|  | /* | 
|  | * JFFS2 -- Journalling Flash File System, Version 2. | 
|  | * | 
|  | * Copyright (C) 2001-2003 Red Hat, Inc. | 
|  | * | 
|  | * Created by David Woodhouse <dwmw2@infradead.org> | 
|  | * | 
|  | * For licensing information, see the file 'LICENCE' in this directory. | 
|  | * | 
|  | * $Id: nodemgmt.c,v 1.115 2004/11/22 11:07:21 dwmw2 Exp $ | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/mtd/mtd.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/sched.h> /* For cond_resched() */ | 
|  | #include "nodelist.h" | 
|  |  | 
|  | /** | 
|  | *	jffs2_reserve_space - request physical space to write nodes to flash | 
|  | *	@c: superblock info | 
|  | *	@minsize: Minimum acceptable size of allocation | 
|  | *	@ofs: Returned value of node offset | 
|  | *	@len: Returned value of allocation length | 
|  | *	@prio: Allocation type - ALLOC_{NORMAL,DELETION} | 
|  | * | 
|  | *	Requests a block of physical space on the flash. Returns zero for success | 
|  | *	and puts 'ofs' and 'len' into the appriopriate place, or returns -ENOSPC | 
|  | *	or other error if appropriate. | 
|  | * | 
|  | *	If it returns zero, jffs2_reserve_space() also downs the per-filesystem | 
|  | *	allocation semaphore, to prevent more than one allocation from being | 
|  | *	active at any time. The semaphore is later released by jffs2_commit_allocation() | 
|  | * | 
|  | *	jffs2_reserve_space() may trigger garbage collection in order to make room | 
|  | *	for the requested allocation. | 
|  | */ | 
|  |  | 
|  | static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len); | 
|  |  | 
|  | int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len, int prio) | 
|  | { | 
|  | int ret = -EAGAIN; | 
|  | int blocksneeded = c->resv_blocks_write; | 
|  | /* align it */ | 
|  | minsize = PAD(minsize); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_reserve_space(): Requested 0x%x bytes\n", minsize)); | 
|  | down(&c->alloc_sem); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_reserve_space(): alloc sem got\n")); | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | /* this needs a little more thought (true <tglx> :)) */ | 
|  | while(ret == -EAGAIN) { | 
|  | while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) { | 
|  | int ret; | 
|  | uint32_t dirty, avail; | 
|  |  | 
|  | /* calculate real dirty size | 
|  | * dirty_size contains blocks on erase_pending_list | 
|  | * those blocks are counted in c->nr_erasing_blocks. | 
|  | * If one block is actually erased, it is not longer counted as dirty_space | 
|  | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | 
|  | * with c->nr_erasing_blocks * c->sector_size again. | 
|  | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | 
|  | * This helps us to force gc and pick eventually a clean block to spread the load. | 
|  | * We add unchecked_size here, as we hopefully will find some space to use. | 
|  | * This will affect the sum only once, as gc first finishes checking | 
|  | * of nodes. | 
|  | */ | 
|  | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size; | 
|  | if (dirty < c->nospc_dirty_size) { | 
|  | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | 
|  | printk(KERN_NOTICE "jffs2_reserve_space(): Low on dirty space to GC, but it's a deletion. Allowing...\n"); | 
|  | break; | 
|  | } | 
|  | D1(printk(KERN_DEBUG "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n", | 
|  | dirty, c->unchecked_size, c->sector_size)); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | up(&c->alloc_sem); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /* Calc possibly available space. Possibly available means that we | 
|  | * don't know, if unchecked size contains obsoleted nodes, which could give us some | 
|  | * more usable space. This will affect the sum only once, as gc first finishes checking | 
|  | * of nodes. | 
|  | + Return -ENOSPC, if the maximum possibly available space is less or equal than | 
|  | * blocksneeded * sector_size. | 
|  | * This blocks endless gc looping on a filesystem, which is nearly full, even if | 
|  | * the check above passes. | 
|  | */ | 
|  | avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size; | 
|  | if ( (avail / c->sector_size) <= blocksneeded) { | 
|  | if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) { | 
|  | printk(KERN_NOTICE "jffs2_reserve_space(): Low on possibly available space, but it's a deletion. Allowing...\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "max. available size 0x%08x  < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n", | 
|  | avail, blocksneeded * c->sector_size)); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | up(&c->alloc_sem); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | up(&c->alloc_sem); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n", | 
|  | c->nr_free_blocks, c->nr_erasing_blocks, c->free_size, c->dirty_size, c->wasted_size, c->used_size, c->erasing_size, c->bad_size, | 
|  | c->free_size + c->dirty_size + c->wasted_size + c->used_size + c->erasing_size + c->bad_size, c->flash_size)); | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | ret = jffs2_garbage_collect_pass(c); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | cond_resched(); | 
|  |  | 
|  | if (signal_pending(current)) | 
|  | return -EINTR; | 
|  |  | 
|  | down(&c->alloc_sem); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | ret = jffs2_do_reserve_space(c, minsize, ofs, len); | 
|  | if (ret) { | 
|  | D1(printk(KERN_DEBUG "jffs2_reserve_space: ret is %d\n", ret)); | 
|  | } | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | if (ret) | 
|  | up(&c->alloc_sem); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize, uint32_t *ofs, uint32_t *len) | 
|  | { | 
|  | int ret = -EAGAIN; | 
|  | minsize = PAD(minsize); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc(): Requested 0x%x bytes\n", minsize)); | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | while(ret == -EAGAIN) { | 
|  | ret = jffs2_do_reserve_space(c, minsize, ofs, len); | 
|  | if (ret) { | 
|  | D1(printk(KERN_DEBUG "jffs2_reserve_space_gc: looping, ret is %d\n", ret)); | 
|  | } | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Called with alloc sem _and_ erase_completion_lock */ | 
|  | static int jffs2_do_reserve_space(struct jffs2_sb_info *c,  uint32_t minsize, uint32_t *ofs, uint32_t *len) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb = c->nextblock; | 
|  |  | 
|  | restart: | 
|  | if (jeb && minsize > jeb->free_size) { | 
|  | /* Skip the end of this block and file it as having some dirty space */ | 
|  | /* If there's a pending write to it, flush now */ | 
|  | if (jffs2_wbuf_dirty(c)) { | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | jeb = c->nextblock; | 
|  | goto restart; | 
|  | } | 
|  | c->wasted_size += jeb->free_size; | 
|  | c->free_size -= jeb->free_size; | 
|  | jeb->wasted_size += jeb->free_size; | 
|  | jeb->free_size = 0; | 
|  |  | 
|  | /* Check, if we have a dirty block now, or if it was dirty already */ | 
|  | if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) { | 
|  | c->dirty_size += jeb->wasted_size; | 
|  | c->wasted_size -= jeb->wasted_size; | 
|  | jeb->dirty_size += jeb->wasted_size; | 
|  | jeb->wasted_size = 0; | 
|  | if (VERYDIRTY(c, jeb->dirty_size)) { | 
|  | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | list_add_tail(&jeb->list, &c->very_dirty_list); | 
|  | } else { | 
|  | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | list_add_tail(&jeb->list, &c->dirty_list); | 
|  | } | 
|  | } else { | 
|  | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | list_add_tail(&jeb->list, &c->clean_list); | 
|  | } | 
|  | c->nextblock = jeb = NULL; | 
|  | } | 
|  |  | 
|  | if (!jeb) { | 
|  | struct list_head *next; | 
|  | /* Take the next block off the 'free' list */ | 
|  |  | 
|  | if (list_empty(&c->free_list)) { | 
|  |  | 
|  | if (!c->nr_erasing_blocks && | 
|  | !list_empty(&c->erasable_list)) { | 
|  | struct jffs2_eraseblock *ejeb; | 
|  |  | 
|  | ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list); | 
|  | list_del(&ejeb->list); | 
|  | list_add_tail(&ejeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Triggering erase of erasable block at 0x%08x\n", | 
|  | ejeb->offset)); | 
|  | } | 
|  |  | 
|  | if (!c->nr_erasing_blocks && | 
|  | !list_empty(&c->erasable_pending_wbuf_list)) { | 
|  | D1(printk(KERN_DEBUG "jffs2_do_reserve_space: Flushing write buffer\n")); | 
|  | /* c->nextblock is NULL, no update to c->nextblock allowed */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | /* Have another go. It'll be on the erasable_list now */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | if (!c->nr_erasing_blocks) { | 
|  | /* Ouch. We're in GC, or we wouldn't have got here. | 
|  | And there's no space left. At all. */ | 
|  | printk(KERN_CRIT "Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n", | 
|  | c->nr_erasing_blocks, c->nr_free_blocks, list_empty(&c->erasable_list)?"yes":"no", | 
|  | list_empty(&c->erasing_list)?"yes":"no", list_empty(&c->erase_pending_list)?"yes":"no"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | /* Don't wait for it; just erase one right now */ | 
|  | jffs2_erase_pending_blocks(c, 1); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | /* An erase may have failed, decreasing the | 
|  | amount of free space available. So we must | 
|  | restart from the beginning */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | next = c->free_list.next; | 
|  | list_del(next); | 
|  | c->nextblock = jeb = list_entry(next, struct jffs2_eraseblock, list); | 
|  | c->nr_free_blocks--; | 
|  |  | 
|  | if (jeb->free_size != c->sector_size - c->cleanmarker_size) { | 
|  | printk(KERN_WARNING "Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n", jeb->offset, jeb->free_size); | 
|  | goto restart; | 
|  | } | 
|  | } | 
|  | /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has | 
|  | enough space */ | 
|  | *ofs = jeb->offset + (c->sector_size - jeb->free_size); | 
|  | *len = jeb->free_size; | 
|  |  | 
|  | if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size && | 
|  | !jeb->first_node->next_in_ino) { | 
|  | /* Only node in it beforehand was a CLEANMARKER node (we think). | 
|  | So mark it obsolete now that there's going to be another node | 
|  | in the block. This will reduce used_size to zero but We've | 
|  | already set c->nextblock so that jffs2_mark_node_obsolete() | 
|  | won't try to refile it to the dirty_list. | 
|  | */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_mark_node_obsolete(c, jeb->first_node); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_do_reserve_space(): Giving 0x%x bytes at 0x%x\n", *len, *ofs)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	jffs2_add_physical_node_ref - add a physical node reference to the list | 
|  | *	@c: superblock info | 
|  | *	@new: new node reference to add | 
|  | *	@len: length of this physical node | 
|  | *	@dirty: dirty flag for new node | 
|  | * | 
|  | *	Should only be used to report nodes for which space has been allocated | 
|  | *	by jffs2_reserve_space. | 
|  | * | 
|  | *	Must be called with the alloc_sem held. | 
|  | */ | 
|  |  | 
|  | int jffs2_add_physical_node_ref(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *new) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb; | 
|  | uint32_t len; | 
|  |  | 
|  | jeb = &c->blocks[new->flash_offset / c->sector_size]; | 
|  | len = ref_totlen(c, jeb, new); | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_add_physical_node_ref(): Node at 0x%x(%d), size 0x%x\n", ref_offset(new), ref_flags(new), len)); | 
|  | #if 1 | 
|  | if (jeb != c->nextblock || (ref_offset(new)) != jeb->offset + (c->sector_size - jeb->free_size)) { | 
|  | printk(KERN_WARNING "argh. node added in wrong place\n"); | 
|  | jffs2_free_raw_node_ref(new); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | if (!jeb->first_node) | 
|  | jeb->first_node = new; | 
|  | if (jeb->last_node) | 
|  | jeb->last_node->next_phys = new; | 
|  | jeb->last_node = new; | 
|  |  | 
|  | jeb->free_size -= len; | 
|  | c->free_size -= len; | 
|  | if (ref_obsolete(new)) { | 
|  | jeb->dirty_size += len; | 
|  | c->dirty_size += len; | 
|  | } else { | 
|  | jeb->used_size += len; | 
|  | c->used_size += len; | 
|  | } | 
|  |  | 
|  | if (!jeb->free_size && !jeb->dirty_size) { | 
|  | /* If it lives on the dirty_list, jffs2_reserve_space will put it there */ | 
|  | D1(printk(KERN_DEBUG "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | if (jffs2_wbuf_dirty(c)) { | 
|  | /* Flush the last write in the block if it's outstanding */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | jffs2_flush_wbuf_pad(c); | 
|  | spin_lock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  | list_add_tail(&jeb->list, &c->clean_list); | 
|  | c->nextblock = NULL; | 
|  | } | 
|  | ACCT_SANITY_CHECK(c,jeb); | 
|  | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | void jffs2_complete_reservation(struct jffs2_sb_info *c) | 
|  | { | 
|  | D1(printk(KERN_DEBUG "jffs2_complete_reservation()\n")); | 
|  | jffs2_garbage_collect_trigger(c); | 
|  | up(&c->alloc_sem); | 
|  | } | 
|  |  | 
|  | static inline int on_list(struct list_head *obj, struct list_head *head) | 
|  | { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, head) { | 
|  | if (this == obj) { | 
|  | D1(printk("%p is on list at %p\n", obj, head)); | 
|  | return 1; | 
|  |  | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref) | 
|  | { | 
|  | struct jffs2_eraseblock *jeb; | 
|  | int blocknr; | 
|  | struct jffs2_unknown_node n; | 
|  | int ret, addedsize; | 
|  | size_t retlen; | 
|  |  | 
|  | if(!ref) { | 
|  | printk(KERN_NOTICE "EEEEEK. jffs2_mark_node_obsolete called with NULL node\n"); | 
|  | return; | 
|  | } | 
|  | if (ref_obsolete(ref)) { | 
|  | D1(printk(KERN_DEBUG "jffs2_mark_node_obsolete called with already obsolete node at 0x%08x\n", ref_offset(ref))); | 
|  | return; | 
|  | } | 
|  | blocknr = ref->flash_offset / c->sector_size; | 
|  | if (blocknr >= c->nr_blocks) { | 
|  | printk(KERN_NOTICE "raw node at 0x%08x is off the end of device!\n", ref->flash_offset); | 
|  | BUG(); | 
|  | } | 
|  | jeb = &c->blocks[blocknr]; | 
|  |  | 
|  | if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) && | 
|  | !(c->flags & JFFS2_SB_FLAG_MOUNTING)) { | 
|  | /* Hm. This may confuse static lock analysis. If any of the above | 
|  | three conditions is false, we're going to return from this | 
|  | function without actually obliterating any nodes or freeing | 
|  | any jffs2_raw_node_refs. So we don't need to stop erases from | 
|  | happening, or protect against people holding an obsolete | 
|  | jffs2_raw_node_ref without the erase_completion_lock. */ | 
|  | down(&c->erase_free_sem); | 
|  | } | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | if (ref_flags(ref) == REF_UNCHECKED) { | 
|  | D1(if (unlikely(jeb->unchecked_size < ref_totlen(c, jeb, ref))) { | 
|  | printk(KERN_NOTICE "raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n", | 
|  | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); | 
|  | BUG(); | 
|  | }) | 
|  | D1(printk(KERN_DEBUG "Obsoleting previously unchecked node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); | 
|  | jeb->unchecked_size -= ref_totlen(c, jeb, ref); | 
|  | c->unchecked_size -= ref_totlen(c, jeb, ref); | 
|  | } else { | 
|  | D1(if (unlikely(jeb->used_size < ref_totlen(c, jeb, ref))) { | 
|  | printk(KERN_NOTICE "raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n", | 
|  | ref_totlen(c, jeb, ref), blocknr, ref->flash_offset, jeb->used_size); | 
|  | BUG(); | 
|  | }) | 
|  | D1(printk(KERN_DEBUG "Obsoleting node at 0x%08x of len %x: ", ref_offset(ref), ref_totlen(c, jeb, ref))); | 
|  | jeb->used_size -= ref_totlen(c, jeb, ref); | 
|  | c->used_size -= ref_totlen(c, jeb, ref); | 
|  | } | 
|  |  | 
|  | // Take care, that wasted size is taken into concern | 
|  | if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + ref_totlen(c, jeb, ref))) && jeb != c->nextblock) { | 
|  | D1(printk("Dirtying\n")); | 
|  | addedsize = ref_totlen(c, jeb, ref); | 
|  | jeb->dirty_size += ref_totlen(c, jeb, ref); | 
|  | c->dirty_size += ref_totlen(c, jeb, ref); | 
|  |  | 
|  | /* Convert wasted space to dirty, if not a bad block */ | 
|  | if (jeb->wasted_size) { | 
|  | if (on_list(&jeb->list, &c->bad_used_list)) { | 
|  | D1(printk(KERN_DEBUG "Leaving block at %08x on the bad_used_list\n", | 
|  | jeb->offset)); | 
|  | addedsize = 0; /* To fool the refiling code later */ | 
|  | } else { | 
|  | D1(printk(KERN_DEBUG "Converting %d bytes of wasted space to dirty in block at %08x\n", | 
|  | jeb->wasted_size, jeb->offset)); | 
|  | addedsize += jeb->wasted_size; | 
|  | jeb->dirty_size += jeb->wasted_size; | 
|  | c->dirty_size += jeb->wasted_size; | 
|  | c->wasted_size -= jeb->wasted_size; | 
|  | jeb->wasted_size = 0; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | D1(printk("Wasting\n")); | 
|  | addedsize = 0; | 
|  | jeb->wasted_size += ref_totlen(c, jeb, ref); | 
|  | c->wasted_size += ref_totlen(c, jeb, ref); | 
|  | } | 
|  | ref->flash_offset = ref_offset(ref) | REF_OBSOLETE; | 
|  |  | 
|  | ACCT_SANITY_CHECK(c, jeb); | 
|  |  | 
|  | D1(ACCT_PARANOIA_CHECK(jeb)); | 
|  |  | 
|  | if (c->flags & JFFS2_SB_FLAG_MOUNTING) { | 
|  | /* Mount in progress. Don't muck about with the block | 
|  | lists because they're not ready yet, and don't actually | 
|  | obliterate nodes that look obsolete. If they weren't | 
|  | marked obsolete on the flash at the time they _became_ | 
|  | obsolete, there was probably a reason for that. */ | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | /* We didn't lock the erase_free_sem */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (jeb == c->nextblock) { | 
|  | D2(printk(KERN_DEBUG "Not moving nextblock 0x%08x to dirty/erase_pending list\n", jeb->offset)); | 
|  | } else if (!jeb->used_size && !jeb->unchecked_size) { | 
|  | if (jeb == c->gcblock) { | 
|  | D1(printk(KERN_DEBUG "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n", jeb->offset)); | 
|  | c->gcblock = NULL; | 
|  | } else { | 
|  | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n", jeb->offset)); | 
|  | list_del(&jeb->list); | 
|  | } | 
|  | if (jffs2_wbuf_dirty(c)) { | 
|  | D1(printk(KERN_DEBUG "...and adding to erasable_pending_wbuf_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list); | 
|  | } else { | 
|  | if (jiffies & 127) { | 
|  | /* Most of the time, we just erase it immediately. Otherwise we | 
|  | spend ages scanning it on mount, etc. */ | 
|  | D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erase_pending_list); | 
|  | c->nr_erasing_blocks++; | 
|  | jffs2_erase_pending_trigger(c); | 
|  | } else { | 
|  | /* Sometimes, however, we leave it elsewhere so it doesn't get | 
|  | immediately reused, and we spread the load a bit. */ | 
|  | D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); | 
|  | list_add_tail(&jeb->list, &c->erasable_list); | 
|  | } | 
|  | } | 
|  | D1(printk(KERN_DEBUG "Done OK\n")); | 
|  | } else if (jeb == c->gcblock) { | 
|  | D2(printk(KERN_DEBUG "Not moving gcblock 0x%08x to dirty_list\n", jeb->offset)); | 
|  | } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) { | 
|  | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n", jeb->offset)); | 
|  | list_del(&jeb->list); | 
|  | D1(printk(KERN_DEBUG "...and adding to dirty_list\n")); | 
|  | list_add_tail(&jeb->list, &c->dirty_list); | 
|  | } else if (VERYDIRTY(c, jeb->dirty_size) && | 
|  | !VERYDIRTY(c, jeb->dirty_size - addedsize)) { | 
|  | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n", jeb->offset)); | 
|  | list_del(&jeb->list); | 
|  | D1(printk(KERN_DEBUG "...and adding to very_dirty_list\n")); | 
|  | list_add_tail(&jeb->list, &c->very_dirty_list); | 
|  | } else { | 
|  | D1(printk(KERN_DEBUG "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n", | 
|  | jeb->offset, jeb->free_size, jeb->dirty_size, jeb->used_size)); | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c)) { | 
|  | /* We didn't lock the erase_free_sem */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The erase_free_sem is locked, and has been since before we marked the node obsolete | 
|  | and potentially put its eraseblock onto the erase_pending_list. Thus, we know that | 
|  | the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet | 
|  | by jffs2_free_all_node_refs() in erase.c. Which is nice. */ | 
|  |  | 
|  | D1(printk(KERN_DEBUG "obliterating obsoleted node at 0x%08x\n", ref_offset(ref))); | 
|  | ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "Read error reading from obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (retlen != sizeof(n)) { | 
|  | printk(KERN_WARNING "Short read from obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (PAD(je32_to_cpu(n.totlen)) != PAD(ref_totlen(c, jeb, ref))) { | 
|  | printk(KERN_WARNING "Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n", je32_to_cpu(n.totlen), ref_totlen(c, jeb, ref)); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) { | 
|  | D1(printk(KERN_DEBUG "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n", ref_offset(ref), je16_to_cpu(n.nodetype))); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | /* XXX FIXME: This is ugly now */ | 
|  | n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE); | 
|  | ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n); | 
|  | if (ret) { | 
|  | printk(KERN_WARNING "Write error in obliterating obsoleted node at 0x%08x: %d\n", ref_offset(ref), ret); | 
|  | goto out_erase_sem; | 
|  | } | 
|  | if (retlen != sizeof(n)) { | 
|  | printk(KERN_WARNING "Short write in obliterating obsoleted node at 0x%08x: %zd\n", ref_offset(ref), retlen); | 
|  | goto out_erase_sem; | 
|  | } | 
|  |  | 
|  | /* Nodes which have been marked obsolete no longer need to be | 
|  | associated with any inode. Remove them from the per-inode list. | 
|  |  | 
|  | Note we can't do this for NAND at the moment because we need | 
|  | obsolete dirent nodes to stay on the lists, because of the | 
|  | horridness in jffs2_garbage_collect_deletion_dirent(). Also | 
|  | because we delete the inocache, and on NAND we need that to | 
|  | stay around until all the nodes are actually erased, in order | 
|  | to stop us from giving the same inode number to another newly | 
|  | created inode. */ | 
|  | if (ref->next_in_ino) { | 
|  | struct jffs2_inode_cache *ic; | 
|  | struct jffs2_raw_node_ref **p; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | ic = jffs2_raw_ref_to_ic(ref); | 
|  | for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino)) | 
|  | ; | 
|  |  | 
|  | *p = ref->next_in_ino; | 
|  | ref->next_in_ino = NULL; | 
|  |  | 
|  | if (ic->nodes == (void *)ic) { | 
|  | D1(printk(KERN_DEBUG "inocache for ino #%u is all gone now. Freeing\n", ic->ino)); | 
|  | jffs2_del_ino_cache(c, ic); | 
|  | jffs2_free_inode_cache(ic); | 
|  | } | 
|  |  | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Merge with the next node in the physical list, if there is one | 
|  | and if it's also obsolete and if it doesn't belong to any inode */ | 
|  | if (ref->next_phys && ref_obsolete(ref->next_phys) && | 
|  | !ref->next_phys->next_in_ino) { | 
|  | struct jffs2_raw_node_ref *n = ref->next_phys; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | ref->__totlen += n->__totlen; | 
|  | ref->next_phys = n->next_phys; | 
|  | if (jeb->last_node == n) jeb->last_node = ref; | 
|  | if (jeb->gc_node == n) { | 
|  | /* gc will be happy continuing gc on this node */ | 
|  | jeb->gc_node=ref; | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  |  | 
|  | jffs2_free_raw_node_ref(n); | 
|  | } | 
|  |  | 
|  | /* Also merge with the previous node in the list, if there is one | 
|  | and that one is obsolete */ | 
|  | if (ref != jeb->first_node ) { | 
|  | struct jffs2_raw_node_ref *p = jeb->first_node; | 
|  |  | 
|  | spin_lock(&c->erase_completion_lock); | 
|  |  | 
|  | while (p->next_phys != ref) | 
|  | p = p->next_phys; | 
|  |  | 
|  | if (ref_obsolete(p) && !ref->next_in_ino) { | 
|  | p->__totlen += ref->__totlen; | 
|  | if (jeb->last_node == ref) { | 
|  | jeb->last_node = p; | 
|  | } | 
|  | if (jeb->gc_node == ref) { | 
|  | /* gc will be happy continuing gc on this node */ | 
|  | jeb->gc_node=p; | 
|  | } | 
|  | p->next_phys = ref->next_phys; | 
|  | jffs2_free_raw_node_ref(ref); | 
|  | } | 
|  | spin_unlock(&c->erase_completion_lock); | 
|  | } | 
|  | out_erase_sem: | 
|  | up(&c->erase_free_sem); | 
|  | } | 
|  |  | 
|  | #if CONFIG_JFFS2_FS_DEBUG >= 2 | 
|  | void jffs2_dump_block_lists(struct jffs2_sb_info *c) | 
|  | { | 
|  |  | 
|  |  | 
|  | printk(KERN_DEBUG "jffs2_dump_block_lists:\n"); | 
|  | printk(KERN_DEBUG "flash_size: %08x\n", c->flash_size); | 
|  | printk(KERN_DEBUG "used_size: %08x\n", c->used_size); | 
|  | printk(KERN_DEBUG "dirty_size: %08x\n", c->dirty_size); | 
|  | printk(KERN_DEBUG "wasted_size: %08x\n", c->wasted_size); | 
|  | printk(KERN_DEBUG "unchecked_size: %08x\n", c->unchecked_size); | 
|  | printk(KERN_DEBUG "free_size: %08x\n", c->free_size); | 
|  | printk(KERN_DEBUG "erasing_size: %08x\n", c->erasing_size); | 
|  | printk(KERN_DEBUG "bad_size: %08x\n", c->bad_size); | 
|  | printk(KERN_DEBUG "sector_size: %08x\n", c->sector_size); | 
|  | printk(KERN_DEBUG "jffs2_reserved_blocks size: %08x\n",c->sector_size * c->resv_blocks_write); | 
|  |  | 
|  | if (c->nextblock) { | 
|  | printk(KERN_DEBUG "nextblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | c->nextblock->offset, c->nextblock->used_size, c->nextblock->dirty_size, c->nextblock->wasted_size, c->nextblock->unchecked_size, c->nextblock->free_size); | 
|  | } else { | 
|  | printk(KERN_DEBUG "nextblock: NULL\n"); | 
|  | } | 
|  | if (c->gcblock) { | 
|  | printk(KERN_DEBUG "gcblock: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | c->gcblock->offset, c->gcblock->used_size, c->gcblock->dirty_size, c->gcblock->wasted_size, c->gcblock->unchecked_size, c->gcblock->free_size); | 
|  | } else { | 
|  | printk(KERN_DEBUG "gcblock: NULL\n"); | 
|  | } | 
|  | if (list_empty(&c->clean_list)) { | 
|  | printk(KERN_DEBUG "clean_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  | int	numblocks = 0; | 
|  | uint32_t dirty = 0; | 
|  |  | 
|  | list_for_each(this, &c->clean_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | numblocks ++; | 
|  | dirty += jeb->wasted_size; | 
|  | printk(KERN_DEBUG "clean_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | printk (KERN_DEBUG "Contains %d blocks with total wasted size %u, average wasted size: %u\n", numblocks, dirty, dirty / numblocks); | 
|  | } | 
|  | if (list_empty(&c->very_dirty_list)) { | 
|  | printk(KERN_DEBUG "very_dirty_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  | int	numblocks = 0; | 
|  | uint32_t dirty = 0; | 
|  |  | 
|  | list_for_each(this, &c->very_dirty_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | numblocks ++; | 
|  | dirty += jeb->dirty_size; | 
|  | printk(KERN_DEBUG "very_dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", | 
|  | numblocks, dirty, dirty / numblocks); | 
|  | } | 
|  | if (list_empty(&c->dirty_list)) { | 
|  | printk(KERN_DEBUG "dirty_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  | int	numblocks = 0; | 
|  | uint32_t dirty = 0; | 
|  |  | 
|  | list_for_each(this, &c->dirty_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | numblocks ++; | 
|  | dirty += jeb->dirty_size; | 
|  | printk(KERN_DEBUG "dirty_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | printk (KERN_DEBUG "Contains %d blocks with total dirty size %u, average dirty size: %u\n", | 
|  | numblocks, dirty, dirty / numblocks); | 
|  | } | 
|  | if (list_empty(&c->erasable_list)) { | 
|  | printk(KERN_DEBUG "erasable_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->erasable_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "erasable_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | if (list_empty(&c->erasing_list)) { | 
|  | printk(KERN_DEBUG "erasing_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->erasing_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "erasing_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | if (list_empty(&c->erase_pending_list)) { | 
|  | printk(KERN_DEBUG "erase_pending_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->erase_pending_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "erase_pending_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | if (list_empty(&c->erasable_pending_wbuf_list)) { | 
|  | printk(KERN_DEBUG "erasable_pending_wbuf_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->erasable_pending_wbuf_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "erasable_pending_wbuf_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | if (list_empty(&c->free_list)) { | 
|  | printk(KERN_DEBUG "free_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->free_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "free_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | if (list_empty(&c->bad_list)) { | 
|  | printk(KERN_DEBUG "bad_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->bad_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "bad_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | if (list_empty(&c->bad_used_list)) { | 
|  | printk(KERN_DEBUG "bad_used_list: empty\n"); | 
|  | } else { | 
|  | struct list_head *this; | 
|  |  | 
|  | list_for_each(this, &c->bad_used_list) { | 
|  | struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); | 
|  | printk(KERN_DEBUG "bad_used_list: %08x (used %08x, dirty %08x, wasted %08x, unchecked %08x, free %08x)\n", | 
|  | jeb->offset, jeb->used_size, jeb->dirty_size, jeb->wasted_size, jeb->unchecked_size, jeb->free_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_JFFS2_FS_DEBUG */ | 
|  |  | 
|  | int jffs2_thread_should_wake(struct jffs2_sb_info *c) | 
|  | { | 
|  | int ret = 0; | 
|  | uint32_t dirty; | 
|  |  | 
|  | if (c->unchecked_size) { | 
|  | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): unchecked_size %d, checked_ino #%d\n", | 
|  | c->unchecked_size, c->checked_ino)); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* dirty_size contains blocks on erase_pending_list | 
|  | * those blocks are counted in c->nr_erasing_blocks. | 
|  | * If one block is actually erased, it is not longer counted as dirty_space | 
|  | * but it is counted in c->nr_erasing_blocks, so we add it and subtract it | 
|  | * with c->nr_erasing_blocks * c->sector_size again. | 
|  | * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks | 
|  | * This helps us to force gc and pick eventually a clean block to spread the load. | 
|  | */ | 
|  | dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size; | 
|  |  | 
|  | if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger && | 
|  | (dirty > c->nospc_dirty_size)) | 
|  | ret = 1; | 
|  |  | 
|  | D1(printk(KERN_DEBUG "jffs2_thread_should_wake(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x: %s\n", | 
|  | c->nr_free_blocks, c->nr_erasing_blocks, c->dirty_size, ret?"yes":"no")); | 
|  |  | 
|  | return ret; | 
|  | } |