  | thread->io_bitmap_max, 0xff, | 
|  | tss->io_bitmap_max - thread->io_bitmap_max); | 
|  | } | 
|  | tss->io_bitmap_max = thread->io_bitmap_max; | 
|  | tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET; | 
|  | tss->io_bitmap_owner = thread; | 
|  | put_cpu(); | 
|  |  | 
|  | return; | 
|  | } | 
|  | put_cpu(); | 
|  |  | 
|  | if (regs->flags & X86_VM_MASK) | 
|  | goto gp_in_vm86; | 
|  |  | 
|  | if (!user_mode(regs)) | 
|  | goto gp_in_kernel; | 
|  |  | 
|  | current->thread.error_code = error_code; | 
|  | current->thread.trap_no = 13; | 
|  |  | 
|  | if (show_unhandled_signals && unhandled_signal(current, SIGSEGV) && | 
|  | printk_ratelimit()) { | 
|  | printk(KERN_INFO | 
|  | "%s[%d] general protection ip:%lx sp:%lx error:%lx", | 
|  | current->comm, task_pid_nr(current), | 
|  | regs->ip, regs->sp, error_code); | 
|  | print_vma_addr(" in ", regs->ip); | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | force_sig(SIGSEGV, current); | 
|  | return; | 
|  |  | 
|  | gp_in_vm86: | 
|  | local_irq_enable(); | 
|  | handle_vm86_fault((struct kernel_vm86_regs *) regs, error_code); | 
|  | return; | 
|  |  | 
|  | gp_in_kernel: | 
|  | if (!fixup_exception(regs)) { | 
|  | current->thread.error_code = error_code; | 
|  | current->thread.trap_no = 13; | 
|  | if (notify_die(DIE_GPF, "general protection fault", regs, | 
|  | error_code, 13, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  | die("general protection fault", regs, error_code); | 
|  | } | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void | 
|  | mem_parity_error(unsigned char reason, struct pt_regs *regs) | 
|  | { | 
|  | printk(KERN_EMERG | 
|  | "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", | 
|  | reason, smp_processor_id()); | 
|  |  | 
|  | printk(KERN_EMERG | 
|  | "You have some hardware problem, likely on the PCI bus.\n"); | 
|  |  | 
|  | #if defined(CONFIG_EDAC) | 
|  | if (edac_handler_set()) { | 
|  | edac_atomic_assert_error(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (panic_on_unrecovered_nmi) | 
|  | panic("NMI: Not continuing"); | 
|  |  | 
|  | printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); | 
|  |  | 
|  | /* Clear and disable the memory parity error line. */ | 
|  | clear_mem_error(reason); | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void | 
|  | io_check_error(unsigned char reason, struct pt_regs *regs) | 
|  | { | 
|  | unsigned long i; | 
|  |  | 
|  | printk(KERN_EMERG "NMI: IOCK error (debug interrupt?)\n"); | 
|  | show_registers(regs); | 
|  |  | 
|  | /* Re-enable the IOCK line, wait for a few seconds */ | 
|  | reason = (reason & 0xf) | 8; | 
|  | outb(reason, 0x61); | 
|  |  | 
|  | i = 2000; | 
|  | while (--i) | 
|  | udelay(1000); | 
|  |  | 
|  | reason &= ~8; | 
|  | outb(reason, 0x61); | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void | 
|  | unknown_nmi_error(unsigned char reason, struct pt_regs *regs) | 
|  | { | 
|  | if (notify_die(DIE_NMIUNKNOWN, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  | #ifdef CONFIG_MCA | 
|  | /* | 
|  | * Might actually be able to figure out what the guilty party | 
|  | * is: | 
|  | */ | 
|  | if (MCA_bus) { | 
|  | mca_handle_nmi(); | 
|  | return; | 
|  | } | 
|  | #endif | 
|  | printk(KERN_EMERG | 
|  | "Uhhuh. NMI received for unknown reason %02x on CPU %d.\n", | 
|  | reason, smp_processor_id()); | 
|  |  | 
|  | printk(KERN_EMERG "Do you have a strange power saving mode enabled?\n"); | 
|  | if (panic_on_unrecovered_nmi) | 
|  | panic("NMI: Not continuing"); | 
|  |  | 
|  | printk(KERN_EMERG "Dazed and confused, but trying to continue\n"); | 
|  | } | 
|  |  | 
|  | static DEFINE_SPINLOCK(nmi_print_lock); | 
|  |  | 
|  | void notrace __kprobes die_nmi(struct pt_regs *regs, const char *msg) | 
|  | { | 
|  | if (notify_die(DIE_NMIWATCHDOG, msg, regs, 0, 2, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | spin_lock(&nmi_print_lock); | 
|  | /* | 
|  | * We are in trouble anyway, lets at least try | 
|  | * to get a message out: | 
|  | */ | 
|  | bust_spinlocks(1); | 
|  | printk(KERN_EMERG "%s", msg); | 
|  | printk(" on CPU%d, ip %08lx, registers:\n", | 
|  | smp_processor_id(), regs->ip); | 
|  | show_registers(regs); | 
|  | console_silent(); | 
|  | spin_unlock(&nmi_print_lock); | 
|  | bust_spinlocks(0); | 
|  |  | 
|  | /* | 
|  | * If we are in kernel we are probably nested up pretty bad | 
|  | * and might aswell get out now while we still can: | 
|  | */ | 
|  | if (!user_mode_vm(regs)) { | 
|  | current->thread.trap_no = 2; | 
|  | crash_kexec(regs); | 
|  | } | 
|  |  | 
|  | do_exit(SIGSEGV); | 
|  | } | 
|  |  | 
|  | static notrace __kprobes void default_do_nmi(struct pt_regs *regs) | 
|  | { | 
|  | unsigned char reason = 0; | 
|  |  | 
|  | /* Only the BSP gets external NMIs from the system: */ | 
|  | if (!smp_processor_id()) | 
|  | reason = get_nmi_reason(); | 
|  |  | 
|  | if (!(reason & 0xc0)) { | 
|  | if (notify_die(DIE_NMI_IPI, "nmi_ipi", regs, reason, 2, SIGINT) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* | 
|  | * Ok, so this is none of the documented NMI sources, | 
|  | * so it must be the NMI watchdog. | 
|  | */ | 
|  | if (nmi_watchdog_tick(regs, reason)) | 
|  | return; | 
|  | if (!do_nmi_callback(regs, smp_processor_id())) | 
|  | unknown_nmi_error(reason, regs); | 
|  | #else | 
|  | unknown_nmi_error(reason, regs); | 
|  | #endif | 
|  |  | 
|  | return; | 
|  | } | 
|  | if (notify_die(DIE_NMI, "nmi", regs, reason, 2, SIGINT) == NOTIFY_STOP) | 
|  | return; | 
|  | if (reason & 0x80) | 
|  | mem_parity_error(reason, regs); | 
|  | if (reason & 0x40) | 
|  | io_check_error(reason, regs); | 
|  | /* | 
|  | * Reassert NMI in case it became active meanwhile | 
|  | * as it's edge-triggered: | 
|  | */ | 
|  | reassert_nmi(); | 
|  | } | 
|  |  | 
|  | static int ignore_nmis; | 
|  |  | 
|  | notrace __kprobes void do_nmi(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | nmi_enter(); | 
|  |  | 
|  | cpu = smp_processor_id(); | 
|  |  | 
|  | ++nmi_count(cpu); | 
|  |  | 
|  | if (!ignore_nmis) | 
|  | default_do_nmi(regs); | 
|  |  | 
|  | nmi_exit(); | 
|  | } | 
|  |  | 
|  | void stop_nmi(void) | 
|  | { | 
|  | acpi_nmi_disable(); | 
|  | ignore_nmis++; | 
|  | } | 
|  |  | 
|  | void restart_nmi(void) | 
|  | { | 
|  | ignore_nmis--; | 
|  | acpi_nmi_enable(); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_KPROBES | 
|  | void __kprobes do_int3(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | trace_hardirqs_fixup(); | 
|  |  | 
|  | if (notify_die(DIE_INT3, "int3", regs, error_code, 3, SIGTRAP) | 
|  | == NOTIFY_STOP) | 
|  | return; | 
|  | /* | 
|  | * This is an interrupt gate, because kprobes wants interrupts | 
|  | * disabled. Normal trap handlers don't. | 
|  | */ | 
|  | restore_interrupts(regs); | 
|  |  | 
|  | do_trap(3, SIGTRAP, "int3", 1, regs, error_code, NULL); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Our handling of the processor debug registers is non-trivial. | 
|  | * We do not clear them on entry and exit from the kernel. Therefore | 
|  | * it is possible to get a watchpoint trap here from inside the kernel. | 
|  | * However, the code in ./ptrace.c has ensured that the user can | 
|  | * only set watchpoints on userspace addresses. Therefore the in-kernel | 
|  | * watchpoint trap can only occur in code which is reading/writing | 
|  | * from user space. Such code must not hold kernel locks (since it | 
|  | * can equally take a page fault), therefore it is safe to call | 
|  | * force_sig_info even though that claims and releases locks. | 
|  | * | 
|  | * Code in ./signal.c ensures that the debug control register | 
|  | * is restored before we deliver any signal, and therefore that | 
|  | * user code runs with the correct debug control register even though | 
|  | * we clear it here. | 
|  | * | 
|  | * Being careful here means that we don't have to be as careful in a | 
|  | * lot of more complicated places (task switching can be a bit lazy | 
|  | * about restoring all the debug state, and ptrace doesn't have to | 
|  | * find every occurrence of the TF bit that could be saved away even | 
|  | * by user code) | 
|  | */ | 
|  | void __kprobes do_debug(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | unsigned int condition; | 
|  |  | 
|  | trace_hardirqs_fixup(); | 
|  |  | 
|  | get_debugreg(condition, 6); | 
|  |  | 
|  | /* | 
|  | * The processor cleared BTF, so don't mark that we need it set. | 
|  | */ | 
|  | clear_tsk_thread_flag(tsk, TIF_DEBUGCTLMSR); | 
|  | tsk->thread.debugctlmsr = 0; | 
|  |  | 
|  | if (notify_die(DIE_DEBUG, "debug", regs, condition, error_code, | 
|  | SIGTRAP) == NOTIFY_STOP) | 
|  | return; | 
|  | /* It's safe to allow irq's after DR6 has been saved */ | 
|  | if (regs->flags & X86_EFLAGS_IF) | 
|  | local_irq_enable(); | 
|  |  | 
|  | /* Mask out spurious debug traps due to lazy DR7 setting */ | 
|  | if (condition & (DR_TRAP0|DR_TRAP1|DR_TRAP2|DR_TRAP3)) { | 
|  | if (!tsk->thread.debugreg7) | 
|  | goto clear_dr7; | 
|  | } | 
|  |  | 
|  | if (regs->flags & X86_VM_MASK) | 
|  | goto debug_vm86; | 
|  |  | 
|  | /* Save debug status register where ptrace can see it */ | 
|  | tsk->thread.debugreg6 = condition; | 
|  |  | 
|  | /* | 
|  | * Single-stepping through TF: make sure we ignore any events in | 
|  | * kernel space (but re-enable TF when returning to user mode). | 
|  | */ | 
|  | if (condition & DR_STEP) { | 
|  | /* | 
|  | * We already checked v86 mode above, so we can | 
|  | * check for kernel mode by just checking the CPL | 
|  | * of CS. | 
|  | */ | 
|  | if (!user_mode(regs)) | 
|  | goto clear_TF_reenable; | 
|  | } | 
|  |  | 
|  | /* Ok, finally something we can handle */ | 
|  | send_sigtrap(tsk, regs, error_code); | 
|  |  | 
|  | /* | 
|  | * Disable additional traps. They'll be re-enabled when | 
|  | * the signal is delivered. | 
|  | */ | 
|  | clear_dr7: | 
|  | set_debugreg(0, 7); | 
|  | return; | 
|  |  | 
|  | debug_vm86: | 
|  | handle_vm86_trap((struct kernel_vm86_regs *) regs, error_code, 1); | 
|  | return; | 
|  |  | 
|  | clear_TF_reenable: | 
|  | set_tsk_thread_flag(tsk, TIF_SINGLESTEP); | 
|  | regs->flags &= ~X86_EFLAGS_TF; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that we play around with the 'TS' bit in an attempt to get | 
|  | * the correct behaviour even in the presence of the asynchronous | 
|  | * IRQ13 behaviour | 
|  | */ | 
|  | void math_error(void __user *ip) | 
|  | { | 
|  | struct task_struct *task; | 
|  | unsigned short cwd; | 
|  | unsigned short swd; | 
|  | siginfo_t info; | 
|  |  | 
|  | /* | 
|  | * Save the info for the exception handler and clear the error. | 
|  | */ | 
|  | task = current; | 
|  | save_init_fpu(task); | 
|  | task->thread.trap_no = 16; | 
|  | task->thread.error_code = 0; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_code = __SI_FAULT; | 
|  | info.si_addr = ip; | 
|  | /* | 
|  | * (~cwd & swd) will mask out exceptions that are not set to unmasked | 
|  | * status.  0x3f is the exception bits in these regs, 0x200 is the | 
|  | * C1 reg you need in case of a stack fault, 0x040 is the stack | 
|  | * fault bit.  We should only be taking one exception at a time, | 
|  | * so if this combination doesn't produce any single exception, | 
|  | * then we have a bad program that isn't syncronizing its FPU usage | 
|  | * and it will suffer the consequences since we won't be able to | 
|  | * fully reproduce the context of the exception | 
|  | */ | 
|  | cwd = get_fpu_cwd(task); | 
|  | swd = get_fpu_swd(task); | 
|  | switch (swd & ~cwd & 0x3f) { | 
|  | case 0x000: /* No unmasked exception */ | 
|  | return; | 
|  | default:    /* Multiple exceptions */ | 
|  | break; | 
|  | case 0x001: /* Invalid Op */ | 
|  | /* | 
|  | * swd & 0x240 == 0x040: Stack Underflow | 
|  | * swd & 0x240 == 0x240: Stack Overflow | 
|  | * User must clear the SF bit (0x40) if set | 
|  | */ | 
|  | info.si_code = FPE_FLTINV; | 
|  | break; | 
|  | case 0x002: /* Denormalize */ | 
|  | case 0x010: /* Underflow */ | 
|  | info.si_code = FPE_FLTUND; | 
|  | break; | 
|  | case 0x004: /* Zero Divide */ | 
|  | info.si_code = FPE_FLTDIV; | 
|  | break; | 
|  | case 0x008: /* Overflow */ | 
|  | info.si_code = FPE_FLTOVF; | 
|  | break; | 
|  | case 0x020: /* Precision */ | 
|  | info.si_code = FPE_FLTRES; | 
|  | break; | 
|  | } | 
|  | force_sig_info(SIGFPE, &info, task); | 
|  | } | 
|  |  | 
|  | void do_coprocessor_error(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | ignore_fpu_irq = 1; | 
|  | math_error((void __user *)regs->ip); | 
|  | } | 
|  |  | 
|  | static void simd_math_error(void __user *ip) | 
|  | { | 
|  | struct task_struct *task; | 
|  | unsigned short mxcsr; | 
|  | siginfo_t info; | 
|  |  | 
|  | /* | 
|  | * Save the info for the exception handler and clear the error. | 
|  | */ | 
|  | task = current; | 
|  | save_init_fpu(task); | 
|  | task->thread.trap_no = 19; | 
|  | task->thread.error_code = 0; | 
|  | info.si_signo = SIGFPE; | 
|  | info.si_errno = 0; | 
|  | info.si_code = __SI_FAULT; | 
|  | info.si_addr = ip; | 
|  | /* | 
|  | * The SIMD FPU exceptions are handled a little differently, as there | 
|  | * is only a single status/control register.  Thus, to determine which | 
|  | * unmasked exception was caught we must mask the exception mask bits | 
|  | * at 0x1f80, and then use these to mask the exception bits at 0x3f. | 
|  | */ | 
|  | mxcsr = get_fpu_mxcsr(task); | 
|  | switch (~((mxcsr & 0x1f80) >> 7) & (mxcsr & 0x3f)) { | 
|  | case 0x000: | 
|  | default: | 
|  | break; | 
|  | case 0x001: /* Invalid Op */ | 
|  | info.si_code = FPE_FLTINV; | 
|  | break; | 
|  | case 0x002: /* Denormalize */ | 
|  | case 0x010: /* Underflow */ | 
|  | info.si_code = FPE_FLTUND; | 
|  | break; | 
|  | case 0x004: /* Zero Divide */ | 
|  | info.si_code = FPE_FLTDIV; | 
|  | break; | 
|  | case 0x008: /* Overflow */ | 
|  | info.si_code = FPE_FLTOVF; | 
|  | break; | 
|  | case 0x020: /* Precision */ | 
|  | info.si_code = FPE_FLTRES; | 
|  | break; | 
|  | } | 
|  | force_sig_info(SIGFPE, &info, task); | 
|  | } | 
|  |  | 
|  | void do_simd_coprocessor_error(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | if (cpu_has_xmm) { | 
|  | /* Handle SIMD FPU exceptions on PIII+ processors. */ | 
|  | ignore_fpu_irq = 1; | 
|  | simd_math_error((void __user *)regs->ip); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * Handle strange cache flush from user space exception | 
|  | * in all other cases.  This is undocumented behaviour. | 
|  | */ | 
|  | if (regs->flags & X86_VM_MASK) { | 
|  | handle_vm86_fault((struct kernel_vm86_regs *)regs, error_code); | 
|  | return; | 
|  | } | 
|  | current->thread.trap_no = 19; | 
|  | current->thread.error_code = error_code; | 
|  | die_if_kernel("cache flush denied", regs, error_code); | 
|  | force_sig(SIGSEGV, current); | 
|  | } | 
|  |  | 
|  | void do_spurious_interrupt_bug(struct pt_regs *regs, long error_code) | 
|  | { | 
|  | #if 0 | 
|  | /* No need to warn about this any longer. */ | 
|  | printk(KERN_INFO "Ignoring P6 Local APIC Spurious Interrupt Bug...\n"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | unsigned long patch_espfix_desc(unsigned long uesp, unsigned long kesp) | 
|  | { | 
|  | struct desc_struct *gdt = __get_cpu_var(gdt_page).gdt; | 
|  | unsigned long base = (kesp - uesp) & -THREAD_SIZE; | 
|  | unsigned long new_kesp = kesp - base; | 
|  | unsigned long lim_pages = (new_kesp | (THREAD_SIZE - 1)) >> PAGE_SHIFT; | 
|  | __u64 desc = *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS]; | 
|  |  | 
|  | /* Set up base for espfix segment */ | 
|  | desc &= 0x00f0ff0000000000ULL; | 
|  | desc |=	((((__u64)base) << 16) & 0x000000ffffff0000ULL) | | 
|  | ((((__u64)base) << 32) & 0xff00000000000000ULL) | | 
|  | ((((__u64)lim_pages) << 32) & 0x000f000000000000ULL) | | 
|  | (lim_pages & 0xffff); | 
|  | *(__u64 *)&gdt[GDT_ENTRY_ESPFIX_SS] = desc; | 
|  |  | 
|  | return new_kesp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'math_state_restore()' saves the current math information in the | 
|  | * old math state array, and gets the new ones from the current task | 
|  | * | 
|  | * Careful.. There are problems with IBM-designed IRQ13 behaviour. | 
|  | * Don't touch unless you *really* know how it works. | 
|  | * | 
|  | * Must be called with kernel preemption disabled (in this case, | 
|  | * local interrupts are disabled at the call-site in entry.S). | 
|  | */ | 
|  | asmlinkage void math_state_restore(void) | 
|  | { | 
|  | struct thread_info *thread = current_thread_info(); | 
|  | struct task_struct *tsk = thread->task; | 
|  |  | 
|  | if (!tsk_used_math(tsk)) { | 
|  | local_irq_enable(); | 
|  | /* | 
|  | * does a slab alloc which can sleep | 
|  | */ | 
|  | if (init_fpu(tsk)) { | 
|  | /* | 
|  | * ran out of memory! | 
|  | */ | 
|  | do_group_exit(SIGKILL); | 
|  | return; | 
|  | } | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | clts();				/* Allow maths ops (or we recurse) */ | 
|  | restore_fpu(tsk); | 
|  | thread->status |= TS_USEDFPU;	/* So we fnsave on switch_to() */ | 
|  | tsk->fpu_counter++; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(math_state_restore); | 
|  |  | 
|  | #ifndef CONFIG_MATH_EMULATION | 
|  |  | 
|  | asmlinkage void math_emulate(long arg) | 
|  | { | 
|  | printk(KERN_EMERG | 
|  | "math-emulation not enabled and no coprocessor found.\n"); | 
|  | printk(KERN_EMERG "killing %s.\n", current->comm); | 
|  | force_sig(SIGFPE, current); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MATH_EMULATION */ | 
|  |  | 
|  | void __init trap_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | #ifdef CONFIG_EISA | 
|  | void __iomem *p = early_ioremap(0x0FFFD9, 4); | 
|  |  | 
|  | if (readl(p) == 'E' + ('I'<<8) + ('S'<<16) + ('A'<<24)) | 
|  | EISA_bus = 1; | 
|  | early_iounmap(p, 4); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | init_apic_mappings(); | 
|  | #endif | 
|  | set_trap_gate(0,  ÷_error); | 
|  | set_intr_gate(1,  &debug); | 
|  | set_intr_gate(2,  &nmi); | 
|  | set_system_intr_gate(3, &int3); /* int3/4 can be called from all */ | 
|  | set_system_gate(4, &overflow); | 
|  | set_trap_gate(5,  &bounds); | 
|  | set_trap_gate(6,  &invalid_op); | 
|  | set_trap_gate(7,  &device_not_available); | 
|  | set_task_gate(8,  GDT_ENTRY_DOUBLEFAULT_TSS); | 
|  | set_trap_gate(9,  &coprocessor_segment_overrun); | 
|  | set_trap_gate(10, &invalid_TSS); | 
|  | set_trap_gate(11, &segment_not_present); | 
|  | set_trap_gate(12, &stack_segment); | 
|  | set_trap_gate(13, &general_protection); | 
|  | set_intr_gate(14, &page_fault); | 
|  | set_trap_gate(15, &spurious_interrupt_bug); | 
|  | set_trap_gate(16, &coprocessor_error); | 
|  | set_trap_gate(17, &alignment_check); | 
|  | #ifdef CONFIG_X86_MCE | 
|  | set_trap_gate(18, &machine_check); | 
|  | #endif | 
|  | set_trap_gate(19, &simd_coprocessor_error); | 
|  |  | 
|  | if (cpu_has_fxsr) { | 
|  | printk(KERN_INFO "Enabling fast FPU save and restore... "); | 
|  | set_in_cr4(X86_CR4_OSFXSR); | 
|  | printk("done.\n"); | 
|  | } | 
|  | if (cpu_has_xmm) { | 
|  | printk(KERN_INFO | 
|  | "Enabling unmasked SIMD FPU exception support... "); | 
|  | set_in_cr4(X86_CR4_OSXMMEXCPT); | 
|  | printk("done.\n"); | 
|  | } | 
|  |  | 
|  | set_system_gate(SYSCALL_VECTOR, &system_call); | 
|  |  | 
|  | /* Reserve all the builtin and the syscall vector: */ | 
|  | for (i = 0; i < FIRST_EXTERNAL_VECTOR; i++) | 
|  | set_bit(i, used_vectors); | 
|  |  | 
|  | set_bit(SYSCALL_VECTOR, used_vectors); | 
|  |  | 
|  | init_thread_xstate(); | 
|  | /* | 
|  | * Should be a barrier for any external CPU state: | 
|  | */ | 
|  | cpu_init(); | 
|  |  | 
|  | trap_init_hook(); | 
|  | } | 
|  |  | 
|  | static int __init kstack_setup(char *s) | 
|  | { | 
|  | kstack_depth_to_print = simple_strtoul(s, NULL, 0); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("kstack=", kstack_setup); | 
|  |  | 
|  | static int __init code_bytes_setup(char *s) | 
|  | { | 
|  | code_bytes = simple_strtoul(s, NULL, 0); | 
|  | if (code_bytes > 8192) | 
|  | code_bytes = 8192; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("code_bytes=", code_bytes_setup); |