|  | /* | 
|  | * Written by: Patricia Gaughen <gone@us.ibm.com>, IBM Corporation | 
|  | * August 2002: added remote node KVA remap - Martin J. Bligh | 
|  | * | 
|  | * Copyright (C) 2002, IBM Corp. | 
|  | * | 
|  | * All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | * NON INFRINGEMENT.  See the GNU General Public License for more | 
|  | * details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/initrd.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kexec.h> | 
|  | #include <linux/pfn.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/acpi.h> | 
|  |  | 
|  | #include <asm/e820.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/mmzone.h> | 
|  | #include <asm/bios_ebda.h> | 
|  |  | 
|  | struct pglist_data *node_data[MAX_NUMNODES] __read_mostly; | 
|  | EXPORT_SYMBOL(node_data); | 
|  | static bootmem_data_t node0_bdata; | 
|  |  | 
|  | /* | 
|  | * numa interface - we expect the numa architecture specific code to have | 
|  | *                  populated the following initialisation. | 
|  | * | 
|  | * 1) node_online_map  - the map of all nodes configured (online) in the system | 
|  | * 2) node_start_pfn   - the starting page frame number for a node | 
|  | * 3) node_end_pfn     - the ending page fram number for a node | 
|  | */ | 
|  | unsigned long node_start_pfn[MAX_NUMNODES] __read_mostly; | 
|  | unsigned long node_end_pfn[MAX_NUMNODES] __read_mostly; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | /* | 
|  | * 4) physnode_map     - the mapping between a pfn and owning node | 
|  | * physnode_map keeps track of the physical memory layout of a generic | 
|  | * numa node on a 256Mb break (each element of the array will | 
|  | * represent 256Mb of memory and will be marked by the node id.  so, | 
|  | * if the first gig is on node 0, and the second gig is on node 1 | 
|  | * physnode_map will contain: | 
|  | * | 
|  | *     physnode_map[0-3] = 0; | 
|  | *     physnode_map[4-7] = 1; | 
|  | *     physnode_map[8- ] = -1; | 
|  | */ | 
|  | s8 physnode_map[MAX_ELEMENTS] __read_mostly = { [0 ... (MAX_ELEMENTS - 1)] = -1}; | 
|  | EXPORT_SYMBOL(physnode_map); | 
|  |  | 
|  | void memory_present(int nid, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long pfn; | 
|  |  | 
|  | printk(KERN_INFO "Node: %d, start_pfn: %ld, end_pfn: %ld\n", | 
|  | nid, start, end); | 
|  | printk(KERN_DEBUG "  Setting physnode_map array to node %d for pfns:\n", nid); | 
|  | printk(KERN_DEBUG "  "); | 
|  | for (pfn = start; pfn < end; pfn += PAGES_PER_ELEMENT) { | 
|  | physnode_map[pfn / PAGES_PER_ELEMENT] = nid; | 
|  | printk("%ld ", pfn); | 
|  | } | 
|  | printk("\n"); | 
|  | } | 
|  |  | 
|  | unsigned long node_memmap_size_bytes(int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | unsigned long nr_pages = end_pfn - start_pfn; | 
|  |  | 
|  | if (!nr_pages) | 
|  | return 0; | 
|  |  | 
|  | return (nr_pages + 1) * sizeof(struct page); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern unsigned long find_max_low_pfn(void); | 
|  | extern void add_one_highpage_init(struct page *, int, int); | 
|  | extern unsigned long highend_pfn, highstart_pfn; | 
|  |  | 
|  | #define LARGE_PAGE_BYTES (PTRS_PER_PTE * PAGE_SIZE) | 
|  |  | 
|  | unsigned long node_remap_size[MAX_NUMNODES]; | 
|  | static void *node_remap_start_vaddr[MAX_NUMNODES]; | 
|  | void set_pmd_pfn(unsigned long vaddr, unsigned long pfn, pgprot_t flags); | 
|  |  | 
|  | static unsigned long kva_start_pfn; | 
|  | static unsigned long kva_pages; | 
|  | /* | 
|  | * FLAT - support for basic PC memory model with discontig enabled, essentially | 
|  | *        a single node with all available processors in it with a flat | 
|  | *        memory map. | 
|  | */ | 
|  | int __init get_memcfg_numa_flat(void) | 
|  | { | 
|  | printk("NUMA - single node, flat memory mode\n"); | 
|  |  | 
|  | /* Run the memory configuration and find the top of memory. */ | 
|  | propagate_e820_map(); | 
|  | node_start_pfn[0] = 0; | 
|  | node_end_pfn[0] = max_pfn; | 
|  | memory_present(0, 0, max_pfn); | 
|  |  | 
|  | /* Indicate there is one node available. */ | 
|  | nodes_clear(node_online_map); | 
|  | node_set_online(0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the highest page frame number we have available for the node | 
|  | */ | 
|  | static void __init propagate_e820_map_node(int nid) | 
|  | { | 
|  | if (node_end_pfn[nid] > max_pfn) | 
|  | node_end_pfn[nid] = max_pfn; | 
|  | /* | 
|  | * if a user has given mem=XXXX, then we need to make sure | 
|  | * that the node _starts_ before that, too, not just ends | 
|  | */ | 
|  | if (node_start_pfn[nid] > max_pfn) | 
|  | node_start_pfn[nid] = max_pfn; | 
|  | BUG_ON(node_start_pfn[nid] > node_end_pfn[nid]); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate memory for the pg_data_t for this node via a crude pre-bootmem | 
|  | * method.  For node zero take this from the bottom of memory, for | 
|  | * subsequent nodes place them at node_remap_start_vaddr which contains | 
|  | * node local data in physically node local memory.  See setup_memory() | 
|  | * for details. | 
|  | */ | 
|  | static void __init allocate_pgdat(int nid) | 
|  | { | 
|  | if (nid && node_has_online_mem(nid)) | 
|  | NODE_DATA(nid) = (pg_data_t *)node_remap_start_vaddr[nid]; | 
|  | else { | 
|  | NODE_DATA(nid) = (pg_data_t *)(pfn_to_kaddr(min_low_pfn)); | 
|  | min_low_pfn += PFN_UP(sizeof(pg_data_t)); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  | /* | 
|  | * In the discontig memory model, a portion of the kernel virtual area (KVA) | 
|  | * is reserved and portions of nodes are mapped using it. This is to allow | 
|  | * node-local memory to be allocated for structures that would normally require | 
|  | * ZONE_NORMAL. The memory is allocated with alloc_remap() and callers | 
|  | * should be prepared to allocate from the bootmem allocator instead. This KVA | 
|  | * mechanism is incompatible with SPARSEMEM as it makes assumptions about the | 
|  | * layout of memory that are broken if alloc_remap() succeeds for some of the | 
|  | * map and fails for others | 
|  | */ | 
|  | static unsigned long node_remap_start_pfn[MAX_NUMNODES]; | 
|  | static void *node_remap_end_vaddr[MAX_NUMNODES]; | 
|  | static void *node_remap_alloc_vaddr[MAX_NUMNODES]; | 
|  | static unsigned long node_remap_offset[MAX_NUMNODES]; | 
|  |  | 
|  | void *alloc_remap(int nid, unsigned long size) | 
|  | { | 
|  | void *allocation = node_remap_alloc_vaddr[nid]; | 
|  |  | 
|  | size = ALIGN(size, L1_CACHE_BYTES); | 
|  |  | 
|  | if (!allocation || (allocation + size) >= node_remap_end_vaddr[nid]) | 
|  | return 0; | 
|  |  | 
|  | node_remap_alloc_vaddr[nid] += size; | 
|  | memset(allocation, 0, size); | 
|  |  | 
|  | return allocation; | 
|  | } | 
|  |  | 
|  | void __init remap_numa_kva(void) | 
|  | { | 
|  | void *vaddr; | 
|  | unsigned long pfn; | 
|  | int node; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | for (pfn=0; pfn < node_remap_size[node]; pfn += PTRS_PER_PTE) { | 
|  | vaddr = node_remap_start_vaddr[node]+(pfn<<PAGE_SHIFT); | 
|  | set_pmd_pfn((ulong) vaddr, | 
|  | node_remap_start_pfn[node] + pfn, | 
|  | PAGE_KERNEL_LARGE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned long calculate_numa_remap_pages(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned long size, reserve_pages = 0; | 
|  | unsigned long pfn; | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | unsigned old_end_pfn = node_end_pfn[nid]; | 
|  |  | 
|  | /* | 
|  | * The acpi/srat node info can show hot-add memroy zones | 
|  | * where memory could be added but not currently present. | 
|  | */ | 
|  | if (node_start_pfn[nid] > max_pfn) | 
|  | continue; | 
|  | if (node_end_pfn[nid] > max_pfn) | 
|  | node_end_pfn[nid] = max_pfn; | 
|  |  | 
|  | /* ensure the remap includes space for the pgdat. */ | 
|  | size = node_remap_size[nid] + sizeof(pg_data_t); | 
|  |  | 
|  | /* convert size to large (pmd size) pages, rounding up */ | 
|  | size = (size + LARGE_PAGE_BYTES - 1) / LARGE_PAGE_BYTES; | 
|  | /* now the roundup is correct, convert to PAGE_SIZE pages */ | 
|  | size = size * PTRS_PER_PTE; | 
|  |  | 
|  | /* | 
|  | * Validate the region we are allocating only contains valid | 
|  | * pages. | 
|  | */ | 
|  | for (pfn = node_end_pfn[nid] - size; | 
|  | pfn < node_end_pfn[nid]; pfn++) | 
|  | if (!page_is_ram(pfn)) | 
|  | break; | 
|  |  | 
|  | if (pfn != node_end_pfn[nid]) | 
|  | size = 0; | 
|  |  | 
|  | printk("Reserving %ld pages of KVA for lmem_map of node %d\n", | 
|  | size, nid); | 
|  | node_remap_size[nid] = size; | 
|  | node_remap_offset[nid] = reserve_pages; | 
|  | reserve_pages += size; | 
|  | printk("Shrinking node %d from %ld pages to %ld pages\n", | 
|  | nid, node_end_pfn[nid], node_end_pfn[nid] - size); | 
|  |  | 
|  | if (node_end_pfn[nid] & (PTRS_PER_PTE-1)) { | 
|  | /* | 
|  | * Align node_end_pfn[] and node_remap_start_pfn[] to | 
|  | * pmd boundary. remap_numa_kva will barf otherwise. | 
|  | */ | 
|  | printk("Shrinking node %d further by %ld pages for proper alignment\n", | 
|  | nid, node_end_pfn[nid] & (PTRS_PER_PTE-1)); | 
|  | size +=  node_end_pfn[nid] & (PTRS_PER_PTE-1); | 
|  | } | 
|  |  | 
|  | node_end_pfn[nid] -= size; | 
|  | node_remap_start_pfn[nid] = node_end_pfn[nid]; | 
|  | shrink_active_range(nid, old_end_pfn, node_end_pfn[nid]); | 
|  | } | 
|  | printk("Reserving total of %ld pages for numa KVA remap\n", | 
|  | reserve_pages); | 
|  | return reserve_pages; | 
|  | } | 
|  |  | 
|  | static void init_remap_allocator(int nid) | 
|  | { | 
|  | node_remap_start_vaddr[nid] = pfn_to_kaddr( | 
|  | kva_start_pfn + node_remap_offset[nid]); | 
|  | node_remap_end_vaddr[nid] = node_remap_start_vaddr[nid] + | 
|  | (node_remap_size[nid] * PAGE_SIZE); | 
|  | node_remap_alloc_vaddr[nid] = node_remap_start_vaddr[nid] + | 
|  | ALIGN(sizeof(pg_data_t), PAGE_SIZE); | 
|  |  | 
|  | printk ("node %d will remap to vaddr %08lx - %08lx\n", nid, | 
|  | (ulong) node_remap_start_vaddr[nid], | 
|  | (ulong) pfn_to_kaddr(highstart_pfn | 
|  | + node_remap_offset[nid] + node_remap_size[nid])); | 
|  | } | 
|  | #else | 
|  | void *alloc_remap(int nid, unsigned long size) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static unsigned long calculate_numa_remap_pages(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void init_remap_allocator(int nid) | 
|  | { | 
|  | } | 
|  |  | 
|  | void __init remap_numa_kva(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_DISCONTIGMEM */ | 
|  |  | 
|  | extern void setup_bootmem_allocator(void); | 
|  | unsigned long __init setup_memory(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned long system_start_pfn, system_max_low_pfn; | 
|  | unsigned long wasted_pages; | 
|  |  | 
|  | /* | 
|  | * When mapping a NUMA machine we allocate the node_mem_map arrays | 
|  | * from node local memory.  They are then mapped directly into KVA | 
|  | * between zone normal and vmalloc space.  Calculate the size of | 
|  | * this space and use it to adjust the boundary between ZONE_NORMAL | 
|  | * and ZONE_HIGHMEM. | 
|  | */ | 
|  | get_memcfg_numa(); | 
|  |  | 
|  | kva_pages = calculate_numa_remap_pages(); | 
|  |  | 
|  | /* partially used pages are not usable - thus round upwards */ | 
|  | system_start_pfn = min_low_pfn = PFN_UP(init_pg_tables_end); | 
|  |  | 
|  | kva_start_pfn = find_max_low_pfn() - kva_pages; | 
|  |  | 
|  | #ifdef CONFIG_BLK_DEV_INITRD | 
|  | /* Numa kva area is below the initrd */ | 
|  | if (initrd_start) | 
|  | kva_start_pfn = PFN_DOWN(initrd_start - PAGE_OFFSET) | 
|  | - kva_pages; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We waste pages past at the end of the KVA for no good reason other | 
|  | * than how it is located. This is bad. | 
|  | */ | 
|  | wasted_pages = kva_start_pfn & (PTRS_PER_PTE-1); | 
|  | kva_start_pfn -= wasted_pages; | 
|  | kva_pages += wasted_pages; | 
|  |  | 
|  | system_max_low_pfn = max_low_pfn = find_max_low_pfn(); | 
|  | printk("kva_start_pfn ~ %ld find_max_low_pfn() ~ %ld\n", | 
|  | kva_start_pfn, max_low_pfn); | 
|  | printk("max_pfn = %ld\n", max_pfn); | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | highstart_pfn = highend_pfn = max_pfn; | 
|  | if (max_pfn > system_max_low_pfn) | 
|  | highstart_pfn = system_max_low_pfn; | 
|  | printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", | 
|  | pages_to_mb(highend_pfn - highstart_pfn)); | 
|  | num_physpages = highend_pfn; | 
|  | high_memory = (void *) __va(highstart_pfn * PAGE_SIZE - 1) + 1; | 
|  | #else | 
|  | num_physpages = system_max_low_pfn; | 
|  | high_memory = (void *) __va(system_max_low_pfn * PAGE_SIZE - 1) + 1; | 
|  | #endif | 
|  | printk(KERN_NOTICE "%ldMB LOWMEM available.\n", | 
|  | pages_to_mb(system_max_low_pfn)); | 
|  | printk("min_low_pfn = %ld, max_low_pfn = %ld, highstart_pfn = %ld\n", | 
|  | min_low_pfn, max_low_pfn, highstart_pfn); | 
|  |  | 
|  | printk("Low memory ends at vaddr %08lx\n", | 
|  | (ulong) pfn_to_kaddr(max_low_pfn)); | 
|  | for_each_online_node(nid) { | 
|  | init_remap_allocator(nid); | 
|  |  | 
|  | allocate_pgdat(nid); | 
|  | } | 
|  | printk("High memory starts at vaddr %08lx\n", | 
|  | (ulong) pfn_to_kaddr(highstart_pfn)); | 
|  | for_each_online_node(nid) | 
|  | propagate_e820_map_node(nid); | 
|  |  | 
|  | memset(NODE_DATA(0), 0, sizeof(struct pglist_data)); | 
|  | NODE_DATA(0)->bdata = &node0_bdata; | 
|  | setup_bootmem_allocator(); | 
|  | return max_low_pfn; | 
|  | } | 
|  |  | 
|  | void __init numa_kva_reserve(void) | 
|  | { | 
|  | if (kva_pages) | 
|  | reserve_bootmem(PFN_PHYS(kva_start_pfn), PFN_PHYS(kva_pages), | 
|  | BOOTMEM_DEFAULT); | 
|  | } | 
|  |  | 
|  | void __init zone_sizes_init(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
|  | memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
|  | max_zone_pfns[ZONE_DMA] = | 
|  | virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT; | 
|  | max_zone_pfns[ZONE_NORMAL] = max_low_pfn; | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | max_zone_pfns[ZONE_HIGHMEM] = highend_pfn; | 
|  | #endif | 
|  |  | 
|  | /* If SRAT has not registered memory, register it now */ | 
|  | if (find_max_pfn_with_active_regions() == 0) { | 
|  | for_each_online_node(nid) { | 
|  | if (node_has_online_mem(nid)) | 
|  | add_active_range(nid, node_start_pfn[nid], | 
|  | node_end_pfn[nid]); | 
|  | } | 
|  | } | 
|  |  | 
|  | free_area_init_nodes(max_zone_pfns); | 
|  | return; | 
|  | } | 
|  |  | 
|  | void __init set_highmem_pages_init(int bad_ppro) | 
|  | { | 
|  | #ifdef CONFIG_HIGHMEM | 
|  | struct zone *zone; | 
|  | struct page *page; | 
|  |  | 
|  | for_each_zone(zone) { | 
|  | unsigned long node_pfn, zone_start_pfn, zone_end_pfn; | 
|  |  | 
|  | if (!is_highmem(zone)) | 
|  | continue; | 
|  |  | 
|  | zone_start_pfn = zone->zone_start_pfn; | 
|  | zone_end_pfn = zone_start_pfn + zone->spanned_pages; | 
|  |  | 
|  | printk("Initializing %s for node %d (%08lx:%08lx)\n", | 
|  | zone->name, zone_to_nid(zone), | 
|  | zone_start_pfn, zone_end_pfn); | 
|  |  | 
|  | for (node_pfn = zone_start_pfn; node_pfn < zone_end_pfn; node_pfn++) { | 
|  | if (!pfn_valid(node_pfn)) | 
|  | continue; | 
|  | page = pfn_to_page(node_pfn); | 
|  | add_one_highpage_init(page, node_pfn, bad_ppro); | 
|  | } | 
|  | } | 
|  | totalram_pages += totalhigh_pages; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | static int paddr_to_nid(u64 addr) | 
|  | { | 
|  | int nid; | 
|  | unsigned long pfn = PFN_DOWN(addr); | 
|  |  | 
|  | for_each_node(nid) | 
|  | if (node_start_pfn[nid] <= pfn && | 
|  | pfn < node_end_pfn[nid]) | 
|  | return nid; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is used to ask node id BEFORE memmap and mem_section's | 
|  | * initialization (pfn_to_nid() can't be used yet). | 
|  | * If _PXM is not defined on ACPI's DSDT, node id must be found by this. | 
|  | */ | 
|  | int memory_add_physaddr_to_nid(u64 addr) | 
|  | { | 
|  | int nid = paddr_to_nid(addr); | 
|  | return (nid >= 0) ? nid : 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | 
|  | #endif | 
|  |  | 
|  | #ifndef CONFIG_HAVE_ARCH_PARSE_SRAT | 
|  | /* | 
|  | * XXX FIXME: Make SLIT table parsing available to 32-bit NUMA | 
|  | * | 
|  | * These stub functions are needed to compile 32-bit NUMA when SRAT is | 
|  | * not set. There are functions in srat_64.c for parsing this table | 
|  | * and it may be possible to make them common functions. | 
|  | */ | 
|  | void acpi_numa_slit_init (struct acpi_table_slit *slit) | 
|  | { | 
|  | printk(KERN_INFO "ACPI: No support for parsing SLIT table\n"); | 
|  | } | 
|  |  | 
|  | void acpi_numa_processor_affinity_init (struct acpi_srat_cpu_affinity *pa) | 
|  | { | 
|  | } | 
|  |  | 
|  | void acpi_numa_memory_affinity_init (struct acpi_srat_mem_affinity *ma) | 
|  | { | 
|  | } | 
|  |  | 
|  | void acpi_numa_arch_fixup(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_HAVE_ARCH_PARSE_SRAT */ |