|  | /* | 
|  | *  Copyright 2000 by Hans Reiser, licensing governed by reiserfs/README | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  Written by Anatoly P. Pinchuk pap@namesys.botik.ru | 
|  | *  Programm System Institute | 
|  | *  Pereslavl-Zalessky Russia | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *  This file contains functions dealing with S+tree | 
|  | * | 
|  | * B_IS_IN_TREE | 
|  | * copy_item_head | 
|  | * comp_short_keys | 
|  | * comp_keys | 
|  | * comp_short_le_keys | 
|  | * le_key2cpu_key | 
|  | * comp_le_keys | 
|  | * bin_search | 
|  | * get_lkey | 
|  | * get_rkey | 
|  | * key_in_buffer | 
|  | * decrement_bcount | 
|  | * decrement_counters_in_path | 
|  | * reiserfs_check_path | 
|  | * pathrelse_and_restore | 
|  | * pathrelse | 
|  | * search_by_key_reada | 
|  | * search_by_key | 
|  | * search_for_position_by_key | 
|  | * comp_items | 
|  | * prepare_for_direct_item | 
|  | * prepare_for_direntry_item | 
|  | * prepare_for_delete_or_cut | 
|  | * calc_deleted_bytes_number | 
|  | * init_tb_struct | 
|  | * padd_item | 
|  | * reiserfs_delete_item | 
|  | * reiserfs_delete_solid_item | 
|  | * reiserfs_delete_object | 
|  | * maybe_indirect_to_direct | 
|  | * indirect_to_direct_roll_back | 
|  | * reiserfs_cut_from_item | 
|  | * truncate_directory | 
|  | * reiserfs_do_truncate | 
|  | * reiserfs_paste_into_item | 
|  | * reiserfs_insert_item | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/reiserfs_fs.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/quotaops.h> | 
|  |  | 
|  | /* Does the buffer contain a disk block which is in the tree. */ | 
|  | inline int B_IS_IN_TREE (const struct buffer_head * p_s_bh) | 
|  | { | 
|  |  | 
|  | RFALSE( B_LEVEL (p_s_bh) > MAX_HEIGHT, | 
|  | "PAP-1010: block (%b) has too big level (%z)", p_s_bh, p_s_bh); | 
|  |  | 
|  | return ( B_LEVEL (p_s_bh) != FREE_LEVEL ); | 
|  | } | 
|  |  | 
|  | // | 
|  | // to gets item head in le form | 
|  | // | 
|  | inline void copy_item_head(struct item_head * p_v_to, | 
|  | const struct item_head * p_v_from) | 
|  | { | 
|  | memcpy (p_v_to, p_v_from, IH_SIZE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* k1 is pointer to on-disk structure which is stored in little-endian | 
|  | form. k2 is pointer to cpu variable. For key of items of the same | 
|  | object this returns 0. | 
|  | Returns: -1 if key1 < key2 | 
|  | 0 if key1 == key2 | 
|  | 1 if key1 > key2 */ | 
|  | inline int  comp_short_keys (const struct reiserfs_key * le_key, | 
|  | const struct cpu_key * cpu_key) | 
|  | { | 
|  | __u32 n; | 
|  | n = le32_to_cpu(le_key->k_dir_id); | 
|  | if (n < cpu_key->on_disk_key.k_dir_id) | 
|  | return -1; | 
|  | if (n > cpu_key->on_disk_key.k_dir_id) | 
|  | return 1; | 
|  | n = le32_to_cpu(le_key->k_objectid); | 
|  | if (n < cpu_key->on_disk_key.k_objectid) | 
|  | return -1; | 
|  | if (n > cpu_key->on_disk_key.k_objectid) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* k1 is pointer to on-disk structure which is stored in little-endian | 
|  | form. k2 is pointer to cpu variable. | 
|  | Compare keys using all 4 key fields. | 
|  | Returns: -1 if key1 < key2 0 | 
|  | if key1 = key2 1 if key1 > key2 */ | 
|  | static inline int  comp_keys (const struct reiserfs_key * le_key, const struct cpu_key * cpu_key) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | retval = comp_short_keys (le_key, cpu_key); | 
|  | if (retval) | 
|  | return retval; | 
|  | if (le_key_k_offset (le_key_version(le_key), le_key) < cpu_key_k_offset (cpu_key)) | 
|  | return -1; | 
|  | if (le_key_k_offset (le_key_version(le_key), le_key) > cpu_key_k_offset (cpu_key)) | 
|  | return 1; | 
|  |  | 
|  | if (cpu_key->key_length == 3) | 
|  | return 0; | 
|  |  | 
|  | /* this part is needed only when tail conversion is in progress */ | 
|  | if (le_key_k_type (le_key_version(le_key), le_key) < cpu_key_k_type (cpu_key)) | 
|  | return -1; | 
|  |  | 
|  | if (le_key_k_type (le_key_version(le_key), le_key) > cpu_key_k_type (cpu_key)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | inline int comp_short_le_keys (const struct reiserfs_key * key1, const struct reiserfs_key * key2) | 
|  | { | 
|  | __u32 * p_s_1_u32, * p_s_2_u32; | 
|  | int n_key_length = REISERFS_SHORT_KEY_LEN; | 
|  |  | 
|  | p_s_1_u32 = (__u32 *)key1; | 
|  | p_s_2_u32 = (__u32 *)key2; | 
|  | for( ; n_key_length--; ++p_s_1_u32, ++p_s_2_u32 ) { | 
|  | if ( le32_to_cpu (*p_s_1_u32) < le32_to_cpu (*p_s_2_u32) ) | 
|  | return -1; | 
|  | if ( le32_to_cpu (*p_s_1_u32) > le32_to_cpu (*p_s_2_u32) ) | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | inline void le_key2cpu_key (struct cpu_key * to, const struct reiserfs_key * from) | 
|  | { | 
|  | int version; | 
|  | to->on_disk_key.k_dir_id = le32_to_cpu (from->k_dir_id); | 
|  | to->on_disk_key.k_objectid = le32_to_cpu (from->k_objectid); | 
|  |  | 
|  | // find out version of the key | 
|  | version = le_key_version (from); | 
|  | to->version = version; | 
|  | to->on_disk_key.k_offset = le_key_k_offset(version, from); | 
|  | to->on_disk_key.k_type = le_key_k_type(version, from); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | // this does not say which one is bigger, it only returns 1 if keys | 
|  | // are not equal, 0 otherwise | 
|  | inline int comp_le_keys (const struct reiserfs_key * k1, const struct reiserfs_key * k2) | 
|  | { | 
|  | return memcmp (k1, k2, sizeof (struct reiserfs_key)); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | *  Binary search toolkit function                                        * | 
|  | *  Search for an item in the array by the item key                       * | 
|  | *  Returns:    1 if found,  0 if not found;                              * | 
|  | *        *p_n_pos = number of the searched element if found, else the    * | 
|  | *        number of the first element that is larger than p_v_key.        * | 
|  | **************************************************************************/ | 
|  | /* For those not familiar with binary search: n_lbound is the leftmost item that it | 
|  | could be, n_rbound the rightmost item that it could be.  We examine the item | 
|  | halfway between n_lbound and n_rbound, and that tells us either that we can increase | 
|  | n_lbound, or decrease n_rbound, or that we have found it, or if n_lbound <= n_rbound that | 
|  | there are no possible items, and we have not found it. With each examination we | 
|  | cut the number of possible items it could be by one more than half rounded down, | 
|  | or we find it. */ | 
|  | static inline	int bin_search ( | 
|  | const void * p_v_key, /* Key to search for.                   */ | 
|  | const void * p_v_base,/* First item in the array.             */ | 
|  | int       p_n_num,    /* Number of items in the array.        */ | 
|  | int       p_n_width,  /* Item size in the array. | 
|  | searched. Lest the reader be | 
|  | confused, note that this is crafted | 
|  | as a general function, and when it | 
|  | is applied specifically to the array | 
|  | of item headers in a node, p_n_width | 
|  | is actually the item header size not | 
|  | the item size.                      */ | 
|  | int     * p_n_pos     /* Number of the searched for element. */ | 
|  | ) { | 
|  | int   n_rbound, n_lbound, n_j; | 
|  |  | 
|  | for ( n_j = ((n_rbound = p_n_num - 1) + (n_lbound = 0))/2; n_lbound <= n_rbound; n_j = (n_rbound + n_lbound)/2 ) | 
|  | switch( comp_keys((struct reiserfs_key *)((char * )p_v_base + n_j * p_n_width), (struct cpu_key *)p_v_key) )  { | 
|  | case -1: n_lbound = n_j + 1; continue; | 
|  | case  1: n_rbound = n_j - 1; continue; | 
|  | case  0: *p_n_pos = n_j;     return ITEM_FOUND; /* Key found in the array.  */ | 
|  | } | 
|  |  | 
|  | /* bin_search did not find given key, it returns position of key, | 
|  | that is minimal and greater than the given one. */ | 
|  | *p_n_pos = n_lbound; | 
|  | return ITEM_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | extern struct tree_balance * cur_tb; | 
|  | #endif | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Minimal possible key. It is never in the tree. */ | 
|  | const struct reiserfs_key  MIN_KEY = {0, 0, {{0, 0},}}; | 
|  |  | 
|  | /* Maximal possible key. It is never in the tree. */ | 
|  | static const struct reiserfs_key  MAX_KEY = { | 
|  | __constant_cpu_to_le32(0xffffffff), | 
|  | __constant_cpu_to_le32(0xffffffff), | 
|  | {{__constant_cpu_to_le32(0xffffffff), | 
|  | __constant_cpu_to_le32(0xffffffff)},} | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Get delimiting key of the buffer by looking for it in the buffers in the path, starting from the bottom | 
|  | of the path, and going upwards.  We must check the path's validity at each step.  If the key is not in | 
|  | the path, there is no delimiting key in the tree (buffer is first or last buffer in tree), and in this | 
|  | case we return a special key, either MIN_KEY or MAX_KEY. */ | 
|  | static inline	const struct  reiserfs_key * get_lkey  ( | 
|  | const struct path         * p_s_chk_path, | 
|  | const struct super_block  * p_s_sb | 
|  | ) { | 
|  | int                   n_position, n_path_offset = p_s_chk_path->path_length; | 
|  | struct buffer_head  * p_s_parent; | 
|  |  | 
|  | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5010: invalid offset in the path"); | 
|  |  | 
|  | /* While not higher in path than first element. */ | 
|  | while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) { | 
|  |  | 
|  | RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), | 
|  | "PAP-5020: parent is not uptodate"); | 
|  |  | 
|  | /* Parent at the path is not in the tree now. */ | 
|  | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) ) | 
|  | return &MAX_KEY; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) ) | 
|  | return &MAX_KEY; | 
|  | /* Check whether parent at the path really points to the child. */ | 
|  | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | 
|  | PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr ) | 
|  | return &MAX_KEY; | 
|  | /* Return delimiting key if position in the parent is not equal to zero. */ | 
|  | if ( n_position ) | 
|  | return B_N_PDELIM_KEY(p_s_parent, n_position - 1); | 
|  | } | 
|  | /* Return MIN_KEY if we are in the root of the buffer tree. */ | 
|  | if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | 
|  | SB_ROOT_BLOCK (p_s_sb) ) | 
|  | return &MIN_KEY; | 
|  | return  &MAX_KEY; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Get delimiting key of the buffer at the path and its right neighbor. */ | 
|  | inline	const struct  reiserfs_key * get_rkey  ( | 
|  | const struct path         * p_s_chk_path, | 
|  | const struct super_block  * p_s_sb | 
|  | ) { | 
|  | int                   n_position, | 
|  | n_path_offset = p_s_chk_path->path_length; | 
|  | struct buffer_head  * p_s_parent; | 
|  |  | 
|  | RFALSE( n_path_offset < FIRST_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5030: invalid offset in the path"); | 
|  |  | 
|  | while ( n_path_offset-- > FIRST_PATH_ELEMENT_OFFSET ) { | 
|  |  | 
|  | RFALSE( ! buffer_uptodate(PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)), | 
|  | "PAP-5040: parent is not uptodate"); | 
|  |  | 
|  | /* Parent at the path is not in the tree now. */ | 
|  | if ( ! B_IS_IN_TREE(p_s_parent = PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset)) ) | 
|  | return &MIN_KEY; | 
|  | /* Check whether position in the parent is correct. */ | 
|  | if ( (n_position = PATH_OFFSET_POSITION(p_s_chk_path, n_path_offset)) > B_NR_ITEMS(p_s_parent) ) | 
|  | return &MIN_KEY; | 
|  | /* Check whether parent at the path really points to the child. */ | 
|  | if ( B_N_CHILD_NUM(p_s_parent, n_position) != | 
|  | PATH_OFFSET_PBUFFER(p_s_chk_path, n_path_offset + 1)->b_blocknr ) | 
|  | return &MIN_KEY; | 
|  | /* Return delimiting key if position in the parent is not the last one. */ | 
|  | if ( n_position != B_NR_ITEMS(p_s_parent) ) | 
|  | return B_N_PDELIM_KEY(p_s_parent, n_position); | 
|  | } | 
|  | /* Return MAX_KEY if we are in the root of the buffer tree. */ | 
|  | if ( PATH_OFFSET_PBUFFER(p_s_chk_path, FIRST_PATH_ELEMENT_OFFSET)->b_blocknr == | 
|  | SB_ROOT_BLOCK (p_s_sb) ) | 
|  | return &MAX_KEY; | 
|  | return  &MIN_KEY; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Check whether a key is contained in the tree rooted from a buffer at a path. */ | 
|  | /* This works by looking at the left and right delimiting keys for the buffer in the last path_element in | 
|  | the path.  These delimiting keys are stored at least one level above that buffer in the tree. If the | 
|  | buffer is the first or last node in the tree order then one of the delimiting keys may be absent, and in | 
|  | this case get_lkey and get_rkey return a special key which is MIN_KEY or MAX_KEY. */ | 
|  | static  inline  int key_in_buffer ( | 
|  | struct path         * p_s_chk_path, /* Path which should be checked.  */ | 
|  | const struct cpu_key      * p_s_key,      /* Key which should be checked.   */ | 
|  | struct super_block  * p_s_sb        /* Super block pointer.           */ | 
|  | ) { | 
|  |  | 
|  | RFALSE( ! p_s_key || p_s_chk_path->path_length < FIRST_PATH_ELEMENT_OFFSET || | 
|  | p_s_chk_path->path_length > MAX_HEIGHT, | 
|  | "PAP-5050: pointer to the key(%p) is NULL or invalid path length(%d)", | 
|  | p_s_key, p_s_chk_path->path_length); | 
|  | RFALSE( !PATH_PLAST_BUFFER(p_s_chk_path)->b_bdev, | 
|  | "PAP-5060: device must not be NODEV"); | 
|  |  | 
|  | if ( comp_keys(get_lkey(p_s_chk_path, p_s_sb), p_s_key) == 1 ) | 
|  | /* left delimiting key is bigger, that the key we look for */ | 
|  | return 0; | 
|  | //  if ( comp_keys(p_s_key, get_rkey(p_s_chk_path, p_s_sb)) != -1 ) | 
|  | if ( comp_keys(get_rkey(p_s_chk_path, p_s_sb), p_s_key) != 1 ) | 
|  | /* p_s_key must be less than right delimitiing key */ | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | inline void decrement_bcount( | 
|  | struct buffer_head  * p_s_bh | 
|  | ) { | 
|  | if ( p_s_bh ) { | 
|  | if ( atomic_read (&(p_s_bh->b_count)) ) { | 
|  | put_bh(p_s_bh) ; | 
|  | return; | 
|  | } | 
|  | reiserfs_panic(NULL, "PAP-5070: decrement_bcount: trying to free free buffer %b", p_s_bh); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Decrement b_count field of the all buffers in the path. */ | 
|  | void decrement_counters_in_path ( | 
|  | struct path * p_s_search_path | 
|  | ) { | 
|  | int n_path_offset = p_s_search_path->path_length; | 
|  |  | 
|  | RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET || | 
|  | n_path_offset > EXTENDED_MAX_HEIGHT - 1, | 
|  | "PAP-5080: invalid path offset of %d", n_path_offset); | 
|  |  | 
|  | while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) { | 
|  | struct buffer_head * bh; | 
|  |  | 
|  | bh = PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--); | 
|  | decrement_bcount (bh); | 
|  | } | 
|  | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  |  | 
|  | int reiserfs_check_path(struct path *p) { | 
|  | RFALSE( p->path_length != ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "path not properly relsed") ; | 
|  | return 0 ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Release all buffers in the path. Restore dirty bits clean | 
|  | ** when preparing the buffer for the log | 
|  | ** | 
|  | ** only called from fix_nodes() | 
|  | */ | 
|  | void  pathrelse_and_restore ( | 
|  | struct super_block *s, | 
|  | struct path * p_s_search_path | 
|  | ) { | 
|  | int n_path_offset = p_s_search_path->path_length; | 
|  |  | 
|  | RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "clm-4000: invalid path offset"); | 
|  |  | 
|  | while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET )  { | 
|  | reiserfs_restore_prepared_buffer(s, PATH_OFFSET_PBUFFER(p_s_search_path, | 
|  | n_path_offset)); | 
|  | brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); | 
|  | } | 
|  | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  | /* Release all buffers in the path. */ | 
|  | void  pathrelse ( | 
|  | struct path * p_s_search_path | 
|  | ) { | 
|  | int n_path_offset = p_s_search_path->path_length; | 
|  |  | 
|  | RFALSE( n_path_offset < ILLEGAL_PATH_ELEMENT_OFFSET, | 
|  | "PAP-5090: invalid path offset"); | 
|  |  | 
|  | while ( n_path_offset > ILLEGAL_PATH_ELEMENT_OFFSET ) | 
|  | brelse(PATH_OFFSET_PBUFFER(p_s_search_path, n_path_offset--)); | 
|  |  | 
|  | p_s_search_path->path_length = ILLEGAL_PATH_ELEMENT_OFFSET; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int is_leaf (char * buf, int blocksize, struct buffer_head * bh) | 
|  | { | 
|  | struct block_head * blkh; | 
|  | struct item_head * ih; | 
|  | int used_space; | 
|  | int prev_location; | 
|  | int i; | 
|  | int nr; | 
|  |  | 
|  | blkh = (struct block_head *)buf; | 
|  | if ( blkh_level(blkh) != DISK_LEAF_NODE_LEVEL) { | 
|  | reiserfs_warning (NULL, "is_leaf: this should be caught earlier"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nr = blkh_nr_item(blkh); | 
|  | if (nr < 1 || nr > ((blocksize - BLKH_SIZE) / (IH_SIZE + MIN_ITEM_LEN))) { | 
|  | /* item number is too big or too small */ | 
|  | reiserfs_warning (NULL, "is_leaf: nr_item seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  | ih = (struct item_head *)(buf + BLKH_SIZE) + nr - 1; | 
|  | used_space = BLKH_SIZE + IH_SIZE * nr + (blocksize - ih_location (ih)); | 
|  | if (used_space != blocksize - blkh_free_space(blkh)) { | 
|  | /* free space does not match to calculated amount of use space */ | 
|  | reiserfs_warning (NULL, "is_leaf: free space seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // FIXME: it is_leaf will hit performance too much - we may have | 
|  | // return 1 here | 
|  |  | 
|  | /* check tables of item heads */ | 
|  | ih = (struct item_head *)(buf + BLKH_SIZE); | 
|  | prev_location = blocksize; | 
|  | for (i = 0; i < nr; i ++, ih ++) { | 
|  | if ( le_ih_k_type(ih) == TYPE_ANY) { | 
|  | reiserfs_warning (NULL, "is_leaf: wrong item type for item %h",ih); | 
|  | return 0; | 
|  | } | 
|  | if (ih_location (ih) >= blocksize || ih_location (ih) < IH_SIZE * nr) { | 
|  | reiserfs_warning (NULL, "is_leaf: item location seems wrong: %h", ih); | 
|  | return 0; | 
|  | } | 
|  | if (ih_item_len (ih) < 1 || ih_item_len (ih) > MAX_ITEM_LEN (blocksize)) { | 
|  | reiserfs_warning (NULL, "is_leaf: item length seems wrong: %h", ih); | 
|  | return 0; | 
|  | } | 
|  | if (prev_location - ih_location (ih) != ih_item_len (ih)) { | 
|  | reiserfs_warning (NULL, "is_leaf: item location seems wrong (second one): %h", ih); | 
|  | return 0; | 
|  | } | 
|  | prev_location = ih_location (ih); | 
|  | } | 
|  |  | 
|  | // one may imagine much more checks | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* returns 1 if buf looks like an internal node, 0 otherwise */ | 
|  | static int is_internal (char * buf, int blocksize, struct buffer_head * bh) | 
|  | { | 
|  | struct block_head * blkh; | 
|  | int nr; | 
|  | int used_space; | 
|  |  | 
|  | blkh = (struct block_head *)buf; | 
|  | nr = blkh_level(blkh); | 
|  | if (nr <= DISK_LEAF_NODE_LEVEL || nr > MAX_HEIGHT) { | 
|  | /* this level is not possible for internal nodes */ | 
|  | reiserfs_warning (NULL, "is_internal: this should be caught earlier"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | nr = blkh_nr_item(blkh); | 
|  | if (nr > (blocksize - BLKH_SIZE - DC_SIZE) / (KEY_SIZE + DC_SIZE)) { | 
|  | /* for internal which is not root we might check min number of keys */ | 
|  | reiserfs_warning (NULL, "is_internal: number of key seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | used_space = BLKH_SIZE + KEY_SIZE * nr + DC_SIZE * (nr + 1); | 
|  | if (used_space != blocksize - blkh_free_space(blkh)) { | 
|  | reiserfs_warning (NULL, "is_internal: free space seems wrong: %z", bh); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // one may imagine much more checks | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | // make sure that bh contains formatted node of reiserfs tree of | 
|  | // 'level'-th level | 
|  | static int is_tree_node (struct buffer_head * bh, int level) | 
|  | { | 
|  | if (B_LEVEL (bh) != level) { | 
|  | reiserfs_warning (NULL, "is_tree_node: node level %d does not match to the expected one %d", | 
|  | B_LEVEL (bh), level); | 
|  | return 0; | 
|  | } | 
|  | if (level == DISK_LEAF_NODE_LEVEL) | 
|  | return is_leaf (bh->b_data, bh->b_size, bh); | 
|  |  | 
|  | return is_internal (bh->b_data, bh->b_size, bh); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | #define SEARCH_BY_KEY_READA 16 | 
|  |  | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | static void search_by_key_reada (struct super_block * s, | 
|  | struct buffer_head **bh, | 
|  | unsigned long *b, int num) | 
|  | { | 
|  | int i,j; | 
|  |  | 
|  | for (i = 0 ; i < num ; i++) { | 
|  | bh[i] = sb_getblk (s, b[i]); | 
|  | } | 
|  | for (j = 0 ; j < i ; j++) { | 
|  | /* | 
|  | * note, this needs attention if we are getting rid of the BKL | 
|  | * you have to make sure the prepared bit isn't set on this buffer | 
|  | */ | 
|  | if (!buffer_uptodate(bh[j])) | 
|  | ll_rw_block(READA, 1, bh + j); | 
|  | brelse(bh[j]); | 
|  | } | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | * Algorithm   SearchByKey                                                * | 
|  | *             look for item in the Disk S+Tree by its key                * | 
|  | * Input:  p_s_sb   -  super block                                        * | 
|  | *         p_s_key  - pointer to the key to search                        * | 
|  | * Output: ITEM_FOUND, ITEM_NOT_FOUND or IO_ERROR                         * | 
|  | *         p_s_search_path - path from the root to the needed leaf        * | 
|  | **************************************************************************/ | 
|  |  | 
|  | /* This function fills up the path from the root to the leaf as it | 
|  | descends the tree looking for the key.  It uses reiserfs_bread to | 
|  | try to find buffers in the cache given their block number.  If it | 
|  | does not find them in the cache it reads them from disk.  For each | 
|  | node search_by_key finds using reiserfs_bread it then uses | 
|  | bin_search to look through that node.  bin_search will find the | 
|  | position of the block_number of the next node if it is looking | 
|  | through an internal node.  If it is looking through a leaf node | 
|  | bin_search will find the position of the item which has key either | 
|  | equal to given key, or which is the maximal key less than the given | 
|  | key.  search_by_key returns a path that must be checked for the | 
|  | correctness of the top of the path but need not be checked for the | 
|  | correctness of the bottom of the path */ | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | int search_by_key (struct super_block * p_s_sb, | 
|  | const struct cpu_key * p_s_key, /* Key to search. */ | 
|  | struct path * p_s_search_path, /* This structure was | 
|  | allocated and initialized | 
|  | by the calling | 
|  | function. It is filled up | 
|  | by this function.  */ | 
|  | int n_stop_level /* How far down the tree to search. To | 
|  | stop at leaf level - set to | 
|  | DISK_LEAF_NODE_LEVEL */ | 
|  | ) { | 
|  | int  n_block_number; | 
|  | int  expected_level; | 
|  | struct buffer_head  *       p_s_bh; | 
|  | struct path_element *       p_s_last_element; | 
|  | int				n_node_level, n_retval; | 
|  | int 			right_neighbor_of_leaf_node; | 
|  | int				fs_gen; | 
|  | struct buffer_head *reada_bh[SEARCH_BY_KEY_READA]; | 
|  | unsigned long      reada_blocks[SEARCH_BY_KEY_READA]; | 
|  | int reada_count = 0; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | int n_repeat_counter = 0; | 
|  | #endif | 
|  |  | 
|  | PROC_INFO_INC( p_s_sb, search_by_key ); | 
|  |  | 
|  | /* As we add each node to a path we increase its count.  This means that | 
|  | we must be careful to release all nodes in a path before we either | 
|  | discard the path struct or re-use the path struct, as we do here. */ | 
|  |  | 
|  | decrement_counters_in_path(p_s_search_path); | 
|  |  | 
|  | right_neighbor_of_leaf_node = 0; | 
|  |  | 
|  | /* With each iteration of this loop we search through the items in the | 
|  | current node, and calculate the next current node(next path element) | 
|  | for the next iteration of this loop.. */ | 
|  | n_block_number = SB_ROOT_BLOCK (p_s_sb); | 
|  | expected_level = -1; | 
|  | while ( 1 ) { | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if ( !(++n_repeat_counter % 50000) ) | 
|  | reiserfs_warning (p_s_sb, "PAP-5100: search_by_key: %s:" | 
|  | "there were %d iterations of while loop " | 
|  | "looking for key %K", | 
|  | current->comm, n_repeat_counter, p_s_key); | 
|  | #endif | 
|  |  | 
|  | /* prep path to have another element added to it. */ | 
|  | p_s_last_element = PATH_OFFSET_PELEMENT(p_s_search_path, ++p_s_search_path->path_length); | 
|  | fs_gen = get_generation (p_s_sb); | 
|  |  | 
|  | /* Read the next tree node, and set the last element in the path to | 
|  | have a pointer to it. */ | 
|  | if ((p_s_bh = p_s_last_element->pe_buffer = | 
|  | sb_getblk(p_s_sb, n_block_number)) ) { | 
|  | if (!buffer_uptodate(p_s_bh) && reada_count > 1) { | 
|  | search_by_key_reada (p_s_sb, reada_bh, | 
|  | reada_blocks, reada_count); | 
|  | } | 
|  | ll_rw_block(READ, 1, &p_s_bh); | 
|  | wait_on_buffer(p_s_bh); | 
|  | if (!buffer_uptodate(p_s_bh)) | 
|  | goto io_error; | 
|  | } else { | 
|  | io_error: | 
|  | p_s_search_path->path_length --; | 
|  | pathrelse(p_s_search_path); | 
|  | return IO_ERROR; | 
|  | } | 
|  | reada_count = 0; | 
|  | if (expected_level == -1) | 
|  | expected_level = SB_TREE_HEIGHT (p_s_sb); | 
|  | expected_level --; | 
|  |  | 
|  | /* It is possible that schedule occurred. We must check whether the key | 
|  | to search is still in the tree rooted from the current buffer. If | 
|  | not then repeat search from the root. */ | 
|  | if ( fs_changed (fs_gen, p_s_sb) && | 
|  | (!B_IS_IN_TREE (p_s_bh) || | 
|  | B_LEVEL(p_s_bh) != expected_level || | 
|  | !key_in_buffer(p_s_search_path, p_s_key, p_s_sb))) { | 
|  | PROC_INFO_INC( p_s_sb, search_by_key_fs_changed ); | 
|  | PROC_INFO_INC( p_s_sb, search_by_key_restarted ); | 
|  | PROC_INFO_INC( p_s_sb, sbk_restarted[ expected_level - 1 ] ); | 
|  | decrement_counters_in_path(p_s_search_path); | 
|  |  | 
|  | /* Get the root block number so that we can repeat the search | 
|  | starting from the root. */ | 
|  | n_block_number = SB_ROOT_BLOCK (p_s_sb); | 
|  | expected_level = -1; | 
|  | right_neighbor_of_leaf_node = 0; | 
|  |  | 
|  | /* repeat search from the root */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* only check that the key is in the buffer if p_s_key is not | 
|  | equal to the MAX_KEY. Latter case is only possible in | 
|  | "finish_unfinished()" processing during mount. */ | 
|  | RFALSE( comp_keys( &MAX_KEY, p_s_key ) && | 
|  | ! key_in_buffer(p_s_search_path, p_s_key, p_s_sb), | 
|  | "PAP-5130: key is not in the buffer"); | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if ( cur_tb ) { | 
|  | print_cur_tb ("5140"); | 
|  | reiserfs_panic(p_s_sb, "PAP-5140: search_by_key: schedule occurred in do_balance!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // make sure, that the node contents look like a node of | 
|  | // certain level | 
|  | if (!is_tree_node (p_s_bh, expected_level)) { | 
|  | reiserfs_warning (p_s_sb, "vs-5150: search_by_key: " | 
|  | "invalid format found in block %ld. Fsck?", | 
|  | p_s_bh->b_blocknr); | 
|  | pathrelse (p_s_search_path); | 
|  | return IO_ERROR; | 
|  | } | 
|  |  | 
|  | /* ok, we have acquired next formatted node in the tree */ | 
|  | n_node_level = B_LEVEL (p_s_bh); | 
|  |  | 
|  | PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level - 1 ); | 
|  |  | 
|  | RFALSE( n_node_level < n_stop_level, | 
|  | "vs-5152: tree level (%d) is less than stop level (%d)", | 
|  | n_node_level, n_stop_level); | 
|  |  | 
|  | n_retval = bin_search( p_s_key, B_N_PITEM_HEAD(p_s_bh, 0), | 
|  | B_NR_ITEMS(p_s_bh), | 
|  | ( n_node_level == DISK_LEAF_NODE_LEVEL ) ? IH_SIZE : KEY_SIZE, | 
|  | &(p_s_last_element->pe_position)); | 
|  | if (n_node_level == n_stop_level) { | 
|  | return n_retval; | 
|  | } | 
|  |  | 
|  | /* we are not in the stop level */ | 
|  | if (n_retval == ITEM_FOUND) | 
|  | /* item has been found, so we choose the pointer which is to the right of the found one */ | 
|  | p_s_last_element->pe_position++; | 
|  |  | 
|  | /* if item was not found we choose the position which is to | 
|  | the left of the found item. This requires no code, | 
|  | bin_search did it already.*/ | 
|  |  | 
|  | /* So we have chosen a position in the current node which is | 
|  | an internal node.  Now we calculate child block number by | 
|  | position in the node. */ | 
|  | n_block_number = B_N_CHILD_NUM(p_s_bh, p_s_last_element->pe_position); | 
|  |  | 
|  | /* if we are going to read leaf nodes, try for read ahead as well */ | 
|  | if ((p_s_search_path->reada & PATH_READA) && | 
|  | n_node_level == DISK_LEAF_NODE_LEVEL + 1) | 
|  | { | 
|  | int pos = p_s_last_element->pe_position; | 
|  | int limit = B_NR_ITEMS(p_s_bh); | 
|  | struct reiserfs_key *le_key; | 
|  |  | 
|  | if (p_s_search_path->reada & PATH_READA_BACK) | 
|  | limit = 0; | 
|  | while(reada_count < SEARCH_BY_KEY_READA) { | 
|  | if (pos == limit) | 
|  | break; | 
|  | reada_blocks[reada_count++] = B_N_CHILD_NUM(p_s_bh, pos); | 
|  | if (p_s_search_path->reada & PATH_READA_BACK) | 
|  | pos--; | 
|  | else | 
|  | pos++; | 
|  |  | 
|  | /* | 
|  | * check to make sure we're in the same object | 
|  | */ | 
|  | le_key = B_N_PDELIM_KEY(p_s_bh, pos); | 
|  | if (le32_to_cpu(le_key->k_objectid) != | 
|  | p_s_key->on_disk_key.k_objectid) | 
|  | { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Form the path to an item and position in this item which contains | 
|  | file byte defined by p_s_key. If there is no such item | 
|  | corresponding to the key, we point the path to the item with | 
|  | maximal key less than p_s_key, and *p_n_pos_in_item is set to one | 
|  | past the last entry/byte in the item.  If searching for entry in a | 
|  | directory item, and it is not found, *p_n_pos_in_item is set to one | 
|  | entry more than the entry with maximal key which is less than the | 
|  | sought key. | 
|  |  | 
|  | Note that if there is no entry in this same node which is one more, | 
|  | then we point to an imaginary entry.  for direct items, the | 
|  | position is in units of bytes, for indirect items the position is | 
|  | in units of blocknr entries, for directory items the position is in | 
|  | units of directory entries.  */ | 
|  |  | 
|  | /* The function is NOT SCHEDULE-SAFE! */ | 
|  | int search_for_position_by_key (struct super_block  * p_s_sb,         /* Pointer to the super block.          */ | 
|  | const struct cpu_key  * p_cpu_key,      /* Key to search (cpu variable)         */ | 
|  | struct path         * p_s_search_path /* Filled up by this function.          */ | 
|  | ) { | 
|  | struct item_head    * p_le_ih; /* pointer to on-disk structure */ | 
|  | int                   n_blk_size; | 
|  | loff_t item_offset, offset; | 
|  | struct reiserfs_dir_entry de; | 
|  | int retval; | 
|  |  | 
|  | /* If searching for directory entry. */ | 
|  | if ( is_direntry_cpu_key (p_cpu_key) ) | 
|  | return  search_by_entry_key (p_s_sb, p_cpu_key, p_s_search_path, &de); | 
|  |  | 
|  | /* If not searching for directory entry. */ | 
|  |  | 
|  | /* If item is found. */ | 
|  | retval = search_item (p_s_sb, p_cpu_key, p_s_search_path); | 
|  | if (retval == IO_ERROR) | 
|  | return retval; | 
|  | if ( retval == ITEM_FOUND )  { | 
|  |  | 
|  | RFALSE( ! ih_item_len( | 
|  | B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), | 
|  | PATH_LAST_POSITION(p_s_search_path))), | 
|  | "PAP-5165: item length equals zero"); | 
|  |  | 
|  | pos_in_item(p_s_search_path) = 0; | 
|  | return POSITION_FOUND; | 
|  | } | 
|  |  | 
|  | RFALSE( ! PATH_LAST_POSITION(p_s_search_path), | 
|  | "PAP-5170: position equals zero"); | 
|  |  | 
|  | /* Item is not found. Set path to the previous item. */ | 
|  | p_le_ih = B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_search_path), --PATH_LAST_POSITION(p_s_search_path)); | 
|  | n_blk_size = p_s_sb->s_blocksize; | 
|  |  | 
|  | if (comp_short_keys (&(p_le_ih->ih_key), p_cpu_key)) { | 
|  | return FILE_NOT_FOUND; | 
|  | } | 
|  |  | 
|  | // FIXME: quite ugly this far | 
|  |  | 
|  | item_offset = le_ih_k_offset (p_le_ih); | 
|  | offset = cpu_key_k_offset (p_cpu_key); | 
|  |  | 
|  | /* Needed byte is contained in the item pointed to by the path.*/ | 
|  | if (item_offset <= offset && | 
|  | item_offset + op_bytes_number (p_le_ih, n_blk_size) > offset) { | 
|  | pos_in_item (p_s_search_path) = offset - item_offset; | 
|  | if ( is_indirect_le_ih(p_le_ih) ) { | 
|  | pos_in_item (p_s_search_path) /= n_blk_size; | 
|  | } | 
|  | return POSITION_FOUND; | 
|  | } | 
|  |  | 
|  | /* Needed byte is not contained in the item pointed to by the | 
|  | path. Set pos_in_item out of the item. */ | 
|  | if ( is_indirect_le_ih (p_le_ih) ) | 
|  | pos_in_item (p_s_search_path) = ih_item_len(p_le_ih) / UNFM_P_SIZE; | 
|  | else | 
|  | pos_in_item (p_s_search_path) = ih_item_len( p_le_ih ); | 
|  |  | 
|  | return POSITION_NOT_FOUND; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Compare given item and item pointed to by the path. */ | 
|  | int comp_items (const struct item_head * stored_ih, const struct path * p_s_path) | 
|  | { | 
|  | struct buffer_head  * p_s_bh; | 
|  | struct item_head    * ih; | 
|  |  | 
|  | /* Last buffer at the path is not in the tree. */ | 
|  | if ( ! B_IS_IN_TREE(p_s_bh = PATH_PLAST_BUFFER(p_s_path)) ) | 
|  | return 1; | 
|  |  | 
|  | /* Last path position is invalid. */ | 
|  | if ( PATH_LAST_POSITION(p_s_path) >= B_NR_ITEMS(p_s_bh) ) | 
|  | return 1; | 
|  |  | 
|  | /* we need only to know, whether it is the same item */ | 
|  | ih = get_ih (p_s_path); | 
|  | return memcmp (stored_ih, ih, IH_SIZE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* unformatted nodes are not logged anymore, ever.  This is safe | 
|  | ** now | 
|  | */ | 
|  | #define held_by_others(bh) (atomic_read(&(bh)->b_count) > 1) | 
|  |  | 
|  | // block can not be forgotten as it is in I/O or held by someone | 
|  | #define block_in_use(bh) (buffer_locked(bh) || (held_by_others(bh))) | 
|  |  | 
|  |  | 
|  |  | 
|  | // prepare for delete or cut of direct item | 
|  | static inline int prepare_for_direct_item (struct path * path, | 
|  | struct item_head * le_ih, | 
|  | struct inode * inode, | 
|  | loff_t new_file_length, | 
|  | int * cut_size) | 
|  | { | 
|  | loff_t round_len; | 
|  |  | 
|  |  | 
|  | if ( new_file_length == max_reiserfs_offset (inode) ) { | 
|  | /* item has to be deleted */ | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | // new file gets truncated | 
|  | if (get_inode_item_key_version (inode) == KEY_FORMAT_3_6) { | 
|  | // | 
|  | round_len = ROUND_UP (new_file_length); | 
|  | /* this was n_new_file_length < le_ih ... */ | 
|  | if ( round_len < le_ih_k_offset (le_ih) )  { | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; /* Delete this item. */ | 
|  | } | 
|  | /* Calculate first position and size for cutting from item. */ | 
|  | pos_in_item (path) = round_len - (le_ih_k_offset (le_ih) - 1); | 
|  | *cut_size = -(ih_item_len(le_ih) - pos_in_item(path)); | 
|  |  | 
|  | return M_CUT; /* Cut from this item. */ | 
|  | } | 
|  |  | 
|  |  | 
|  | // old file: items may have any length | 
|  |  | 
|  | if ( new_file_length < le_ih_k_offset (le_ih) )  { | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; /* Delete this item. */ | 
|  | } | 
|  | /* Calculate first position and size for cutting from item. */ | 
|  | *cut_size = -(ih_item_len(le_ih) - | 
|  | (pos_in_item (path) = new_file_length + 1 - le_ih_k_offset (le_ih))); | 
|  | return M_CUT; /* Cut from this item. */ | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int prepare_for_direntry_item (struct path * path, | 
|  | struct item_head * le_ih, | 
|  | struct inode * inode, | 
|  | loff_t new_file_length, | 
|  | int * cut_size) | 
|  | { | 
|  | if (le_ih_k_offset (le_ih) == DOT_OFFSET && | 
|  | new_file_length == max_reiserfs_offset (inode)) { | 
|  | RFALSE( ih_entry_count (le_ih) != 2, | 
|  | "PAP-5220: incorrect empty directory item (%h)", le_ih); | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; /* Delete the directory item containing "." and ".." entry. */ | 
|  | } | 
|  |  | 
|  | if ( ih_entry_count (le_ih) == 1 )  { | 
|  | /* Delete the directory item such as there is one record only | 
|  | in this item*/ | 
|  | *cut_size = -(IH_SIZE + ih_item_len(le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  | /* Cut one record from the directory item. */ | 
|  | *cut_size = -(DEH_SIZE + entry_length (get_last_bh (path), le_ih, pos_in_item (path))); | 
|  | return M_CUT; | 
|  | } | 
|  |  | 
|  |  | 
|  | /*  If the path points to a directory or direct item, calculate mode and the size cut, for balance. | 
|  | If the path points to an indirect item, remove some number of its unformatted nodes. | 
|  | In case of file truncate calculate whether this item must be deleted/truncated or last | 
|  | unformatted node of this item will be converted to a direct item. | 
|  | This function returns a determination of what balance mode the calling function should employ. */ | 
|  | static char  prepare_for_delete_or_cut( | 
|  | struct reiserfs_transaction_handle *th, | 
|  | struct inode * inode, | 
|  | struct path         * p_s_path, | 
|  | const struct cpu_key      * p_s_item_key, | 
|  | int                 * p_n_removed,      /* Number of unformatted nodes which were removed | 
|  | from end of the file. */ | 
|  | int                 * p_n_cut_size, | 
|  | unsigned long long    n_new_file_length /* MAX_KEY_OFFSET in case of delete. */ | 
|  | ) { | 
|  | struct super_block  * p_s_sb = inode->i_sb; | 
|  | struct item_head    * p_le_ih = PATH_PITEM_HEAD(p_s_path); | 
|  | struct buffer_head  * p_s_bh = PATH_PLAST_BUFFER(p_s_path); | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | /* Stat_data item. */ | 
|  | if ( is_statdata_le_ih (p_le_ih) ) { | 
|  |  | 
|  | RFALSE( n_new_file_length != max_reiserfs_offset (inode), | 
|  | "PAP-5210: mode must be M_DELETE"); | 
|  |  | 
|  | *p_n_cut_size = -(IH_SIZE + ih_item_len(p_le_ih)); | 
|  | return M_DELETE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Directory item. */ | 
|  | if ( is_direntry_le_ih (p_le_ih) ) | 
|  | return prepare_for_direntry_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size); | 
|  |  | 
|  | /* Direct item. */ | 
|  | if ( is_direct_le_ih (p_le_ih) ) | 
|  | return prepare_for_direct_item (p_s_path, p_le_ih, inode, n_new_file_length, p_n_cut_size); | 
|  |  | 
|  |  | 
|  | /* Case of an indirect item. */ | 
|  | { | 
|  | int                   n_unfm_number,    /* Number of the item unformatted nodes. */ | 
|  | n_counter, | 
|  | n_blk_size; | 
|  | __le32               * p_n_unfm_pointer; /* Pointer to the unformatted node number. */ | 
|  | __u32 tmp; | 
|  | struct item_head      s_ih;           /* Item header. */ | 
|  | char                  c_mode;           /* Returned mode of the balance. */ | 
|  | int need_research; | 
|  |  | 
|  |  | 
|  | n_blk_size = p_s_sb->s_blocksize; | 
|  |  | 
|  | /* Search for the needed object indirect item until there are no unformatted nodes to be removed. */ | 
|  | do  { | 
|  | need_research = 0; | 
|  | p_s_bh = PATH_PLAST_BUFFER(p_s_path); | 
|  | /* Copy indirect item header to a temp variable. */ | 
|  | copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); | 
|  | /* Calculate number of unformatted nodes in this item. */ | 
|  | n_unfm_number = I_UNFM_NUM(&s_ih); | 
|  |  | 
|  | RFALSE( ! is_indirect_le_ih(&s_ih) || ! n_unfm_number || | 
|  | pos_in_item (p_s_path) + 1 !=  n_unfm_number, | 
|  | "PAP-5240: invalid item %h " | 
|  | "n_unfm_number = %d *p_n_pos_in_item = %d", | 
|  | &s_ih, n_unfm_number, pos_in_item (p_s_path)); | 
|  |  | 
|  | /* Calculate balance mode and position in the item to remove unformatted nodes. */ | 
|  | if ( n_new_file_length == max_reiserfs_offset (inode) ) {/* Case of delete. */ | 
|  | pos_in_item (p_s_path) = 0; | 
|  | *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih)); | 
|  | c_mode = M_DELETE; | 
|  | } | 
|  | else  { /* Case of truncate. */ | 
|  | if ( n_new_file_length < le_ih_k_offset (&s_ih) )  { | 
|  | pos_in_item (p_s_path) = 0; | 
|  | *p_n_cut_size = -(IH_SIZE + ih_item_len(&s_ih)); | 
|  | c_mode = M_DELETE; /* Delete this item. */ | 
|  | } | 
|  | else  { | 
|  | /* indirect item must be truncated starting from *p_n_pos_in_item-th position */ | 
|  | pos_in_item (p_s_path) = (n_new_file_length + n_blk_size - le_ih_k_offset (&s_ih) ) >> p_s_sb->s_blocksize_bits; | 
|  |  | 
|  | RFALSE( pos_in_item (p_s_path) > n_unfm_number, | 
|  | "PAP-5250: invalid position in the item"); | 
|  |  | 
|  | /* Either convert last unformatted node of indirect item to direct item or increase | 
|  | its free space.  */ | 
|  | if ( pos_in_item (p_s_path) == n_unfm_number )  { | 
|  | *p_n_cut_size = 0; /* Nothing to cut. */ | 
|  | return M_CONVERT; /* Maybe convert last unformatted node to the direct item. */ | 
|  | } | 
|  | /* Calculate size to cut. */ | 
|  | *p_n_cut_size = -(ih_item_len(&s_ih) - pos_in_item(p_s_path) * UNFM_P_SIZE); | 
|  |  | 
|  | c_mode = M_CUT;     /* Cut from this indirect item. */ | 
|  | } | 
|  | } | 
|  |  | 
|  | RFALSE( n_unfm_number <= pos_in_item (p_s_path), | 
|  | "PAP-5260: invalid position in the indirect item"); | 
|  |  | 
|  | /* pointers to be cut */ | 
|  | n_unfm_number -= pos_in_item (p_s_path); | 
|  | /* Set pointer to the last unformatted node pointer that is to be cut. */ | 
|  | p_n_unfm_pointer = (__le32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1 - *p_n_removed; | 
|  |  | 
|  |  | 
|  | /* We go through the unformatted nodes pointers of the indirect | 
|  | item and look for the unformatted nodes in the cache. If we | 
|  | found some of them we free it, zero corresponding indirect item | 
|  | entry and log buffer containing that indirect item. For this we | 
|  | need to prepare last path element for logging. If some | 
|  | unformatted node has b_count > 1 we must not free this | 
|  | unformatted node since it is in use. */ | 
|  | reiserfs_prepare_for_journal(p_s_sb, p_s_bh, 1); | 
|  | // note: path could be changed, first line in for loop takes care | 
|  | // of it | 
|  |  | 
|  | for (n_counter = *p_n_removed; | 
|  | n_counter < n_unfm_number; n_counter++, p_n_unfm_pointer-- ) { | 
|  |  | 
|  | cond_resched(); | 
|  | if (item_moved (&s_ih, p_s_path)) { | 
|  | need_research = 1 ; | 
|  | break; | 
|  | } | 
|  | RFALSE( p_n_unfm_pointer < (__le32 *)B_I_PITEM(p_s_bh, &s_ih) || | 
|  | p_n_unfm_pointer > (__le32 *)B_I_PITEM(p_s_bh, &s_ih) + I_UNFM_NUM(&s_ih) - 1, | 
|  | "vs-5265: pointer out of range"); | 
|  |  | 
|  | /* Hole, nothing to remove. */ | 
|  | if ( ! get_block_num(p_n_unfm_pointer,0) )  { | 
|  | (*p_n_removed)++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | (*p_n_removed)++; | 
|  |  | 
|  | tmp = get_block_num(p_n_unfm_pointer,0); | 
|  | put_block_num(p_n_unfm_pointer, 0, 0); | 
|  | journal_mark_dirty (th, p_s_sb, p_s_bh); | 
|  | reiserfs_free_block(th, inode, tmp, 1); | 
|  | if ( item_moved (&s_ih, p_s_path) )  { | 
|  | need_research = 1; | 
|  | break ; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* a trick.  If the buffer has been logged, this | 
|  | ** will do nothing.  If we've broken the loop without | 
|  | ** logging it, it will restore the buffer | 
|  | ** | 
|  | */ | 
|  | reiserfs_restore_prepared_buffer(p_s_sb, p_s_bh); | 
|  |  | 
|  | /* This loop can be optimized. */ | 
|  | } while ( (*p_n_removed < n_unfm_number || need_research) && | 
|  | search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_FOUND ); | 
|  |  | 
|  | RFALSE( *p_n_removed < n_unfm_number, | 
|  | "PAP-5310: indirect item is not found"); | 
|  | RFALSE( item_moved (&s_ih, p_s_path), | 
|  | "after while, comp failed, retry") ; | 
|  |  | 
|  | if (c_mode == M_CUT) | 
|  | pos_in_item (p_s_path) *= UNFM_P_SIZE; | 
|  | return c_mode; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate number of bytes which will be deleted or cut during balance */ | 
|  | static int calc_deleted_bytes_number( | 
|  | struct  tree_balance  * p_s_tb, | 
|  | char                    c_mode | 
|  | ) { | 
|  | int                     n_del_size; | 
|  | struct  item_head     * p_le_ih = PATH_PITEM_HEAD(p_s_tb->tb_path); | 
|  |  | 
|  | if ( is_statdata_le_ih (p_le_ih) ) | 
|  | return 0; | 
|  |  | 
|  | n_del_size = ( c_mode == M_DELETE ) ? ih_item_len(p_le_ih) : -p_s_tb->insert_size[0]; | 
|  | if ( is_direntry_le_ih (p_le_ih) ) { | 
|  | // return EMPTY_DIR_SIZE; /* We delete emty directoris only. */ | 
|  | // we can't use EMPTY_DIR_SIZE, as old format dirs have a different | 
|  | // empty size.  ick. FIXME, is this right? | 
|  | // | 
|  | return n_del_size ; | 
|  | } | 
|  |  | 
|  | if ( is_indirect_le_ih (p_le_ih) ) | 
|  | n_del_size = (n_del_size/UNFM_P_SIZE)* | 
|  | (PATH_PLAST_BUFFER(p_s_tb->tb_path)->b_size);// - get_ih_free_space (p_le_ih); | 
|  | return n_del_size; | 
|  | } | 
|  |  | 
|  | static void init_tb_struct( | 
|  | struct reiserfs_transaction_handle *th, | 
|  | struct tree_balance * p_s_tb, | 
|  | struct super_block  * p_s_sb, | 
|  | struct path         * p_s_path, | 
|  | int                   n_size | 
|  | ) { | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | memset (p_s_tb,'\0',sizeof(struct tree_balance)); | 
|  | p_s_tb->transaction_handle = th ; | 
|  | p_s_tb->tb_sb = p_s_sb; | 
|  | p_s_tb->tb_path = p_s_path; | 
|  | PATH_OFFSET_PBUFFER(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = NULL; | 
|  | PATH_OFFSET_POSITION(p_s_path, ILLEGAL_PATH_ELEMENT_OFFSET) = 0; | 
|  | p_s_tb->insert_size[0] = n_size; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void padd_item (char * item, int total_length, int length) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = total_length; i > length; ) | 
|  | item [--i] = 0; | 
|  | } | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | char key2type(struct reiserfs_key *ih) | 
|  | { | 
|  | if (is_direntry_le_key(2, ih)) | 
|  | return 'd'; | 
|  | if (is_direct_le_key(2, ih)) | 
|  | return 'D'; | 
|  | if (is_indirect_le_key(2, ih)) | 
|  | return 'i'; | 
|  | if (is_statdata_le_key(2, ih)) | 
|  | return 's'; | 
|  | return 'u'; | 
|  | } | 
|  |  | 
|  | char head2type(struct item_head *ih) | 
|  | { | 
|  | if (is_direntry_le_ih(ih)) | 
|  | return 'd'; | 
|  | if (is_direct_le_ih(ih)) | 
|  | return 'D'; | 
|  | if (is_indirect_le_ih(ih)) | 
|  | return 'i'; | 
|  | if (is_statdata_le_ih(ih)) | 
|  | return 's'; | 
|  | return 'u'; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Delete object item. */ | 
|  | int reiserfs_delete_item (struct reiserfs_transaction_handle *th, | 
|  | struct path * p_s_path, /* Path to the deleted item. */ | 
|  | const struct cpu_key * p_s_item_key, /* Key to search for the deleted item.  */ | 
|  | struct inode * p_s_inode,/* inode is here just to update i_blocks and quotas */ | 
|  | struct buffer_head  * p_s_un_bh)    /* NULL or unformatted node pointer.    */ | 
|  | { | 
|  | struct super_block * p_s_sb = p_s_inode->i_sb; | 
|  | struct tree_balance   s_del_balance; | 
|  | struct item_head      s_ih; | 
|  | struct item_head      *q_ih; | 
|  | int			  quota_cut_bytes; | 
|  | int                   n_ret_value, | 
|  | n_del_size, | 
|  | n_removed; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | char                  c_mode; | 
|  | int			n_iter = 0; | 
|  | #endif | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | init_tb_struct(th, &s_del_balance, p_s_sb, p_s_path, 0/*size is unknown*/); | 
|  |  | 
|  | while ( 1 ) { | 
|  | n_removed = 0; | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | n_iter++; | 
|  | c_mode = | 
|  | #endif | 
|  | prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, &n_del_size, max_reiserfs_offset (p_s_inode)); | 
|  |  | 
|  | RFALSE( c_mode != M_DELETE, "PAP-5320: mode must be M_DELETE"); | 
|  |  | 
|  | copy_item_head(&s_ih, PATH_PITEM_HEAD(p_s_path)); | 
|  | s_del_balance.insert_size[0] = n_del_size; | 
|  |  | 
|  | n_ret_value = fix_nodes(M_DELETE, &s_del_balance, NULL, NULL); | 
|  | if ( n_ret_value != REPEAT_SEARCH ) | 
|  | break; | 
|  |  | 
|  | PROC_INFO_INC( p_s_sb, delete_item_restarted ); | 
|  |  | 
|  | // file system changed, repeat search | 
|  | n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); | 
|  | if (n_ret_value == IO_ERROR) | 
|  | break; | 
|  | if (n_ret_value == FILE_NOT_FOUND) { | 
|  | reiserfs_warning (p_s_sb, "vs-5340: reiserfs_delete_item: " | 
|  | "no items of the file %K found", p_s_item_key); | 
|  | break; | 
|  | } | 
|  | } /* while (1) */ | 
|  |  | 
|  | if ( n_ret_value != CARRY_ON ) { | 
|  | unfix_nodes(&s_del_balance); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // reiserfs_delete_item returns item length when success | 
|  | n_ret_value = calc_deleted_bytes_number(&s_del_balance, M_DELETE); | 
|  | q_ih = get_ih(p_s_path) ; | 
|  | quota_cut_bytes = ih_item_len(q_ih) ; | 
|  |  | 
|  | /* hack so the quota code doesn't have to guess if the file | 
|  | ** has a tail.  On tail insert, we allocate quota for 1 unformatted node. | 
|  | ** We test the offset because the tail might have been | 
|  | ** split into multiple items, and we only want to decrement for | 
|  | ** the unfm node once | 
|  | */ | 
|  | if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(q_ih)) { | 
|  | if ((le_ih_k_offset(q_ih) & (p_s_sb->s_blocksize - 1)) == 1) { | 
|  | quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE; | 
|  | } else { | 
|  | quota_cut_bytes = 0 ; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ( p_s_un_bh )  { | 
|  | int off; | 
|  | char *data ; | 
|  |  | 
|  | /* We are in direct2indirect conversion, so move tail contents | 
|  | to the unformatted node */ | 
|  | /* note, we do the copy before preparing the buffer because we | 
|  | ** don't care about the contents of the unformatted node yet. | 
|  | ** the only thing we really care about is the direct item's data | 
|  | ** is in the unformatted node. | 
|  | ** | 
|  | ** Otherwise, we would have to call reiserfs_prepare_for_journal on | 
|  | ** the unformatted node, which might schedule, meaning we'd have to | 
|  | ** loop all the way back up to the start of the while loop. | 
|  | ** | 
|  | ** The unformatted node must be dirtied later on.  We can't be | 
|  | ** sure here if the entire tail has been deleted yet. | 
|  | ** | 
|  | ** p_s_un_bh is from the page cache (all unformatted nodes are | 
|  | ** from the page cache) and might be a highmem page.  So, we | 
|  | ** can't use p_s_un_bh->b_data. | 
|  | ** -clm | 
|  | */ | 
|  |  | 
|  | data = kmap_atomic(p_s_un_bh->b_page, KM_USER0); | 
|  | off = ((le_ih_k_offset (&s_ih) - 1) & (PAGE_CACHE_SIZE - 1)); | 
|  | memcpy(data + off, | 
|  | B_I_PITEM(PATH_PLAST_BUFFER(p_s_path), &s_ih), n_ret_value); | 
|  | kunmap_atomic(data, KM_USER0); | 
|  | } | 
|  | /* Perform balancing after all resources have been collected at once. */ | 
|  | do_balance(&s_del_balance, NULL, NULL, M_DELETE); | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (p_s_sb, REISERFS_DEBUG_CODE, "reiserquota delete_item(): freeing %u, id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, head2type(&s_ih)); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); | 
|  |  | 
|  | /* Return deleted body length */ | 
|  | return n_ret_value; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Summary Of Mechanisms For Handling Collisions Between Processes: | 
|  |  | 
|  | deletion of the body of the object is performed by iput(), with the | 
|  | result that if multiple processes are operating on a file, the | 
|  | deletion of the body of the file is deferred until the last process | 
|  | that has an open inode performs its iput(). | 
|  |  | 
|  | writes and truncates are protected from collisions by use of | 
|  | semaphores. | 
|  |  | 
|  | creates, linking, and mknod are protected from collisions with other | 
|  | processes by making the reiserfs_add_entry() the last step in the | 
|  | creation, and then rolling back all changes if there was a collision. | 
|  | - Hans | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* this deletes item which never gets split */ | 
|  | void reiserfs_delete_solid_item (struct reiserfs_transaction_handle *th, | 
|  | struct inode *inode, | 
|  | struct reiserfs_key * key) | 
|  | { | 
|  | struct tree_balance tb; | 
|  | INITIALIZE_PATH (path); | 
|  | int item_len = 0; | 
|  | int tb_init = 0 ; | 
|  | struct cpu_key cpu_key; | 
|  | int retval; | 
|  | int quota_cut_bytes = 0; | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | le_key2cpu_key (&cpu_key, key); | 
|  |  | 
|  | while (1) { | 
|  | retval = search_item (th->t_super, &cpu_key, &path); | 
|  | if (retval == IO_ERROR) { | 
|  | reiserfs_warning (th->t_super, | 
|  | "vs-5350: reiserfs_delete_solid_item: " | 
|  | "i/o failure occurred trying to delete %K", | 
|  | &cpu_key); | 
|  | break; | 
|  | } | 
|  | if (retval != ITEM_FOUND) { | 
|  | pathrelse (&path); | 
|  | // No need for a warning, if there is just no free space to insert '..' item into the newly-created subdir | 
|  | if ( !( (unsigned long long) GET_HASH_VALUE (le_key_k_offset (le_key_version (key), key)) == 0 && \ | 
|  | (unsigned long long) GET_GENERATION_NUMBER (le_key_k_offset (le_key_version (key), key)) == 1 ) ) | 
|  | reiserfs_warning (th->t_super, "vs-5355: reiserfs_delete_solid_item: %k not found", key); | 
|  | break; | 
|  | } | 
|  | if (!tb_init) { | 
|  | tb_init = 1 ; | 
|  | item_len = ih_item_len( PATH_PITEM_HEAD(&path) ); | 
|  | init_tb_struct (th, &tb, th->t_super, &path, - (IH_SIZE + item_len)); | 
|  | } | 
|  | quota_cut_bytes = ih_item_len(PATH_PITEM_HEAD(&path)) ; | 
|  |  | 
|  | retval = fix_nodes (M_DELETE, &tb, NULL, NULL); | 
|  | if (retval == REPEAT_SEARCH) { | 
|  | PROC_INFO_INC( th -> t_super, delete_solid_item_restarted ); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (retval == CARRY_ON) { | 
|  | do_balance (&tb, NULL, NULL, M_DELETE); | 
|  | if (inode) {	/* Should we count quota for item? (we don't count quotas for save-links) */ | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota delete_solid_item(): freeing %u id=%u type=%c", quota_cut_bytes, inode->i_uid, key2type(key)); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(inode, quota_cut_bytes); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // IO_ERROR, NO_DISK_SPACE, etc | 
|  | reiserfs_warning (th->t_super, "vs-5360: reiserfs_delete_solid_item: " | 
|  | "could not delete %K due to fix_nodes failure", &cpu_key); | 
|  | unfix_nodes (&tb); | 
|  | break; | 
|  | } | 
|  |  | 
|  | reiserfs_check_path(&path) ; | 
|  | } | 
|  |  | 
|  |  | 
|  | int reiserfs_delete_object (struct reiserfs_transaction_handle *th, struct inode * inode) | 
|  | { | 
|  | int err; | 
|  | inode->i_size = 0; | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | /* for directory this deletes item containing "." and ".." */ | 
|  | err = reiserfs_do_truncate (th, inode, NULL, 0/*no timestamp updates*/); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | #if defined( USE_INODE_GENERATION_COUNTER ) | 
|  | if( !old_format_only ( th -> t_super ) ) | 
|  | { | 
|  | __le32 *inode_generation; | 
|  |  | 
|  | inode_generation = | 
|  | &REISERFS_SB(th -> t_super) -> s_rs -> s_inode_generation; | 
|  | *inode_generation = cpu_to_le32( le32_to_cpu( *inode_generation ) + 1 ); | 
|  | } | 
|  | /* USE_INODE_GENERATION_COUNTER */ | 
|  | #endif | 
|  | reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode)); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void | 
|  | unmap_buffers(struct page *page, loff_t pos) { | 
|  | struct buffer_head *bh ; | 
|  | struct buffer_head *head ; | 
|  | struct buffer_head *next ; | 
|  | unsigned long tail_index ; | 
|  | unsigned long cur_index ; | 
|  |  | 
|  | if (page) { | 
|  | if (page_has_buffers(page)) { | 
|  | tail_index = pos & (PAGE_CACHE_SIZE - 1) ; | 
|  | cur_index = 0 ; | 
|  | head = page_buffers(page) ; | 
|  | bh = head ; | 
|  | do { | 
|  | next = bh->b_this_page ; | 
|  |  | 
|  | /* we want to unmap the buffers that contain the tail, and | 
|  | ** all the buffers after it (since the tail must be at the | 
|  | ** end of the file).  We don't want to unmap file data | 
|  | ** before the tail, since it might be dirty and waiting to | 
|  | ** reach disk | 
|  | */ | 
|  | cur_index += bh->b_size ; | 
|  | if (cur_index > tail_index) { | 
|  | reiserfs_unmap_buffer(bh) ; | 
|  | } | 
|  | bh = next ; | 
|  | } while (bh != head) ; | 
|  | if ( PAGE_SIZE == bh->b_size ) { | 
|  | clear_page_dirty(page); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static int maybe_indirect_to_direct (struct reiserfs_transaction_handle *th, | 
|  | struct inode * p_s_inode, | 
|  | struct page *page, | 
|  | struct path         * p_s_path, | 
|  | const struct cpu_key      * p_s_item_key, | 
|  | loff_t         n_new_file_size, | 
|  | char                * p_c_mode | 
|  | ) { | 
|  | struct super_block * p_s_sb = p_s_inode->i_sb; | 
|  | int n_block_size = p_s_sb->s_blocksize; | 
|  | int cut_bytes; | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | if (n_new_file_size != p_s_inode->i_size) | 
|  | BUG (); | 
|  |  | 
|  | /* the page being sent in could be NULL if there was an i/o error | 
|  | ** reading in the last block.  The user will hit problems trying to | 
|  | ** read the file, but for now we just skip the indirect2direct | 
|  | */ | 
|  | if (atomic_read(&p_s_inode->i_count) > 1 || | 
|  | !tail_has_to_be_packed (p_s_inode) || | 
|  | !page || (REISERFS_I(p_s_inode)->i_flags & i_nopack_mask)) { | 
|  | // leave tail in an unformatted node | 
|  | *p_c_mode = M_SKIP_BALANCING; | 
|  | cut_bytes = n_block_size - (n_new_file_size & (n_block_size - 1)); | 
|  | pathrelse(p_s_path); | 
|  | return cut_bytes; | 
|  | } | 
|  | /* Permorm the conversion to a direct_item. */ | 
|  | /*return indirect_to_direct (p_s_inode, p_s_path, p_s_item_key, n_new_file_size, p_c_mode);*/ | 
|  | return indirect2direct (th, p_s_inode, page, p_s_path, p_s_item_key, n_new_file_size, p_c_mode); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* we did indirect_to_direct conversion. And we have inserted direct | 
|  | item successesfully, but there were no disk space to cut unfm | 
|  | pointer being converted. Therefore we have to delete inserted | 
|  | direct item(s) */ | 
|  | static void indirect_to_direct_roll_back (struct reiserfs_transaction_handle *th, struct inode * inode, struct path * path) | 
|  | { | 
|  | struct cpu_key tail_key; | 
|  | int tail_len; | 
|  | int removed; | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | make_cpu_key (&tail_key, inode, inode->i_size + 1, TYPE_DIRECT, 4);// !!!! | 
|  | tail_key.key_length = 4; | 
|  |  | 
|  | tail_len = (cpu_key_k_offset (&tail_key) & (inode->i_sb->s_blocksize - 1)) - 1; | 
|  | while (tail_len) { | 
|  | /* look for the last byte of the tail */ | 
|  | if (search_for_position_by_key (inode->i_sb, &tail_key, path) == POSITION_NOT_FOUND) | 
|  | reiserfs_panic (inode->i_sb, "vs-5615: indirect_to_direct_roll_back: found invalid item"); | 
|  | RFALSE( path->pos_in_item != ih_item_len(PATH_PITEM_HEAD (path)) - 1, | 
|  | "vs-5616: appended bytes found"); | 
|  | PATH_LAST_POSITION (path) --; | 
|  |  | 
|  | removed = reiserfs_delete_item (th, path, &tail_key, inode, NULL/*unbh not needed*/); | 
|  | RFALSE( removed <= 0 || removed > tail_len, | 
|  | "vs-5617: there was tail %d bytes, removed item length %d bytes", | 
|  | tail_len, removed); | 
|  | tail_len -= removed; | 
|  | set_cpu_key_k_offset (&tail_key, cpu_key_k_offset (&tail_key) - removed); | 
|  | } | 
|  | reiserfs_warning (inode->i_sb, "indirect_to_direct_roll_back: indirect_to_direct conversion has been rolled back due to lack of disk space"); | 
|  | //mark_file_without_tail (inode); | 
|  | mark_inode_dirty (inode); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* (Truncate or cut entry) or delete object item. Returns < 0 on failure */ | 
|  | int reiserfs_cut_from_item (struct reiserfs_transaction_handle *th, | 
|  | struct path * p_s_path, | 
|  | struct cpu_key * p_s_item_key, | 
|  | struct inode * p_s_inode, | 
|  | struct page *page, | 
|  | loff_t n_new_file_size) | 
|  | { | 
|  | struct super_block * p_s_sb = p_s_inode->i_sb; | 
|  | /* Every function which is going to call do_balance must first | 
|  | create a tree_balance structure.  Then it must fill up this | 
|  | structure by using the init_tb_struct and fix_nodes functions. | 
|  | After that we can make tree balancing. */ | 
|  | struct tree_balance s_cut_balance; | 
|  | struct item_head *p_le_ih; | 
|  | int n_cut_size = 0,        /* Amount to be cut. */ | 
|  | n_ret_value = CARRY_ON, | 
|  | n_removed = 0,     /* Number of the removed unformatted nodes. */ | 
|  | n_is_inode_locked = 0; | 
|  | char                c_mode;            /* Mode of the balance. */ | 
|  | int retval2 = -1; | 
|  | int quota_cut_bytes; | 
|  | loff_t tail_pos = 0; | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | init_tb_struct(th, &s_cut_balance, p_s_inode->i_sb, p_s_path, n_cut_size); | 
|  |  | 
|  |  | 
|  | /* Repeat this loop until we either cut the item without needing | 
|  | to balance, or we fix_nodes without schedule occurring */ | 
|  | while ( 1 ) { | 
|  | /* Determine the balance mode, position of the first byte to | 
|  | be cut, and size to be cut.  In case of the indirect item | 
|  | free unformatted nodes which are pointed to by the cut | 
|  | pointers. */ | 
|  |  | 
|  | c_mode = prepare_for_delete_or_cut(th, p_s_inode, p_s_path, p_s_item_key, &n_removed, | 
|  | &n_cut_size, n_new_file_size); | 
|  | if ( c_mode == M_CONVERT )  { | 
|  | /* convert last unformatted node to direct item or leave | 
|  | tail in the unformatted node */ | 
|  | RFALSE( n_ret_value != CARRY_ON, "PAP-5570: can not convert twice"); | 
|  |  | 
|  | n_ret_value = maybe_indirect_to_direct (th, p_s_inode, page, p_s_path, p_s_item_key, | 
|  | n_new_file_size, &c_mode); | 
|  | if ( c_mode == M_SKIP_BALANCING ) | 
|  | /* tail has been left in the unformatted node */ | 
|  | return n_ret_value; | 
|  |  | 
|  | n_is_inode_locked = 1; | 
|  |  | 
|  | /* removing of last unformatted node will change value we | 
|  | have to return to truncate. Save it */ | 
|  | retval2 = n_ret_value; | 
|  | /*retval2 = p_s_sb->s_blocksize - (n_new_file_size & (p_s_sb->s_blocksize - 1));*/ | 
|  |  | 
|  | /* So, we have performed the first part of the conversion: | 
|  | inserting the new direct item.  Now we are removing the | 
|  | last unformatted node pointer. Set key to search for | 
|  | it. */ | 
|  | set_cpu_key_k_type (p_s_item_key, TYPE_INDIRECT); | 
|  | p_s_item_key->key_length = 4; | 
|  | n_new_file_size -= (n_new_file_size & (p_s_sb->s_blocksize - 1)); | 
|  | tail_pos = n_new_file_size; | 
|  | set_cpu_key_k_offset (p_s_item_key, n_new_file_size + 1); | 
|  | if ( search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path) == POSITION_NOT_FOUND ){ | 
|  | print_block (PATH_PLAST_BUFFER (p_s_path), 3, PATH_LAST_POSITION (p_s_path) - 1, PATH_LAST_POSITION (p_s_path) + 1); | 
|  | reiserfs_panic(p_s_sb, "PAP-5580: reiserfs_cut_from_item: item to convert does not exist (%K)", p_s_item_key); | 
|  | } | 
|  | continue; | 
|  | } | 
|  | if (n_cut_size == 0) { | 
|  | pathrelse (p_s_path); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | s_cut_balance.insert_size[0] = n_cut_size; | 
|  |  | 
|  | n_ret_value = fix_nodes(c_mode, &s_cut_balance, NULL, NULL); | 
|  | if ( n_ret_value != REPEAT_SEARCH ) | 
|  | break; | 
|  |  | 
|  | PROC_INFO_INC( p_s_sb, cut_from_item_restarted ); | 
|  |  | 
|  | n_ret_value = search_for_position_by_key(p_s_sb, p_s_item_key, p_s_path); | 
|  | if (n_ret_value == POSITION_FOUND) | 
|  | continue; | 
|  |  | 
|  | reiserfs_warning (p_s_sb, "PAP-5610: reiserfs_cut_from_item: item %K not found", p_s_item_key); | 
|  | unfix_nodes (&s_cut_balance); | 
|  | return (n_ret_value == IO_ERROR) ? -EIO : -ENOENT; | 
|  | } /* while */ | 
|  |  | 
|  | // check fix_nodes results (IO_ERROR or NO_DISK_SPACE) | 
|  | if ( n_ret_value != CARRY_ON ) { | 
|  | if ( n_is_inode_locked ) { | 
|  | // FIXME: this seems to be not needed: we are always able | 
|  | // to cut item | 
|  | indirect_to_direct_roll_back (th, p_s_inode, p_s_path); | 
|  | } | 
|  | if (n_ret_value == NO_DISK_SPACE) | 
|  | reiserfs_warning (p_s_sb, "NO_DISK_SPACE"); | 
|  | unfix_nodes (&s_cut_balance); | 
|  | return -EIO; | 
|  | } | 
|  |  | 
|  | /* go ahead and perform balancing */ | 
|  |  | 
|  | RFALSE( c_mode == M_PASTE || c_mode == M_INSERT, "invalid mode"); | 
|  |  | 
|  | /* Calculate number of bytes that need to be cut from the item. */ | 
|  | quota_cut_bytes = ( c_mode == M_DELETE ) ? ih_item_len(get_ih(p_s_path)) : -s_cut_balance.insert_size[0]; | 
|  | if (retval2 == -1) | 
|  | n_ret_value = calc_deleted_bytes_number(&s_cut_balance, c_mode); | 
|  | else | 
|  | n_ret_value = retval2; | 
|  |  | 
|  |  | 
|  | /* For direct items, we only change the quota when deleting the last | 
|  | ** item. | 
|  | */ | 
|  | p_le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path); | 
|  | if (!S_ISLNK (p_s_inode->i_mode) && is_direct_le_ih(p_le_ih)) { | 
|  | if (c_mode == M_DELETE && | 
|  | (le_ih_k_offset (p_le_ih) & (p_s_sb->s_blocksize - 1)) == 1 ) { | 
|  | // FIXME: this is to keep 3.5 happy | 
|  | REISERFS_I(p_s_inode)->i_first_direct_byte = U32_MAX; | 
|  | quota_cut_bytes = p_s_sb->s_blocksize + UNFM_P_SIZE ; | 
|  | } else { | 
|  | quota_cut_bytes = 0 ; | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | if (n_is_inode_locked) { | 
|  | struct item_head * le_ih = PATH_PITEM_HEAD (s_cut_balance.tb_path); | 
|  | /* we are going to complete indirect2direct conversion. Make | 
|  | sure, that we exactly remove last unformatted node pointer | 
|  | of the item */ | 
|  | if (!is_indirect_le_ih (le_ih)) | 
|  | reiserfs_panic (p_s_sb, "vs-5652: reiserfs_cut_from_item: " | 
|  | "item must be indirect %h", le_ih); | 
|  |  | 
|  | if (c_mode == M_DELETE && ih_item_len(le_ih) != UNFM_P_SIZE) | 
|  | reiserfs_panic (p_s_sb, "vs-5653: reiserfs_cut_from_item: " | 
|  | "completing indirect2direct conversion indirect item %h " | 
|  | "being deleted must be of 4 byte long", le_ih); | 
|  |  | 
|  | if (c_mode == M_CUT && s_cut_balance.insert_size[0] != -UNFM_P_SIZE) { | 
|  | reiserfs_panic (p_s_sb, "vs-5654: reiserfs_cut_from_item: " | 
|  | "can not complete indirect2direct conversion of %h (CUT, insert_size==%d)", | 
|  | le_ih, s_cut_balance.insert_size[0]); | 
|  | } | 
|  | /* it would be useful to make sure, that right neighboring | 
|  | item is direct item of this file */ | 
|  | } | 
|  | #endif | 
|  |  | 
|  | do_balance(&s_cut_balance, NULL, NULL, c_mode); | 
|  | if ( n_is_inode_locked ) { | 
|  | /* we've done an indirect->direct conversion.  when the data block | 
|  | ** was freed, it was removed from the list of blocks that must | 
|  | ** be flushed before the transaction commits, make sure to | 
|  | ** unmap and invalidate it | 
|  | */ | 
|  | unmap_buffers(page, tail_pos); | 
|  | REISERFS_I(p_s_inode)->i_flags &= ~i_pack_on_close_mask ; | 
|  | } | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (p_s_inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota cut_from_item(): freeing %u id=%u type=%c", quota_cut_bytes, p_s_inode->i_uid, '?'); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(p_s_inode, quota_cut_bytes); | 
|  | return n_ret_value; | 
|  | } | 
|  |  | 
|  | static void truncate_directory (struct reiserfs_transaction_handle *th, struct inode * inode) | 
|  | { | 
|  | BUG_ON (!th->t_trans_id); | 
|  | if (inode->i_nlink) | 
|  | reiserfs_warning (inode->i_sb, | 
|  | "vs-5655: truncate_directory: link count != 0"); | 
|  |  | 
|  | set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), DOT_OFFSET); | 
|  | set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_DIRENTRY); | 
|  | reiserfs_delete_solid_item (th, inode, INODE_PKEY (inode)); | 
|  | reiserfs_update_sd(th, inode) ; | 
|  | set_le_key_k_offset (KEY_FORMAT_3_5, INODE_PKEY (inode), SD_OFFSET); | 
|  | set_le_key_k_type (KEY_FORMAT_3_5, INODE_PKEY (inode), TYPE_STAT_DATA); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Truncate file to the new size. Note, this must be called with a transaction | 
|  | already started */ | 
|  | int reiserfs_do_truncate (struct reiserfs_transaction_handle *th, | 
|  | struct  inode * p_s_inode, /* ->i_size contains new | 
|  | size */ | 
|  | struct page *page, /* up to date for last block */ | 
|  | int update_timestamps  /* when it is called by | 
|  | file_release to convert | 
|  | the tail - no timestamps | 
|  | should be updated */ | 
|  | ) { | 
|  | INITIALIZE_PATH (s_search_path);       /* Path to the current object item. */ | 
|  | struct item_head    * p_le_ih;         /* Pointer to an item header. */ | 
|  | struct cpu_key      s_item_key;     /* Key to search for a previous file item. */ | 
|  | loff_t         n_file_size,    /* Old file size. */ | 
|  | n_new_file_size;/* New file size. */ | 
|  | int                   n_deleted;      /* Number of deleted or truncated bytes. */ | 
|  | int retval; | 
|  | int err = 0; | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  | if ( ! (S_ISREG(p_s_inode->i_mode) || S_ISDIR(p_s_inode->i_mode) || S_ISLNK(p_s_inode->i_mode)) ) | 
|  | return 0; | 
|  |  | 
|  | if (S_ISDIR(p_s_inode->i_mode)) { | 
|  | // deletion of directory - no need to update timestamps | 
|  | truncate_directory (th, p_s_inode); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Get new file size. */ | 
|  | n_new_file_size = p_s_inode->i_size; | 
|  |  | 
|  | // FIXME: note, that key type is unimportant here | 
|  | make_cpu_key (&s_item_key, p_s_inode, max_reiserfs_offset (p_s_inode), TYPE_DIRECT, 3); | 
|  |  | 
|  | retval = search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path); | 
|  | if (retval == IO_ERROR) { | 
|  | reiserfs_warning (p_s_inode->i_sb, "vs-5657: reiserfs_do_truncate: " | 
|  | "i/o failure occurred trying to truncate %K", &s_item_key); | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  | if (retval == POSITION_FOUND || retval == FILE_NOT_FOUND) { | 
|  | reiserfs_warning (p_s_inode->i_sb, "PAP-5660: reiserfs_do_truncate: " | 
|  | "wrong result %d of search for %K", retval, &s_item_key); | 
|  |  | 
|  | err = -EIO; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | s_search_path.pos_in_item --; | 
|  |  | 
|  | /* Get real file size (total length of all file items) */ | 
|  | p_le_ih = PATH_PITEM_HEAD(&s_search_path); | 
|  | if ( is_statdata_le_ih (p_le_ih) ) | 
|  | n_file_size = 0; | 
|  | else { | 
|  | loff_t offset = le_ih_k_offset (p_le_ih); | 
|  | int bytes = op_bytes_number (p_le_ih,p_s_inode->i_sb->s_blocksize); | 
|  |  | 
|  | /* this may mismatch with real file size: if last direct item | 
|  | had no padding zeros and last unformatted node had no free | 
|  | space, this file would have this file size */ | 
|  | n_file_size = offset + bytes - 1; | 
|  | } | 
|  | /* | 
|  | * are we doing a full truncate or delete, if so | 
|  | * kick in the reada code | 
|  | */ | 
|  | if (n_new_file_size == 0) | 
|  | s_search_path.reada = PATH_READA | PATH_READA_BACK; | 
|  |  | 
|  | if ( n_file_size == 0 || n_file_size < n_new_file_size ) { | 
|  | goto update_and_out ; | 
|  | } | 
|  |  | 
|  | /* Update key to search for the last file item. */ | 
|  | set_cpu_key_k_offset (&s_item_key, n_file_size); | 
|  |  | 
|  | do  { | 
|  | /* Cut or delete file item. */ | 
|  | n_deleted = reiserfs_cut_from_item(th, &s_search_path, &s_item_key, p_s_inode,  page, n_new_file_size); | 
|  | if (n_deleted < 0) { | 
|  | reiserfs_warning (p_s_inode->i_sb, "vs-5665: reiserfs_do_truncate: reiserfs_cut_from_item failed"); | 
|  | reiserfs_check_path(&s_search_path) ; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | RFALSE( n_deleted > n_file_size, | 
|  | "PAP-5670: reiserfs_cut_from_item: too many bytes deleted: deleted %d, file_size %lu, item_key %K", | 
|  | n_deleted, n_file_size, &s_item_key); | 
|  |  | 
|  | /* Change key to search the last file item. */ | 
|  | n_file_size -= n_deleted; | 
|  |  | 
|  | set_cpu_key_k_offset (&s_item_key, n_file_size); | 
|  |  | 
|  | /* While there are bytes to truncate and previous file item is presented in the tree. */ | 
|  |  | 
|  | /* | 
|  | ** This loop could take a really long time, and could log | 
|  | ** many more blocks than a transaction can hold.  So, we do a polite | 
|  | ** journal end here, and if the transaction needs ending, we make | 
|  | ** sure the file is consistent before ending the current trans | 
|  | ** and starting a new one | 
|  | */ | 
|  | if (journal_transaction_should_end(th, th->t_blocks_allocated)) { | 
|  | int orig_len_alloc = th->t_blocks_allocated ; | 
|  | decrement_counters_in_path(&s_search_path) ; | 
|  |  | 
|  | if (update_timestamps) { | 
|  | p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC; | 
|  | } | 
|  | reiserfs_update_sd(th, p_s_inode) ; | 
|  |  | 
|  | err = journal_end(th, p_s_inode->i_sb, orig_len_alloc) ; | 
|  | if (err) | 
|  | goto out; | 
|  | err = journal_begin (th, p_s_inode->i_sb, | 
|  | JOURNAL_PER_BALANCE_CNT * 6); | 
|  | if (err) | 
|  | goto out; | 
|  | reiserfs_update_inode_transaction(p_s_inode) ; | 
|  | } | 
|  | } while ( n_file_size > ROUND_UP (n_new_file_size) && | 
|  | search_for_position_by_key(p_s_inode->i_sb, &s_item_key, &s_search_path) == POSITION_FOUND )  ; | 
|  |  | 
|  | RFALSE( n_file_size > ROUND_UP (n_new_file_size), | 
|  | "PAP-5680: truncate did not finish: new_file_size %Ld, current %Ld, oid %d", | 
|  | n_new_file_size, n_file_size, s_item_key.on_disk_key.k_objectid); | 
|  |  | 
|  | update_and_out: | 
|  | if (update_timestamps) { | 
|  | // this is truncate, not file closing | 
|  | p_s_inode->i_mtime = p_s_inode->i_ctime = CURRENT_TIME_SEC; | 
|  | } | 
|  | reiserfs_update_sd (th, p_s_inode); | 
|  |  | 
|  | out: | 
|  | pathrelse(&s_search_path) ; | 
|  | return err; | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | // this makes sure, that we __append__, not overwrite or add holes | 
|  | static void check_research_for_paste (struct path * path, | 
|  | const struct cpu_key * p_s_key) | 
|  | { | 
|  | struct item_head * found_ih = get_ih (path); | 
|  |  | 
|  | if (is_direct_le_ih (found_ih)) { | 
|  | if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != | 
|  | cpu_key_k_offset (p_s_key) || | 
|  | op_bytes_number (found_ih, get_last_bh (path)->b_size) != pos_in_item (path)) | 
|  | reiserfs_panic (NULL, "PAP-5720: check_research_for_paste: " | 
|  | "found direct item %h or position (%d) does not match to key %K", | 
|  | found_ih, pos_in_item (path), p_s_key); | 
|  | } | 
|  | if (is_indirect_le_ih (found_ih)) { | 
|  | if (le_ih_k_offset (found_ih) + op_bytes_number (found_ih, get_last_bh (path)->b_size) != cpu_key_k_offset (p_s_key) || | 
|  | I_UNFM_NUM (found_ih) != pos_in_item (path) || | 
|  | get_ih_free_space (found_ih) != 0) | 
|  | reiserfs_panic (NULL, "PAP-5730: check_research_for_paste: " | 
|  | "found indirect item (%h) or position (%d) does not match to key (%K)", | 
|  | found_ih, pos_in_item (path), p_s_key); | 
|  | } | 
|  | } | 
|  | #endif /* config reiserfs check */ | 
|  |  | 
|  |  | 
|  | /* Paste bytes to the existing item. Returns bytes number pasted into the item. */ | 
|  | int reiserfs_paste_into_item (struct reiserfs_transaction_handle *th, | 
|  | struct path         * p_s_search_path,	/* Path to the pasted item.          */ | 
|  | const struct cpu_key      * p_s_key,        	/* Key to search for the needed item.*/ | 
|  | struct inode	  * inode,		/* Inode item belongs to */ | 
|  | const char          * p_c_body,       	/* Pointer to the bytes to paste.    */ | 
|  | int                   n_pasted_size)  	/* Size of pasted bytes.             */ | 
|  | { | 
|  | struct tree_balance s_paste_balance; | 
|  | int                 retval; | 
|  | int			fs_gen; | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | fs_gen = get_generation(inode->i_sb) ; | 
|  |  | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): allocating %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key))); | 
|  | #endif | 
|  |  | 
|  | if (DQUOT_ALLOC_SPACE_NODIRTY(inode, n_pasted_size)) { | 
|  | pathrelse(p_s_search_path); | 
|  | return -EDQUOT; | 
|  | } | 
|  | init_tb_struct(th, &s_paste_balance, th->t_super, p_s_search_path, n_pasted_size); | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | s_paste_balance.key = p_s_key->on_disk_key; | 
|  | #endif | 
|  |  | 
|  | /* DQUOT_* can schedule, must check before the fix_nodes */ | 
|  | if (fs_changed(fs_gen, inode->i_sb)) { | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | while ((retval = fix_nodes(M_PASTE, &s_paste_balance, NULL, p_c_body)) == | 
|  | REPEAT_SEARCH ) { | 
|  | search_again: | 
|  | /* file system changed while we were in the fix_nodes */ | 
|  | PROC_INFO_INC( th -> t_super, paste_into_item_restarted ); | 
|  | retval = search_for_position_by_key (th->t_super, p_s_key, p_s_search_path); | 
|  | if (retval == IO_ERROR) { | 
|  | retval = -EIO ; | 
|  | goto error_out ; | 
|  | } | 
|  | if (retval == POSITION_FOUND) { | 
|  | reiserfs_warning (inode->i_sb, "PAP-5710: reiserfs_paste_into_item: entry or pasted byte (%K) exists", p_s_key); | 
|  | retval = -EEXIST ; | 
|  | goto error_out ; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_REISERFS_CHECK | 
|  | check_research_for_paste (p_s_search_path, p_s_key); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Perform balancing after all resources are collected by fix_nodes, and | 
|  | accessing them will not risk triggering schedule. */ | 
|  | if ( retval == CARRY_ON ) { | 
|  | do_balance(&s_paste_balance, NULL/*ih*/, p_c_body, M_PASTE); | 
|  | return 0; | 
|  | } | 
|  | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | 
|  | error_out: | 
|  | /* this also releases the path */ | 
|  | unfix_nodes(&s_paste_balance); | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota paste_into_item(): freeing %u id=%u type=%c", n_pasted_size, inode->i_uid, key2type(&(p_s_key->on_disk_key))); | 
|  | #endif | 
|  | DQUOT_FREE_SPACE_NODIRTY(inode, n_pasted_size); | 
|  | return retval ; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Insert new item into the buffer at the path. */ | 
|  | int reiserfs_insert_item(struct reiserfs_transaction_handle *th, | 
|  | struct path         * 	p_s_path,         /* Path to the inserteded item.         */ | 
|  | const struct cpu_key      * key, | 
|  | struct item_head    * 	p_s_ih,           /* Pointer to the item header to insert.*/ | 
|  | struct inode        * inode, | 
|  | const char          * 	p_c_body)         /* Pointer to the bytes to insert.      */ | 
|  | { | 
|  | struct tree_balance s_ins_balance; | 
|  | int                 retval; | 
|  | int fs_gen = 0 ; | 
|  | int quota_bytes = 0 ; | 
|  |  | 
|  | BUG_ON (!th->t_trans_id); | 
|  |  | 
|  | if (inode) {      /* Do we count quotas for item? */ | 
|  | fs_gen = get_generation(inode->i_sb); | 
|  | quota_bytes = ih_item_len(p_s_ih); | 
|  |  | 
|  | /* hack so the quota code doesn't have to guess if the file has | 
|  | ** a tail, links are always tails, so there's no guessing needed | 
|  | */ | 
|  | if (!S_ISLNK (inode->i_mode) && is_direct_le_ih(p_s_ih)) { | 
|  | quota_bytes = inode->i_sb->s_blocksize + UNFM_P_SIZE ; | 
|  | } | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (inode->i_sb, REISERFS_DEBUG_CODE, "reiserquota insert_item(): allocating %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih)); | 
|  | #endif | 
|  | /* We can't dirty inode here. It would be immediately written but | 
|  | * appropriate stat item isn't inserted yet... */ | 
|  | if (DQUOT_ALLOC_SPACE_NODIRTY(inode, quota_bytes)) { | 
|  | pathrelse(p_s_path); | 
|  | return -EDQUOT; | 
|  | } | 
|  | } | 
|  | init_tb_struct(th, &s_ins_balance, th->t_super, p_s_path, IH_SIZE + ih_item_len(p_s_ih)); | 
|  | #ifdef DISPLACE_NEW_PACKING_LOCALITIES | 
|  | s_ins_balance.key = key->on_disk_key; | 
|  | #endif | 
|  | /* DQUOT_* can schedule, must check to be sure calling fix_nodes is safe */ | 
|  | if (inode && fs_changed(fs_gen, inode->i_sb)) { | 
|  | goto search_again; | 
|  | } | 
|  |  | 
|  | while ( (retval = fix_nodes(M_INSERT, &s_ins_balance, p_s_ih, p_c_body)) == REPEAT_SEARCH) { | 
|  | search_again: | 
|  | /* file system changed while we were in the fix_nodes */ | 
|  | PROC_INFO_INC( th -> t_super, insert_item_restarted ); | 
|  | retval = search_item (th->t_super, key, p_s_path); | 
|  | if (retval == IO_ERROR) { | 
|  | retval = -EIO; | 
|  | goto error_out ; | 
|  | } | 
|  | if (retval == ITEM_FOUND) { | 
|  | reiserfs_warning (th->t_super, "PAP-5760: reiserfs_insert_item: " | 
|  | "key %K already exists in the tree", key); | 
|  | retval = -EEXIST ; | 
|  | goto error_out; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make balancing after all resources will be collected at a time */ | 
|  | if ( retval == CARRY_ON ) { | 
|  | do_balance (&s_ins_balance, p_s_ih, p_c_body, M_INSERT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | retval = (retval == NO_DISK_SPACE) ? -ENOSPC : -EIO; | 
|  | error_out: | 
|  | /* also releases the path */ | 
|  | unfix_nodes(&s_ins_balance); | 
|  | #ifdef REISERQUOTA_DEBUG | 
|  | reiserfs_debug (th->t_super, REISERFS_DEBUG_CODE, "reiserquota insert_item(): freeing %u id=%u type=%c", quota_bytes, inode->i_uid, head2type(p_s_ih)); | 
|  | #endif | 
|  | if (inode) | 
|  | DQUOT_FREE_SPACE_NODIRTY(inode, quota_bytes) ; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  |