|  | /* | 
|  | * Kernel-based Virtual Machine driver for Linux | 
|  | * | 
|  | * This module enables machines with Intel VT-x extensions to run virtual | 
|  | * machines without emulation or binary translation. | 
|  | * | 
|  | * Copyright (C) 2006 Qumranet, Inc. | 
|  | * | 
|  | * Authors: | 
|  | *   Avi Kivity   <avi@qumranet.com> | 
|  | *   Yaniv Kamay  <yaniv@qumranet.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2.  See | 
|  | * the COPYING file in the top-level directory. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "irq.h" | 
|  | #include "vmx.h" | 
|  | #include "segment_descriptor.h" | 
|  | #include "mmu.h" | 
|  |  | 
|  | #include <linux/kvm_host.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/moduleparam.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/desc.h> | 
|  |  | 
|  | MODULE_AUTHOR("Qumranet"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int bypass_guest_pf = 1; | 
|  | module_param(bypass_guest_pf, bool, 0); | 
|  |  | 
|  | struct vmcs { | 
|  | u32 revision_id; | 
|  | u32 abort; | 
|  | char data[0]; | 
|  | }; | 
|  |  | 
|  | struct vcpu_vmx { | 
|  | struct kvm_vcpu       vcpu; | 
|  | int                   launched; | 
|  | u8                    fail; | 
|  | u32                   idt_vectoring_info; | 
|  | struct kvm_msr_entry *guest_msrs; | 
|  | struct kvm_msr_entry *host_msrs; | 
|  | int                   nmsrs; | 
|  | int                   save_nmsrs; | 
|  | int                   msr_offset_efer; | 
|  | #ifdef CONFIG_X86_64 | 
|  | int                   msr_offset_kernel_gs_base; | 
|  | #endif | 
|  | struct vmcs          *vmcs; | 
|  | struct { | 
|  | int           loaded; | 
|  | u16           fs_sel, gs_sel, ldt_sel; | 
|  | int           gs_ldt_reload_needed; | 
|  | int           fs_reload_needed; | 
|  | int           guest_efer_loaded; | 
|  | } host_state; | 
|  | struct { | 
|  | struct { | 
|  | bool pending; | 
|  | u8 vector; | 
|  | unsigned rip; | 
|  | } irq; | 
|  | } rmode; | 
|  | }; | 
|  |  | 
|  | static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return container_of(vcpu, struct vcpu_vmx, vcpu); | 
|  | } | 
|  |  | 
|  | static int init_rmode_tss(struct kvm *kvm); | 
|  |  | 
|  | static DEFINE_PER_CPU(struct vmcs *, vmxarea); | 
|  | static DEFINE_PER_CPU(struct vmcs *, current_vmcs); | 
|  |  | 
|  | static struct page *vmx_io_bitmap_a; | 
|  | static struct page *vmx_io_bitmap_b; | 
|  |  | 
|  | static struct vmcs_config { | 
|  | int size; | 
|  | int order; | 
|  | u32 revision_id; | 
|  | u32 pin_based_exec_ctrl; | 
|  | u32 cpu_based_exec_ctrl; | 
|  | u32 cpu_based_2nd_exec_ctrl; | 
|  | u32 vmexit_ctrl; | 
|  | u32 vmentry_ctrl; | 
|  | } vmcs_config; | 
|  |  | 
|  | #define VMX_SEGMENT_FIELD(seg)					\ | 
|  | [VCPU_SREG_##seg] = {                                   \ | 
|  | .selector = GUEST_##seg##_SELECTOR,		\ | 
|  | .base = GUEST_##seg##_BASE,		   	\ | 
|  | .limit = GUEST_##seg##_LIMIT,		   	\ | 
|  | .ar_bytes = GUEST_##seg##_AR_BYTES,	   	\ | 
|  | } | 
|  |  | 
|  | static struct kvm_vmx_segment_field { | 
|  | unsigned selector; | 
|  | unsigned base; | 
|  | unsigned limit; | 
|  | unsigned ar_bytes; | 
|  | } kvm_vmx_segment_fields[] = { | 
|  | VMX_SEGMENT_FIELD(CS), | 
|  | VMX_SEGMENT_FIELD(DS), | 
|  | VMX_SEGMENT_FIELD(ES), | 
|  | VMX_SEGMENT_FIELD(FS), | 
|  | VMX_SEGMENT_FIELD(GS), | 
|  | VMX_SEGMENT_FIELD(SS), | 
|  | VMX_SEGMENT_FIELD(TR), | 
|  | VMX_SEGMENT_FIELD(LDTR), | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it | 
|  | * away by decrementing the array size. | 
|  | */ | 
|  | static const u32 vmx_msr_index[] = { | 
|  | #ifdef CONFIG_X86_64 | 
|  | MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE, | 
|  | #endif | 
|  | MSR_EFER, MSR_K6_STAR, | 
|  | }; | 
|  | #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index) | 
|  |  | 
|  | static void load_msrs(struct kvm_msr_entry *e, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; ++i) | 
|  | wrmsrl(e[i].index, e[i].data); | 
|  | } | 
|  |  | 
|  | static void save_msrs(struct kvm_msr_entry *e, int n) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < n; ++i) | 
|  | rdmsrl(e[i].index, e[i].data); | 
|  | } | 
|  |  | 
|  | static inline int is_page_fault(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline int is_no_device(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline int is_invalid_opcode(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
|  | INTR_INFO_VALID_MASK)) == | 
|  | (INTR_TYPE_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline int is_external_interrupt(u32 intr_info) | 
|  | { | 
|  | return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) | 
|  | == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static inline int cpu_has_vmx_tpr_shadow(void) | 
|  | { | 
|  | return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW); | 
|  | } | 
|  |  | 
|  | static inline int vm_need_tpr_shadow(struct kvm *kvm) | 
|  | { | 
|  | return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm))); | 
|  | } | 
|  |  | 
|  | static inline int cpu_has_secondary_exec_ctrls(void) | 
|  | { | 
|  | return (vmcs_config.cpu_based_exec_ctrl & | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS); | 
|  | } | 
|  |  | 
|  | static inline bool cpu_has_vmx_virtualize_apic_accesses(void) | 
|  | { | 
|  | return (vmcs_config.cpu_based_2nd_exec_ctrl & | 
|  | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); | 
|  | } | 
|  |  | 
|  | static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm) | 
|  | { | 
|  | return ((cpu_has_vmx_virtualize_apic_accesses()) && | 
|  | (irqchip_in_kernel(kvm))); | 
|  | } | 
|  |  | 
|  | static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < vmx->nmsrs; ++i) | 
|  | if (vmx->guest_msrs[i].index == msr) | 
|  | return i; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | i = __find_msr_index(vmx, msr); | 
|  | if (i >= 0) | 
|  | return &vmx->guest_msrs[i]; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void vmcs_clear(struct vmcs *vmcs) | 
|  | { | 
|  | u64 phys_addr = __pa(vmcs); | 
|  | u8 error; | 
|  |  | 
|  | asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0" | 
|  | : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) | 
|  | : "cc", "memory"); | 
|  | if (error) | 
|  | printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", | 
|  | vmcs, phys_addr); | 
|  | } | 
|  |  | 
|  | static void __vcpu_clear(void *arg) | 
|  | { | 
|  | struct vcpu_vmx *vmx = arg; | 
|  | int cpu = raw_smp_processor_id(); | 
|  |  | 
|  | if (vmx->vcpu.cpu == cpu) | 
|  | vmcs_clear(vmx->vmcs); | 
|  | if (per_cpu(current_vmcs, cpu) == vmx->vmcs) | 
|  | per_cpu(current_vmcs, cpu) = NULL; | 
|  | rdtscll(vmx->vcpu.arch.host_tsc); | 
|  | } | 
|  |  | 
|  | static void vcpu_clear(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (vmx->vcpu.cpu == -1) | 
|  | return; | 
|  | smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 0, 1); | 
|  | vmx->launched = 0; | 
|  | } | 
|  |  | 
|  | static unsigned long vmcs_readl(unsigned long field) | 
|  | { | 
|  | unsigned long value; | 
|  |  | 
|  | asm volatile (ASM_VMX_VMREAD_RDX_RAX | 
|  | : "=a"(value) : "d"(field) : "cc"); | 
|  | return value; | 
|  | } | 
|  |  | 
|  | static u16 vmcs_read16(unsigned long field) | 
|  | { | 
|  | return vmcs_readl(field); | 
|  | } | 
|  |  | 
|  | static u32 vmcs_read32(unsigned long field) | 
|  | { | 
|  | return vmcs_readl(field); | 
|  | } | 
|  |  | 
|  | static u64 vmcs_read64(unsigned long field) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return vmcs_readl(field); | 
|  | #else | 
|  | return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static noinline void vmwrite_error(unsigned long field, unsigned long value) | 
|  | { | 
|  | printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", | 
|  | field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | static void vmcs_writel(unsigned long field, unsigned long value) | 
|  | { | 
|  | u8 error; | 
|  |  | 
|  | asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0" | 
|  | : "=q"(error) : "a"(value), "d"(field) : "cc"); | 
|  | if (unlikely(error)) | 
|  | vmwrite_error(field, value); | 
|  | } | 
|  |  | 
|  | static void vmcs_write16(unsigned long field, u16 value) | 
|  | { | 
|  | vmcs_writel(field, value); | 
|  | } | 
|  |  | 
|  | static void vmcs_write32(unsigned long field, u32 value) | 
|  | { | 
|  | vmcs_writel(field, value); | 
|  | } | 
|  |  | 
|  | static void vmcs_write64(unsigned long field, u64 value) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | vmcs_writel(field, value); | 
|  | #else | 
|  | vmcs_writel(field, value); | 
|  | asm volatile (""); | 
|  | vmcs_writel(field+1, value >> 32); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void vmcs_clear_bits(unsigned long field, u32 mask) | 
|  | { | 
|  | vmcs_writel(field, vmcs_readl(field) & ~mask); | 
|  | } | 
|  |  | 
|  | static void vmcs_set_bits(unsigned long field, u32 mask) | 
|  | { | 
|  | vmcs_writel(field, vmcs_readl(field) | mask); | 
|  | } | 
|  |  | 
|  | static void update_exception_bitmap(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 eb; | 
|  |  | 
|  | eb = (1u << PF_VECTOR) | (1u << UD_VECTOR); | 
|  | if (!vcpu->fpu_active) | 
|  | eb |= 1u << NM_VECTOR; | 
|  | if (vcpu->guest_debug.enabled) | 
|  | eb |= 1u << 1; | 
|  | if (vcpu->arch.rmode.active) | 
|  | eb = ~0; | 
|  | vmcs_write32(EXCEPTION_BITMAP, eb); | 
|  | } | 
|  |  | 
|  | static void reload_tss(void) | 
|  | { | 
|  | /* | 
|  | * VT restores TR but not its size.  Useless. | 
|  | */ | 
|  | struct descriptor_table gdt; | 
|  | struct segment_descriptor *descs; | 
|  |  | 
|  | get_gdt(&gdt); | 
|  | descs = (void *)gdt.base; | 
|  | descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ | 
|  | load_TR_desc(); | 
|  | } | 
|  |  | 
|  | static void load_transition_efer(struct vcpu_vmx *vmx) | 
|  | { | 
|  | int efer_offset = vmx->msr_offset_efer; | 
|  | u64 host_efer = vmx->host_msrs[efer_offset].data; | 
|  | u64 guest_efer = vmx->guest_msrs[efer_offset].data; | 
|  | u64 ignore_bits; | 
|  |  | 
|  | if (efer_offset < 0) | 
|  | return; | 
|  | /* | 
|  | * NX is emulated; LMA and LME handled by hardware; SCE meaninless | 
|  | * outside long mode | 
|  | */ | 
|  | ignore_bits = EFER_NX | EFER_SCE; | 
|  | #ifdef CONFIG_X86_64 | 
|  | ignore_bits |= EFER_LMA | EFER_LME; | 
|  | /* SCE is meaningful only in long mode on Intel */ | 
|  | if (guest_efer & EFER_LMA) | 
|  | ignore_bits &= ~(u64)EFER_SCE; | 
|  | #endif | 
|  | if ((guest_efer & ~ignore_bits) == (host_efer & ~ignore_bits)) | 
|  | return; | 
|  |  | 
|  | vmx->host_state.guest_efer_loaded = 1; | 
|  | guest_efer &= ~ignore_bits; | 
|  | guest_efer |= host_efer & ignore_bits; | 
|  | wrmsrl(MSR_EFER, guest_efer); | 
|  | vmx->vcpu.stat.efer_reload++; | 
|  | } | 
|  |  | 
|  | static void reload_host_efer(struct vcpu_vmx *vmx) | 
|  | { | 
|  | if (vmx->host_state.guest_efer_loaded) { | 
|  | vmx->host_state.guest_efer_loaded = 0; | 
|  | load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_save_host_state(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (vmx->host_state.loaded) | 
|  | return; | 
|  |  | 
|  | vmx->host_state.loaded = 1; | 
|  | /* | 
|  | * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not | 
|  | * allow segment selectors with cpl > 0 or ti == 1. | 
|  | */ | 
|  | vmx->host_state.ldt_sel = read_ldt(); | 
|  | vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; | 
|  | vmx->host_state.fs_sel = read_fs(); | 
|  | if (!(vmx->host_state.fs_sel & 7)) { | 
|  | vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); | 
|  | vmx->host_state.fs_reload_needed = 0; | 
|  | } else { | 
|  | vmcs_write16(HOST_FS_SELECTOR, 0); | 
|  | vmx->host_state.fs_reload_needed = 1; | 
|  | } | 
|  | vmx->host_state.gs_sel = read_gs(); | 
|  | if (!(vmx->host_state.gs_sel & 7)) | 
|  | vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); | 
|  | else { | 
|  | vmcs_write16(HOST_GS_SELECTOR, 0); | 
|  | vmx->host_state.gs_ldt_reload_needed = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); | 
|  | vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); | 
|  | #else | 
|  | vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); | 
|  | vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (is_long_mode(&vmx->vcpu)) | 
|  | save_msrs(vmx->host_msrs + | 
|  | vmx->msr_offset_kernel_gs_base, 1); | 
|  |  | 
|  | #endif | 
|  | load_msrs(vmx->guest_msrs, vmx->save_nmsrs); | 
|  | load_transition_efer(vmx); | 
|  | } | 
|  |  | 
|  | static void vmx_load_host_state(struct vcpu_vmx *vmx) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!vmx->host_state.loaded) | 
|  | return; | 
|  |  | 
|  | ++vmx->vcpu.stat.host_state_reload; | 
|  | vmx->host_state.loaded = 0; | 
|  | if (vmx->host_state.fs_reload_needed) | 
|  | load_fs(vmx->host_state.fs_sel); | 
|  | if (vmx->host_state.gs_ldt_reload_needed) { | 
|  | load_ldt(vmx->host_state.ldt_sel); | 
|  | /* | 
|  | * If we have to reload gs, we must take care to | 
|  | * preserve our gs base. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | load_gs(vmx->host_state.gs_sel); | 
|  | #ifdef CONFIG_X86_64 | 
|  | wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE)); | 
|  | #endif | 
|  | local_irq_restore(flags); | 
|  | } | 
|  | reload_tss(); | 
|  | save_msrs(vmx->guest_msrs, vmx->save_nmsrs); | 
|  | load_msrs(vmx->host_msrs, vmx->save_nmsrs); | 
|  | reload_host_efer(vmx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switches to specified vcpu, until a matching vcpu_put(), but assumes | 
|  | * vcpu mutex is already taken. | 
|  | */ | 
|  | static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u64 phys_addr = __pa(vmx->vmcs); | 
|  | u64 tsc_this, delta; | 
|  |  | 
|  | if (vcpu->cpu != cpu) { | 
|  | vcpu_clear(vmx); | 
|  | kvm_migrate_apic_timer(vcpu); | 
|  | } | 
|  |  | 
|  | if (per_cpu(current_vmcs, cpu) != vmx->vmcs) { | 
|  | u8 error; | 
|  |  | 
|  | per_cpu(current_vmcs, cpu) = vmx->vmcs; | 
|  | asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0" | 
|  | : "=g"(error) : "a"(&phys_addr), "m"(phys_addr) | 
|  | : "cc"); | 
|  | if (error) | 
|  | printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n", | 
|  | vmx->vmcs, phys_addr); | 
|  | } | 
|  |  | 
|  | if (vcpu->cpu != cpu) { | 
|  | struct descriptor_table dt; | 
|  | unsigned long sysenter_esp; | 
|  |  | 
|  | vcpu->cpu = cpu; | 
|  | /* | 
|  | * Linux uses per-cpu TSS and GDT, so set these when switching | 
|  | * processors. | 
|  | */ | 
|  | vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */ | 
|  | get_gdt(&dt); | 
|  | vmcs_writel(HOST_GDTR_BASE, dt.base);   /* 22.2.4 */ | 
|  |  | 
|  | rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); | 
|  | vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ | 
|  |  | 
|  | /* | 
|  | * Make sure the time stamp counter is monotonous. | 
|  | */ | 
|  | rdtscll(tsc_this); | 
|  | delta = vcpu->arch.host_tsc - tsc_this; | 
|  | vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_vcpu_put(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vmx_load_host_state(to_vmx(vcpu)); | 
|  | } | 
|  |  | 
|  | static void vmx_fpu_activate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (vcpu->fpu_active) | 
|  | return; | 
|  | vcpu->fpu_active = 1; | 
|  | vmcs_clear_bits(GUEST_CR0, X86_CR0_TS); | 
|  | if (vcpu->arch.cr0 & X86_CR0_TS) | 
|  | vmcs_set_bits(GUEST_CR0, X86_CR0_TS); | 
|  | update_exception_bitmap(vcpu); | 
|  | } | 
|  |  | 
|  | static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | if (!vcpu->fpu_active) | 
|  | return; | 
|  | vcpu->fpu_active = 0; | 
|  | vmcs_set_bits(GUEST_CR0, X86_CR0_TS); | 
|  | update_exception_bitmap(vcpu); | 
|  | } | 
|  |  | 
|  | static void vmx_vcpu_decache(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu_clear(to_vmx(vcpu)); | 
|  | } | 
|  |  | 
|  | static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | return vmcs_readl(GUEST_RFLAGS); | 
|  | } | 
|  |  | 
|  | static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
|  | { | 
|  | if (vcpu->arch.rmode.active) | 
|  | rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; | 
|  | vmcs_writel(GUEST_RFLAGS, rflags); | 
|  | } | 
|  |  | 
|  | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long rip; | 
|  | u32 interruptibility; | 
|  |  | 
|  | rip = vmcs_readl(GUEST_RIP); | 
|  | rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
|  | vmcs_writel(GUEST_RIP, rip); | 
|  |  | 
|  | /* | 
|  | * We emulated an instruction, so temporary interrupt blocking | 
|  | * should be removed, if set. | 
|  | */ | 
|  | interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
|  | if (interruptibility & 3) | 
|  | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, | 
|  | interruptibility & ~3); | 
|  | vcpu->arch.interrupt_window_open = 1; | 
|  | } | 
|  |  | 
|  | static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, | 
|  | bool has_error_code, u32 error_code) | 
|  | { | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
|  | nr | INTR_TYPE_EXCEPTION | 
|  | | (has_error_code ? INTR_INFO_DELIEVER_CODE_MASK : 0) | 
|  | | INTR_INFO_VALID_MASK); | 
|  | if (has_error_code) | 
|  | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); | 
|  | } | 
|  |  | 
|  | static bool vmx_exception_injected(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | return !(vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Swap MSR entry in host/guest MSR entry array. | 
|  | */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) | 
|  | { | 
|  | struct kvm_msr_entry tmp; | 
|  |  | 
|  | tmp = vmx->guest_msrs[to]; | 
|  | vmx->guest_msrs[to] = vmx->guest_msrs[from]; | 
|  | vmx->guest_msrs[from] = tmp; | 
|  | tmp = vmx->host_msrs[to]; | 
|  | vmx->host_msrs[to] = vmx->host_msrs[from]; | 
|  | vmx->host_msrs[from] = tmp; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up the vmcs to automatically save and restore system | 
|  | * msrs.  Don't touch the 64-bit msrs if the guest is in legacy | 
|  | * mode, as fiddling with msrs is very expensive. | 
|  | */ | 
|  | static void setup_msrs(struct vcpu_vmx *vmx) | 
|  | { | 
|  | int save_nmsrs; | 
|  |  | 
|  | vmx_load_host_state(vmx); | 
|  | save_nmsrs = 0; | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (is_long_mode(&vmx->vcpu)) { | 
|  | int index; | 
|  |  | 
|  | index = __find_msr_index(vmx, MSR_SYSCALL_MASK); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | index = __find_msr_index(vmx, MSR_LSTAR); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | index = __find_msr_index(vmx, MSR_CSTAR); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE); | 
|  | if (index >= 0) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | /* | 
|  | * MSR_K6_STAR is only needed on long mode guests, and only | 
|  | * if efer.sce is enabled. | 
|  | */ | 
|  | index = __find_msr_index(vmx, MSR_K6_STAR); | 
|  | if ((index >= 0) && (vmx->vcpu.arch.shadow_efer & EFER_SCE)) | 
|  | move_msr_up(vmx, index, save_nmsrs++); | 
|  | } | 
|  | #endif | 
|  | vmx->save_nmsrs = save_nmsrs; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | vmx->msr_offset_kernel_gs_base = | 
|  | __find_msr_index(vmx, MSR_KERNEL_GS_BASE); | 
|  | #endif | 
|  | vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reads and returns guest's timestamp counter "register" | 
|  | * guest_tsc = host_tsc + tsc_offset    -- 21.3 | 
|  | */ | 
|  | static u64 guest_read_tsc(void) | 
|  | { | 
|  | u64 host_tsc, tsc_offset; | 
|  |  | 
|  | rdtscll(host_tsc); | 
|  | tsc_offset = vmcs_read64(TSC_OFFSET); | 
|  | return host_tsc + tsc_offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * writes 'guest_tsc' into guest's timestamp counter "register" | 
|  | * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc | 
|  | */ | 
|  | static void guest_write_tsc(u64 guest_tsc) | 
|  | { | 
|  | u64 host_tsc; | 
|  |  | 
|  | rdtscll(host_tsc); | 
|  | vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads an msr value (of 'msr_index') into 'pdata'. | 
|  | * Returns 0 on success, non-0 otherwise. | 
|  | * Assumes vcpu_load() was already called. | 
|  | */ | 
|  | static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
|  | { | 
|  | u64 data; | 
|  | struct kvm_msr_entry *msr; | 
|  |  | 
|  | if (!pdata) { | 
|  | printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | switch (msr_index) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_FS_BASE: | 
|  | data = vmcs_readl(GUEST_FS_BASE); | 
|  | break; | 
|  | case MSR_GS_BASE: | 
|  | data = vmcs_readl(GUEST_GS_BASE); | 
|  | break; | 
|  | case MSR_EFER: | 
|  | return kvm_get_msr_common(vcpu, msr_index, pdata); | 
|  | #endif | 
|  | case MSR_IA32_TIME_STAMP_COUNTER: | 
|  | data = guest_read_tsc(); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | data = vmcs_read32(GUEST_SYSENTER_CS); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | data = vmcs_readl(GUEST_SYSENTER_EIP); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | data = vmcs_readl(GUEST_SYSENTER_ESP); | 
|  | break; | 
|  | default: | 
|  | msr = find_msr_entry(to_vmx(vcpu), msr_index); | 
|  | if (msr) { | 
|  | data = msr->data; | 
|  | break; | 
|  | } | 
|  | return kvm_get_msr_common(vcpu, msr_index, pdata); | 
|  | } | 
|  |  | 
|  | *pdata = data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes msr value into into the appropriate "register". | 
|  | * Returns 0 on success, non-0 otherwise. | 
|  | * Assumes vcpu_load() was already called. | 
|  | */ | 
|  | static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct kvm_msr_entry *msr; | 
|  | int ret = 0; | 
|  |  | 
|  | switch (msr_index) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | case MSR_EFER: | 
|  | ret = kvm_set_msr_common(vcpu, msr_index, data); | 
|  | if (vmx->host_state.loaded) { | 
|  | reload_host_efer(vmx); | 
|  | load_transition_efer(vmx); | 
|  | } | 
|  | break; | 
|  | case MSR_FS_BASE: | 
|  | vmcs_writel(GUEST_FS_BASE, data); | 
|  | break; | 
|  | case MSR_GS_BASE: | 
|  | vmcs_writel(GUEST_GS_BASE, data); | 
|  | break; | 
|  | #endif | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | vmcs_write32(GUEST_SYSENTER_CS, data); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | vmcs_writel(GUEST_SYSENTER_EIP, data); | 
|  | break; | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | vmcs_writel(GUEST_SYSENTER_ESP, data); | 
|  | break; | 
|  | case MSR_IA32_TIME_STAMP_COUNTER: | 
|  | guest_write_tsc(data); | 
|  | break; | 
|  | default: | 
|  | msr = find_msr_entry(vmx, msr_index); | 
|  | if (msr) { | 
|  | msr->data = data; | 
|  | if (vmx->host_state.loaded) | 
|  | load_msrs(vmx->guest_msrs, vmx->save_nmsrs); | 
|  | break; | 
|  | } | 
|  | ret = kvm_set_msr_common(vcpu, msr_index, data); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sync the rsp and rip registers into the vcpu structure.  This allows | 
|  | * registers to be accessed by indexing vcpu->arch.regs. | 
|  | */ | 
|  | static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); | 
|  | vcpu->arch.rip = vmcs_readl(GUEST_RIP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Syncs rsp and rip back into the vmcs.  Should be called after possible | 
|  | * modification. | 
|  | */ | 
|  | static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); | 
|  | vmcs_writel(GUEST_RIP, vcpu->arch.rip); | 
|  | } | 
|  |  | 
|  | static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) | 
|  | { | 
|  | unsigned long dr7 = 0x400; | 
|  | int old_singlestep; | 
|  |  | 
|  | old_singlestep = vcpu->guest_debug.singlestep; | 
|  |  | 
|  | vcpu->guest_debug.enabled = dbg->enabled; | 
|  | if (vcpu->guest_debug.enabled) { | 
|  | int i; | 
|  |  | 
|  | dr7 |= 0x200;  /* exact */ | 
|  | for (i = 0; i < 4; ++i) { | 
|  | if (!dbg->breakpoints[i].enabled) | 
|  | continue; | 
|  | vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address; | 
|  | dr7 |= 2 << (i*2);    /* global enable */ | 
|  | dr7 |= 0 << (i*4+16); /* execution breakpoint */ | 
|  | } | 
|  |  | 
|  | vcpu->guest_debug.singlestep = dbg->singlestep; | 
|  | } else | 
|  | vcpu->guest_debug.singlestep = 0; | 
|  |  | 
|  | if (old_singlestep && !vcpu->guest_debug.singlestep) { | 
|  | unsigned long flags; | 
|  |  | 
|  | flags = vmcs_readl(GUEST_RFLAGS); | 
|  | flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); | 
|  | vmcs_writel(GUEST_RFLAGS, flags); | 
|  | } | 
|  |  | 
|  | update_exception_bitmap(vcpu); | 
|  | vmcs_writel(GUEST_DR7, dr7); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmx_get_irq(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 idtv_info_field; | 
|  |  | 
|  | idtv_info_field = vmx->idt_vectoring_info; | 
|  | if (idtv_info_field & INTR_INFO_VALID_MASK) { | 
|  | if (is_external_interrupt(idtv_info_field)) | 
|  | return idtv_info_field & VECTORING_INFO_VECTOR_MASK; | 
|  | else | 
|  | printk(KERN_DEBUG "pending exception: not handled yet\n"); | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static __init int cpu_has_kvm_support(void) | 
|  | { | 
|  | unsigned long ecx = cpuid_ecx(1); | 
|  | return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */ | 
|  | } | 
|  |  | 
|  | static __init int vmx_disabled_by_bios(void) | 
|  | { | 
|  | u64 msr; | 
|  |  | 
|  | rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); | 
|  | return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED | | 
|  | MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED)) | 
|  | == MSR_IA32_FEATURE_CONTROL_LOCKED; | 
|  | /* locked but not enabled */ | 
|  | } | 
|  |  | 
|  | static void hardware_enable(void *garbage) | 
|  | { | 
|  | int cpu = raw_smp_processor_id(); | 
|  | u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 
|  | u64 old; | 
|  |  | 
|  | rdmsrl(MSR_IA32_FEATURE_CONTROL, old); | 
|  | if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED | | 
|  | MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED)) | 
|  | != (MSR_IA32_FEATURE_CONTROL_LOCKED | | 
|  | MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED)) | 
|  | /* enable and lock */ | 
|  | wrmsrl(MSR_IA32_FEATURE_CONTROL, old | | 
|  | MSR_IA32_FEATURE_CONTROL_LOCKED | | 
|  | MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED); | 
|  | write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */ | 
|  | asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr) | 
|  | : "memory", "cc"); | 
|  | } | 
|  |  | 
|  | static void hardware_disable(void *garbage) | 
|  | { | 
|  | asm volatile (ASM_VMX_VMXOFF : : : "cc"); | 
|  | } | 
|  |  | 
|  | static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, | 
|  | u32 msr, u32 *result) | 
|  | { | 
|  | u32 vmx_msr_low, vmx_msr_high; | 
|  | u32 ctl = ctl_min | ctl_opt; | 
|  |  | 
|  | rdmsr(msr, vmx_msr_low, vmx_msr_high); | 
|  |  | 
|  | ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ | 
|  | ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */ | 
|  |  | 
|  | /* Ensure minimum (required) set of control bits are supported. */ | 
|  | if (ctl_min & ~ctl) | 
|  | return -EIO; | 
|  |  | 
|  | *result = ctl; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) | 
|  | { | 
|  | u32 vmx_msr_low, vmx_msr_high; | 
|  | u32 min, opt; | 
|  | u32 _pin_based_exec_control = 0; | 
|  | u32 _cpu_based_exec_control = 0; | 
|  | u32 _cpu_based_2nd_exec_control = 0; | 
|  | u32 _vmexit_control = 0; | 
|  | u32 _vmentry_control = 0; | 
|  |  | 
|  | min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; | 
|  | opt = 0; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, | 
|  | &_pin_based_exec_control) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | min = CPU_BASED_HLT_EXITING | | 
|  | #ifdef CONFIG_X86_64 | 
|  | CPU_BASED_CR8_LOAD_EXITING | | 
|  | CPU_BASED_CR8_STORE_EXITING | | 
|  | #endif | 
|  | CPU_BASED_USE_IO_BITMAPS | | 
|  | CPU_BASED_MOV_DR_EXITING | | 
|  | CPU_BASED_USE_TSC_OFFSETING; | 
|  | opt = CPU_BASED_TPR_SHADOW | | 
|  | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, | 
|  | &_cpu_based_exec_control) < 0) | 
|  | return -EIO; | 
|  | #ifdef CONFIG_X86_64 | 
|  | if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) | 
|  | _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & | 
|  | ~CPU_BASED_CR8_STORE_EXITING; | 
|  | #endif | 
|  | if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { | 
|  | min = 0; | 
|  | opt = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | | 
|  | SECONDARY_EXEC_WBINVD_EXITING; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS2, | 
|  | &_cpu_based_2nd_exec_control) < 0) | 
|  | return -EIO; | 
|  | } | 
|  | #ifndef CONFIG_X86_64 | 
|  | if (!(_cpu_based_2nd_exec_control & | 
|  | SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) | 
|  | _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; | 
|  | #endif | 
|  |  | 
|  | min = 0; | 
|  | #ifdef CONFIG_X86_64 | 
|  | min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; | 
|  | #endif | 
|  | opt = 0; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, | 
|  | &_vmexit_control) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | min = opt = 0; | 
|  | if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, | 
|  | &_vmentry_control) < 0) | 
|  | return -EIO; | 
|  |  | 
|  | rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); | 
|  |  | 
|  | /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ | 
|  | if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) | 
|  | return -EIO; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ | 
|  | if (vmx_msr_high & (1u<<16)) | 
|  | return -EIO; | 
|  | #endif | 
|  |  | 
|  | /* Require Write-Back (WB) memory type for VMCS accesses. */ | 
|  | if (((vmx_msr_high >> 18) & 15) != 6) | 
|  | return -EIO; | 
|  |  | 
|  | vmcs_conf->size = vmx_msr_high & 0x1fff; | 
|  | vmcs_conf->order = get_order(vmcs_config.size); | 
|  | vmcs_conf->revision_id = vmx_msr_low; | 
|  |  | 
|  | vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; | 
|  | vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; | 
|  | vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; | 
|  | vmcs_conf->vmexit_ctrl         = _vmexit_control; | 
|  | vmcs_conf->vmentry_ctrl        = _vmentry_control; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct vmcs *alloc_vmcs_cpu(int cpu) | 
|  | { | 
|  | int node = cpu_to_node(cpu); | 
|  | struct page *pages; | 
|  | struct vmcs *vmcs; | 
|  |  | 
|  | pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order); | 
|  | if (!pages) | 
|  | return NULL; | 
|  | vmcs = page_address(pages); | 
|  | memset(vmcs, 0, vmcs_config.size); | 
|  | vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ | 
|  | return vmcs; | 
|  | } | 
|  |  | 
|  | static struct vmcs *alloc_vmcs(void) | 
|  | { | 
|  | return alloc_vmcs_cpu(raw_smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static void free_vmcs(struct vmcs *vmcs) | 
|  | { | 
|  | free_pages((unsigned long)vmcs, vmcs_config.order); | 
|  | } | 
|  |  | 
|  | static void free_kvm_area(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) | 
|  | free_vmcs(per_cpu(vmxarea, cpu)); | 
|  | } | 
|  |  | 
|  | static __init int alloc_kvm_area(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | struct vmcs *vmcs; | 
|  |  | 
|  | vmcs = alloc_vmcs_cpu(cpu); | 
|  | if (!vmcs) { | 
|  | free_kvm_area(); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | per_cpu(vmxarea, cpu) = vmcs; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static __init int hardware_setup(void) | 
|  | { | 
|  | if (setup_vmcs_config(&vmcs_config) < 0) | 
|  | return -EIO; | 
|  | return alloc_kvm_area(); | 
|  | } | 
|  |  | 
|  | static __exit void hardware_unsetup(void) | 
|  | { | 
|  | free_kvm_area(); | 
|  | } | 
|  |  | 
|  | static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  |  | 
|  | if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) { | 
|  | vmcs_write16(sf->selector, save->selector); | 
|  | vmcs_writel(sf->base, save->base); | 
|  | vmcs_write32(sf->limit, save->limit); | 
|  | vmcs_write32(sf->ar_bytes, save->ar); | 
|  | } else { | 
|  | u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK) | 
|  | << AR_DPL_SHIFT; | 
|  | vmcs_write32(sf->ar_bytes, 0x93 | dpl); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void enter_pmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | vcpu->arch.rmode.active = 0; | 
|  |  | 
|  | vmcs_writel(GUEST_TR_BASE, vcpu->arch.rmode.tr.base); | 
|  | vmcs_write32(GUEST_TR_LIMIT, vcpu->arch.rmode.tr.limit); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, vcpu->arch.rmode.tr.ar); | 
|  |  | 
|  | flags = vmcs_readl(GUEST_RFLAGS); | 
|  | flags &= ~(X86_EFLAGS_IOPL | X86_EFLAGS_VM); | 
|  | flags |= (vcpu->arch.rmode.save_iopl << IOPL_SHIFT); | 
|  | vmcs_writel(GUEST_RFLAGS, flags); | 
|  |  | 
|  | vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | | 
|  | (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); | 
|  |  | 
|  | update_exception_bitmap(vcpu); | 
|  |  | 
|  | fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->arch.rmode.es); | 
|  | fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->arch.rmode.ds); | 
|  | fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->arch.rmode.gs); | 
|  | fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->arch.rmode.fs); | 
|  |  | 
|  | vmcs_write16(GUEST_SS_SELECTOR, 0); | 
|  | vmcs_write32(GUEST_SS_AR_BYTES, 0x93); | 
|  |  | 
|  | vmcs_write16(GUEST_CS_SELECTOR, | 
|  | vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK); | 
|  | vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); | 
|  | } | 
|  |  | 
|  | static gva_t rmode_tss_base(struct kvm *kvm) | 
|  | { | 
|  | if (!kvm->arch.tss_addr) { | 
|  | gfn_t base_gfn = kvm->memslots[0].base_gfn + | 
|  | kvm->memslots[0].npages - 3; | 
|  | return base_gfn << PAGE_SHIFT; | 
|  | } | 
|  | return kvm->arch.tss_addr; | 
|  | } | 
|  |  | 
|  | static void fix_rmode_seg(int seg, struct kvm_save_segment *save) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  |  | 
|  | save->selector = vmcs_read16(sf->selector); | 
|  | save->base = vmcs_readl(sf->base); | 
|  | save->limit = vmcs_read32(sf->limit); | 
|  | save->ar = vmcs_read32(sf->ar_bytes); | 
|  | vmcs_write16(sf->selector, save->base >> 4); | 
|  | vmcs_write32(sf->base, save->base & 0xfffff); | 
|  | vmcs_write32(sf->limit, 0xffff); | 
|  | vmcs_write32(sf->ar_bytes, 0xf3); | 
|  | } | 
|  |  | 
|  | static void enter_rmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | vcpu->arch.rmode.active = 1; | 
|  |  | 
|  | vcpu->arch.rmode.tr.base = vmcs_readl(GUEST_TR_BASE); | 
|  | vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm)); | 
|  |  | 
|  | vcpu->arch.rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT); | 
|  | vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); | 
|  |  | 
|  | vcpu->arch.rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
|  |  | 
|  | flags = vmcs_readl(GUEST_RFLAGS); | 
|  | vcpu->arch.rmode.save_iopl | 
|  | = (flags & X86_EFLAGS_IOPL) >> IOPL_SHIFT; | 
|  |  | 
|  | flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; | 
|  |  | 
|  | vmcs_writel(GUEST_RFLAGS, flags); | 
|  | vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); | 
|  | update_exception_bitmap(vcpu); | 
|  |  | 
|  | vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4); | 
|  | vmcs_write32(GUEST_SS_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_SS_AR_BYTES, 0xf3); | 
|  |  | 
|  | vmcs_write32(GUEST_CS_AR_BYTES, 0xf3); | 
|  | vmcs_write32(GUEST_CS_LIMIT, 0xffff); | 
|  | if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000) | 
|  | vmcs_writel(GUEST_CS_BASE, 0xf0000); | 
|  | vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4); | 
|  |  | 
|  | fix_rmode_seg(VCPU_SREG_ES, &vcpu->arch.rmode.es); | 
|  | fix_rmode_seg(VCPU_SREG_DS, &vcpu->arch.rmode.ds); | 
|  | fix_rmode_seg(VCPU_SREG_GS, &vcpu->arch.rmode.gs); | 
|  | fix_rmode_seg(VCPU_SREG_FS, &vcpu->arch.rmode.fs); | 
|  |  | 
|  | kvm_mmu_reset_context(vcpu); | 
|  | init_rmode_tss(vcpu->kvm); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  |  | 
|  | static void enter_lmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 guest_tr_ar; | 
|  |  | 
|  | guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
|  | if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { | 
|  | printk(KERN_DEBUG "%s: tss fixup for long mode. \n", | 
|  | __FUNCTION__); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, | 
|  | (guest_tr_ar & ~AR_TYPE_MASK) | 
|  | | AR_TYPE_BUSY_64_TSS); | 
|  | } | 
|  |  | 
|  | vcpu->arch.shadow_efer |= EFER_LMA; | 
|  |  | 
|  | find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME; | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) | 
|  | | VM_ENTRY_IA32E_MODE); | 
|  | } | 
|  |  | 
|  | static void exit_lmode(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.shadow_efer &= ~EFER_LMA; | 
|  |  | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) | 
|  | & ~VM_ENTRY_IA32E_MODE); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | vcpu->arch.cr4 &= KVM_GUEST_CR4_MASK; | 
|  | vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK; | 
|  | } | 
|  |  | 
|  | static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
|  | { | 
|  | vmx_fpu_deactivate(vcpu); | 
|  |  | 
|  | if (vcpu->arch.rmode.active && (cr0 & X86_CR0_PE)) | 
|  | enter_pmode(vcpu); | 
|  |  | 
|  | if (!vcpu->arch.rmode.active && !(cr0 & X86_CR0_PE)) | 
|  | enter_rmode(vcpu); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | if (vcpu->arch.shadow_efer & EFER_LME) { | 
|  | if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) | 
|  | enter_lmode(vcpu); | 
|  | if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) | 
|  | exit_lmode(vcpu); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | vmcs_writel(CR0_READ_SHADOW, cr0); | 
|  | vmcs_writel(GUEST_CR0, | 
|  | (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON); | 
|  | vcpu->arch.cr0 = cr0; | 
|  |  | 
|  | if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE)) | 
|  | vmx_fpu_activate(vcpu); | 
|  | } | 
|  |  | 
|  | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
|  | { | 
|  | vmcs_writel(GUEST_CR3, cr3); | 
|  | if (vcpu->arch.cr0 & X86_CR0_PE) | 
|  | vmx_fpu_deactivate(vcpu); | 
|  | } | 
|  |  | 
|  | static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
|  | { | 
|  | vmcs_writel(CR4_READ_SHADOW, cr4); | 
|  | vmcs_writel(GUEST_CR4, cr4 | (vcpu->arch.rmode.active ? | 
|  | KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON)); | 
|  | vcpu->arch.cr4 = cr4; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  |  | 
|  | static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); | 
|  |  | 
|  | vcpu->arch.shadow_efer = efer; | 
|  | if (efer & EFER_LMA) { | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) | | 
|  | VM_ENTRY_IA32E_MODE); | 
|  | msr->data = efer; | 
|  |  | 
|  | } else { | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, | 
|  | vmcs_read32(VM_ENTRY_CONTROLS) & | 
|  | ~VM_ENTRY_IA32E_MODE); | 
|  |  | 
|  | msr->data = efer & ~EFER_LME; | 
|  | } | 
|  | setup_msrs(vmx); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  |  | 
|  | return vmcs_readl(sf->base); | 
|  | } | 
|  |  | 
|  | static void vmx_get_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  | u32 ar; | 
|  |  | 
|  | var->base = vmcs_readl(sf->base); | 
|  | var->limit = vmcs_read32(sf->limit); | 
|  | var->selector = vmcs_read16(sf->selector); | 
|  | ar = vmcs_read32(sf->ar_bytes); | 
|  | if (ar & AR_UNUSABLE_MASK) | 
|  | ar = 0; | 
|  | var->type = ar & 15; | 
|  | var->s = (ar >> 4) & 1; | 
|  | var->dpl = (ar >> 5) & 3; | 
|  | var->present = (ar >> 7) & 1; | 
|  | var->avl = (ar >> 12) & 1; | 
|  | var->l = (ar >> 13) & 1; | 
|  | var->db = (ar >> 14) & 1; | 
|  | var->g = (ar >> 15) & 1; | 
|  | var->unusable = (ar >> 16) & 1; | 
|  | } | 
|  |  | 
|  | static u32 vmx_segment_access_rights(struct kvm_segment *var) | 
|  | { | 
|  | u32 ar; | 
|  |  | 
|  | if (var->unusable) | 
|  | ar = 1 << 16; | 
|  | else { | 
|  | ar = var->type & 15; | 
|  | ar |= (var->s & 1) << 4; | 
|  | ar |= (var->dpl & 3) << 5; | 
|  | ar |= (var->present & 1) << 7; | 
|  | ar |= (var->avl & 1) << 12; | 
|  | ar |= (var->l & 1) << 13; | 
|  | ar |= (var->db & 1) << 14; | 
|  | ar |= (var->g & 1) << 15; | 
|  | } | 
|  | if (ar == 0) /* a 0 value means unusable */ | 
|  | ar = AR_UNUSABLE_MASK; | 
|  |  | 
|  | return ar; | 
|  | } | 
|  |  | 
|  | static void vmx_set_segment(struct kvm_vcpu *vcpu, | 
|  | struct kvm_segment *var, int seg) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  | u32 ar; | 
|  |  | 
|  | if (vcpu->arch.rmode.active && seg == VCPU_SREG_TR) { | 
|  | vcpu->arch.rmode.tr.selector = var->selector; | 
|  | vcpu->arch.rmode.tr.base = var->base; | 
|  | vcpu->arch.rmode.tr.limit = var->limit; | 
|  | vcpu->arch.rmode.tr.ar = vmx_segment_access_rights(var); | 
|  | return; | 
|  | } | 
|  | vmcs_writel(sf->base, var->base); | 
|  | vmcs_write32(sf->limit, var->limit); | 
|  | vmcs_write16(sf->selector, var->selector); | 
|  | if (vcpu->arch.rmode.active && var->s) { | 
|  | /* | 
|  | * Hack real-mode segments into vm86 compatibility. | 
|  | */ | 
|  | if (var->base == 0xffff0000 && var->selector == 0xf000) | 
|  | vmcs_writel(sf->base, 0xf0000); | 
|  | ar = 0xf3; | 
|  | } else | 
|  | ar = vmx_segment_access_rights(var); | 
|  | vmcs_write32(sf->ar_bytes, ar); | 
|  | } | 
|  |  | 
|  | static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
|  | { | 
|  | u32 ar = vmcs_read32(GUEST_CS_AR_BYTES); | 
|  |  | 
|  | *db = (ar >> 14) & 1; | 
|  | *l = (ar >> 13) & 1; | 
|  | } | 
|  |  | 
|  | static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
|  | { | 
|  | dt->limit = vmcs_read32(GUEST_IDTR_LIMIT); | 
|  | dt->base = vmcs_readl(GUEST_IDTR_BASE); | 
|  | } | 
|  |  | 
|  | static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
|  | { | 
|  | vmcs_write32(GUEST_IDTR_LIMIT, dt->limit); | 
|  | vmcs_writel(GUEST_IDTR_BASE, dt->base); | 
|  | } | 
|  |  | 
|  | static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
|  | { | 
|  | dt->limit = vmcs_read32(GUEST_GDTR_LIMIT); | 
|  | dt->base = vmcs_readl(GUEST_GDTR_BASE); | 
|  | } | 
|  |  | 
|  | static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) | 
|  | { | 
|  | vmcs_write32(GUEST_GDTR_LIMIT, dt->limit); | 
|  | vmcs_writel(GUEST_GDTR_BASE, dt->base); | 
|  | } | 
|  |  | 
|  | static int init_rmode_tss(struct kvm *kvm) | 
|  | { | 
|  | gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT; | 
|  | u16 data = 0; | 
|  | int ret = 0; | 
|  | int r; | 
|  |  | 
|  | down_read(&kvm->slots_lock); | 
|  | r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; | 
|  | r = kvm_write_guest_page(kvm, fn++, &data, 0x66, sizeof(u16)); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); | 
|  | if (r < 0) | 
|  | goto out; | 
|  | data = ~0; | 
|  | r = kvm_write_guest_page(kvm, fn, &data, | 
|  | RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, | 
|  | sizeof(u8)); | 
|  | if (r < 0) | 
|  | goto out; | 
|  |  | 
|  | ret = 1; | 
|  | out: | 
|  | up_read(&kvm->slots_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void seg_setup(int seg) | 
|  | { | 
|  | struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
|  |  | 
|  | vmcs_write16(sf->selector, 0); | 
|  | vmcs_writel(sf->base, 0); | 
|  | vmcs_write32(sf->limit, 0xffff); | 
|  | vmcs_write32(sf->ar_bytes, 0x93); | 
|  | } | 
|  |  | 
|  | static int alloc_apic_access_page(struct kvm *kvm) | 
|  | { | 
|  | struct kvm_userspace_memory_region kvm_userspace_mem; | 
|  | int r = 0; | 
|  |  | 
|  | down_write(&kvm->slots_lock); | 
|  | if (kvm->arch.apic_access_page) | 
|  | goto out; | 
|  | kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; | 
|  | kvm_userspace_mem.flags = 0; | 
|  | kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL; | 
|  | kvm_userspace_mem.memory_size = PAGE_SIZE; | 
|  | r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0); | 
|  | if (r) | 
|  | goto out; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  | out: | 
|  | up_write(&kvm->slots_lock); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets up the vmcs for emulated real mode. | 
|  | */ | 
|  | static int vmx_vcpu_setup(struct vcpu_vmx *vmx) | 
|  | { | 
|  | u32 host_sysenter_cs; | 
|  | u32 junk; | 
|  | unsigned long a; | 
|  | struct descriptor_table dt; | 
|  | int i; | 
|  | unsigned long kvm_vmx_return; | 
|  | u32 exec_control; | 
|  |  | 
|  | /* I/O */ | 
|  | vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a)); | 
|  | vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b)); | 
|  |  | 
|  | vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ | 
|  |  | 
|  | /* Control */ | 
|  | vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, | 
|  | vmcs_config.pin_based_exec_ctrl); | 
|  |  | 
|  | exec_control = vmcs_config.cpu_based_exec_ctrl; | 
|  | if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { | 
|  | exec_control &= ~CPU_BASED_TPR_SHADOW; | 
|  | #ifdef CONFIG_X86_64 | 
|  | exec_control |= CPU_BASED_CR8_STORE_EXITING | | 
|  | CPU_BASED_CR8_LOAD_EXITING; | 
|  | #endif | 
|  | } | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); | 
|  |  | 
|  | if (cpu_has_secondary_exec_ctrls()) { | 
|  | exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; | 
|  | if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) | 
|  | exec_control &= | 
|  | ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
|  | vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); | 
|  | } | 
|  |  | 
|  | vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf); | 
|  | vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf); | 
|  | vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */ | 
|  |  | 
|  | vmcs_writel(HOST_CR0, read_cr0());  /* 22.2.3 */ | 
|  | vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */ | 
|  | vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */ | 
|  |  | 
|  | vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
|  | vmcs_write16(HOST_FS_SELECTOR, read_fs());    /* 22.2.4 */ | 
|  | vmcs_write16(HOST_GS_SELECTOR, read_gs());    /* 22.2.4 */ | 
|  | vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | rdmsrl(MSR_FS_BASE, a); | 
|  | vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ | 
|  | rdmsrl(MSR_GS_BASE, a); | 
|  | vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ | 
|  | #else | 
|  | vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ | 
|  | vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ | 
|  | #endif | 
|  |  | 
|  | vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */ | 
|  |  | 
|  | get_idt(&dt); | 
|  | vmcs_writel(HOST_IDTR_BASE, dt.base);   /* 22.2.4 */ | 
|  |  | 
|  | asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return)); | 
|  | vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */ | 
|  | vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); | 
|  | vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); | 
|  | vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); | 
|  |  | 
|  | rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk); | 
|  | vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs); | 
|  | rdmsrl(MSR_IA32_SYSENTER_ESP, a); | 
|  | vmcs_writel(HOST_IA32_SYSENTER_ESP, a);   /* 22.2.3 */ | 
|  | rdmsrl(MSR_IA32_SYSENTER_EIP, a); | 
|  | vmcs_writel(HOST_IA32_SYSENTER_EIP, a);   /* 22.2.3 */ | 
|  |  | 
|  | for (i = 0; i < NR_VMX_MSR; ++i) { | 
|  | u32 index = vmx_msr_index[i]; | 
|  | u32 data_low, data_high; | 
|  | u64 data; | 
|  | int j = vmx->nmsrs; | 
|  |  | 
|  | if (rdmsr_safe(index, &data_low, &data_high) < 0) | 
|  | continue; | 
|  | if (wrmsr_safe(index, data_low, data_high) < 0) | 
|  | continue; | 
|  | data = data_low | ((u64)data_high << 32); | 
|  | vmx->host_msrs[j].index = index; | 
|  | vmx->host_msrs[j].reserved = 0; | 
|  | vmx->host_msrs[j].data = data; | 
|  | vmx->guest_msrs[j] = vmx->host_msrs[j]; | 
|  | ++vmx->nmsrs; | 
|  | } | 
|  |  | 
|  | vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); | 
|  |  | 
|  | /* 22.2.1, 20.8.1 */ | 
|  | vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl); | 
|  |  | 
|  | vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); | 
|  | vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK); | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int vmx_vcpu_reset(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u64 msr; | 
|  | int ret; | 
|  |  | 
|  | if (!init_rmode_tss(vmx->vcpu.kvm)) { | 
|  | ret = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | vmx->vcpu.arch.rmode.active = 0; | 
|  |  | 
|  | vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); | 
|  | set_cr8(&vmx->vcpu, 0); | 
|  | msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; | 
|  | if (vmx->vcpu.vcpu_id == 0) | 
|  | msr |= MSR_IA32_APICBASE_BSP; | 
|  | kvm_set_apic_base(&vmx->vcpu, msr); | 
|  |  | 
|  | fx_init(&vmx->vcpu); | 
|  |  | 
|  | /* | 
|  | * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode | 
|  | * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh. | 
|  | */ | 
|  | if (vmx->vcpu.vcpu_id == 0) { | 
|  | vmcs_write16(GUEST_CS_SELECTOR, 0xf000); | 
|  | vmcs_writel(GUEST_CS_BASE, 0x000f0000); | 
|  | } else { | 
|  | vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8); | 
|  | vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12); | 
|  | } | 
|  | vmcs_write32(GUEST_CS_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_CS_AR_BYTES, 0x9b); | 
|  |  | 
|  | seg_setup(VCPU_SREG_DS); | 
|  | seg_setup(VCPU_SREG_ES); | 
|  | seg_setup(VCPU_SREG_FS); | 
|  | seg_setup(VCPU_SREG_GS); | 
|  | seg_setup(VCPU_SREG_SS); | 
|  |  | 
|  | vmcs_write16(GUEST_TR_SELECTOR, 0); | 
|  | vmcs_writel(GUEST_TR_BASE, 0); | 
|  | vmcs_write32(GUEST_TR_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
|  |  | 
|  | vmcs_write16(GUEST_LDTR_SELECTOR, 0); | 
|  | vmcs_writel(GUEST_LDTR_BASE, 0); | 
|  | vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); | 
|  | vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); | 
|  |  | 
|  | vmcs_write32(GUEST_SYSENTER_CS, 0); | 
|  | vmcs_writel(GUEST_SYSENTER_ESP, 0); | 
|  | vmcs_writel(GUEST_SYSENTER_EIP, 0); | 
|  |  | 
|  | vmcs_writel(GUEST_RFLAGS, 0x02); | 
|  | if (vmx->vcpu.vcpu_id == 0) | 
|  | vmcs_writel(GUEST_RIP, 0xfff0); | 
|  | else | 
|  | vmcs_writel(GUEST_RIP, 0); | 
|  | vmcs_writel(GUEST_RSP, 0); | 
|  |  | 
|  | /* todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0 */ | 
|  | vmcs_writel(GUEST_DR7, 0x400); | 
|  |  | 
|  | vmcs_writel(GUEST_GDTR_BASE, 0); | 
|  | vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); | 
|  |  | 
|  | vmcs_writel(GUEST_IDTR_BASE, 0); | 
|  | vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); | 
|  |  | 
|  | vmcs_write32(GUEST_ACTIVITY_STATE, 0); | 
|  | vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); | 
|  | vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); | 
|  |  | 
|  | guest_write_tsc(0); | 
|  |  | 
|  | /* Special registers */ | 
|  | vmcs_write64(GUEST_IA32_DEBUGCTL, 0); | 
|  |  | 
|  | setup_msrs(vmx); | 
|  |  | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */ | 
|  |  | 
|  | if (cpu_has_vmx_tpr_shadow()) { | 
|  | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); | 
|  | if (vm_need_tpr_shadow(vmx->vcpu.kvm)) | 
|  | vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, | 
|  | page_to_phys(vmx->vcpu.arch.apic->regs_page)); | 
|  | vmcs_write32(TPR_THRESHOLD, 0); | 
|  | } | 
|  |  | 
|  | if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) | 
|  | vmcs_write64(APIC_ACCESS_ADDR, | 
|  | page_to_phys(vmx->vcpu.kvm->arch.apic_access_page)); | 
|  |  | 
|  | vmx->vcpu.arch.cr0 = 0x60000010; | 
|  | vmx_set_cr0(&vmx->vcpu, vmx->vcpu.arch.cr0); /* enter rmode */ | 
|  | vmx_set_cr4(&vmx->vcpu, 0); | 
|  | #ifdef CONFIG_X86_64 | 
|  | vmx_set_efer(&vmx->vcpu, 0); | 
|  | #endif | 
|  | vmx_fpu_activate(&vmx->vcpu); | 
|  | update_exception_bitmap(&vmx->vcpu); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (vcpu->arch.rmode.active) { | 
|  | vmx->rmode.irq.pending = true; | 
|  | vmx->rmode.irq.vector = irq; | 
|  | vmx->rmode.irq.rip = vmcs_readl(GUEST_RIP); | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
|  | irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK); | 
|  | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1); | 
|  | vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip - 1); | 
|  | return; | 
|  | } | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
|  | irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); | 
|  | } | 
|  |  | 
|  | static void kvm_do_inject_irq(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int word_index = __ffs(vcpu->arch.irq_summary); | 
|  | int bit_index = __ffs(vcpu->arch.irq_pending[word_index]); | 
|  | int irq = word_index * BITS_PER_LONG + bit_index; | 
|  |  | 
|  | clear_bit(bit_index, &vcpu->arch.irq_pending[word_index]); | 
|  | if (!vcpu->arch.irq_pending[word_index]) | 
|  | clear_bit(word_index, &vcpu->arch.irq_summary); | 
|  | vmx_inject_irq(vcpu, irq); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void do_interrupt_requests(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  |  | 
|  | vcpu->arch.interrupt_window_open = | 
|  | ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && | 
|  | (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0); | 
|  |  | 
|  | if (vcpu->arch.interrupt_window_open && | 
|  | vcpu->arch.irq_summary && | 
|  | !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK)) | 
|  | /* | 
|  | * If interrupts enabled, and not blocked by sti or mov ss. Good. | 
|  | */ | 
|  | kvm_do_inject_irq(vcpu); | 
|  |  | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | if (!vcpu->arch.interrupt_window_open && | 
|  | (vcpu->arch.irq_summary || kvm_run->request_interrupt_window)) | 
|  | /* | 
|  | * Interrupts blocked.  Wait for unblock. | 
|  | */ | 
|  | cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | else | 
|  | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  | } | 
|  |  | 
|  | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
|  | { | 
|  | int ret; | 
|  | struct kvm_userspace_memory_region tss_mem = { | 
|  | .slot = 8, | 
|  | .guest_phys_addr = addr, | 
|  | .memory_size = PAGE_SIZE * 3, | 
|  | .flags = 0, | 
|  | }; | 
|  |  | 
|  | ret = kvm_set_memory_region(kvm, &tss_mem, 0); | 
|  | if (ret) | 
|  | return ret; | 
|  | kvm->arch.tss_addr = addr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct kvm_guest_debug *dbg = &vcpu->guest_debug; | 
|  |  | 
|  | set_debugreg(dbg->bp[0], 0); | 
|  | set_debugreg(dbg->bp[1], 1); | 
|  | set_debugreg(dbg->bp[2], 2); | 
|  | set_debugreg(dbg->bp[3], 3); | 
|  |  | 
|  | if (dbg->singlestep) { | 
|  | unsigned long flags; | 
|  |  | 
|  | flags = vmcs_readl(GUEST_RFLAGS); | 
|  | flags |= X86_EFLAGS_TF | X86_EFLAGS_RF; | 
|  | vmcs_writel(GUEST_RFLAGS, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int handle_rmode_exception(struct kvm_vcpu *vcpu, | 
|  | int vec, u32 err_code) | 
|  | { | 
|  | if (!vcpu->arch.rmode.active) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Instruction with address size override prefix opcode 0x67 | 
|  | * Cause the #SS fault with 0 error code in VM86 mode. | 
|  | */ | 
|  | if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) | 
|  | if (emulate_instruction(vcpu, NULL, 0, 0, 0) == EMULATE_DONE) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 intr_info, error_code; | 
|  | unsigned long cr2, rip; | 
|  | u32 vect_info; | 
|  | enum emulation_result er; | 
|  |  | 
|  | vect_info = vmx->idt_vectoring_info; | 
|  | intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  |  | 
|  | if ((vect_info & VECTORING_INFO_VALID_MASK) && | 
|  | !is_page_fault(intr_info)) | 
|  | printk(KERN_ERR "%s: unexpected, vectoring info 0x%x " | 
|  | "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info); | 
|  |  | 
|  | if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) { | 
|  | int irq = vect_info & VECTORING_INFO_VECTOR_MASK; | 
|  | set_bit(irq, vcpu->arch.irq_pending); | 
|  | set_bit(irq / BITS_PER_LONG, &vcpu->arch.irq_summary); | 
|  | } | 
|  |  | 
|  | if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */ | 
|  | return 1;  /* already handled by vmx_vcpu_run() */ | 
|  |  | 
|  | if (is_no_device(intr_info)) { | 
|  | vmx_fpu_activate(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (is_invalid_opcode(intr_info)) { | 
|  | er = emulate_instruction(vcpu, kvm_run, 0, 0, EMULTYPE_TRAP_UD); | 
|  | if (er != EMULATE_DONE) | 
|  | kvm_queue_exception(vcpu, UD_VECTOR); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | error_code = 0; | 
|  | rip = vmcs_readl(GUEST_RIP); | 
|  | if (intr_info & INTR_INFO_DELIEVER_CODE_MASK) | 
|  | error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); | 
|  | if (is_page_fault(intr_info)) { | 
|  | cr2 = vmcs_readl(EXIT_QUALIFICATION); | 
|  | return kvm_mmu_page_fault(vcpu, cr2, error_code); | 
|  | } | 
|  |  | 
|  | if (vcpu->arch.rmode.active && | 
|  | handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK, | 
|  | error_code)) { | 
|  | if (vcpu->arch.halt_request) { | 
|  | vcpu->arch.halt_request = 0; | 
|  | return kvm_emulate_halt(vcpu); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == | 
|  | (INTR_TYPE_EXCEPTION | 1)) { | 
|  | kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
|  | return 0; | 
|  | } | 
|  | kvm_run->exit_reason = KVM_EXIT_EXCEPTION; | 
|  | kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK; | 
|  | kvm_run->ex.error_code = error_code; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_external_interrupt(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) | 
|  | { | 
|  | ++vcpu->stat.irq_exits; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | unsigned long exit_qualification; | 
|  | int size, down, in, string, rep; | 
|  | unsigned port; | 
|  |  | 
|  | ++vcpu->stat.io_exits; | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | string = (exit_qualification & 16) != 0; | 
|  |  | 
|  | if (string) { | 
|  | if (emulate_instruction(vcpu, | 
|  | kvm_run, 0, 0, 0) == EMULATE_DO_MMIO) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size = (exit_qualification & 7) + 1; | 
|  | in = (exit_qualification & 8) != 0; | 
|  | down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0; | 
|  | rep = (exit_qualification & 32) != 0; | 
|  | port = exit_qualification >> 16; | 
|  |  | 
|  | return kvm_emulate_pio(vcpu, kvm_run, in, size, port); | 
|  | } | 
|  |  | 
|  | static void | 
|  | vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
|  | { | 
|  | /* | 
|  | * Patch in the VMCALL instruction: | 
|  | */ | 
|  | hypercall[0] = 0x0f; | 
|  | hypercall[1] = 0x01; | 
|  | hypercall[2] = 0xc1; | 
|  | } | 
|  |  | 
|  | static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | unsigned long exit_qualification; | 
|  | int cr; | 
|  | int reg; | 
|  |  | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | cr = exit_qualification & 15; | 
|  | reg = (exit_qualification >> 8) & 15; | 
|  | switch ((exit_qualification >> 4) & 3) { | 
|  | case 0: /* mov to cr */ | 
|  | switch (cr) { | 
|  | case 0: | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | set_cr0(vcpu, vcpu->arch.regs[reg]); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | case 3: | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | set_cr3(vcpu, vcpu->arch.regs[reg]); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | case 4: | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | set_cr4(vcpu, vcpu->arch.regs[reg]); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | case 8: | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | set_cr8(vcpu, vcpu->arch.regs[reg]); | 
|  | skip_emulated_instruction(vcpu); | 
|  | if (irqchip_in_kernel(vcpu->kvm)) | 
|  | return 1; | 
|  | kvm_run->exit_reason = KVM_EXIT_SET_TPR; | 
|  | return 0; | 
|  | }; | 
|  | break; | 
|  | case 2: /* clts */ | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | vmx_fpu_deactivate(vcpu); | 
|  | vcpu->arch.cr0 &= ~X86_CR0_TS; | 
|  | vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); | 
|  | vmx_fpu_activate(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | case 1: /*mov from cr*/ | 
|  | switch (cr) { | 
|  | case 3: | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | vcpu->arch.regs[reg] = vcpu->arch.cr3; | 
|  | vcpu_put_rsp_rip(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | case 8: | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | vcpu->arch.regs[reg] = get_cr8(vcpu); | 
|  | vcpu_put_rsp_rip(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  | break; | 
|  | case 3: /* lmsw */ | 
|  | lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f); | 
|  |  | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | kvm_run->exit_reason = 0; | 
|  | pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n", | 
|  | (int)(exit_qualification >> 4) & 3, cr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | unsigned long exit_qualification; | 
|  | unsigned long val; | 
|  | int dr, reg; | 
|  |  | 
|  | /* | 
|  | * FIXME: this code assumes the host is debugging the guest. | 
|  | *        need to deal with guest debugging itself too. | 
|  | */ | 
|  | exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
|  | dr = exit_qualification & 7; | 
|  | reg = (exit_qualification >> 8) & 15; | 
|  | vcpu_load_rsp_rip(vcpu); | 
|  | if (exit_qualification & 16) { | 
|  | /* mov from dr */ | 
|  | switch (dr) { | 
|  | case 6: | 
|  | val = 0xffff0ff0; | 
|  | break; | 
|  | case 7: | 
|  | val = 0x400; | 
|  | break; | 
|  | default: | 
|  | val = 0; | 
|  | } | 
|  | vcpu->arch.regs[reg] = val; | 
|  | } else { | 
|  | /* mov to dr */ | 
|  | } | 
|  | vcpu_put_rsp_rip(vcpu); | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | kvm_emulate_cpuid(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
|  | u64 data; | 
|  |  | 
|  | if (vmx_get_msr(vcpu, ecx, &data)) { | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* FIXME: handling of bits 32:63 of rax, rdx */ | 
|  | vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u; | 
|  | vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u; | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
|  | u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | 
|  | | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); | 
|  |  | 
|  | if (vmx_set_msr(vcpu, ecx, data) != 0) { | 
|  | kvm_inject_gp(vcpu, 0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | skip_emulated_instruction(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_interrupt_window(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  |  | 
|  | /* clear pending irq */ | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  | /* | 
|  | * If the user space waits to inject interrupts, exit as soon as | 
|  | * possible | 
|  | */ | 
|  | if (kvm_run->request_interrupt_window && | 
|  | !vcpu->arch.irq_summary) { | 
|  | kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
|  | ++vcpu->stat.irq_window_exits; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | return kvm_emulate_halt(vcpu); | 
|  | } | 
|  |  | 
|  | static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | kvm_emulate_hypercall(vcpu); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_wbinvd(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | skip_emulated_instruction(vcpu); | 
|  | /* TODO: Add support for VT-d/pass-through device */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int handle_apic_access(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | u64 exit_qualification; | 
|  | enum emulation_result er; | 
|  | unsigned long offset; | 
|  |  | 
|  | exit_qualification = vmcs_read64(EXIT_QUALIFICATION); | 
|  | offset = exit_qualification & 0xffful; | 
|  |  | 
|  | er = emulate_instruction(vcpu, kvm_run, 0, 0, 0); | 
|  |  | 
|  | if (er !=  EMULATE_DONE) { | 
|  | printk(KERN_ERR | 
|  | "Fail to handle apic access vmexit! Offset is 0x%lx\n", | 
|  | offset); | 
|  | return -ENOTSUPP; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The exit handlers return 1 if the exit was handled fully and guest execution | 
|  | * may resume.  Otherwise they set the kvm_run parameter to indicate what needs | 
|  | * to be done to userspace and return 0. | 
|  | */ | 
|  | static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu, | 
|  | struct kvm_run *kvm_run) = { | 
|  | [EXIT_REASON_EXCEPTION_NMI]           = handle_exception, | 
|  | [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt, | 
|  | [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault, | 
|  | [EXIT_REASON_IO_INSTRUCTION]          = handle_io, | 
|  | [EXIT_REASON_CR_ACCESS]               = handle_cr, | 
|  | [EXIT_REASON_DR_ACCESS]               = handle_dr, | 
|  | [EXIT_REASON_CPUID]                   = handle_cpuid, | 
|  | [EXIT_REASON_MSR_READ]                = handle_rdmsr, | 
|  | [EXIT_REASON_MSR_WRITE]               = handle_wrmsr, | 
|  | [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window, | 
|  | [EXIT_REASON_HLT]                     = handle_halt, | 
|  | [EXIT_REASON_VMCALL]                  = handle_vmcall, | 
|  | [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold, | 
|  | [EXIT_REASON_APIC_ACCESS]             = handle_apic_access, | 
|  | [EXIT_REASON_WBINVD]                  = handle_wbinvd, | 
|  | }; | 
|  |  | 
|  | static const int kvm_vmx_max_exit_handlers = | 
|  | ARRAY_SIZE(kvm_vmx_exit_handlers); | 
|  |  | 
|  | /* | 
|  | * The guest has exited.  See if we can fix it or if we need userspace | 
|  | * assistance. | 
|  | */ | 
|  | static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 exit_reason = vmcs_read32(VM_EXIT_REASON); | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 vectoring_info = vmx->idt_vectoring_info; | 
|  |  | 
|  | if (unlikely(vmx->fail)) { | 
|  | kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
|  | kvm_run->fail_entry.hardware_entry_failure_reason | 
|  | = vmcs_read32(VM_INSTRUCTION_ERROR); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if ((vectoring_info & VECTORING_INFO_VALID_MASK) && | 
|  | exit_reason != EXIT_REASON_EXCEPTION_NMI) | 
|  | printk(KERN_WARNING "%s: unexpected, valid vectoring info and " | 
|  | "exit reason is 0x%x\n", __FUNCTION__, exit_reason); | 
|  | if (exit_reason < kvm_vmx_max_exit_handlers | 
|  | && kvm_vmx_exit_handlers[exit_reason]) | 
|  | return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run); | 
|  | else { | 
|  | kvm_run->exit_reason = KVM_EXIT_UNKNOWN; | 
|  | kvm_run->hw.hardware_exit_reason = exit_reason; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void vmx_flush_tlb(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void update_tpr_threshold(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | int max_irr, tpr; | 
|  |  | 
|  | if (!vm_need_tpr_shadow(vcpu->kvm)) | 
|  | return; | 
|  |  | 
|  | if (!kvm_lapic_enabled(vcpu) || | 
|  | ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) { | 
|  | vmcs_write32(TPR_THRESHOLD, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4; | 
|  | vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4); | 
|  | } | 
|  |  | 
|  | static void enable_irq_window(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | u32 cpu_based_vm_exec_control; | 
|  |  | 
|  | cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
|  | cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; | 
|  | vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
|  | } | 
|  |  | 
|  | static void vmx_intr_assist(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 idtv_info_field, intr_info_field; | 
|  | int has_ext_irq, interrupt_window_open; | 
|  | int vector; | 
|  |  | 
|  | update_tpr_threshold(vcpu); | 
|  |  | 
|  | has_ext_irq = kvm_cpu_has_interrupt(vcpu); | 
|  | intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD); | 
|  | idtv_info_field = vmx->idt_vectoring_info; | 
|  | if (intr_info_field & INTR_INFO_VALID_MASK) { | 
|  | if (idtv_info_field & INTR_INFO_VALID_MASK) { | 
|  | /* TODO: fault when IDT_Vectoring */ | 
|  | if (printk_ratelimit()) | 
|  | printk(KERN_ERR "Fault when IDT_Vectoring\n"); | 
|  | } | 
|  | if (has_ext_irq) | 
|  | enable_irq_window(vcpu); | 
|  | return; | 
|  | } | 
|  | if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) { | 
|  | if ((idtv_info_field & VECTORING_INFO_TYPE_MASK) | 
|  | == INTR_TYPE_EXT_INTR | 
|  | && vcpu->arch.rmode.active) { | 
|  | u8 vect = idtv_info_field & VECTORING_INFO_VECTOR_MASK; | 
|  |  | 
|  | vmx_inject_irq(vcpu, vect); | 
|  | if (unlikely(has_ext_irq)) | 
|  | enable_irq_window(vcpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field); | 
|  | vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
|  | vmcs_read32(VM_EXIT_INSTRUCTION_LEN)); | 
|  |  | 
|  | if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK)) | 
|  | vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, | 
|  | vmcs_read32(IDT_VECTORING_ERROR_CODE)); | 
|  | if (unlikely(has_ext_irq)) | 
|  | enable_irq_window(vcpu); | 
|  | return; | 
|  | } | 
|  | if (!has_ext_irq) | 
|  | return; | 
|  | interrupt_window_open = | 
|  | ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && | 
|  | (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0); | 
|  | if (interrupt_window_open) { | 
|  | vector = kvm_cpu_get_interrupt(vcpu); | 
|  | vmx_inject_irq(vcpu, vector); | 
|  | kvm_timer_intr_post(vcpu, vector); | 
|  | } else | 
|  | enable_irq_window(vcpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Failure to inject an interrupt should give us the information | 
|  | * in IDT_VECTORING_INFO_FIELD.  However, if the failure occurs | 
|  | * when fetching the interrupt redirection bitmap in the real-mode | 
|  | * tss, this doesn't happen.  So we do it ourselves. | 
|  | */ | 
|  | static void fixup_rmode_irq(struct vcpu_vmx *vmx) | 
|  | { | 
|  | vmx->rmode.irq.pending = 0; | 
|  | if (vmcs_readl(GUEST_RIP) + 1 != vmx->rmode.irq.rip) | 
|  | return; | 
|  | vmcs_writel(GUEST_RIP, vmx->rmode.irq.rip); | 
|  | if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) { | 
|  | vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK; | 
|  | vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR; | 
|  | return; | 
|  | } | 
|  | vmx->idt_vectoring_info = | 
|  | VECTORING_INFO_VALID_MASK | 
|  | | INTR_TYPE_EXT_INTR | 
|  | | vmx->rmode.irq.vector; | 
|  | } | 
|  |  | 
|  | static void vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  | u32 intr_info; | 
|  |  | 
|  | /* | 
|  | * Loading guest fpu may have cleared host cr0.ts | 
|  | */ | 
|  | vmcs_writel(HOST_CR0, read_cr0()); | 
|  |  | 
|  | asm( | 
|  | /* Store host registers */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | "push %%rdx; push %%rbp;" | 
|  | "push %%rcx \n\t" | 
|  | #else | 
|  | "push %%edx; push %%ebp;" | 
|  | "push %%ecx \n\t" | 
|  | #endif | 
|  | ASM_VMX_VMWRITE_RSP_RDX "\n\t" | 
|  | /* Check if vmlaunch of vmresume is needed */ | 
|  | "cmpl $0, %c[launched](%0) \n\t" | 
|  | /* Load guest registers.  Don't clobber flags. */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | "mov %c[cr2](%0), %%rax \n\t" | 
|  | "mov %%rax, %%cr2 \n\t" | 
|  | "mov %c[rax](%0), %%rax \n\t" | 
|  | "mov %c[rbx](%0), %%rbx \n\t" | 
|  | "mov %c[rdx](%0), %%rdx \n\t" | 
|  | "mov %c[rsi](%0), %%rsi \n\t" | 
|  | "mov %c[rdi](%0), %%rdi \n\t" | 
|  | "mov %c[rbp](%0), %%rbp \n\t" | 
|  | "mov %c[r8](%0),  %%r8  \n\t" | 
|  | "mov %c[r9](%0),  %%r9  \n\t" | 
|  | "mov %c[r10](%0), %%r10 \n\t" | 
|  | "mov %c[r11](%0), %%r11 \n\t" | 
|  | "mov %c[r12](%0), %%r12 \n\t" | 
|  | "mov %c[r13](%0), %%r13 \n\t" | 
|  | "mov %c[r14](%0), %%r14 \n\t" | 
|  | "mov %c[r15](%0), %%r15 \n\t" | 
|  | "mov %c[rcx](%0), %%rcx \n\t" /* kills %0 (rcx) */ | 
|  | #else | 
|  | "mov %c[cr2](%0), %%eax \n\t" | 
|  | "mov %%eax,   %%cr2 \n\t" | 
|  | "mov %c[rax](%0), %%eax \n\t" | 
|  | "mov %c[rbx](%0), %%ebx \n\t" | 
|  | "mov %c[rdx](%0), %%edx \n\t" | 
|  | "mov %c[rsi](%0), %%esi \n\t" | 
|  | "mov %c[rdi](%0), %%edi \n\t" | 
|  | "mov %c[rbp](%0), %%ebp \n\t" | 
|  | "mov %c[rcx](%0), %%ecx \n\t" /* kills %0 (ecx) */ | 
|  | #endif | 
|  | /* Enter guest mode */ | 
|  | "jne .Llaunched \n\t" | 
|  | ASM_VMX_VMLAUNCH "\n\t" | 
|  | "jmp .Lkvm_vmx_return \n\t" | 
|  | ".Llaunched: " ASM_VMX_VMRESUME "\n\t" | 
|  | ".Lkvm_vmx_return: " | 
|  | /* Save guest registers, load host registers, keep flags */ | 
|  | #ifdef CONFIG_X86_64 | 
|  | "xchg %0,     (%%rsp) \n\t" | 
|  | "mov %%rax, %c[rax](%0) \n\t" | 
|  | "mov %%rbx, %c[rbx](%0) \n\t" | 
|  | "pushq (%%rsp); popq %c[rcx](%0) \n\t" | 
|  | "mov %%rdx, %c[rdx](%0) \n\t" | 
|  | "mov %%rsi, %c[rsi](%0) \n\t" | 
|  | "mov %%rdi, %c[rdi](%0) \n\t" | 
|  | "mov %%rbp, %c[rbp](%0) \n\t" | 
|  | "mov %%r8,  %c[r8](%0) \n\t" | 
|  | "mov %%r9,  %c[r9](%0) \n\t" | 
|  | "mov %%r10, %c[r10](%0) \n\t" | 
|  | "mov %%r11, %c[r11](%0) \n\t" | 
|  | "mov %%r12, %c[r12](%0) \n\t" | 
|  | "mov %%r13, %c[r13](%0) \n\t" | 
|  | "mov %%r14, %c[r14](%0) \n\t" | 
|  | "mov %%r15, %c[r15](%0) \n\t" | 
|  | "mov %%cr2, %%rax   \n\t" | 
|  | "mov %%rax, %c[cr2](%0) \n\t" | 
|  |  | 
|  | "pop  %%rbp; pop  %%rbp; pop  %%rdx \n\t" | 
|  | #else | 
|  | "xchg %0, (%%esp) \n\t" | 
|  | "mov %%eax, %c[rax](%0) \n\t" | 
|  | "mov %%ebx, %c[rbx](%0) \n\t" | 
|  | "pushl (%%esp); popl %c[rcx](%0) \n\t" | 
|  | "mov %%edx, %c[rdx](%0) \n\t" | 
|  | "mov %%esi, %c[rsi](%0) \n\t" | 
|  | "mov %%edi, %c[rdi](%0) \n\t" | 
|  | "mov %%ebp, %c[rbp](%0) \n\t" | 
|  | "mov %%cr2, %%eax  \n\t" | 
|  | "mov %%eax, %c[cr2](%0) \n\t" | 
|  |  | 
|  | "pop %%ebp; pop %%ebp; pop %%edx \n\t" | 
|  | #endif | 
|  | "setbe %c[fail](%0) \n\t" | 
|  | : : "c"(vmx), "d"((unsigned long)HOST_RSP), | 
|  | [launched]"i"(offsetof(struct vcpu_vmx, launched)), | 
|  | [fail]"i"(offsetof(struct vcpu_vmx, fail)), | 
|  | [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), | 
|  | [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), | 
|  | [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), | 
|  | [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), | 
|  | [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), | 
|  | [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), | 
|  | [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), | 
|  | #ifdef CONFIG_X86_64 | 
|  | [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), | 
|  | [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), | 
|  | [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), | 
|  | [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), | 
|  | [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), | 
|  | [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), | 
|  | [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), | 
|  | [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), | 
|  | #endif | 
|  | [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)) | 
|  | : "cc", "memory" | 
|  | #ifdef CONFIG_X86_64 | 
|  | , "rbx", "rdi", "rsi" | 
|  | , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" | 
|  | #else | 
|  | , "ebx", "edi", "rsi" | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
|  | if (vmx->rmode.irq.pending) | 
|  | fixup_rmode_irq(vmx); | 
|  |  | 
|  | vcpu->arch.interrupt_window_open = | 
|  | (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0; | 
|  |  | 
|  | asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS)); | 
|  | vmx->launched = 1; | 
|  |  | 
|  | intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
|  |  | 
|  | /* We need to handle NMIs before interrupts are enabled */ | 
|  | if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) /* nmi */ | 
|  | asm("int $2"); | 
|  | } | 
|  |  | 
|  | static void vmx_free_vmcs(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | if (vmx->vmcs) { | 
|  | on_each_cpu(__vcpu_clear, vmx, 0, 1); | 
|  | free_vmcs(vmx->vmcs); | 
|  | vmx->vmcs = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void vmx_free_vcpu(struct kvm_vcpu *vcpu) | 
|  | { | 
|  | struct vcpu_vmx *vmx = to_vmx(vcpu); | 
|  |  | 
|  | vmx_free_vmcs(vcpu); | 
|  | kfree(vmx->host_msrs); | 
|  | kfree(vmx->guest_msrs); | 
|  | kvm_vcpu_uninit(vcpu); | 
|  | kmem_cache_free(kvm_vcpu_cache, vmx); | 
|  | } | 
|  |  | 
|  | static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) | 
|  | { | 
|  | int err; | 
|  | struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
|  | int cpu; | 
|  |  | 
|  | if (!vmx) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | err = kvm_vcpu_init(&vmx->vcpu, kvm, id); | 
|  | if (err) | 
|  | goto free_vcpu; | 
|  |  | 
|  | vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!vmx->guest_msrs) { | 
|  | err = -ENOMEM; | 
|  | goto uninit_vcpu; | 
|  | } | 
|  |  | 
|  | vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
|  | if (!vmx->host_msrs) | 
|  | goto free_guest_msrs; | 
|  |  | 
|  | vmx->vmcs = alloc_vmcs(); | 
|  | if (!vmx->vmcs) | 
|  | goto free_msrs; | 
|  |  | 
|  | vmcs_clear(vmx->vmcs); | 
|  |  | 
|  | cpu = get_cpu(); | 
|  | vmx_vcpu_load(&vmx->vcpu, cpu); | 
|  | err = vmx_vcpu_setup(vmx); | 
|  | vmx_vcpu_put(&vmx->vcpu); | 
|  | put_cpu(); | 
|  | if (err) | 
|  | goto free_vmcs; | 
|  | if (vm_need_virtualize_apic_accesses(kvm)) | 
|  | if (alloc_apic_access_page(kvm) != 0) | 
|  | goto free_vmcs; | 
|  |  | 
|  | return &vmx->vcpu; | 
|  |  | 
|  | free_vmcs: | 
|  | free_vmcs(vmx->vmcs); | 
|  | free_msrs: | 
|  | kfree(vmx->host_msrs); | 
|  | free_guest_msrs: | 
|  | kfree(vmx->guest_msrs); | 
|  | uninit_vcpu: | 
|  | kvm_vcpu_uninit(&vmx->vcpu); | 
|  | free_vcpu: | 
|  | kmem_cache_free(kvm_vcpu_cache, vmx); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  |  | 
|  | static void __init vmx_check_processor_compat(void *rtn) | 
|  | { | 
|  | struct vmcs_config vmcs_conf; | 
|  |  | 
|  | *(int *)rtn = 0; | 
|  | if (setup_vmcs_config(&vmcs_conf) < 0) | 
|  | *(int *)rtn = -EIO; | 
|  | if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { | 
|  | printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", | 
|  | smp_processor_id()); | 
|  | *(int *)rtn = -EIO; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct kvm_x86_ops vmx_x86_ops = { | 
|  | .cpu_has_kvm_support = cpu_has_kvm_support, | 
|  | .disabled_by_bios = vmx_disabled_by_bios, | 
|  | .hardware_setup = hardware_setup, | 
|  | .hardware_unsetup = hardware_unsetup, | 
|  | .check_processor_compatibility = vmx_check_processor_compat, | 
|  | .hardware_enable = hardware_enable, | 
|  | .hardware_disable = hardware_disable, | 
|  | .cpu_has_accelerated_tpr = cpu_has_vmx_virtualize_apic_accesses, | 
|  |  | 
|  | .vcpu_create = vmx_create_vcpu, | 
|  | .vcpu_free = vmx_free_vcpu, | 
|  | .vcpu_reset = vmx_vcpu_reset, | 
|  |  | 
|  | .prepare_guest_switch = vmx_save_host_state, | 
|  | .vcpu_load = vmx_vcpu_load, | 
|  | .vcpu_put = vmx_vcpu_put, | 
|  | .vcpu_decache = vmx_vcpu_decache, | 
|  |  | 
|  | .set_guest_debug = set_guest_debug, | 
|  | .guest_debug_pre = kvm_guest_debug_pre, | 
|  | .get_msr = vmx_get_msr, | 
|  | .set_msr = vmx_set_msr, | 
|  | .get_segment_base = vmx_get_segment_base, | 
|  | .get_segment = vmx_get_segment, | 
|  | .set_segment = vmx_set_segment, | 
|  | .get_cs_db_l_bits = vmx_get_cs_db_l_bits, | 
|  | .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, | 
|  | .set_cr0 = vmx_set_cr0, | 
|  | .set_cr3 = vmx_set_cr3, | 
|  | .set_cr4 = vmx_set_cr4, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .set_efer = vmx_set_efer, | 
|  | #endif | 
|  | .get_idt = vmx_get_idt, | 
|  | .set_idt = vmx_set_idt, | 
|  | .get_gdt = vmx_get_gdt, | 
|  | .set_gdt = vmx_set_gdt, | 
|  | .cache_regs = vcpu_load_rsp_rip, | 
|  | .decache_regs = vcpu_put_rsp_rip, | 
|  | .get_rflags = vmx_get_rflags, | 
|  | .set_rflags = vmx_set_rflags, | 
|  |  | 
|  | .tlb_flush = vmx_flush_tlb, | 
|  |  | 
|  | .run = vmx_vcpu_run, | 
|  | .handle_exit = kvm_handle_exit, | 
|  | .skip_emulated_instruction = skip_emulated_instruction, | 
|  | .patch_hypercall = vmx_patch_hypercall, | 
|  | .get_irq = vmx_get_irq, | 
|  | .set_irq = vmx_inject_irq, | 
|  | .queue_exception = vmx_queue_exception, | 
|  | .exception_injected = vmx_exception_injected, | 
|  | .inject_pending_irq = vmx_intr_assist, | 
|  | .inject_pending_vectors = do_interrupt_requests, | 
|  |  | 
|  | .set_tss_addr = vmx_set_tss_addr, | 
|  | }; | 
|  |  | 
|  | static int __init vmx_init(void) | 
|  | { | 
|  | void *iova; | 
|  | int r; | 
|  |  | 
|  | vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); | 
|  | if (!vmx_io_bitmap_a) | 
|  | return -ENOMEM; | 
|  |  | 
|  | vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); | 
|  | if (!vmx_io_bitmap_b) { | 
|  | r = -ENOMEM; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allow direct access to the PC debug port (it is often used for I/O | 
|  | * delays, but the vmexits simply slow things down). | 
|  | */ | 
|  | iova = kmap(vmx_io_bitmap_a); | 
|  | memset(iova, 0xff, PAGE_SIZE); | 
|  | clear_bit(0x80, iova); | 
|  | kunmap(vmx_io_bitmap_a); | 
|  |  | 
|  | iova = kmap(vmx_io_bitmap_b); | 
|  | memset(iova, 0xff, PAGE_SIZE); | 
|  | kunmap(vmx_io_bitmap_b); | 
|  |  | 
|  | r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE); | 
|  | if (r) | 
|  | goto out1; | 
|  |  | 
|  | if (bypass_guest_pf) | 
|  | kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out1: | 
|  | __free_page(vmx_io_bitmap_b); | 
|  | out: | 
|  | __free_page(vmx_io_bitmap_a); | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static void __exit vmx_exit(void) | 
|  | { | 
|  | __free_page(vmx_io_bitmap_b); | 
|  | __free_page(vmx_io_bitmap_a); | 
|  |  | 
|  | kvm_exit(); | 
|  | } | 
|  |  | 
|  | module_init(vmx_init) | 
|  | module_exit(vmx_exit) |