|  | /* | 
|  | *  kernel/sched.c | 
|  | * | 
|  | *  Kernel scheduler and related syscalls | 
|  | * | 
|  | *  Copyright (C) 1991-2002  Linus Torvalds | 
|  | * | 
|  | *  1996-12-23  Modified by Dave Grothe to fix bugs in semaphores and | 
|  | *		make semaphores SMP safe | 
|  | *  1998-11-19	Implemented schedule_timeout() and related stuff | 
|  | *		by Andrea Arcangeli | 
|  | *  2002-01-04	New ultra-scalable O(1) scheduler by Ingo Molnar: | 
|  | *		hybrid priority-list and round-robin design with | 
|  | *		an array-switch method of distributing timeslices | 
|  | *		and per-CPU runqueues.  Cleanups and useful suggestions | 
|  | *		by Davide Libenzi, preemptible kernel bits by Robert Love. | 
|  | *  2003-09-03	Interactivity tuning by Con Kolivas. | 
|  | *  2004-04-02	Scheduler domains code by Nick Piggin | 
|  | *  2007-04-15  Work begun on replacing all interactivity tuning with a | 
|  | *              fair scheduling design by Con Kolivas. | 
|  | *  2007-05-05  Load balancing (smp-nice) and other improvements | 
|  | *              by Peter Williams | 
|  | *  2007-05-06  Interactivity improvements to CFS by Mike Galbraith | 
|  | *  2007-07-01  Group scheduling enhancements by Srivatsa Vaddagiri | 
|  | *  2007-11-29  RT balancing improvements by Steven Rostedt, Gregory Haskins, | 
|  | *              Thomas Gleixner, Mike Kravetz | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nmi.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/uaccess.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/kernel_stat.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/threads.h> | 
|  | #include <linux/timer.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/times.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/reciprocal_div.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/hrtimer.h> | 
|  | #include <linux/tick.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/debugfs.h> | 
|  | #include <linux/ctype.h> | 
|  | #include <linux/ftrace.h> | 
|  | #include <trace/sched.h> | 
|  |  | 
|  | #include <asm/tlb.h> | 
|  | #include <asm/irq_regs.h> | 
|  |  | 
|  | #include "sched_cpupri.h" | 
|  |  | 
|  | /* | 
|  | * Convert user-nice values [ -20 ... 0 ... 19 ] | 
|  | * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ], | 
|  | * and back. | 
|  | */ | 
|  | #define NICE_TO_PRIO(nice)	(MAX_RT_PRIO + (nice) + 20) | 
|  | #define PRIO_TO_NICE(prio)	((prio) - MAX_RT_PRIO - 20) | 
|  | #define TASK_NICE(p)		PRIO_TO_NICE((p)->static_prio) | 
|  |  | 
|  | /* | 
|  | * 'User priority' is the nice value converted to something we | 
|  | * can work with better when scaling various scheduler parameters, | 
|  | * it's a [ 0 ... 39 ] range. | 
|  | */ | 
|  | #define USER_PRIO(p)		((p)-MAX_RT_PRIO) | 
|  | #define TASK_USER_PRIO(p)	USER_PRIO((p)->static_prio) | 
|  | #define MAX_USER_PRIO		(USER_PRIO(MAX_PRIO)) | 
|  |  | 
|  | /* | 
|  | * Helpers for converting nanosecond timing to jiffy resolution | 
|  | */ | 
|  | #define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ)) | 
|  |  | 
|  | #define NICE_0_LOAD		SCHED_LOAD_SCALE | 
|  | #define NICE_0_SHIFT		SCHED_LOAD_SHIFT | 
|  |  | 
|  | /* | 
|  | * These are the 'tuning knobs' of the scheduler: | 
|  | * | 
|  | * default timeslice is 100 msecs (used only for SCHED_RR tasks). | 
|  | * Timeslices get refilled after they expire. | 
|  | */ | 
|  | #define DEF_TIMESLICE		(100 * HZ / 1000) | 
|  |  | 
|  | /* | 
|  | * single value that denotes runtime == period, ie unlimited time. | 
|  | */ | 
|  | #define RUNTIME_INF	((u64)~0ULL) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Divide a load by a sched group cpu_power : (load / sg->__cpu_power) | 
|  | * Since cpu_power is a 'constant', we can use a reciprocal divide. | 
|  | */ | 
|  | static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load) | 
|  | { | 
|  | return reciprocal_divide(load, sg->reciprocal_cpu_power); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Each time a sched group cpu_power is changed, | 
|  | * we must compute its reciprocal value | 
|  | */ | 
|  | static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val) | 
|  | { | 
|  | sg->__cpu_power += val; | 
|  | sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline int rt_policy(int policy) | 
|  | { | 
|  | if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR)) | 
|  | return 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int task_has_rt_policy(struct task_struct *p) | 
|  | { | 
|  | return rt_policy(p->policy); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the priority-queue data structure of the RT scheduling class: | 
|  | */ | 
|  | struct rt_prio_array { | 
|  | DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */ | 
|  | struct list_head queue[MAX_RT_PRIO]; | 
|  | }; | 
|  |  | 
|  | struct rt_bandwidth { | 
|  | /* nests inside the rq lock: */ | 
|  | spinlock_t		rt_runtime_lock; | 
|  | ktime_t			rt_period; | 
|  | u64			rt_runtime; | 
|  | struct hrtimer		rt_period_timer; | 
|  | }; | 
|  |  | 
|  | static struct rt_bandwidth def_rt_bandwidth; | 
|  |  | 
|  | static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun); | 
|  |  | 
|  | static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer) | 
|  | { | 
|  | struct rt_bandwidth *rt_b = | 
|  | container_of(timer, struct rt_bandwidth, rt_period_timer); | 
|  | ktime_t now; | 
|  | int overrun; | 
|  | int idle = 0; | 
|  |  | 
|  | for (;;) { | 
|  | now = hrtimer_cb_get_time(timer); | 
|  | overrun = hrtimer_forward(timer, now, rt_b->rt_period); | 
|  |  | 
|  | if (!overrun) | 
|  | break; | 
|  |  | 
|  | idle = do_sched_rt_period_timer(rt_b, overrun); | 
|  | } | 
|  |  | 
|  | return idle ? HRTIMER_NORESTART : HRTIMER_RESTART; | 
|  | } | 
|  |  | 
|  | static | 
|  | void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime) | 
|  | { | 
|  | rt_b->rt_period = ns_to_ktime(period); | 
|  | rt_b->rt_runtime = runtime; | 
|  |  | 
|  | spin_lock_init(&rt_b->rt_runtime_lock); | 
|  |  | 
|  | hrtimer_init(&rt_b->rt_period_timer, | 
|  | CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | rt_b->rt_period_timer.function = sched_rt_period_timer; | 
|  | rt_b->rt_period_timer.cb_mode = HRTIMER_CB_IRQSAFE_UNLOCKED; | 
|  | } | 
|  |  | 
|  | static inline int rt_bandwidth_enabled(void) | 
|  | { | 
|  | return sysctl_sched_rt_runtime >= 0; | 
|  | } | 
|  |  | 
|  | static void start_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|  | { | 
|  | ktime_t now; | 
|  |  | 
|  | if (rt_bandwidth_enabled() && rt_b->rt_runtime == RUNTIME_INF) | 
|  | return; | 
|  |  | 
|  | if (hrtimer_active(&rt_b->rt_period_timer)) | 
|  | return; | 
|  |  | 
|  | spin_lock(&rt_b->rt_runtime_lock); | 
|  | for (;;) { | 
|  | if (hrtimer_active(&rt_b->rt_period_timer)) | 
|  | break; | 
|  |  | 
|  | now = hrtimer_cb_get_time(&rt_b->rt_period_timer); | 
|  | hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period); | 
|  | hrtimer_start_expires(&rt_b->rt_period_timer, | 
|  | HRTIMER_MODE_ABS); | 
|  | } | 
|  | spin_unlock(&rt_b->rt_runtime_lock); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b) | 
|  | { | 
|  | hrtimer_cancel(&rt_b->rt_period_timer); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * sched_domains_mutex serializes calls to arch_init_sched_domains, | 
|  | * detach_destroy_domains and partition_sched_domains. | 
|  | */ | 
|  | static DEFINE_MUTEX(sched_domains_mutex); | 
|  |  | 
|  | #ifdef CONFIG_GROUP_SCHED | 
|  |  | 
|  | #include <linux/cgroup.h> | 
|  |  | 
|  | struct cfs_rq; | 
|  |  | 
|  | static LIST_HEAD(task_groups); | 
|  |  | 
|  | /* task group related information */ | 
|  | struct task_group { | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | struct cgroup_subsys_state css; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* schedulable entities of this group on each cpu */ | 
|  | struct sched_entity **se; | 
|  | /* runqueue "owned" by this group on each cpu */ | 
|  | struct cfs_rq **cfs_rq; | 
|  | unsigned long shares; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct sched_rt_entity **rt_se; | 
|  | struct rt_rq **rt_rq; | 
|  |  | 
|  | struct rt_bandwidth rt_bandwidth; | 
|  | #endif | 
|  |  | 
|  | struct rcu_head rcu; | 
|  | struct list_head list; | 
|  |  | 
|  | struct task_group *parent; | 
|  | struct list_head siblings; | 
|  | struct list_head children; | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_USER_SCHED | 
|  |  | 
|  | /* | 
|  | * Root task group. | 
|  | * 	Every UID task group (including init_task_group aka UID-0) will | 
|  | * 	be a child to this group. | 
|  | */ | 
|  | struct task_group root_task_group; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* Default task group's sched entity on each cpu */ | 
|  | static DEFINE_PER_CPU(struct sched_entity, init_sched_entity); | 
|  | /* Default task group's cfs_rq on each cpu */ | 
|  | static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp; | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity); | 
|  | static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp; | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  | #else /* !CONFIG_USER_SCHED */ | 
|  | #define root_task_group init_task_group | 
|  | #endif /* CONFIG_USER_SCHED */ | 
|  |  | 
|  | /* task_group_lock serializes add/remove of task groups and also changes to | 
|  | * a task group's cpu shares. | 
|  | */ | 
|  | static DEFINE_SPINLOCK(task_group_lock); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | # define INIT_TASK_GROUP_LOAD	(2*NICE_0_LOAD) | 
|  | #else /* !CONFIG_USER_SCHED */ | 
|  | # define INIT_TASK_GROUP_LOAD	NICE_0_LOAD | 
|  | #endif /* CONFIG_USER_SCHED */ | 
|  |  | 
|  | /* | 
|  | * A weight of 0 or 1 can cause arithmetics problems. | 
|  | * A weight of a cfs_rq is the sum of weights of which entities | 
|  | * are queued on this cfs_rq, so a weight of a entity should not be | 
|  | * too large, so as the shares value of a task group. | 
|  | * (The default weight is 1024 - so there's no practical | 
|  | *  limitation from this.) | 
|  | */ | 
|  | #define MIN_SHARES	2 | 
|  | #define MAX_SHARES	(1UL << 18) | 
|  |  | 
|  | static int init_task_group_load = INIT_TASK_GROUP_LOAD; | 
|  | #endif | 
|  |  | 
|  | /* Default task group. | 
|  | *	Every task in system belong to this group at bootup. | 
|  | */ | 
|  | struct task_group init_task_group; | 
|  |  | 
|  | /* return group to which a task belongs */ | 
|  | static inline struct task_group *task_group(struct task_struct *p) | 
|  | { | 
|  | struct task_group *tg; | 
|  |  | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | tg = p->user->tg; | 
|  | #elif defined(CONFIG_CGROUP_SCHED) | 
|  | tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id), | 
|  | struct task_group, css); | 
|  | #else | 
|  | tg = &init_task_group; | 
|  | #endif | 
|  | return tg; | 
|  | } | 
|  |  | 
|  | /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */ | 
|  | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) | 
|  | { | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | p->se.cfs_rq = task_group(p)->cfs_rq[cpu]; | 
|  | p->se.parent = task_group(p)->se[cpu]; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | p->rt.rt_rq  = task_group(p)->rt_rq[cpu]; | 
|  | p->rt.parent = task_group(p)->rt_se[cpu]; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { } | 
|  | static inline struct task_group *task_group(struct task_struct *p) | 
|  | { | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_GROUP_SCHED */ | 
|  |  | 
|  | /* CFS-related fields in a runqueue */ | 
|  | struct cfs_rq { | 
|  | struct load_weight load; | 
|  | unsigned long nr_running; | 
|  |  | 
|  | u64 exec_clock; | 
|  | u64 min_vruntime; | 
|  |  | 
|  | struct rb_root tasks_timeline; | 
|  | struct rb_node *rb_leftmost; | 
|  |  | 
|  | struct list_head tasks; | 
|  | struct list_head *balance_iterator; | 
|  |  | 
|  | /* | 
|  | * 'curr' points to currently running entity on this cfs_rq. | 
|  | * It is set to NULL otherwise (i.e when none are currently running). | 
|  | */ | 
|  | struct sched_entity *curr, *next, *last; | 
|  |  | 
|  | unsigned int nr_spread_over; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */ | 
|  |  | 
|  | /* | 
|  | * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in | 
|  | * a hierarchy). Non-leaf lrqs hold other higher schedulable entities | 
|  | * (like users, containers etc.) | 
|  | * | 
|  | * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This | 
|  | * list is used during load balance. | 
|  | */ | 
|  | struct list_head leaf_cfs_rq_list; | 
|  | struct task_group *tg;	/* group that "owns" this runqueue */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * the part of load.weight contributed by tasks | 
|  | */ | 
|  | unsigned long task_weight; | 
|  |  | 
|  | /* | 
|  | *   h_load = weight * f(tg) | 
|  | * | 
|  | * Where f(tg) is the recursive weight fraction assigned to | 
|  | * this group. | 
|  | */ | 
|  | unsigned long h_load; | 
|  |  | 
|  | /* | 
|  | * this cpu's part of tg->shares | 
|  | */ | 
|  | unsigned long shares; | 
|  |  | 
|  | /* | 
|  | * load.weight at the time we set shares | 
|  | */ | 
|  | unsigned long rq_weight; | 
|  | #endif | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* Real-Time classes' related field in a runqueue: */ | 
|  | struct rt_rq { | 
|  | struct rt_prio_array active; | 
|  | unsigned long rt_nr_running; | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | int highest_prio; /* highest queued rt task prio */ | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | unsigned long rt_nr_migratory; | 
|  | int overloaded; | 
|  | #endif | 
|  | int rt_throttled; | 
|  | u64 rt_time; | 
|  | u64 rt_runtime; | 
|  | /* Nests inside the rq lock: */ | 
|  | spinlock_t rt_runtime_lock; | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | unsigned long rt_nr_boosted; | 
|  |  | 
|  | struct rq *rq; | 
|  | struct list_head leaf_rt_rq_list; | 
|  | struct task_group *tg; | 
|  | struct sched_rt_entity *rt_se; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * We add the notion of a root-domain which will be used to define per-domain | 
|  | * variables. Each exclusive cpuset essentially defines an island domain by | 
|  | * fully partitioning the member cpus from any other cpuset. Whenever a new | 
|  | * exclusive cpuset is created, we also create and attach a new root-domain | 
|  | * object. | 
|  | * | 
|  | */ | 
|  | struct root_domain { | 
|  | atomic_t refcount; | 
|  | cpumask_t span; | 
|  | cpumask_t online; | 
|  |  | 
|  | /* | 
|  | * The "RT overload" flag: it gets set if a CPU has more than | 
|  | * one runnable RT task. | 
|  | */ | 
|  | cpumask_t rto_mask; | 
|  | atomic_t rto_count; | 
|  | #ifdef CONFIG_SMP | 
|  | struct cpupri cpupri; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * By default the system creates a single root-domain with all cpus as | 
|  | * members (mimicking the global state we have today). | 
|  | */ | 
|  | static struct root_domain def_root_domain; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is the main, per-CPU runqueue data structure. | 
|  | * | 
|  | * Locking rule: those places that want to lock multiple runqueues | 
|  | * (such as the load balancing or the thread migration code), lock | 
|  | * acquire operations must be ordered by ascending &runqueue. | 
|  | */ | 
|  | struct rq { | 
|  | /* runqueue lock: */ | 
|  | spinlock_t lock; | 
|  |  | 
|  | /* | 
|  | * nr_running and cpu_load should be in the same cacheline because | 
|  | * remote CPUs use both these fields when doing load calculation. | 
|  | */ | 
|  | unsigned long nr_running; | 
|  | #define CPU_LOAD_IDX_MAX 5 | 
|  | unsigned long cpu_load[CPU_LOAD_IDX_MAX]; | 
|  | unsigned char idle_at_tick; | 
|  | #ifdef CONFIG_NO_HZ | 
|  | unsigned long last_tick_seen; | 
|  | unsigned char in_nohz_recently; | 
|  | #endif | 
|  | /* capture load from *all* tasks on this cpu: */ | 
|  | struct load_weight load; | 
|  | unsigned long nr_load_updates; | 
|  | u64 nr_switches; | 
|  |  | 
|  | struct cfs_rq cfs; | 
|  | struct rt_rq rt; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | /* list of leaf cfs_rq on this cpu: */ | 
|  | struct list_head leaf_cfs_rq_list; | 
|  | #endif | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | struct list_head leaf_rt_rq_list; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is part of a global counter where only the total sum | 
|  | * over all CPUs matters. A task can increase this counter on | 
|  | * one CPU and if it got migrated afterwards it may decrease | 
|  | * it on another CPU. Always updated under the runqueue lock: | 
|  | */ | 
|  | unsigned long nr_uninterruptible; | 
|  |  | 
|  | struct task_struct *curr, *idle; | 
|  | unsigned long next_balance; | 
|  | struct mm_struct *prev_mm; | 
|  |  | 
|  | u64 clock; | 
|  |  | 
|  | atomic_t nr_iowait; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | struct root_domain *rd; | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | /* For active balancing */ | 
|  | int active_balance; | 
|  | int push_cpu; | 
|  | /* cpu of this runqueue: */ | 
|  | int cpu; | 
|  | int online; | 
|  |  | 
|  | unsigned long avg_load_per_task; | 
|  |  | 
|  | struct task_struct *migration_thread; | 
|  | struct list_head migration_queue; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | #ifdef CONFIG_SMP | 
|  | int hrtick_csd_pending; | 
|  | struct call_single_data hrtick_csd; | 
|  | #endif | 
|  | struct hrtimer hrtick_timer; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | /* latency stats */ | 
|  | struct sched_info rq_sched_info; | 
|  |  | 
|  | /* sys_sched_yield() stats */ | 
|  | unsigned int yld_exp_empty; | 
|  | unsigned int yld_act_empty; | 
|  | unsigned int yld_both_empty; | 
|  | unsigned int yld_count; | 
|  |  | 
|  | /* schedule() stats */ | 
|  | unsigned int sched_switch; | 
|  | unsigned int sched_count; | 
|  | unsigned int sched_goidle; | 
|  |  | 
|  | /* try_to_wake_up() stats */ | 
|  | unsigned int ttwu_count; | 
|  | unsigned int ttwu_local; | 
|  |  | 
|  | /* BKL stats */ | 
|  | unsigned int bkl_count; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); | 
|  |  | 
|  | static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync) | 
|  | { | 
|  | rq->curr->sched_class->check_preempt_curr(rq, p, sync); | 
|  | } | 
|  |  | 
|  | static inline int cpu_of(struct rq *rq) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return rq->cpu; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The domain tree (rq->sd) is protected by RCU's quiescent state transition. | 
|  | * See detach_destroy_domains: synchronize_sched for details. | 
|  | * | 
|  | * The domain tree of any CPU may only be accessed from within | 
|  | * preempt-disabled sections. | 
|  | */ | 
|  | #define for_each_domain(cpu, __sd) \ | 
|  | for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent) | 
|  |  | 
|  | #define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu))) | 
|  | #define this_rq()		(&__get_cpu_var(runqueues)) | 
|  | #define task_rq(p)		cpu_rq(task_cpu(p)) | 
|  | #define cpu_curr(cpu)		(cpu_rq(cpu)->curr) | 
|  |  | 
|  | static inline void update_rq_clock(struct rq *rq) | 
|  | { | 
|  | rq->clock = sched_clock_cpu(cpu_of(rq)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tunables that become constants when CONFIG_SCHED_DEBUG is off: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | # define const_debug __read_mostly | 
|  | #else | 
|  | # define const_debug static const | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * runqueue_is_locked | 
|  | * | 
|  | * Returns true if the current cpu runqueue is locked. | 
|  | * This interface allows printk to be called with the runqueue lock | 
|  | * held and know whether or not it is OK to wake up the klogd. | 
|  | */ | 
|  | int runqueue_is_locked(void) | 
|  | { | 
|  | int cpu = get_cpu(); | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | int ret; | 
|  |  | 
|  | ret = spin_is_locked(&rq->lock); | 
|  | put_cpu(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Debugging: various feature bits | 
|  | */ | 
|  |  | 
|  | #define SCHED_FEAT(name, enabled)	\ | 
|  | __SCHED_FEAT_##name , | 
|  |  | 
|  | enum { | 
|  | #include "sched_features.h" | 
|  | }; | 
|  |  | 
|  | #undef SCHED_FEAT | 
|  |  | 
|  | #define SCHED_FEAT(name, enabled)	\ | 
|  | (1UL << __SCHED_FEAT_##name) * enabled | | 
|  |  | 
|  | const_debug unsigned int sysctl_sched_features = | 
|  | #include "sched_features.h" | 
|  | 0; | 
|  |  | 
|  | #undef SCHED_FEAT | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | #define SCHED_FEAT(name, enabled)	\ | 
|  | #name , | 
|  |  | 
|  | static __read_mostly char *sched_feat_names[] = { | 
|  | #include "sched_features.h" | 
|  | NULL | 
|  | }; | 
|  |  | 
|  | #undef SCHED_FEAT | 
|  |  | 
|  | static int sched_feat_open(struct inode *inode, struct file *filp) | 
|  | { | 
|  | filp->private_data = inode->i_private; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | sched_feat_read(struct file *filp, char __user *ubuf, | 
|  | size_t cnt, loff_t *ppos) | 
|  | { | 
|  | char *buf; | 
|  | int r = 0; | 
|  | int len = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; sched_feat_names[i]; i++) { | 
|  | len += strlen(sched_feat_names[i]); | 
|  | len += 4; | 
|  | } | 
|  |  | 
|  | buf = kmalloc(len + 2, GFP_KERNEL); | 
|  | if (!buf) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; sched_feat_names[i]; i++) { | 
|  | if (sysctl_sched_features & (1UL << i)) | 
|  | r += sprintf(buf + r, "%s ", sched_feat_names[i]); | 
|  | else | 
|  | r += sprintf(buf + r, "NO_%s ", sched_feat_names[i]); | 
|  | } | 
|  |  | 
|  | r += sprintf(buf + r, "\n"); | 
|  | WARN_ON(r >= len + 2); | 
|  |  | 
|  | r = simple_read_from_buffer(ubuf, cnt, ppos, buf, r); | 
|  |  | 
|  | kfree(buf); | 
|  |  | 
|  | return r; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | sched_feat_write(struct file *filp, const char __user *ubuf, | 
|  | size_t cnt, loff_t *ppos) | 
|  | { | 
|  | char buf[64]; | 
|  | char *cmp = buf; | 
|  | int neg = 0; | 
|  | int i; | 
|  |  | 
|  | if (cnt > 63) | 
|  | cnt = 63; | 
|  |  | 
|  | if (copy_from_user(&buf, ubuf, cnt)) | 
|  | return -EFAULT; | 
|  |  | 
|  | buf[cnt] = 0; | 
|  |  | 
|  | if (strncmp(buf, "NO_", 3) == 0) { | 
|  | neg = 1; | 
|  | cmp += 3; | 
|  | } | 
|  |  | 
|  | for (i = 0; sched_feat_names[i]; i++) { | 
|  | int len = strlen(sched_feat_names[i]); | 
|  |  | 
|  | if (strncmp(cmp, sched_feat_names[i], len) == 0) { | 
|  | if (neg) | 
|  | sysctl_sched_features &= ~(1UL << i); | 
|  | else | 
|  | sysctl_sched_features |= (1UL << i); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!sched_feat_names[i]) | 
|  | return -EINVAL; | 
|  |  | 
|  | filp->f_pos += cnt; | 
|  |  | 
|  | return cnt; | 
|  | } | 
|  |  | 
|  | static struct file_operations sched_feat_fops = { | 
|  | .open	= sched_feat_open, | 
|  | .read	= sched_feat_read, | 
|  | .write	= sched_feat_write, | 
|  | }; | 
|  |  | 
|  | static __init int sched_init_debug(void) | 
|  | { | 
|  | debugfs_create_file("sched_features", 0644, NULL, NULL, | 
|  | &sched_feat_fops); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | late_initcall(sched_init_debug); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x)) | 
|  |  | 
|  | /* | 
|  | * Number of tasks to iterate in a single balance run. | 
|  | * Limited because this is done with IRQs disabled. | 
|  | */ | 
|  | const_debug unsigned int sysctl_sched_nr_migrate = 32; | 
|  |  | 
|  | /* | 
|  | * ratelimit for updating the group shares. | 
|  | * default: 0.25ms | 
|  | */ | 
|  | unsigned int sysctl_sched_shares_ratelimit = 250000; | 
|  |  | 
|  | /* | 
|  | * Inject some fuzzyness into changing the per-cpu group shares | 
|  | * this avoids remote rq-locks at the expense of fairness. | 
|  | * default: 4 | 
|  | */ | 
|  | unsigned int sysctl_sched_shares_thresh = 4; | 
|  |  | 
|  | /* | 
|  | * period over which we measure -rt task cpu usage in us. | 
|  | * default: 1s | 
|  | */ | 
|  | unsigned int sysctl_sched_rt_period = 1000000; | 
|  |  | 
|  | static __read_mostly int scheduler_running; | 
|  |  | 
|  | /* | 
|  | * part of the period that we allow rt tasks to run in us. | 
|  | * default: 0.95s | 
|  | */ | 
|  | int sysctl_sched_rt_runtime = 950000; | 
|  |  | 
|  | static inline u64 global_rt_period(void) | 
|  | { | 
|  | return (u64)sysctl_sched_rt_period * NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | static inline u64 global_rt_runtime(void) | 
|  | { | 
|  | if (sysctl_sched_rt_runtime < 0) | 
|  | return RUNTIME_INF; | 
|  |  | 
|  | return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC; | 
|  | } | 
|  |  | 
|  | #ifndef prepare_arch_switch | 
|  | # define prepare_arch_switch(next)	do { } while (0) | 
|  | #endif | 
|  | #ifndef finish_arch_switch | 
|  | # define finish_arch_switch(prev)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | static inline int task_current(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | return rq->curr == p; | 
|  | } | 
|  |  | 
|  | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | static inline int task_running(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | return task_current(rq, p); | 
|  | } | 
|  |  | 
|  | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK | 
|  | /* this is a valid case when another task releases the spinlock */ | 
|  | rq->lock.owner = current; | 
|  | #endif | 
|  | /* | 
|  | * If we are tracking spinlock dependencies then we have to | 
|  | * fix up the runqueue lock - which gets 'carried over' from | 
|  | * prev into current: | 
|  | */ | 
|  | spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_); | 
|  |  | 
|  | spin_unlock_irq(&rq->lock); | 
|  | } | 
|  |  | 
|  | #else /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  | static inline int task_running(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | return p->oncpu; | 
|  | #else | 
|  | return task_current(rq, p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * We can optimise this out completely for !SMP, because the | 
|  | * SMP rebalancing from interrupt is the only thing that cares | 
|  | * here. | 
|  | */ | 
|  | next->oncpu = 1; | 
|  | #endif | 
|  | #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | spin_unlock_irq(&rq->lock); | 
|  | #else | 
|  | spin_unlock(&rq->lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->oncpu is cleared, the task can be moved to a different CPU. | 
|  | * We must ensure this doesn't happen until the switch is completely | 
|  | * finished. | 
|  | */ | 
|  | smp_wmb(); | 
|  | prev->oncpu = 0; | 
|  | #endif | 
|  | #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW | 
|  | local_irq_enable(); | 
|  | #endif | 
|  | } | 
|  | #endif /* __ARCH_WANT_UNLOCKED_CTXSW */ | 
|  |  | 
|  | /* | 
|  | * __task_rq_lock - lock the runqueue a given task resides on. | 
|  | * Must be called interrupts disabled. | 
|  | */ | 
|  | static inline struct rq *__task_rq_lock(struct task_struct *p) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | for (;;) { | 
|  | struct rq *rq = task_rq(p); | 
|  | spin_lock(&rq->lock); | 
|  | if (likely(rq == task_rq(p))) | 
|  | return rq; | 
|  | spin_unlock(&rq->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * task_rq_lock - lock the runqueue a given task resides on and disable | 
|  | * interrupts. Note the ordering: we can safely lookup the task_rq without | 
|  | * explicitly disabling preemption. | 
|  | */ | 
|  | static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | for (;;) { | 
|  | local_irq_save(*flags); | 
|  | rq = task_rq(p); | 
|  | spin_lock(&rq->lock); | 
|  | if (likely(rq == task_rq(p))) | 
|  | return rq; | 
|  | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | void task_rq_unlock_wait(struct task_struct *p) | 
|  | { | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | smp_mb(); /* spin-unlock-wait is not a full memory barrier */ | 
|  | spin_unlock_wait(&rq->lock); | 
|  | } | 
|  |  | 
|  | static void __task_rq_unlock(struct rq *rq) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | static inline void task_rq_unlock(struct rq *rq, unsigned long *flags) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | spin_unlock_irqrestore(&rq->lock, *flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this_rq_lock - lock this runqueue and disable interrupts. | 
|  | */ | 
|  | static struct rq *this_rq_lock(void) | 
|  | __acquires(rq->lock) | 
|  | { | 
|  | struct rq *rq; | 
|  |  | 
|  | local_irq_disable(); | 
|  | rq = this_rq(); | 
|  | spin_lock(&rq->lock); | 
|  |  | 
|  | return rq; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_HRTICK | 
|  | /* | 
|  | * Use HR-timers to deliver accurate preemption points. | 
|  | * | 
|  | * Its all a bit involved since we cannot program an hrt while holding the | 
|  | * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a | 
|  | * reschedule event. | 
|  | * | 
|  | * When we get rescheduled we reprogram the hrtick_timer outside of the | 
|  | * rq->lock. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Use hrtick when: | 
|  | *  - enabled by features | 
|  | *  - hrtimer is actually high res | 
|  | */ | 
|  | static inline int hrtick_enabled(struct rq *rq) | 
|  | { | 
|  | if (!sched_feat(HRTICK)) | 
|  | return 0; | 
|  | if (!cpu_active(cpu_of(rq))) | 
|  | return 0; | 
|  | return hrtimer_is_hres_active(&rq->hrtick_timer); | 
|  | } | 
|  |  | 
|  | static void hrtick_clear(struct rq *rq) | 
|  | { | 
|  | if (hrtimer_active(&rq->hrtick_timer)) | 
|  | hrtimer_cancel(&rq->hrtick_timer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * High-resolution timer tick. | 
|  | * Runs from hardirq context with interrupts disabled. | 
|  | */ | 
|  | static enum hrtimer_restart hrtick(struct hrtimer *timer) | 
|  | { | 
|  | struct rq *rq = container_of(timer, struct rq, hrtick_timer); | 
|  |  | 
|  | WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); | 
|  |  | 
|  | spin_lock(&rq->lock); | 
|  | update_rq_clock(rq); | 
|  | rq->curr->sched_class->task_tick(rq, rq->curr, 1); | 
|  | spin_unlock(&rq->lock); | 
|  |  | 
|  | return HRTIMER_NORESTART; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * called from hardirq (IPI) context | 
|  | */ | 
|  | static void __hrtick_start(void *arg) | 
|  | { | 
|  | struct rq *rq = arg; | 
|  |  | 
|  | spin_lock(&rq->lock); | 
|  | hrtimer_restart(&rq->hrtick_timer); | 
|  | rq->hrtick_csd_pending = 0; | 
|  | spin_unlock(&rq->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called to set the hrtick timer state. | 
|  | * | 
|  | * called with rq->lock held and irqs disabled | 
|  | */ | 
|  | static void hrtick_start(struct rq *rq, u64 delay) | 
|  | { | 
|  | struct hrtimer *timer = &rq->hrtick_timer; | 
|  | ktime_t time = ktime_add_ns(timer->base->get_time(), delay); | 
|  |  | 
|  | hrtimer_set_expires(timer, time); | 
|  |  | 
|  | if (rq == this_rq()) { | 
|  | hrtimer_restart(timer); | 
|  | } else if (!rq->hrtick_csd_pending) { | 
|  | __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd); | 
|  | rq->hrtick_csd_pending = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
|  | { | 
|  | int cpu = (int)(long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | hrtick_clear(cpu_rq(cpu)); | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  |  | 
|  | static __init void init_hrtick(void) | 
|  | { | 
|  | hotcpu_notifier(hotplug_hrtick, 0); | 
|  | } | 
|  | #else | 
|  | /* | 
|  | * Called to set the hrtick timer state. | 
|  | * | 
|  | * called with rq->lock held and irqs disabled | 
|  | */ | 
|  | static void hrtick_start(struct rq *rq, u64 delay) | 
|  | { | 
|  | hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL); | 
|  | } | 
|  |  | 
|  | static inline void init_hrtick(void) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | static void init_rq_hrtick(struct rq *rq) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | rq->hrtick_csd_pending = 0; | 
|  |  | 
|  | rq->hrtick_csd.flags = 0; | 
|  | rq->hrtick_csd.func = __hrtick_start; | 
|  | rq->hrtick_csd.info = rq; | 
|  | #endif | 
|  |  | 
|  | hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); | 
|  | rq->hrtick_timer.function = hrtick; | 
|  | rq->hrtick_timer.cb_mode = HRTIMER_CB_IRQSAFE_PERCPU; | 
|  | } | 
|  | #else	/* CONFIG_SCHED_HRTICK */ | 
|  | static inline void hrtick_clear(struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void init_rq_hrtick(struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void init_hrtick(void) | 
|  | { | 
|  | } | 
|  | #endif	/* CONFIG_SCHED_HRTICK */ | 
|  |  | 
|  | /* | 
|  | * resched_task - mark a task 'to be rescheduled now'. | 
|  | * | 
|  | * On UP this means the setting of the need_resched flag, on SMP it | 
|  | * might also involve a cross-CPU call to trigger the scheduler on | 
|  | * the target CPU. | 
|  | */ | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #ifndef tsk_is_polling | 
|  | #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG) | 
|  | #endif | 
|  |  | 
|  | static void resched_task(struct task_struct *p) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | assert_spin_locked(&task_rq(p)->lock); | 
|  |  | 
|  | if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED))) | 
|  | return; | 
|  |  | 
|  | set_tsk_thread_flag(p, TIF_NEED_RESCHED); | 
|  |  | 
|  | cpu = task_cpu(p); | 
|  | if (cpu == smp_processor_id()) | 
|  | return; | 
|  |  | 
|  | /* NEED_RESCHED must be visible before we test polling */ | 
|  | smp_mb(); | 
|  | if (!tsk_is_polling(p)) | 
|  | smp_send_reschedule(cpu); | 
|  | } | 
|  |  | 
|  | static void resched_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | if (!spin_trylock_irqsave(&rq->lock, flags)) | 
|  | return; | 
|  | resched_task(cpu_curr(cpu)); | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | /* | 
|  | * When add_timer_on() enqueues a timer into the timer wheel of an | 
|  | * idle CPU then this timer might expire before the next timer event | 
|  | * which is scheduled to wake up that CPU. In case of a completely | 
|  | * idle system the next event might even be infinite time into the | 
|  | * future. wake_up_idle_cpu() ensures that the CPU is woken up and | 
|  | * leaves the inner idle loop so the newly added timer is taken into | 
|  | * account when the CPU goes back to idle and evaluates the timer | 
|  | * wheel for the next timer event. | 
|  | */ | 
|  | void wake_up_idle_cpu(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | if (cpu == smp_processor_id()) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * This is safe, as this function is called with the timer | 
|  | * wheel base lock of (cpu) held. When the CPU is on the way | 
|  | * to idle and has not yet set rq->curr to idle then it will | 
|  | * be serialized on the timer wheel base lock and take the new | 
|  | * timer into account automatically. | 
|  | */ | 
|  | if (rq->curr != rq->idle) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * We can set TIF_RESCHED on the idle task of the other CPU | 
|  | * lockless. The worst case is that the other CPU runs the | 
|  | * idle task through an additional NOOP schedule() | 
|  | */ | 
|  | set_tsk_thread_flag(rq->idle, TIF_NEED_RESCHED); | 
|  |  | 
|  | /* NEED_RESCHED must be visible before we test polling */ | 
|  | smp_mb(); | 
|  | if (!tsk_is_polling(rq->idle)) | 
|  | smp_send_reschedule(cpu); | 
|  | } | 
|  | #endif /* CONFIG_NO_HZ */ | 
|  |  | 
|  | #else /* !CONFIG_SMP */ | 
|  | static void resched_task(struct task_struct *p) | 
|  | { | 
|  | assert_spin_locked(&task_rq(p)->lock); | 
|  | set_tsk_need_resched(p); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | # define WMULT_CONST	(~0UL) | 
|  | #else | 
|  | # define WMULT_CONST	(1UL << 32) | 
|  | #endif | 
|  |  | 
|  | #define WMULT_SHIFT	32 | 
|  |  | 
|  | /* | 
|  | * Shift right and round: | 
|  | */ | 
|  | #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y)) | 
|  |  | 
|  | /* | 
|  | * delta *= weight / lw | 
|  | */ | 
|  | static unsigned long | 
|  | calc_delta_mine(unsigned long delta_exec, unsigned long weight, | 
|  | struct load_weight *lw) | 
|  | { | 
|  | u64 tmp; | 
|  |  | 
|  | if (!lw->inv_weight) { | 
|  | if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST)) | 
|  | lw->inv_weight = 1; | 
|  | else | 
|  | lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2) | 
|  | / (lw->weight+1); | 
|  | } | 
|  |  | 
|  | tmp = (u64)delta_exec * weight; | 
|  | /* | 
|  | * Check whether we'd overflow the 64-bit multiplication: | 
|  | */ | 
|  | if (unlikely(tmp > WMULT_CONST)) | 
|  | tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight, | 
|  | WMULT_SHIFT/2); | 
|  | else | 
|  | tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT); | 
|  |  | 
|  | return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX); | 
|  | } | 
|  |  | 
|  | static inline void update_load_add(struct load_weight *lw, unsigned long inc) | 
|  | { | 
|  | lw->weight += inc; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | static inline void update_load_sub(struct load_weight *lw, unsigned long dec) | 
|  | { | 
|  | lw->weight -= dec; | 
|  | lw->inv_weight = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * To aid in avoiding the subversion of "niceness" due to uneven distribution | 
|  | * of tasks with abnormal "nice" values across CPUs the contribution that | 
|  | * each task makes to its run queue's load is weighted according to its | 
|  | * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a | 
|  | * scaled version of the new time slice allocation that they receive on time | 
|  | * slice expiry etc. | 
|  | */ | 
|  |  | 
|  | #define WEIGHT_IDLEPRIO		2 | 
|  | #define WMULT_IDLEPRIO		(1 << 31) | 
|  |  | 
|  | /* | 
|  | * Nice levels are multiplicative, with a gentle 10% change for every | 
|  | * nice level changed. I.e. when a CPU-bound task goes from nice 0 to | 
|  | * nice 1, it will get ~10% less CPU time than another CPU-bound task | 
|  | * that remained on nice 0. | 
|  | * | 
|  | * The "10% effect" is relative and cumulative: from _any_ nice level, | 
|  | * if you go up 1 level, it's -10% CPU usage, if you go down 1 level | 
|  | * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. | 
|  | * If a task goes up by ~10% and another task goes down by ~10% then | 
|  | * the relative distance between them is ~25%.) | 
|  | */ | 
|  | static const int prio_to_weight[40] = { | 
|  | /* -20 */     88761,     71755,     56483,     46273,     36291, | 
|  | /* -15 */     29154,     23254,     18705,     14949,     11916, | 
|  | /* -10 */      9548,      7620,      6100,      4904,      3906, | 
|  | /*  -5 */      3121,      2501,      1991,      1586,      1277, | 
|  | /*   0 */      1024,       820,       655,       526,       423, | 
|  | /*   5 */       335,       272,       215,       172,       137, | 
|  | /*  10 */       110,        87,        70,        56,        45, | 
|  | /*  15 */        36,        29,        23,        18,        15, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated. | 
|  | * | 
|  | * In cases where the weight does not change often, we can use the | 
|  | * precalculated inverse to speed up arithmetics by turning divisions | 
|  | * into multiplications: | 
|  | */ | 
|  | static const u32 prio_to_wmult[40] = { | 
|  | /* -20 */     48388,     59856,     76040,     92818,    118348, | 
|  | /* -15 */    147320,    184698,    229616,    287308,    360437, | 
|  | /* -10 */    449829,    563644,    704093,    875809,   1099582, | 
|  | /*  -5 */   1376151,   1717300,   2157191,   2708050,   3363326, | 
|  | /*   0 */   4194304,   5237765,   6557202,   8165337,  10153587, | 
|  | /*   5 */  12820798,  15790321,  19976592,  24970740,  31350126, | 
|  | /*  10 */  39045157,  49367440,  61356676,  76695844,  95443717, | 
|  | /*  15 */ 119304647, 148102320, 186737708, 238609294, 286331153, | 
|  | }; | 
|  |  | 
|  | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup); | 
|  |  | 
|  | /* | 
|  | * runqueue iterator, to support SMP load-balancing between different | 
|  | * scheduling classes, without having to expose their internal data | 
|  | * structures to the load-balancing proper: | 
|  | */ | 
|  | struct rq_iterator { | 
|  | void *arg; | 
|  | struct task_struct *(*start)(void *); | 
|  | struct task_struct *(*next)(void *); | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static unsigned long | 
|  | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, struct sched_domain *sd, | 
|  | enum cpu_idle_type idle, int *all_pinned, | 
|  | int *this_best_prio, struct rq_iterator *iterator); | 
|  |  | 
|  | static int | 
|  | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | struct rq_iterator *iterator); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_CPUACCT | 
|  | static void cpuacct_charge(struct task_struct *tsk, u64 cputime); | 
|  | #else | 
|  | static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {} | 
|  | #endif | 
|  |  | 
|  | static inline void inc_cpu_load(struct rq *rq, unsigned long load) | 
|  | { | 
|  | update_load_add(&rq->load, load); | 
|  | } | 
|  |  | 
|  | static inline void dec_cpu_load(struct rq *rq, unsigned long load) | 
|  | { | 
|  | update_load_sub(&rq->load, load); | 
|  | } | 
|  |  | 
|  | #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED) | 
|  | typedef int (*tg_visitor)(struct task_group *, void *); | 
|  |  | 
|  | /* | 
|  | * Iterate the full tree, calling @down when first entering a node and @up when | 
|  | * leaving it for the final time. | 
|  | */ | 
|  | static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data) | 
|  | { | 
|  | struct task_group *parent, *child; | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | parent = &root_task_group; | 
|  | down: | 
|  | ret = (*down)(parent, data); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | list_for_each_entry_rcu(child, &parent->children, siblings) { | 
|  | parent = child; | 
|  | goto down; | 
|  |  | 
|  | up: | 
|  | continue; | 
|  | } | 
|  | ret = (*up)(parent, data); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  |  | 
|  | child = parent; | 
|  | parent = parent->parent; | 
|  | if (parent) | 
|  | goto up; | 
|  | out_unlock: | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int tg_nop(struct task_group *tg, void *data) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | static unsigned long source_load(int cpu, int type); | 
|  | static unsigned long target_load(int cpu, int type); | 
|  | static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd); | 
|  |  | 
|  | static unsigned long cpu_avg_load_per_task(int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long nr_running = ACCESS_ONCE(rq->nr_running); | 
|  |  | 
|  | if (nr_running) | 
|  | rq->avg_load_per_task = rq->load.weight / nr_running; | 
|  | else | 
|  | rq->avg_load_per_task = 0; | 
|  |  | 
|  | return rq->avg_load_per_task; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  |  | 
|  | static void __set_se_shares(struct sched_entity *se, unsigned long shares); | 
|  |  | 
|  | /* | 
|  | * Calculate and set the cpu's group shares. | 
|  | */ | 
|  | static void | 
|  | update_group_shares_cpu(struct task_group *tg, int cpu, | 
|  | unsigned long sd_shares, unsigned long sd_rq_weight) | 
|  | { | 
|  | int boost = 0; | 
|  | unsigned long shares; | 
|  | unsigned long rq_weight; | 
|  |  | 
|  | if (!tg->se[cpu]) | 
|  | return; | 
|  |  | 
|  | rq_weight = tg->cfs_rq[cpu]->load.weight; | 
|  |  | 
|  | /* | 
|  | * If there are currently no tasks on the cpu pretend there is one of | 
|  | * average load so that when a new task gets to run here it will not | 
|  | * get delayed by group starvation. | 
|  | */ | 
|  | if (!rq_weight) { | 
|  | boost = 1; | 
|  | rq_weight = NICE_0_LOAD; | 
|  | } | 
|  |  | 
|  | if (unlikely(rq_weight > sd_rq_weight)) | 
|  | rq_weight = sd_rq_weight; | 
|  |  | 
|  | /* | 
|  | *           \Sum shares * rq_weight | 
|  | * shares =  ----------------------- | 
|  | *               \Sum rq_weight | 
|  | * | 
|  | */ | 
|  | shares = (sd_shares * rq_weight) / (sd_rq_weight + 1); | 
|  | shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES); | 
|  |  | 
|  | if (abs(shares - tg->se[cpu]->load.weight) > | 
|  | sysctl_sched_shares_thresh) { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  | /* | 
|  | * record the actual number of shares, not the boosted amount. | 
|  | */ | 
|  | tg->cfs_rq[cpu]->shares = boost ? 0 : shares; | 
|  | tg->cfs_rq[cpu]->rq_weight = rq_weight; | 
|  |  | 
|  | __set_se_shares(tg->se[cpu], shares); | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-compute the task group their per cpu shares over the given domain. | 
|  | * This needs to be done in a bottom-up fashion because the rq weight of a | 
|  | * parent group depends on the shares of its child groups. | 
|  | */ | 
|  | static int tg_shares_up(struct task_group *tg, void *data) | 
|  | { | 
|  | unsigned long rq_weight = 0; | 
|  | unsigned long shares = 0; | 
|  | struct sched_domain *sd = data; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask(i, sd->span) { | 
|  | rq_weight += tg->cfs_rq[i]->load.weight; | 
|  | shares += tg->cfs_rq[i]->shares; | 
|  | } | 
|  |  | 
|  | if ((!shares && rq_weight) || shares > tg->shares) | 
|  | shares = tg->shares; | 
|  |  | 
|  | if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE)) | 
|  | shares = tg->shares; | 
|  |  | 
|  | if (!rq_weight) | 
|  | rq_weight = cpus_weight(sd->span) * NICE_0_LOAD; | 
|  |  | 
|  | for_each_cpu_mask(i, sd->span) | 
|  | update_group_shares_cpu(tg, i, shares, rq_weight); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute the cpu's hierarchical load factor for each task group. | 
|  | * This needs to be done in a top-down fashion because the load of a child | 
|  | * group is a fraction of its parents load. | 
|  | */ | 
|  | static int tg_load_down(struct task_group *tg, void *data) | 
|  | { | 
|  | unsigned long load; | 
|  | long cpu = (long)data; | 
|  |  | 
|  | if (!tg->parent) { | 
|  | load = cpu_rq(cpu)->load.weight; | 
|  | } else { | 
|  | load = tg->parent->cfs_rq[cpu]->h_load; | 
|  | load *= tg->cfs_rq[cpu]->shares; | 
|  | load /= tg->parent->cfs_rq[cpu]->load.weight + 1; | 
|  | } | 
|  |  | 
|  | tg->cfs_rq[cpu]->h_load = load; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void update_shares(struct sched_domain *sd) | 
|  | { | 
|  | u64 now = cpu_clock(raw_smp_processor_id()); | 
|  | s64 elapsed = now - sd->last_update; | 
|  |  | 
|  | if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) { | 
|  | sd->last_update = now; | 
|  | walk_tg_tree(tg_nop, tg_shares_up, sd); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void update_shares_locked(struct rq *rq, struct sched_domain *sd) | 
|  | { | 
|  | spin_unlock(&rq->lock); | 
|  | update_shares(sd); | 
|  | spin_lock(&rq->lock); | 
|  | } | 
|  |  | 
|  | static void update_h_load(long cpu) | 
|  | { | 
|  | walk_tg_tree(tg_load_down, tg_nop, (void *)cpu); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void update_shares(struct sched_domain *sd) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares) | 
|  | { | 
|  | #ifdef CONFIG_SMP | 
|  | cfs_rq->shares = shares; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #include "sched_stats.h" | 
|  | #include "sched_idletask.c" | 
|  | #include "sched_fair.c" | 
|  | #include "sched_rt.c" | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | # include "sched_debug.c" | 
|  | #endif | 
|  |  | 
|  | #define sched_class_highest (&rt_sched_class) | 
|  | #define for_each_class(class) \ | 
|  | for (class = sched_class_highest; class; class = class->next) | 
|  |  | 
|  | static void inc_nr_running(struct rq *rq) | 
|  | { | 
|  | rq->nr_running++; | 
|  | } | 
|  |  | 
|  | static void dec_nr_running(struct rq *rq) | 
|  | { | 
|  | rq->nr_running--; | 
|  | } | 
|  |  | 
|  | static void set_load_weight(struct task_struct *p) | 
|  | { | 
|  | if (task_has_rt_policy(p)) { | 
|  | p->se.load.weight = prio_to_weight[0] * 2; | 
|  | p->se.load.inv_weight = prio_to_wmult[0] >> 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCHED_IDLE tasks get minimal weight: | 
|  | */ | 
|  | if (p->policy == SCHED_IDLE) { | 
|  | p->se.load.weight = WEIGHT_IDLEPRIO; | 
|  | p->se.load.inv_weight = WMULT_IDLEPRIO; | 
|  | return; | 
|  | } | 
|  |  | 
|  | p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO]; | 
|  | p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO]; | 
|  | } | 
|  |  | 
|  | static void update_avg(u64 *avg, u64 sample) | 
|  | { | 
|  | s64 diff = sample - *avg; | 
|  | *avg += diff >> 3; | 
|  | } | 
|  |  | 
|  | static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup) | 
|  | { | 
|  | sched_info_queued(p); | 
|  | p->sched_class->enqueue_task(rq, p, wakeup); | 
|  | p->se.on_rq = 1; | 
|  | } | 
|  |  | 
|  | static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep) | 
|  | { | 
|  | if (sleep && p->se.last_wakeup) { | 
|  | update_avg(&p->se.avg_overlap, | 
|  | p->se.sum_exec_runtime - p->se.last_wakeup); | 
|  | p->se.last_wakeup = 0; | 
|  | } | 
|  |  | 
|  | sched_info_dequeued(p); | 
|  | p->sched_class->dequeue_task(rq, p, sleep); | 
|  | p->se.on_rq = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * __normal_prio - return the priority that is based on the static prio | 
|  | */ | 
|  | static inline int __normal_prio(struct task_struct *p) | 
|  | { | 
|  | return p->static_prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the expected normal priority: i.e. priority | 
|  | * without taking RT-inheritance into account. Might be | 
|  | * boosted by interactivity modifiers. Changes upon fork, | 
|  | * setprio syscalls, and whenever the interactivity | 
|  | * estimator recalculates. | 
|  | */ | 
|  | static inline int normal_prio(struct task_struct *p) | 
|  | { | 
|  | int prio; | 
|  |  | 
|  | if (task_has_rt_policy(p)) | 
|  | prio = MAX_RT_PRIO-1 - p->rt_priority; | 
|  | else | 
|  | prio = __normal_prio(p); | 
|  | return prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the current priority, i.e. the priority | 
|  | * taken into account by the scheduler. This value might | 
|  | * be boosted by RT tasks, or might be boosted by | 
|  | * interactivity modifiers. Will be RT if the task got | 
|  | * RT-boosted. If not then it returns p->normal_prio. | 
|  | */ | 
|  | static int effective_prio(struct task_struct *p) | 
|  | { | 
|  | p->normal_prio = normal_prio(p); | 
|  | /* | 
|  | * If we are RT tasks or we were boosted to RT priority, | 
|  | * keep the priority unchanged. Otherwise, update priority | 
|  | * to the normal priority: | 
|  | */ | 
|  | if (!rt_prio(p->prio)) | 
|  | return p->normal_prio; | 
|  | return p->prio; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * activate_task - move a task to the runqueue. | 
|  | */ | 
|  | static void activate_task(struct rq *rq, struct task_struct *p, int wakeup) | 
|  | { | 
|  | if (task_contributes_to_load(p)) | 
|  | rq->nr_uninterruptible--; | 
|  |  | 
|  | enqueue_task(rq, p, wakeup); | 
|  | inc_nr_running(rq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * deactivate_task - remove a task from the runqueue. | 
|  | */ | 
|  | static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep) | 
|  | { | 
|  | if (task_contributes_to_load(p)) | 
|  | rq->nr_uninterruptible++; | 
|  |  | 
|  | dequeue_task(rq, p, sleep); | 
|  | dec_nr_running(rq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_curr - is this task currently executing on a CPU? | 
|  | * @p: the task in question. | 
|  | */ | 
|  | inline int task_curr(const struct task_struct *p) | 
|  | { | 
|  | return cpu_curr(task_cpu(p)) == p; | 
|  | } | 
|  |  | 
|  | static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu) | 
|  | { | 
|  | set_task_rq(p, cpu); | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be | 
|  | * successfuly executed on another CPU. We must ensure that updates of | 
|  | * per-task data have been completed by this moment. | 
|  | */ | 
|  | smp_wmb(); | 
|  | task_thread_info(p)->cpu = cpu; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static inline void check_class_changed(struct rq *rq, struct task_struct *p, | 
|  | const struct sched_class *prev_class, | 
|  | int oldprio, int running) | 
|  | { | 
|  | if (prev_class != p->sched_class) { | 
|  | if (prev_class->switched_from) | 
|  | prev_class->switched_from(rq, p, running); | 
|  | p->sched_class->switched_to(rq, p, running); | 
|  | } else | 
|  | p->sched_class->prio_changed(rq, p, oldprio, running); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* Used instead of source_load when we know the type == 0 */ | 
|  | static unsigned long weighted_cpuload(const int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->load.weight; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Is this task likely cache-hot: | 
|  | */ | 
|  | static int | 
|  | task_hot(struct task_struct *p, u64 now, struct sched_domain *sd) | 
|  | { | 
|  | s64 delta; | 
|  |  | 
|  | /* | 
|  | * Buddy candidates are cache hot: | 
|  | */ | 
|  | if (sched_feat(CACHE_HOT_BUDDY) && | 
|  | (&p->se == cfs_rq_of(&p->se)->next || | 
|  | &p->se == cfs_rq_of(&p->se)->last)) | 
|  | return 1; | 
|  |  | 
|  | if (p->sched_class != &fair_sched_class) | 
|  | return 0; | 
|  |  | 
|  | if (sysctl_sched_migration_cost == -1) | 
|  | return 1; | 
|  | if (sysctl_sched_migration_cost == 0) | 
|  | return 0; | 
|  |  | 
|  | delta = now - p->se.exec_start; | 
|  |  | 
|  | return delta < (s64)sysctl_sched_migration_cost; | 
|  | } | 
|  |  | 
|  |  | 
|  | void set_task_cpu(struct task_struct *p, unsigned int new_cpu) | 
|  | { | 
|  | int old_cpu = task_cpu(p); | 
|  | struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu); | 
|  | struct cfs_rq *old_cfsrq = task_cfs_rq(p), | 
|  | *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu); | 
|  | u64 clock_offset; | 
|  |  | 
|  | clock_offset = old_rq->clock - new_rq->clock; | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (p->se.wait_start) | 
|  | p->se.wait_start -= clock_offset; | 
|  | if (p->se.sleep_start) | 
|  | p->se.sleep_start -= clock_offset; | 
|  | if (p->se.block_start) | 
|  | p->se.block_start -= clock_offset; | 
|  | if (old_cpu != new_cpu) { | 
|  | schedstat_inc(p, se.nr_migrations); | 
|  | if (task_hot(p, old_rq->clock, NULL)) | 
|  | schedstat_inc(p, se.nr_forced2_migrations); | 
|  | } | 
|  | #endif | 
|  | p->se.vruntime -= old_cfsrq->min_vruntime - | 
|  | new_cfsrq->min_vruntime; | 
|  |  | 
|  | __set_task_cpu(p, new_cpu); | 
|  | } | 
|  |  | 
|  | struct migration_req { | 
|  | struct list_head list; | 
|  |  | 
|  | struct task_struct *task; | 
|  | int dest_cpu; | 
|  |  | 
|  | struct completion done; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * The task's runqueue lock must be held. | 
|  | * Returns true if you have to wait for migration thread. | 
|  | */ | 
|  | static int | 
|  | migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req) | 
|  | { | 
|  | struct rq *rq = task_rq(p); | 
|  |  | 
|  | /* | 
|  | * If the task is not on a runqueue (and not running), then | 
|  | * it is sufficient to simply update the task's cpu field. | 
|  | */ | 
|  | if (!p->se.on_rq && !task_running(rq, p)) { | 
|  | set_task_cpu(p, dest_cpu); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | init_completion(&req->done); | 
|  | req->task = p; | 
|  | req->dest_cpu = dest_cpu; | 
|  | list_add(&req->list, &rq->migration_queue); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wait_task_inactive - wait for a thread to unschedule. | 
|  | * | 
|  | * If @match_state is nonzero, it's the @p->state value just checked and | 
|  | * not expected to change.  If it changes, i.e. @p might have woken up, | 
|  | * then return zero.  When we succeed in waiting for @p to be off its CPU, | 
|  | * we return a positive number (its total switch count).  If a second call | 
|  | * a short while later returns the same number, the caller can be sure that | 
|  | * @p has remained unscheduled the whole time. | 
|  | * | 
|  | * The caller must ensure that the task *will* unschedule sometime soon, | 
|  | * else this function might spin for a *long* time. This function can't | 
|  | * be called with interrupts off, or it may introduce deadlock with | 
|  | * smp_call_function() if an IPI is sent by the same process we are | 
|  | * waiting to become inactive. | 
|  | */ | 
|  | unsigned long wait_task_inactive(struct task_struct *p, long match_state) | 
|  | { | 
|  | unsigned long flags; | 
|  | int running, on_rq; | 
|  | unsigned long ncsw; | 
|  | struct rq *rq; | 
|  |  | 
|  | for (;;) { | 
|  | /* | 
|  | * We do the initial early heuristics without holding | 
|  | * any task-queue locks at all. We'll only try to get | 
|  | * the runqueue lock when things look like they will | 
|  | * work out! | 
|  | */ | 
|  | rq = task_rq(p); | 
|  |  | 
|  | /* | 
|  | * If the task is actively running on another CPU | 
|  | * still, just relax and busy-wait without holding | 
|  | * any locks. | 
|  | * | 
|  | * NOTE! Since we don't hold any locks, it's not | 
|  | * even sure that "rq" stays as the right runqueue! | 
|  | * But we don't care, since "task_running()" will | 
|  | * return false if the runqueue has changed and p | 
|  | * is actually now running somewhere else! | 
|  | */ | 
|  | while (task_running(rq, p)) { | 
|  | if (match_state && unlikely(p->state != match_state)) | 
|  | return 0; | 
|  | cpu_relax(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ok, time to look more closely! We need the rq | 
|  | * lock now, to be *sure*. If we're wrong, we'll | 
|  | * just go back and repeat. | 
|  | */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | trace_sched_wait_task(rq, p); | 
|  | running = task_running(rq, p); | 
|  | on_rq = p->se.on_rq; | 
|  | ncsw = 0; | 
|  | if (!match_state || p->state == match_state) | 
|  | ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | /* | 
|  | * If it changed from the expected state, bail out now. | 
|  | */ | 
|  | if (unlikely(!ncsw)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Was it really running after all now that we | 
|  | * checked with the proper locks actually held? | 
|  | * | 
|  | * Oops. Go back and try again.. | 
|  | */ | 
|  | if (unlikely(running)) { | 
|  | cpu_relax(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's not enough that it's not actively running, | 
|  | * it must be off the runqueue _entirely_, and not | 
|  | * preempted! | 
|  | * | 
|  | * So if it wa still runnable (but just not actively | 
|  | * running right now), it's preempted, and we should | 
|  | * yield - it could be a while. | 
|  | */ | 
|  | if (unlikely(on_rq)) { | 
|  | schedule_timeout_uninterruptible(1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ahh, all good. It wasn't running, and it wasn't | 
|  | * runnable, which means that it will never become | 
|  | * running in the future either. We're all done! | 
|  | */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ncsw; | 
|  | } | 
|  |  | 
|  | /*** | 
|  | * kick_process - kick a running thread to enter/exit the kernel | 
|  | * @p: the to-be-kicked thread | 
|  | * | 
|  | * Cause a process which is running on another CPU to enter | 
|  | * kernel-mode, without any delay. (to get signals handled.) | 
|  | * | 
|  | * NOTE: this function doesnt have to take the runqueue lock, | 
|  | * because all it wants to ensure is that the remote task enters | 
|  | * the kernel. If the IPI races and the task has been migrated | 
|  | * to another CPU then no harm is done and the purpose has been | 
|  | * achieved as well. | 
|  | */ | 
|  | void kick_process(struct task_struct *p) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | preempt_disable(); | 
|  | cpu = task_cpu(p); | 
|  | if ((cpu != smp_processor_id()) && task_curr(p)) | 
|  | smp_send_reschedule(cpu); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a low guess at the load of a migration-source cpu weighted | 
|  | * according to the scheduling class and "nice" value. | 
|  | * | 
|  | * We want to under-estimate the load of migration sources, to | 
|  | * balance conservatively. | 
|  | */ | 
|  | static unsigned long source_load(int cpu, int type) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long total = weighted_cpuload(cpu); | 
|  |  | 
|  | if (type == 0 || !sched_feat(LB_BIAS)) | 
|  | return total; | 
|  |  | 
|  | return min(rq->cpu_load[type-1], total); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return a high guess at the load of a migration-target cpu weighted | 
|  | * according to the scheduling class and "nice" value. | 
|  | */ | 
|  | static unsigned long target_load(int cpu, int type) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long total = weighted_cpuload(cpu); | 
|  |  | 
|  | if (type == 0 || !sched_feat(LB_BIAS)) | 
|  | return total; | 
|  |  | 
|  | return max(rq->cpu_load[type-1], total); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_group finds and returns the least busy CPU group within the | 
|  | * domain. | 
|  | */ | 
|  | static struct sched_group * | 
|  | find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu) | 
|  | { | 
|  | struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups; | 
|  | unsigned long min_load = ULONG_MAX, this_load = 0; | 
|  | int load_idx = sd->forkexec_idx; | 
|  | int imbalance = 100 + (sd->imbalance_pct-100)/2; | 
|  |  | 
|  | do { | 
|  | unsigned long load, avg_load; | 
|  | int local_group; | 
|  | int i; | 
|  |  | 
|  | /* Skip over this group if it has no CPUs allowed */ | 
|  | if (!cpus_intersects(group->cpumask, p->cpus_allowed)) | 
|  | continue; | 
|  |  | 
|  | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  |  | 
|  | /* Tally up the load of all CPUs in the group */ | 
|  | avg_load = 0; | 
|  |  | 
|  | for_each_cpu_mask_nr(i, group->cpumask) { | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) | 
|  | load = source_load(i, load_idx); | 
|  | else | 
|  | load = target_load(i, load_idx); | 
|  |  | 
|  | avg_load += load; | 
|  | } | 
|  |  | 
|  | /* Adjust by relative CPU power of the group */ | 
|  | avg_load = sg_div_cpu_power(group, | 
|  | avg_load * SCHED_LOAD_SCALE); | 
|  |  | 
|  | if (local_group) { | 
|  | this_load = avg_load; | 
|  | this = group; | 
|  | } else if (avg_load < min_load) { | 
|  | min_load = avg_load; | 
|  | idlest = group; | 
|  | } | 
|  | } while (group = group->next, group != sd->groups); | 
|  |  | 
|  | if (!idlest || 100*this_load < imbalance*min_load) | 
|  | return NULL; | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_idlest_cpu - find the idlest cpu among the cpus in group. | 
|  | */ | 
|  | static int | 
|  | find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu, | 
|  | cpumask_t *tmp) | 
|  | { | 
|  | unsigned long load, min_load = ULONG_MAX; | 
|  | int idlest = -1; | 
|  | int i; | 
|  |  | 
|  | /* Traverse only the allowed CPUs */ | 
|  | cpus_and(*tmp, group->cpumask, p->cpus_allowed); | 
|  |  | 
|  | for_each_cpu_mask_nr(i, *tmp) { | 
|  | load = weighted_cpuload(i); | 
|  |  | 
|  | if (load < min_load || (load == min_load && i == this_cpu)) { | 
|  | min_load = load; | 
|  | idlest = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | return idlest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_balance_self: balance the current task (running on cpu) in domains | 
|  | * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and | 
|  | * SD_BALANCE_EXEC. | 
|  | * | 
|  | * Balance, ie. select the least loaded group. | 
|  | * | 
|  | * Returns the target CPU number, or the same CPU if no balancing is needed. | 
|  | * | 
|  | * preempt must be disabled. | 
|  | */ | 
|  | static int sched_balance_self(int cpu, int flag) | 
|  | { | 
|  | struct task_struct *t = current; | 
|  | struct sched_domain *tmp, *sd = NULL; | 
|  |  | 
|  | for_each_domain(cpu, tmp) { | 
|  | /* | 
|  | * If power savings logic is enabled for a domain, stop there. | 
|  | */ | 
|  | if (tmp->flags & SD_POWERSAVINGS_BALANCE) | 
|  | break; | 
|  | if (tmp->flags & flag) | 
|  | sd = tmp; | 
|  | } | 
|  |  | 
|  | if (sd) | 
|  | update_shares(sd); | 
|  |  | 
|  | while (sd) { | 
|  | cpumask_t span, tmpmask; | 
|  | struct sched_group *group; | 
|  | int new_cpu, weight; | 
|  |  | 
|  | if (!(sd->flags & flag)) { | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | span = sd->span; | 
|  | group = find_idlest_group(sd, t, cpu); | 
|  | if (!group) { | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | new_cpu = find_idlest_cpu(group, t, cpu, &tmpmask); | 
|  | if (new_cpu == -1 || new_cpu == cpu) { | 
|  | /* Now try balancing at a lower domain level of cpu */ | 
|  | sd = sd->child; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Now try balancing at a lower domain level of new_cpu */ | 
|  | cpu = new_cpu; | 
|  | sd = NULL; | 
|  | weight = cpus_weight(span); | 
|  | for_each_domain(cpu, tmp) { | 
|  | if (weight <= cpus_weight(tmp->span)) | 
|  | break; | 
|  | if (tmp->flags & flag) | 
|  | sd = tmp; | 
|  | } | 
|  | /* while loop will break here if sd == NULL */ | 
|  | } | 
|  |  | 
|  | return cpu; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /*** | 
|  | * try_to_wake_up - wake up a thread | 
|  | * @p: the to-be-woken-up thread | 
|  | * @state: the mask of task states that can be woken | 
|  | * @sync: do a synchronous wakeup? | 
|  | * | 
|  | * Put it on the run-queue if it's not already there. The "current" | 
|  | * thread is always on the run-queue (except when the actual | 
|  | * re-schedule is in progress), and as such you're allowed to do | 
|  | * the simpler "current->state = TASK_RUNNING" to mark yourself | 
|  | * runnable without the overhead of this. | 
|  | * | 
|  | * returns failure only if the task is already active. | 
|  | */ | 
|  | static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync) | 
|  | { | 
|  | int cpu, orig_cpu, this_cpu, success = 0; | 
|  | unsigned long flags; | 
|  | long old_state; | 
|  | struct rq *rq; | 
|  |  | 
|  | if (!sched_feat(SYNC_WAKEUPS)) | 
|  | sync = 0; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (sched_feat(LB_WAKEUP_UPDATE)) { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | this_cpu = raw_smp_processor_id(); | 
|  | cpu = task_cpu(p); | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (cpu_isset(cpu, sd->span)) { | 
|  | update_shares(sd); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | smp_wmb(); | 
|  | rq = task_rq_lock(p, &flags); | 
|  | old_state = p->state; | 
|  | if (!(old_state & state)) | 
|  | goto out; | 
|  |  | 
|  | if (p->se.on_rq) | 
|  | goto out_running; | 
|  |  | 
|  | cpu = task_cpu(p); | 
|  | orig_cpu = cpu; | 
|  | this_cpu = smp_processor_id(); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (unlikely(task_running(rq, p))) | 
|  | goto out_activate; | 
|  |  | 
|  | cpu = p->sched_class->select_task_rq(p, sync); | 
|  | if (cpu != orig_cpu) { | 
|  | set_task_cpu(p, cpu); | 
|  | task_rq_unlock(rq, &flags); | 
|  | /* might preempt at this point */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | old_state = p->state; | 
|  | if (!(old_state & state)) | 
|  | goto out; | 
|  | if (p->se.on_rq) | 
|  | goto out_running; | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  | cpu = task_cpu(p); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | schedstat_inc(rq, ttwu_count); | 
|  | if (cpu == this_cpu) | 
|  | schedstat_inc(rq, ttwu_local); | 
|  | else { | 
|  | struct sched_domain *sd; | 
|  | for_each_domain(this_cpu, sd) { | 
|  | if (cpu_isset(cpu, sd->span)) { | 
|  | schedstat_inc(sd, ttwu_wake_remote); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_SCHEDSTATS */ | 
|  |  | 
|  | out_activate: | 
|  | #endif /* CONFIG_SMP */ | 
|  | schedstat_inc(p, se.nr_wakeups); | 
|  | if (sync) | 
|  | schedstat_inc(p, se.nr_wakeups_sync); | 
|  | if (orig_cpu != cpu) | 
|  | schedstat_inc(p, se.nr_wakeups_migrate); | 
|  | if (cpu == this_cpu) | 
|  | schedstat_inc(p, se.nr_wakeups_local); | 
|  | else | 
|  | schedstat_inc(p, se.nr_wakeups_remote); | 
|  | update_rq_clock(rq); | 
|  | activate_task(rq, p, 1); | 
|  | success = 1; | 
|  |  | 
|  | out_running: | 
|  | trace_sched_wakeup(rq, p); | 
|  | check_preempt_curr(rq, p, sync); | 
|  |  | 
|  | p->state = TASK_RUNNING; | 
|  | #ifdef CONFIG_SMP | 
|  | if (p->sched_class->task_wake_up) | 
|  | p->sched_class->task_wake_up(rq, p); | 
|  | #endif | 
|  | out: | 
|  | current->se.last_wakeup = current->se.sum_exec_runtime; | 
|  |  | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | int wake_up_process(struct task_struct *p) | 
|  | { | 
|  | return try_to_wake_up(p, TASK_ALL, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(wake_up_process); | 
|  |  | 
|  | int wake_up_state(struct task_struct *p, unsigned int state) | 
|  | { | 
|  | return try_to_wake_up(p, state, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Perform scheduler related setup for a newly forked process p. | 
|  | * p is forked by current. | 
|  | * | 
|  | * __sched_fork() is basic setup used by init_idle() too: | 
|  | */ | 
|  | static void __sched_fork(struct task_struct *p) | 
|  | { | 
|  | p->se.exec_start		= 0; | 
|  | p->se.sum_exec_runtime		= 0; | 
|  | p->se.prev_sum_exec_runtime	= 0; | 
|  | p->se.last_wakeup		= 0; | 
|  | p->se.avg_overlap		= 0; | 
|  |  | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | p->se.wait_start		= 0; | 
|  | p->se.sum_sleep_runtime		= 0; | 
|  | p->se.sleep_start		= 0; | 
|  | p->se.block_start		= 0; | 
|  | p->se.sleep_max			= 0; | 
|  | p->se.block_max			= 0; | 
|  | p->se.exec_max			= 0; | 
|  | p->se.slice_max			= 0; | 
|  | p->se.wait_max			= 0; | 
|  | #endif | 
|  |  | 
|  | INIT_LIST_HEAD(&p->rt.run_list); | 
|  | p->se.on_rq = 0; | 
|  | INIT_LIST_HEAD(&p->se.group_node); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  | INIT_HLIST_HEAD(&p->preempt_notifiers); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We mark the process as running here, but have not actually | 
|  | * inserted it onto the runqueue yet. This guarantees that | 
|  | * nobody will actually run it, and a signal or other external | 
|  | * event cannot wake it up and insert it on the runqueue either. | 
|  | */ | 
|  | p->state = TASK_RUNNING; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fork()/clone()-time setup: | 
|  | */ | 
|  | void sched_fork(struct task_struct *p, int clone_flags) | 
|  | { | 
|  | int cpu = get_cpu(); | 
|  |  | 
|  | __sched_fork(p); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | cpu = sched_balance_self(cpu, SD_BALANCE_FORK); | 
|  | #endif | 
|  | set_task_cpu(p, cpu); | 
|  |  | 
|  | /* | 
|  | * Make sure we do not leak PI boosting priority to the child: | 
|  | */ | 
|  | p->prio = current->normal_prio; | 
|  | if (!rt_prio(p->prio)) | 
|  | p->sched_class = &fair_sched_class; | 
|  |  | 
|  | #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT) | 
|  | if (likely(sched_info_on())) | 
|  | memset(&p->sched_info, 0, sizeof(p->sched_info)); | 
|  | #endif | 
|  | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
|  | p->oncpu = 0; | 
|  | #endif | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* Want to start with kernel preemption disabled. */ | 
|  | task_thread_info(p)->preempt_count = 1; | 
|  | #endif | 
|  | put_cpu(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * wake_up_new_task - wake up a newly created task for the first time. | 
|  | * | 
|  | * This function will do some initial scheduler statistics housekeeping | 
|  | * that must be done for every newly created context, then puts the task | 
|  | * on the runqueue and wakes it. | 
|  | */ | 
|  | void wake_up_new_task(struct task_struct *p, unsigned long clone_flags) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | BUG_ON(p->state != TASK_RUNNING); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | p->prio = effective_prio(p); | 
|  |  | 
|  | if (!p->sched_class->task_new || !current->se.on_rq) { | 
|  | activate_task(rq, p, 0); | 
|  | } else { | 
|  | /* | 
|  | * Let the scheduling class do new task startup | 
|  | * management (if any): | 
|  | */ | 
|  | p->sched_class->task_new(rq, p); | 
|  | inc_nr_running(rq); | 
|  | } | 
|  | trace_sched_wakeup_new(rq, p); | 
|  | check_preempt_curr(rq, p, 0); | 
|  | #ifdef CONFIG_SMP | 
|  | if (p->sched_class->task_wake_up) | 
|  | p->sched_class->task_wake_up(rq, p); | 
|  | #endif | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  |  | 
|  | /** | 
|  | * preempt_notifier_register - tell me when current is being being preempted & rescheduled | 
|  | * @notifier: notifier struct to register | 
|  | */ | 
|  | void preempt_notifier_register(struct preempt_notifier *notifier) | 
|  | { | 
|  | hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_notifier_register); | 
|  |  | 
|  | /** | 
|  | * preempt_notifier_unregister - no longer interested in preemption notifications | 
|  | * @notifier: notifier struct to unregister | 
|  | * | 
|  | * This is safe to call from within a preemption notifier. | 
|  | */ | 
|  | void preempt_notifier_unregister(struct preempt_notifier *notifier) | 
|  | { | 
|  | hlist_del(¬ifier->link); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(preempt_notifier_unregister); | 
|  |  | 
|  | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|  | { | 
|  | struct preempt_notifier *notifier; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 
|  | notifier->ops->sched_in(notifier, raw_smp_processor_id()); | 
|  | } | 
|  |  | 
|  | static void | 
|  | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|  | struct task_struct *next) | 
|  | { | 
|  | struct preempt_notifier *notifier; | 
|  | struct hlist_node *node; | 
|  |  | 
|  | hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link) | 
|  | notifier->ops->sched_out(notifier, next); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_PREEMPT_NOTIFIERS */ | 
|  |  | 
|  | static void fire_sched_in_preempt_notifiers(struct task_struct *curr) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void | 
|  | fire_sched_out_preempt_notifiers(struct task_struct *curr, | 
|  | struct task_struct *next) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT_NOTIFIERS */ | 
|  |  | 
|  | /** | 
|  | * prepare_task_switch - prepare to switch tasks | 
|  | * @rq: the runqueue preparing to switch | 
|  | * @prev: the current task that is being switched out | 
|  | * @next: the task we are going to switch to. | 
|  | * | 
|  | * This is called with the rq lock held and interrupts off. It must | 
|  | * be paired with a subsequent finish_task_switch after the context | 
|  | * switch. | 
|  | * | 
|  | * prepare_task_switch sets up locking and calls architecture specific | 
|  | * hooks. | 
|  | */ | 
|  | static inline void | 
|  | prepare_task_switch(struct rq *rq, struct task_struct *prev, | 
|  | struct task_struct *next) | 
|  | { | 
|  | fire_sched_out_preempt_notifiers(prev, next); | 
|  | prepare_lock_switch(rq, next); | 
|  | prepare_arch_switch(next); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * finish_task_switch - clean up after a task-switch | 
|  | * @rq: runqueue associated with task-switch | 
|  | * @prev: the thread we just switched away from. | 
|  | * | 
|  | * finish_task_switch must be called after the context switch, paired | 
|  | * with a prepare_task_switch call before the context switch. | 
|  | * finish_task_switch will reconcile locking set up by prepare_task_switch, | 
|  | * and do any other architecture-specific cleanup actions. | 
|  | * | 
|  | * Note that we may have delayed dropping an mm in context_switch(). If | 
|  | * so, we finish that here outside of the runqueue lock. (Doing it | 
|  | * with the lock held can cause deadlocks; see schedule() for | 
|  | * details.) | 
|  | */ | 
|  | static void finish_task_switch(struct rq *rq, struct task_struct *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | struct mm_struct *mm = rq->prev_mm; | 
|  | long prev_state; | 
|  |  | 
|  | rq->prev_mm = NULL; | 
|  |  | 
|  | /* | 
|  | * A task struct has one reference for the use as "current". | 
|  | * If a task dies, then it sets TASK_DEAD in tsk->state and calls | 
|  | * schedule one last time. The schedule call will never return, and | 
|  | * the scheduled task must drop that reference. | 
|  | * The test for TASK_DEAD must occur while the runqueue locks are | 
|  | * still held, otherwise prev could be scheduled on another cpu, die | 
|  | * there before we look at prev->state, and then the reference would | 
|  | * be dropped twice. | 
|  | *		Manfred Spraul <manfred@colorfullife.com> | 
|  | */ | 
|  | prev_state = prev->state; | 
|  | finish_arch_switch(prev); | 
|  | finish_lock_switch(rq, prev); | 
|  | #ifdef CONFIG_SMP | 
|  | if (current->sched_class->post_schedule) | 
|  | current->sched_class->post_schedule(rq); | 
|  | #endif | 
|  |  | 
|  | fire_sched_in_preempt_notifiers(current); | 
|  | if (mm) | 
|  | mmdrop(mm); | 
|  | if (unlikely(prev_state == TASK_DEAD)) { | 
|  | /* | 
|  | * Remove function-return probe instances associated with this | 
|  | * task and put them back on the free list. | 
|  | */ | 
|  | kprobe_flush_task(prev); | 
|  | put_task_struct(prev); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * schedule_tail - first thing a freshly forked thread must call. | 
|  | * @prev: the thread we just switched away from. | 
|  | */ | 
|  | asmlinkage void schedule_tail(struct task_struct *prev) | 
|  | __releases(rq->lock) | 
|  | { | 
|  | struct rq *rq = this_rq(); | 
|  |  | 
|  | finish_task_switch(rq, prev); | 
|  | #ifdef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | /* In this case, finish_task_switch does not reenable preemption */ | 
|  | preempt_enable(); | 
|  | #endif | 
|  | if (current->set_child_tid) | 
|  | put_user(task_pid_vnr(current), current->set_child_tid); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * context_switch - switch to the new MM and the new | 
|  | * thread's register state. | 
|  | */ | 
|  | static inline void | 
|  | context_switch(struct rq *rq, struct task_struct *prev, | 
|  | struct task_struct *next) | 
|  | { | 
|  | struct mm_struct *mm, *oldmm; | 
|  |  | 
|  | prepare_task_switch(rq, prev, next); | 
|  | trace_sched_switch(rq, prev, next); | 
|  | mm = next->mm; | 
|  | oldmm = prev->active_mm; | 
|  | /* | 
|  | * For paravirt, this is coupled with an exit in switch_to to | 
|  | * combine the page table reload and the switch backend into | 
|  | * one hypercall. | 
|  | */ | 
|  | arch_enter_lazy_cpu_mode(); | 
|  |  | 
|  | if (unlikely(!mm)) { | 
|  | next->active_mm = oldmm; | 
|  | atomic_inc(&oldmm->mm_count); | 
|  | enter_lazy_tlb(oldmm, next); | 
|  | } else | 
|  | switch_mm(oldmm, mm, next); | 
|  |  | 
|  | if (unlikely(!prev->mm)) { | 
|  | prev->active_mm = NULL; | 
|  | rq->prev_mm = oldmm; | 
|  | } | 
|  | /* | 
|  | * Since the runqueue lock will be released by the next | 
|  | * task (which is an invalid locking op but in the case | 
|  | * of the scheduler it's an obvious special-case), so we | 
|  | * do an early lockdep release here: | 
|  | */ | 
|  | #ifndef __ARCH_WANT_UNLOCKED_CTXSW | 
|  | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
|  | #endif | 
|  |  | 
|  | /* Here we just switch the register state and the stack. */ | 
|  | switch_to(prev, next, prev); | 
|  |  | 
|  | barrier(); | 
|  | /* | 
|  | * this_rq must be evaluated again because prev may have moved | 
|  | * CPUs since it called schedule(), thus the 'rq' on its stack | 
|  | * frame will be invalid. | 
|  | */ | 
|  | finish_task_switch(this_rq(), prev); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * nr_running, nr_uninterruptible and nr_context_switches: | 
|  | * | 
|  | * externally visible scheduler statistics: current number of runnable | 
|  | * threads, current number of uninterruptible-sleeping threads, total | 
|  | * number of context switches performed since bootup. | 
|  | */ | 
|  | unsigned long nr_running(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_online_cpu(i) | 
|  | sum += cpu_rq(i)->nr_running; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_uninterruptible(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += cpu_rq(i)->nr_uninterruptible; | 
|  |  | 
|  | /* | 
|  | * Since we read the counters lockless, it might be slightly | 
|  | * inaccurate. Do not allow it to go below zero though: | 
|  | */ | 
|  | if (unlikely((long)sum < 0)) | 
|  | sum = 0; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long long nr_context_switches(void) | 
|  | { | 
|  | int i; | 
|  | unsigned long long sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += cpu_rq(i)->nr_switches; | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_iowait(void) | 
|  | { | 
|  | unsigned long i, sum = 0; | 
|  |  | 
|  | for_each_possible_cpu(i) | 
|  | sum += atomic_read(&cpu_rq(i)->nr_iowait); | 
|  |  | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | unsigned long nr_active(void) | 
|  | { | 
|  | unsigned long i, running = 0, uninterruptible = 0; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | running += cpu_rq(i)->nr_running; | 
|  | uninterruptible += cpu_rq(i)->nr_uninterruptible; | 
|  | } | 
|  |  | 
|  | if (unlikely((long)uninterruptible < 0)) | 
|  | uninterruptible = 0; | 
|  |  | 
|  | return running + uninterruptible; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update rq->cpu_load[] statistics. This function is usually called every | 
|  | * scheduler tick (TICK_NSEC). | 
|  | */ | 
|  | static void update_cpu_load(struct rq *this_rq) | 
|  | { | 
|  | unsigned long this_load = this_rq->load.weight; | 
|  | int i, scale; | 
|  |  | 
|  | this_rq->nr_load_updates++; | 
|  |  | 
|  | /* Update our load: */ | 
|  | for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) { | 
|  | unsigned long old_load, new_load; | 
|  |  | 
|  | /* scale is effectively 1 << i now, and >> i divides by scale */ | 
|  |  | 
|  | old_load = this_rq->cpu_load[i]; | 
|  | new_load = this_load; | 
|  | /* | 
|  | * Round up the averaging division if load is increasing. This | 
|  | * prevents us from getting stuck on 9 if the load is 10, for | 
|  | * example. | 
|  | */ | 
|  | if (new_load > old_load) | 
|  | new_load += scale-1; | 
|  | this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i; | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | /* | 
|  | * double_rq_lock - safely lock two runqueues | 
|  | * | 
|  | * Note this does not disable interrupts like task_rq_lock, | 
|  | * you need to do so manually before calling. | 
|  | */ | 
|  | static void double_rq_lock(struct rq *rq1, struct rq *rq2) | 
|  | __acquires(rq1->lock) | 
|  | __acquires(rq2->lock) | 
|  | { | 
|  | BUG_ON(!irqs_disabled()); | 
|  | if (rq1 == rq2) { | 
|  | spin_lock(&rq1->lock); | 
|  | __acquire(rq2->lock);	/* Fake it out ;) */ | 
|  | } else { | 
|  | if (rq1 < rq2) { | 
|  | spin_lock(&rq1->lock); | 
|  | spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING); | 
|  | } else { | 
|  | spin_lock(&rq2->lock); | 
|  | spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  | } | 
|  | update_rq_clock(rq1); | 
|  | update_rq_clock(rq2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_rq_unlock - safely unlock two runqueues | 
|  | * | 
|  | * Note this does not restore interrupts like task_rq_unlock, | 
|  | * you need to do so manually after calling. | 
|  | */ | 
|  | static void double_rq_unlock(struct rq *rq1, struct rq *rq2) | 
|  | __releases(rq1->lock) | 
|  | __releases(rq2->lock) | 
|  | { | 
|  | spin_unlock(&rq1->lock); | 
|  | if (rq1 != rq2) | 
|  | spin_unlock(&rq2->lock); | 
|  | else | 
|  | __release(rq2->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * double_lock_balance - lock the busiest runqueue, this_rq is locked already. | 
|  | */ | 
|  | static int double_lock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | __releases(this_rq->lock) | 
|  | __acquires(busiest->lock) | 
|  | __acquires(this_rq->lock) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | if (unlikely(!irqs_disabled())) { | 
|  | /* printk() doesn't work good under rq->lock */ | 
|  | spin_unlock(&this_rq->lock); | 
|  | BUG_ON(1); | 
|  | } | 
|  | if (unlikely(!spin_trylock(&busiest->lock))) { | 
|  | if (busiest < this_rq) { | 
|  | spin_unlock(&this_rq->lock); | 
|  | spin_lock(&busiest->lock); | 
|  | spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING); | 
|  | ret = 1; | 
|  | } else | 
|  | spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void double_unlock_balance(struct rq *this_rq, struct rq *busiest) | 
|  | __releases(busiest->lock) | 
|  | { | 
|  | spin_unlock(&busiest->lock); | 
|  | lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If dest_cpu is allowed for this process, migrate the task to it. | 
|  | * This is accomplished by forcing the cpu_allowed mask to only | 
|  | * allow dest_cpu, which will force the cpu onto dest_cpu. Then | 
|  | * the cpu_allowed mask is restored. | 
|  | */ | 
|  | static void sched_migrate_task(struct task_struct *p, int dest_cpu) | 
|  | { | 
|  | struct migration_req req; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (!cpu_isset(dest_cpu, p->cpus_allowed) | 
|  | || unlikely(!cpu_active(dest_cpu))) | 
|  | goto out; | 
|  |  | 
|  | trace_sched_migrate_task(rq, p, dest_cpu); | 
|  | /* force the process onto the specified CPU */ | 
|  | if (migrate_task(p, dest_cpu, &req)) { | 
|  | /* Need to wait for migration thread (might exit: take ref). */ | 
|  | struct task_struct *mt = rq->migration_thread; | 
|  |  | 
|  | get_task_struct(mt); | 
|  | task_rq_unlock(rq, &flags); | 
|  | wake_up_process(mt); | 
|  | put_task_struct(mt); | 
|  | wait_for_completion(&req.done); | 
|  |  | 
|  | return; | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sched_exec - execve() is a valuable balancing opportunity, because at | 
|  | * this point the task has the smallest effective memory and cache footprint. | 
|  | */ | 
|  | void sched_exec(void) | 
|  | { | 
|  | int new_cpu, this_cpu = get_cpu(); | 
|  | new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC); | 
|  | put_cpu(); | 
|  | if (new_cpu != this_cpu) | 
|  | sched_migrate_task(current, new_cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pull_task - move a task from a remote runqueue to the local runqueue. | 
|  | * Both runqueues must be locked. | 
|  | */ | 
|  | static void pull_task(struct rq *src_rq, struct task_struct *p, | 
|  | struct rq *this_rq, int this_cpu) | 
|  | { | 
|  | deactivate_task(src_rq, p, 0); | 
|  | set_task_cpu(p, this_cpu); | 
|  | activate_task(this_rq, p, 0); | 
|  | /* | 
|  | * Note that idle threads have a prio of MAX_PRIO, for this test | 
|  | * to be always true for them. | 
|  | */ | 
|  | check_preempt_curr(this_rq, p, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * can_migrate_task - may task p from runqueue rq be migrated to this_cpu? | 
|  | */ | 
|  | static | 
|  | int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned) | 
|  | { | 
|  | /* | 
|  | * We do not migrate tasks that are: | 
|  | * 1) running (obviously), or | 
|  | * 2) cannot be migrated to this CPU due to cpus_allowed, or | 
|  | * 3) are cache-hot on their current CPU. | 
|  | */ | 
|  | if (!cpu_isset(this_cpu, p->cpus_allowed)) { | 
|  | schedstat_inc(p, se.nr_failed_migrations_affine); | 
|  | return 0; | 
|  | } | 
|  | *all_pinned = 0; | 
|  |  | 
|  | if (task_running(rq, p)) { | 
|  | schedstat_inc(p, se.nr_failed_migrations_running); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Aggressive migration if: | 
|  | * 1) task is cache cold, or | 
|  | * 2) too many balance attempts have failed. | 
|  | */ | 
|  |  | 
|  | if (!task_hot(p, rq->clock, sd) || | 
|  | sd->nr_balance_failed > sd->cache_nice_tries) { | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (task_hot(p, rq->clock, sd)) { | 
|  | schedstat_inc(sd, lb_hot_gained[idle]); | 
|  | schedstat_inc(p, se.nr_forced_migrations); | 
|  | } | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (task_hot(p, rq->clock, sd)) { | 
|  | schedstat_inc(p, se.nr_failed_migrations_hot); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static unsigned long | 
|  | balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, struct sched_domain *sd, | 
|  | enum cpu_idle_type idle, int *all_pinned, | 
|  | int *this_best_prio, struct rq_iterator *iterator) | 
|  | { | 
|  | int loops = 0, pulled = 0, pinned = 0; | 
|  | struct task_struct *p; | 
|  | long rem_load_move = max_load_move; | 
|  |  | 
|  | if (max_load_move == 0) | 
|  | goto out; | 
|  |  | 
|  | pinned = 1; | 
|  |  | 
|  | /* | 
|  | * Start the load-balancing iterator: | 
|  | */ | 
|  | p = iterator->start(iterator->arg); | 
|  | next: | 
|  | if (!p || loops++ > sysctl_sched_nr_migrate) | 
|  | goto out; | 
|  |  | 
|  | if ((p->se.load.weight >> 1) > rem_load_move || | 
|  | !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | 
|  | p = iterator->next(iterator->arg); | 
|  | goto next; | 
|  | } | 
|  |  | 
|  | pull_task(busiest, p, this_rq, this_cpu); | 
|  | pulled++; | 
|  | rem_load_move -= p->se.load.weight; | 
|  |  | 
|  | /* | 
|  | * We only want to steal up to the prescribed amount of weighted load. | 
|  | */ | 
|  | if (rem_load_move > 0) { | 
|  | if (p->prio < *this_best_prio) | 
|  | *this_best_prio = p->prio; | 
|  | p = iterator->next(iterator->arg); | 
|  | goto next; | 
|  | } | 
|  | out: | 
|  | /* | 
|  | * Right now, this is one of only two places pull_task() is called, | 
|  | * so we can safely collect pull_task() stats here rather than | 
|  | * inside pull_task(). | 
|  | */ | 
|  | schedstat_add(sd, lb_gained[idle], pulled); | 
|  |  | 
|  | if (all_pinned) | 
|  | *all_pinned = pinned; | 
|  |  | 
|  | return max_load_move - rem_load_move; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move_tasks tries to move up to max_load_move weighted load from busiest to | 
|  | * this_rq, as part of a balancing operation within domain "sd". | 
|  | * Returns 1 if successful and 0 otherwise. | 
|  | * | 
|  | * Called with both runqueues locked. | 
|  | */ | 
|  | static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | unsigned long max_load_move, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *all_pinned) | 
|  | { | 
|  | const struct sched_class *class = sched_class_highest; | 
|  | unsigned long total_load_moved = 0; | 
|  | int this_best_prio = this_rq->curr->prio; | 
|  |  | 
|  | do { | 
|  | total_load_moved += | 
|  | class->load_balance(this_rq, this_cpu, busiest, | 
|  | max_load_move - total_load_moved, | 
|  | sd, idle, all_pinned, &this_best_prio); | 
|  | class = class->next; | 
|  |  | 
|  | if (idle == CPU_NEWLY_IDLE && this_rq->nr_running) | 
|  | break; | 
|  |  | 
|  | } while (class && max_load_move > total_load_moved); | 
|  |  | 
|  | return total_load_moved > 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | struct rq_iterator *iterator) | 
|  | { | 
|  | struct task_struct *p = iterator->start(iterator->arg); | 
|  | int pinned = 0; | 
|  |  | 
|  | while (p) { | 
|  | if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) { | 
|  | pull_task(busiest, p, this_rq, this_cpu); | 
|  | /* | 
|  | * Right now, this is only the second place pull_task() | 
|  | * is called, so we can safely collect pull_task() | 
|  | * stats here rather than inside pull_task(). | 
|  | */ | 
|  | schedstat_inc(sd, lb_gained[idle]); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | p = iterator->next(iterator->arg); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * move_one_task tries to move exactly one task from busiest to this_rq, as | 
|  | * part of active balancing operations within "domain". | 
|  | * Returns 1 if successful and 0 otherwise. | 
|  | * | 
|  | * Called with both runqueues locked. | 
|  | */ | 
|  | static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle) | 
|  | { | 
|  | const struct sched_class *class; | 
|  |  | 
|  | for (class = sched_class_highest; class; class = class->next) | 
|  | if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_group finds and returns the busiest CPU group within the | 
|  | * domain. It calculates and returns the amount of weighted load which | 
|  | * should be moved to restore balance via the imbalance parameter. | 
|  | */ | 
|  | static struct sched_group * | 
|  | find_busiest_group(struct sched_domain *sd, int this_cpu, | 
|  | unsigned long *imbalance, enum cpu_idle_type idle, | 
|  | int *sd_idle, const cpumask_t *cpus, int *balance) | 
|  | { | 
|  | struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups; | 
|  | unsigned long max_load, avg_load, total_load, this_load, total_pwr; | 
|  | unsigned long max_pull; | 
|  | unsigned long busiest_load_per_task, busiest_nr_running; | 
|  | unsigned long this_load_per_task, this_nr_running; | 
|  | int load_idx, group_imb = 0; | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | int power_savings_balance = 1; | 
|  | unsigned long leader_nr_running = 0, min_load_per_task = 0; | 
|  | unsigned long min_nr_running = ULONG_MAX; | 
|  | struct sched_group *group_min = NULL, *group_leader = NULL; | 
|  | #endif | 
|  |  | 
|  | max_load = this_load = total_load = total_pwr = 0; | 
|  | busiest_load_per_task = busiest_nr_running = 0; | 
|  | this_load_per_task = this_nr_running = 0; | 
|  |  | 
|  | if (idle == CPU_NOT_IDLE) | 
|  | load_idx = sd->busy_idx; | 
|  | else if (idle == CPU_NEWLY_IDLE) | 
|  | load_idx = sd->newidle_idx; | 
|  | else | 
|  | load_idx = sd->idle_idx; | 
|  |  | 
|  | do { | 
|  | unsigned long load, group_capacity, max_cpu_load, min_cpu_load; | 
|  | int local_group; | 
|  | int i; | 
|  | int __group_imb = 0; | 
|  | unsigned int balance_cpu = -1, first_idle_cpu = 0; | 
|  | unsigned long sum_nr_running, sum_weighted_load; | 
|  | unsigned long sum_avg_load_per_task; | 
|  | unsigned long avg_load_per_task; | 
|  |  | 
|  | local_group = cpu_isset(this_cpu, group->cpumask); | 
|  |  | 
|  | if (local_group) | 
|  | balance_cpu = first_cpu(group->cpumask); | 
|  |  | 
|  | /* Tally up the load of all CPUs in the group */ | 
|  | sum_weighted_load = sum_nr_running = avg_load = 0; | 
|  | sum_avg_load_per_task = avg_load_per_task = 0; | 
|  |  | 
|  | max_cpu_load = 0; | 
|  | min_cpu_load = ~0UL; | 
|  |  | 
|  | for_each_cpu_mask_nr(i, group->cpumask) { | 
|  | struct rq *rq; | 
|  |  | 
|  | if (!cpu_isset(i, *cpus)) | 
|  | continue; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  |  | 
|  | if (*sd_idle && rq->nr_running) | 
|  | *sd_idle = 0; | 
|  |  | 
|  | /* Bias balancing toward cpus of our domain */ | 
|  | if (local_group) { | 
|  | if (idle_cpu(i) && !first_idle_cpu) { | 
|  | first_idle_cpu = 1; | 
|  | balance_cpu = i; | 
|  | } | 
|  |  | 
|  | load = target_load(i, load_idx); | 
|  | } else { | 
|  | load = source_load(i, load_idx); | 
|  | if (load > max_cpu_load) | 
|  | max_cpu_load = load; | 
|  | if (min_cpu_load > load) | 
|  | min_cpu_load = load; | 
|  | } | 
|  |  | 
|  | avg_load += load; | 
|  | sum_nr_running += rq->nr_running; | 
|  | sum_weighted_load += weighted_cpuload(i); | 
|  |  | 
|  | sum_avg_load_per_task += cpu_avg_load_per_task(i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First idle cpu or the first cpu(busiest) in this sched group | 
|  | * is eligible for doing load balancing at this and above | 
|  | * domains. In the newly idle case, we will allow all the cpu's | 
|  | * to do the newly idle load balance. | 
|  | */ | 
|  | if (idle != CPU_NEWLY_IDLE && local_group && | 
|  | balance_cpu != this_cpu && balance) { | 
|  | *balance = 0; | 
|  | goto ret; | 
|  | } | 
|  |  | 
|  | total_load += avg_load; | 
|  | total_pwr += group->__cpu_power; | 
|  |  | 
|  | /* Adjust by relative CPU power of the group */ | 
|  | avg_load = sg_div_cpu_power(group, | 
|  | avg_load * SCHED_LOAD_SCALE); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Consider the group unbalanced when the imbalance is larger | 
|  | * than the average weight of two tasks. | 
|  | * | 
|  | * APZ: with cgroup the avg task weight can vary wildly and | 
|  | *      might not be a suitable number - should we keep a | 
|  | *      normalized nr_running number somewhere that negates | 
|  | *      the hierarchy? | 
|  | */ | 
|  | avg_load_per_task = sg_div_cpu_power(group, | 
|  | sum_avg_load_per_task * SCHED_LOAD_SCALE); | 
|  |  | 
|  | if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task) | 
|  | __group_imb = 1; | 
|  |  | 
|  | group_capacity = group->__cpu_power / SCHED_LOAD_SCALE; | 
|  |  | 
|  | if (local_group) { | 
|  | this_load = avg_load; | 
|  | this = group; | 
|  | this_nr_running = sum_nr_running; | 
|  | this_load_per_task = sum_weighted_load; | 
|  | } else if (avg_load > max_load && | 
|  | (sum_nr_running > group_capacity || __group_imb)) { | 
|  | max_load = avg_load; | 
|  | busiest = group; | 
|  | busiest_nr_running = sum_nr_running; | 
|  | busiest_load_per_task = sum_weighted_load; | 
|  | group_imb = __group_imb; | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | /* | 
|  | * Busy processors will not participate in power savings | 
|  | * balance. | 
|  | */ | 
|  | if (idle == CPU_NOT_IDLE || | 
|  | !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
|  | goto group_next; | 
|  |  | 
|  | /* | 
|  | * If the local group is idle or completely loaded | 
|  | * no need to do power savings balance at this domain | 
|  | */ | 
|  | if (local_group && (this_nr_running >= group_capacity || | 
|  | !this_nr_running)) | 
|  | power_savings_balance = 0; | 
|  |  | 
|  | /* | 
|  | * If a group is already running at full capacity or idle, | 
|  | * don't include that group in power savings calculations | 
|  | */ | 
|  | if (!power_savings_balance || sum_nr_running >= group_capacity | 
|  | || !sum_nr_running) | 
|  | goto group_next; | 
|  |  | 
|  | /* | 
|  | * Calculate the group which has the least non-idle load. | 
|  | * This is the group from where we need to pick up the load | 
|  | * for saving power | 
|  | */ | 
|  | if ((sum_nr_running < min_nr_running) || | 
|  | (sum_nr_running == min_nr_running && | 
|  | first_cpu(group->cpumask) < | 
|  | first_cpu(group_min->cpumask))) { | 
|  | group_min = group; | 
|  | min_nr_running = sum_nr_running; | 
|  | min_load_per_task = sum_weighted_load / | 
|  | sum_nr_running; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the group which is almost near its | 
|  | * capacity but still has some space to pick up some load | 
|  | * from other group and save more power | 
|  | */ | 
|  | if (sum_nr_running <= group_capacity - 1) { | 
|  | if (sum_nr_running > leader_nr_running || | 
|  | (sum_nr_running == leader_nr_running && | 
|  | first_cpu(group->cpumask) > | 
|  | first_cpu(group_leader->cpumask))) { | 
|  | group_leader = group; | 
|  | leader_nr_running = sum_nr_running; | 
|  | } | 
|  | } | 
|  | group_next: | 
|  | #endif | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  |  | 
|  | if (!busiest || this_load >= max_load || busiest_nr_running == 0) | 
|  | goto out_balanced; | 
|  |  | 
|  | avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; | 
|  |  | 
|  | if (this_load >= avg_load || | 
|  | 100*max_load <= sd->imbalance_pct*this_load) | 
|  | goto out_balanced; | 
|  |  | 
|  | busiest_load_per_task /= busiest_nr_running; | 
|  | if (group_imb) | 
|  | busiest_load_per_task = min(busiest_load_per_task, avg_load); | 
|  |  | 
|  | /* | 
|  | * We're trying to get all the cpus to the average_load, so we don't | 
|  | * want to push ourselves above the average load, nor do we wish to | 
|  | * reduce the max loaded cpu below the average load, as either of these | 
|  | * actions would just result in more rebalancing later, and ping-pong | 
|  | * tasks around. Thus we look for the minimum possible imbalance. | 
|  | * Negative imbalances (*we* are more loaded than anyone else) will | 
|  | * be counted as no imbalance for these purposes -- we can't fix that | 
|  | * by pulling tasks to us. Be careful of negative numbers as they'll | 
|  | * appear as very large values with unsigned longs. | 
|  | */ | 
|  | if (max_load <= busiest_load_per_task) | 
|  | goto out_balanced; | 
|  |  | 
|  | /* | 
|  | * In the presence of smp nice balancing, certain scenarios can have | 
|  | * max load less than avg load(as we skip the groups at or below | 
|  | * its cpu_power, while calculating max_load..) | 
|  | */ | 
|  | if (max_load < avg_load) { | 
|  | *imbalance = 0; | 
|  | goto small_imbalance; | 
|  | } | 
|  |  | 
|  | /* Don't want to pull so many tasks that a group would go idle */ | 
|  | max_pull = min(max_load - avg_load, max_load - busiest_load_per_task); | 
|  |  | 
|  | /* How much load to actually move to equalise the imbalance */ | 
|  | *imbalance = min(max_pull * busiest->__cpu_power, | 
|  | (avg_load - this_load) * this->__cpu_power) | 
|  | / SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* | 
|  | * if *imbalance is less than the average load per runnable task | 
|  | * there is no gaurantee that any tasks will be moved so we'll have | 
|  | * a think about bumping its value to force at least one task to be | 
|  | * moved | 
|  | */ | 
|  | if (*imbalance < busiest_load_per_task) { | 
|  | unsigned long tmp, pwr_now, pwr_move; | 
|  | unsigned int imbn; | 
|  |  | 
|  | small_imbalance: | 
|  | pwr_move = pwr_now = 0; | 
|  | imbn = 2; | 
|  | if (this_nr_running) { | 
|  | this_load_per_task /= this_nr_running; | 
|  | if (busiest_load_per_task > this_load_per_task) | 
|  | imbn = 1; | 
|  | } else | 
|  | this_load_per_task = cpu_avg_load_per_task(this_cpu); | 
|  |  | 
|  | if (max_load - this_load + busiest_load_per_task >= | 
|  | busiest_load_per_task * imbn) { | 
|  | *imbalance = busiest_load_per_task; | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * OK, we don't have enough imbalance to justify moving tasks, | 
|  | * however we may be able to increase total CPU power used by | 
|  | * moving them. | 
|  | */ | 
|  |  | 
|  | pwr_now += busiest->__cpu_power * | 
|  | min(busiest_load_per_task, max_load); | 
|  | pwr_now += this->__cpu_power * | 
|  | min(this_load_per_task, this_load); | 
|  | pwr_now /= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Amount of load we'd subtract */ | 
|  | tmp = sg_div_cpu_power(busiest, | 
|  | busiest_load_per_task * SCHED_LOAD_SCALE); | 
|  | if (max_load > tmp) | 
|  | pwr_move += busiest->__cpu_power * | 
|  | min(busiest_load_per_task, max_load - tmp); | 
|  |  | 
|  | /* Amount of load we'd add */ | 
|  | if (max_load * busiest->__cpu_power < | 
|  | busiest_load_per_task * SCHED_LOAD_SCALE) | 
|  | tmp = sg_div_cpu_power(this, | 
|  | max_load * busiest->__cpu_power); | 
|  | else | 
|  | tmp = sg_div_cpu_power(this, | 
|  | busiest_load_per_task * SCHED_LOAD_SCALE); | 
|  | pwr_move += this->__cpu_power * | 
|  | min(this_load_per_task, this_load + tmp); | 
|  | pwr_move /= SCHED_LOAD_SCALE; | 
|  |  | 
|  | /* Move if we gain throughput */ | 
|  | if (pwr_move > pwr_now) | 
|  | *imbalance = busiest_load_per_task; | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  |  | 
|  | out_balanced: | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) | 
|  | goto ret; | 
|  |  | 
|  | if (this == group_leader && group_leader != group_min) { | 
|  | *imbalance = min_load_per_task; | 
|  | return group_min; | 
|  | } | 
|  | #endif | 
|  | ret: | 
|  | *imbalance = 0; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find_busiest_queue - find the busiest runqueue among the cpus in group. | 
|  | */ | 
|  | static struct rq * | 
|  | find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle, | 
|  | unsigned long imbalance, const cpumask_t *cpus) | 
|  | { | 
|  | struct rq *busiest = NULL, *rq; | 
|  | unsigned long max_load = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_cpu_mask_nr(i, group->cpumask) { | 
|  | unsigned long wl; | 
|  |  | 
|  | if (!cpu_isset(i, *cpus)) | 
|  | continue; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | wl = weighted_cpuload(i); | 
|  |  | 
|  | if (rq->nr_running == 1 && wl > imbalance) | 
|  | continue; | 
|  |  | 
|  | if (wl > max_load) { | 
|  | max_load = wl; | 
|  | busiest = rq; | 
|  | } | 
|  | } | 
|  |  | 
|  | return busiest; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but | 
|  | * so long as it is large enough. | 
|  | */ | 
|  | #define MAX_PINNED_INTERVAL	512 | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | */ | 
|  | static int load_balance(int this_cpu, struct rq *this_rq, | 
|  | struct sched_domain *sd, enum cpu_idle_type idle, | 
|  | int *balance, cpumask_t *cpus) | 
|  | { | 
|  | int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0; | 
|  | struct sched_group *group; | 
|  | unsigned long imbalance; | 
|  | struct rq *busiest; | 
|  | unsigned long flags; | 
|  |  | 
|  | cpus_setall(*cpus); | 
|  |  | 
|  | /* | 
|  | * When power savings policy is enabled for the parent domain, idle | 
|  | * sibling can pick up load irrespective of busy siblings. In this case, | 
|  | * let the state of idle sibling percolate up as CPU_IDLE, instead of | 
|  | * portraying it as CPU_NOT_IDLE. | 
|  | */ | 
|  | if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
|  | sd_idle = 1; | 
|  |  | 
|  | schedstat_inc(sd, lb_count[idle]); | 
|  |  | 
|  | redo: | 
|  | update_shares(sd); | 
|  | group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle, | 
|  | cpus, balance); | 
|  |  | 
|  | if (*balance == 0) | 
|  | goto out_balanced; | 
|  |  | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_nobusyg[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(group, idle, imbalance, cpus); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd, lb_nobusyq[idle]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | BUG_ON(busiest == this_rq); | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[idle], imbalance); | 
|  |  | 
|  | ld_moved = 0; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* | 
|  | * Attempt to move tasks. If find_busiest_group has found | 
|  | * an imbalance but busiest->nr_running <= 1, the group is | 
|  | * still unbalanced. ld_moved simply stays zero, so it is | 
|  | * correctly treated as an imbalance. | 
|  | */ | 
|  | local_irq_save(flags); | 
|  | double_rq_lock(this_rq, busiest); | 
|  | ld_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | imbalance, sd, idle, &all_pinned); | 
|  | double_rq_unlock(this_rq, busiest); | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | /* | 
|  | * some other cpu did the load balance for us. | 
|  | */ | 
|  | if (ld_moved && this_cpu != smp_processor_id()) | 
|  | resched_cpu(this_cpu); | 
|  |  | 
|  | /* All tasks on this runqueue were pinned by CPU affinity */ | 
|  | if (unlikely(all_pinned)) { | 
|  | cpu_clear(cpu_of(busiest), *cpus); | 
|  | if (!cpus_empty(*cpus)) | 
|  | goto redo; | 
|  | goto out_balanced; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ld_moved) { | 
|  | schedstat_inc(sd, lb_failed[idle]); | 
|  | sd->nr_balance_failed++; | 
|  |  | 
|  | if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) { | 
|  |  | 
|  | spin_lock_irqsave(&busiest->lock, flags); | 
|  |  | 
|  | /* don't kick the migration_thread, if the curr | 
|  | * task on busiest cpu can't be moved to this_cpu | 
|  | */ | 
|  | if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) { | 
|  | spin_unlock_irqrestore(&busiest->lock, flags); | 
|  | all_pinned = 1; | 
|  | goto out_one_pinned; | 
|  | } | 
|  |  | 
|  | if (!busiest->active_balance) { | 
|  | busiest->active_balance = 1; | 
|  | busiest->push_cpu = this_cpu; | 
|  | active_balance = 1; | 
|  | } | 
|  | spin_unlock_irqrestore(&busiest->lock, flags); | 
|  | if (active_balance) | 
|  | wake_up_process(busiest->migration_thread); | 
|  |  | 
|  | /* | 
|  | * We've kicked active balancing, reset the failure | 
|  | * counter. | 
|  | */ | 
|  | sd->nr_balance_failed = sd->cache_nice_tries+1; | 
|  | } | 
|  | } else | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | if (likely(!active_balance)) { | 
|  | /* We were unbalanced, so reset the balancing interval */ | 
|  | sd->balance_interval = sd->min_interval; | 
|  | } else { | 
|  | /* | 
|  | * If we've begun active balancing, start to back off. This | 
|  | * case may not be covered by the all_pinned logic if there | 
|  | * is only 1 task on the busy runqueue (because we don't call | 
|  | * move_tasks). | 
|  | */ | 
|  | if (sd->balance_interval < sd->max_interval) | 
|  | sd->balance_interval *= 2; | 
|  | } | 
|  |  | 
|  | if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
|  | ld_moved = -1; | 
|  |  | 
|  | goto out; | 
|  |  | 
|  | out_balanced: | 
|  | schedstat_inc(sd, lb_balanced[idle]); | 
|  |  | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | out_one_pinned: | 
|  | /* tune up the balancing interval */ | 
|  | if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) || | 
|  | (sd->balance_interval < sd->max_interval)) | 
|  | sd->balance_interval *= 2; | 
|  |  | 
|  | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
|  | ld_moved = -1; | 
|  | else | 
|  | ld_moved = 0; | 
|  | out: | 
|  | if (ld_moved) | 
|  | update_shares(sd); | 
|  | return ld_moved; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check this_cpu to ensure it is balanced within domain. Attempt to move | 
|  | * tasks if there is an imbalance. | 
|  | * | 
|  | * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE). | 
|  | * this_rq is locked. | 
|  | */ | 
|  | static int | 
|  | load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd, | 
|  | cpumask_t *cpus) | 
|  | { | 
|  | struct sched_group *group; | 
|  | struct rq *busiest = NULL; | 
|  | unsigned long imbalance; | 
|  | int ld_moved = 0; | 
|  | int sd_idle = 0; | 
|  | int all_pinned = 0; | 
|  |  | 
|  | cpus_setall(*cpus); | 
|  |  | 
|  | /* | 
|  | * When power savings policy is enabled for the parent domain, idle | 
|  | * sibling can pick up load irrespective of busy siblings. In this case, | 
|  | * let the state of idle sibling percolate up as IDLE, instead of | 
|  | * portraying it as CPU_NOT_IDLE. | 
|  | */ | 
|  | if (sd->flags & SD_SHARE_CPUPOWER && | 
|  | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
|  | sd_idle = 1; | 
|  |  | 
|  | schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]); | 
|  | redo: | 
|  | update_shares_locked(this_rq, sd); | 
|  | group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE, | 
|  | &sd_idle, cpus, NULL); | 
|  | if (!group) { | 
|  | schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus); | 
|  | if (!busiest) { | 
|  | schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]); | 
|  | goto out_balanced; | 
|  | } | 
|  |  | 
|  | BUG_ON(busiest == this_rq); | 
|  |  | 
|  | schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance); | 
|  |  | 
|  | ld_moved = 0; | 
|  | if (busiest->nr_running > 1) { | 
|  | /* Attempt to move tasks */ | 
|  | double_lock_balance(this_rq, busiest); | 
|  | /* this_rq->clock is already updated */ | 
|  | update_rq_clock(busiest); | 
|  | ld_moved = move_tasks(this_rq, this_cpu, busiest, | 
|  | imbalance, sd, CPU_NEWLY_IDLE, | 
|  | &all_pinned); | 
|  | double_unlock_balance(this_rq, busiest); | 
|  |  | 
|  | if (unlikely(all_pinned)) { | 
|  | cpu_clear(cpu_of(busiest), *cpus); | 
|  | if (!cpus_empty(*cpus)) | 
|  | goto redo; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ld_moved) { | 
|  | schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]); | 
|  | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
|  | return -1; | 
|  | } else | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | update_shares_locked(this_rq, sd); | 
|  | return ld_moved; | 
|  |  | 
|  | out_balanced: | 
|  | schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]); | 
|  | if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && | 
|  | !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE)) | 
|  | return -1; | 
|  | sd->nr_balance_failed = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * idle_balance is called by schedule() if this_cpu is about to become | 
|  | * idle. Attempts to pull tasks from other CPUs. | 
|  | */ | 
|  | static void idle_balance(int this_cpu, struct rq *this_rq) | 
|  | { | 
|  | struct sched_domain *sd; | 
|  | int pulled_task = -1; | 
|  | unsigned long next_balance = jiffies + HZ; | 
|  | cpumask_t tmpmask; | 
|  |  | 
|  | for_each_domain(this_cpu, sd) { | 
|  | unsigned long interval; | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | if (sd->flags & SD_BALANCE_NEWIDLE) | 
|  | /* If we've pulled tasks over stop searching: */ | 
|  | pulled_task = load_balance_newidle(this_cpu, this_rq, | 
|  | sd, &tmpmask); | 
|  |  | 
|  | interval = msecs_to_jiffies(sd->balance_interval); | 
|  | if (time_after(next_balance, sd->last_balance + interval)) | 
|  | next_balance = sd->last_balance + interval; | 
|  | if (pulled_task) | 
|  | break; | 
|  | } | 
|  | if (pulled_task || time_after(jiffies, this_rq->next_balance)) { | 
|  | /* | 
|  | * We are going idle. next_balance may be set based on | 
|  | * a busy processor. So reset next_balance. | 
|  | */ | 
|  | this_rq->next_balance = next_balance; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * active_load_balance is run by migration threads. It pushes running tasks | 
|  | * off the busiest CPU onto idle CPUs. It requires at least 1 task to be | 
|  | * running on each physical CPU where possible, and avoids physical / | 
|  | * logical imbalances. | 
|  | * | 
|  | * Called with busiest_rq locked. | 
|  | */ | 
|  | static void active_load_balance(struct rq *busiest_rq, int busiest_cpu) | 
|  | { | 
|  | int target_cpu = busiest_rq->push_cpu; | 
|  | struct sched_domain *sd; | 
|  | struct rq *target_rq; | 
|  |  | 
|  | /* Is there any task to move? */ | 
|  | if (busiest_rq->nr_running <= 1) | 
|  | return; | 
|  |  | 
|  | target_rq = cpu_rq(target_cpu); | 
|  |  | 
|  | /* | 
|  | * This condition is "impossible", if it occurs | 
|  | * we need to fix it. Originally reported by | 
|  | * Bjorn Helgaas on a 128-cpu setup. | 
|  | */ | 
|  | BUG_ON(busiest_rq == target_rq); | 
|  |  | 
|  | /* move a task from busiest_rq to target_rq */ | 
|  | double_lock_balance(busiest_rq, target_rq); | 
|  | update_rq_clock(busiest_rq); | 
|  | update_rq_clock(target_rq); | 
|  |  | 
|  | /* Search for an sd spanning us and the target CPU. */ | 
|  | for_each_domain(target_cpu, sd) { | 
|  | if ((sd->flags & SD_LOAD_BALANCE) && | 
|  | cpu_isset(busiest_cpu, sd->span)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (likely(sd)) { | 
|  | schedstat_inc(sd, alb_count); | 
|  |  | 
|  | if (move_one_task(target_rq, target_cpu, busiest_rq, | 
|  | sd, CPU_IDLE)) | 
|  | schedstat_inc(sd, alb_pushed); | 
|  | else | 
|  | schedstat_inc(sd, alb_failed); | 
|  | } | 
|  | double_unlock_balance(busiest_rq, target_rq); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | static struct { | 
|  | atomic_t load_balancer; | 
|  | cpumask_t cpu_mask; | 
|  | } nohz ____cacheline_aligned = { | 
|  | .load_balancer = ATOMIC_INIT(-1), | 
|  | .cpu_mask = CPU_MASK_NONE, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * This routine will try to nominate the ilb (idle load balancing) | 
|  | * owner among the cpus whose ticks are stopped. ilb owner will do the idle | 
|  | * load balancing on behalf of all those cpus. If all the cpus in the system | 
|  | * go into this tickless mode, then there will be no ilb owner (as there is | 
|  | * no need for one) and all the cpus will sleep till the next wakeup event | 
|  | * arrives... | 
|  | * | 
|  | * For the ilb owner, tick is not stopped. And this tick will be used | 
|  | * for idle load balancing. ilb owner will still be part of | 
|  | * nohz.cpu_mask.. | 
|  | * | 
|  | * While stopping the tick, this cpu will become the ilb owner if there | 
|  | * is no other owner. And will be the owner till that cpu becomes busy | 
|  | * or if all cpus in the system stop their ticks at which point | 
|  | * there is no need for ilb owner. | 
|  | * | 
|  | * When the ilb owner becomes busy, it nominates another owner, during the | 
|  | * next busy scheduler_tick() | 
|  | */ | 
|  | int select_nohz_load_balancer(int stop_tick) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  |  | 
|  | if (stop_tick) { | 
|  | cpu_set(cpu, nohz.cpu_mask); | 
|  | cpu_rq(cpu)->in_nohz_recently = 1; | 
|  |  | 
|  | /* | 
|  | * If we are going offline and still the leader, give up! | 
|  | */ | 
|  | if (!cpu_active(cpu) && | 
|  | atomic_read(&nohz.load_balancer) == cpu) { | 
|  | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 
|  | BUG(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* time for ilb owner also to sleep */ | 
|  | if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | 
|  | if (atomic_read(&nohz.load_balancer) == cpu) | 
|  | atomic_set(&nohz.load_balancer, -1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (atomic_read(&nohz.load_balancer) == -1) { | 
|  | /* make me the ilb owner */ | 
|  | if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1) | 
|  | return 1; | 
|  | } else if (atomic_read(&nohz.load_balancer) == cpu) | 
|  | return 1; | 
|  | } else { | 
|  | if (!cpu_isset(cpu, nohz.cpu_mask)) | 
|  | return 0; | 
|  |  | 
|  | cpu_clear(cpu, nohz.cpu_mask); | 
|  |  | 
|  | if (atomic_read(&nohz.load_balancer) == cpu) | 
|  | if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu) | 
|  | BUG(); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_SPINLOCK(balancing); | 
|  |  | 
|  | /* | 
|  | * It checks each scheduling domain to see if it is due to be balanced, | 
|  | * and initiates a balancing operation if so. | 
|  | * | 
|  | * Balancing parameters are set up in arch_init_sched_domains. | 
|  | */ | 
|  | static void rebalance_domains(int cpu, enum cpu_idle_type idle) | 
|  | { | 
|  | int balance = 1; | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long interval; | 
|  | struct sched_domain *sd; | 
|  | /* Earliest time when we have to do rebalance again */ | 
|  | unsigned long next_balance = jiffies + 60*HZ; | 
|  | int update_next_balance = 0; | 
|  | int need_serialize; | 
|  | cpumask_t tmp; | 
|  |  | 
|  | for_each_domain(cpu, sd) { | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) | 
|  | continue; | 
|  |  | 
|  | interval = sd->balance_interval; | 
|  | if (idle != CPU_IDLE) | 
|  | interval *= sd->busy_factor; | 
|  |  | 
|  | /* scale ms to jiffies */ | 
|  | interval = msecs_to_jiffies(interval); | 
|  | if (unlikely(!interval)) | 
|  | interval = 1; | 
|  | if (interval > HZ*NR_CPUS/10) | 
|  | interval = HZ*NR_CPUS/10; | 
|  |  | 
|  | need_serialize = sd->flags & SD_SERIALIZE; | 
|  |  | 
|  | if (need_serialize) { | 
|  | if (!spin_trylock(&balancing)) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (time_after_eq(jiffies, sd->last_balance + interval)) { | 
|  | if (load_balance(cpu, rq, sd, idle, &balance, &tmp)) { | 
|  | /* | 
|  | * We've pulled tasks over so either we're no | 
|  | * longer idle, or one of our SMT siblings is | 
|  | * not idle. | 
|  | */ | 
|  | idle = CPU_NOT_IDLE; | 
|  | } | 
|  | sd->last_balance = jiffies; | 
|  | } | 
|  | if (need_serialize) | 
|  | spin_unlock(&balancing); | 
|  | out: | 
|  | if (time_after(next_balance, sd->last_balance + interval)) { | 
|  | next_balance = sd->last_balance + interval; | 
|  | update_next_balance = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop the load balance at this level. There is another | 
|  | * CPU in our sched group which is doing load balancing more | 
|  | * actively. | 
|  | */ | 
|  | if (!balance) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * next_balance will be updated only when there is a need. | 
|  | * When the cpu is attached to null domain for ex, it will not be | 
|  | * updated. | 
|  | */ | 
|  | if (likely(update_next_balance)) | 
|  | rq->next_balance = next_balance; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * run_rebalance_domains is triggered when needed from the scheduler tick. | 
|  | * In CONFIG_NO_HZ case, the idle load balance owner will do the | 
|  | * rebalancing for all the cpus for whom scheduler ticks are stopped. | 
|  | */ | 
|  | static void run_rebalance_domains(struct softirq_action *h) | 
|  | { | 
|  | int this_cpu = smp_processor_id(); | 
|  | struct rq *this_rq = cpu_rq(this_cpu); | 
|  | enum cpu_idle_type idle = this_rq->idle_at_tick ? | 
|  | CPU_IDLE : CPU_NOT_IDLE; | 
|  |  | 
|  | rebalance_domains(this_cpu, idle); | 
|  |  | 
|  | #ifdef CONFIG_NO_HZ | 
|  | /* | 
|  | * If this cpu is the owner for idle load balancing, then do the | 
|  | * balancing on behalf of the other idle cpus whose ticks are | 
|  | * stopped. | 
|  | */ | 
|  | if (this_rq->idle_at_tick && | 
|  | atomic_read(&nohz.load_balancer) == this_cpu) { | 
|  | cpumask_t cpus = nohz.cpu_mask; | 
|  | struct rq *rq; | 
|  | int balance_cpu; | 
|  |  | 
|  | cpu_clear(this_cpu, cpus); | 
|  | for_each_cpu_mask_nr(balance_cpu, cpus) { | 
|  | /* | 
|  | * If this cpu gets work to do, stop the load balancing | 
|  | * work being done for other cpus. Next load | 
|  | * balancing owner will pick it up. | 
|  | */ | 
|  | if (need_resched()) | 
|  | break; | 
|  |  | 
|  | rebalance_domains(balance_cpu, CPU_IDLE); | 
|  |  | 
|  | rq = cpu_rq(balance_cpu); | 
|  | if (time_after(this_rq->next_balance, rq->next_balance)) | 
|  | this_rq->next_balance = rq->next_balance; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing. | 
|  | * | 
|  | * In case of CONFIG_NO_HZ, this is the place where we nominate a new | 
|  | * idle load balancing owner or decide to stop the periodic load balancing, | 
|  | * if the whole system is idle. | 
|  | */ | 
|  | static inline void trigger_load_balance(struct rq *rq, int cpu) | 
|  | { | 
|  | #ifdef CONFIG_NO_HZ | 
|  | /* | 
|  | * If we were in the nohz mode recently and busy at the current | 
|  | * scheduler tick, then check if we need to nominate new idle | 
|  | * load balancer. | 
|  | */ | 
|  | if (rq->in_nohz_recently && !rq->idle_at_tick) { | 
|  | rq->in_nohz_recently = 0; | 
|  |  | 
|  | if (atomic_read(&nohz.load_balancer) == cpu) { | 
|  | cpu_clear(cpu, nohz.cpu_mask); | 
|  | atomic_set(&nohz.load_balancer, -1); | 
|  | } | 
|  |  | 
|  | if (atomic_read(&nohz.load_balancer) == -1) { | 
|  | /* | 
|  | * simple selection for now: Nominate the | 
|  | * first cpu in the nohz list to be the next | 
|  | * ilb owner. | 
|  | * | 
|  | * TBD: Traverse the sched domains and nominate | 
|  | * the nearest cpu in the nohz.cpu_mask. | 
|  | */ | 
|  | int ilb = first_cpu(nohz.cpu_mask); | 
|  |  | 
|  | if (ilb < nr_cpu_ids) | 
|  | resched_cpu(ilb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this cpu is idle and doing idle load balancing for all the | 
|  | * cpus with ticks stopped, is it time for that to stop? | 
|  | */ | 
|  | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu && | 
|  | cpus_weight(nohz.cpu_mask) == num_online_cpus()) { | 
|  | resched_cpu(cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this cpu is idle and the idle load balancing is done by | 
|  | * someone else, then no need raise the SCHED_SOFTIRQ | 
|  | */ | 
|  | if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu && | 
|  | cpu_isset(cpu, nohz.cpu_mask)) | 
|  | return; | 
|  | #endif | 
|  | if (time_after_eq(jiffies, rq->next_balance)) | 
|  | raise_softirq(SCHED_SOFTIRQ); | 
|  | } | 
|  |  | 
|  | #else	/* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * on UP we do not need to balance between CPUs: | 
|  | */ | 
|  | static inline void idle_balance(int cpu, struct rq *rq) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | DEFINE_PER_CPU(struct kernel_stat, kstat); | 
|  |  | 
|  | EXPORT_PER_CPU_SYMBOL(kstat); | 
|  |  | 
|  | /* | 
|  | * Return any ns on the sched_clock that have not yet been banked in | 
|  | * @p in case that task is currently running. | 
|  | */ | 
|  | unsigned long long task_delta_exec(struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  | u64 ns = 0; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  |  | 
|  | if (task_current(rq, p)) { | 
|  | u64 delta_exec; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | delta_exec = rq->clock - p->se.exec_start; | 
|  | if ((s64)delta_exec > 0) | 
|  | ns = delta_exec; | 
|  | } | 
|  |  | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | return ns; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account user cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @cputime: the cpu time spent in user space since the last update | 
|  | */ | 
|  | void account_user_time(struct task_struct *p, cputime_t cputime) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | cputime64_t tmp; | 
|  |  | 
|  | p->utime = cputime_add(p->utime, cputime); | 
|  | account_group_user_time(p, cputime); | 
|  |  | 
|  | /* Add user time to cpustat. */ | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  | if (TASK_NICE(p) > 0) | 
|  | cpustat->nice = cputime64_add(cpustat->nice, tmp); | 
|  | else | 
|  | cpustat->user = cputime64_add(cpustat->user, tmp); | 
|  | /* Account for user time used */ | 
|  | acct_update_integrals(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account guest cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @cputime: the cpu time spent in virtual machine since the last update | 
|  | */ | 
|  | static void account_guest_time(struct task_struct *p, cputime_t cputime) | 
|  | { | 
|  | cputime64_t tmp; | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  |  | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  |  | 
|  | p->utime = cputime_add(p->utime, cputime); | 
|  | account_group_user_time(p, cputime); | 
|  | p->gtime = cputime_add(p->gtime, cputime); | 
|  |  | 
|  | cpustat->user = cputime64_add(cpustat->user, tmp); | 
|  | cpustat->guest = cputime64_add(cpustat->guest, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account scaled user cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @cputime: the cpu time spent in user space since the last update | 
|  | */ | 
|  | void account_user_time_scaled(struct task_struct *p, cputime_t cputime) | 
|  | { | 
|  | p->utimescaled = cputime_add(p->utimescaled, cputime); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account system cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | * @cputime: the cpu time spent in kernel space since the last update | 
|  | */ | 
|  | void account_system_time(struct task_struct *p, int hardirq_offset, | 
|  | cputime_t cputime) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | struct rq *rq = this_rq(); | 
|  | cputime64_t tmp; | 
|  |  | 
|  | if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) { | 
|  | account_guest_time(p, cputime); | 
|  | return; | 
|  | } | 
|  |  | 
|  | p->stime = cputime_add(p->stime, cputime); | 
|  | account_group_system_time(p, cputime); | 
|  |  | 
|  | /* Add system time to cpustat. */ | 
|  | tmp = cputime_to_cputime64(cputime); | 
|  | if (hardirq_count() - hardirq_offset) | 
|  | cpustat->irq = cputime64_add(cpustat->irq, tmp); | 
|  | else if (softirq_count()) | 
|  | cpustat->softirq = cputime64_add(cpustat->softirq, tmp); | 
|  | else if (p != rq->idle) | 
|  | cpustat->system = cputime64_add(cpustat->system, tmp); | 
|  | else if (atomic_read(&rq->nr_iowait) > 0) | 
|  | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | else | 
|  | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | /* Account for system time used */ | 
|  | acct_update_integrals(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account scaled system cpu time to a process. | 
|  | * @p: the process that the cpu time gets accounted to | 
|  | * @hardirq_offset: the offset to subtract from hardirq_count() | 
|  | * @cputime: the cpu time spent in kernel space since the last update | 
|  | */ | 
|  | void account_system_time_scaled(struct task_struct *p, cputime_t cputime) | 
|  | { | 
|  | p->stimescaled = cputime_add(p->stimescaled, cputime); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Account for involuntary wait time. | 
|  | * @p: the process from which the cpu time has been stolen | 
|  | * @steal: the cpu time spent in involuntary wait | 
|  | */ | 
|  | void account_steal_time(struct task_struct *p, cputime_t steal) | 
|  | { | 
|  | struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat; | 
|  | cputime64_t tmp = cputime_to_cputime64(steal); | 
|  | struct rq *rq = this_rq(); | 
|  |  | 
|  | if (p == rq->idle) { | 
|  | p->stime = cputime_add(p->stime, steal); | 
|  | account_group_system_time(p, steal); | 
|  | if (atomic_read(&rq->nr_iowait) > 0) | 
|  | cpustat->iowait = cputime64_add(cpustat->iowait, tmp); | 
|  | else | 
|  | cpustat->idle = cputime64_add(cpustat->idle, tmp); | 
|  | } else | 
|  | cpustat->steal = cputime64_add(cpustat->steal, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Use precise platform statistics if available: | 
|  | */ | 
|  | #ifdef CONFIG_VIRT_CPU_ACCOUNTING | 
|  | cputime_t task_utime(struct task_struct *p) | 
|  | { | 
|  | return p->utime; | 
|  | } | 
|  |  | 
|  | cputime_t task_stime(struct task_struct *p) | 
|  | { | 
|  | return p->stime; | 
|  | } | 
|  | #else | 
|  | cputime_t task_utime(struct task_struct *p) | 
|  | { | 
|  | clock_t utime = cputime_to_clock_t(p->utime), | 
|  | total = utime + cputime_to_clock_t(p->stime); | 
|  | u64 temp; | 
|  |  | 
|  | /* | 
|  | * Use CFS's precise accounting: | 
|  | */ | 
|  | temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime); | 
|  |  | 
|  | if (total) { | 
|  | temp *= utime; | 
|  | do_div(temp, total); | 
|  | } | 
|  | utime = (clock_t)temp; | 
|  |  | 
|  | p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime)); | 
|  | return p->prev_utime; | 
|  | } | 
|  |  | 
|  | cputime_t task_stime(struct task_struct *p) | 
|  | { | 
|  | clock_t stime; | 
|  |  | 
|  | /* | 
|  | * Use CFS's precise accounting. (we subtract utime from | 
|  | * the total, to make sure the total observed by userspace | 
|  | * grows monotonically - apps rely on that): | 
|  | */ | 
|  | stime = nsec_to_clock_t(p->se.sum_exec_runtime) - | 
|  | cputime_to_clock_t(task_utime(p)); | 
|  |  | 
|  | if (stime >= 0) | 
|  | p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime)); | 
|  |  | 
|  | return p->prev_stime; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | inline cputime_t task_gtime(struct task_struct *p) | 
|  | { | 
|  | return p->gtime; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function gets called by the timer code, with HZ frequency. | 
|  | * We call it with interrupts disabled. | 
|  | * | 
|  | * It also gets called by the fork code, when changing the parent's | 
|  | * timeslices. | 
|  | */ | 
|  | void scheduler_tick(void) | 
|  | { | 
|  | int cpu = smp_processor_id(); | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct task_struct *curr = rq->curr; | 
|  |  | 
|  | sched_clock_tick(); | 
|  |  | 
|  | spin_lock(&rq->lock); | 
|  | update_rq_clock(rq); | 
|  | update_cpu_load(rq); | 
|  | curr->sched_class->task_tick(rq, curr, 0); | 
|  | spin_unlock(&rq->lock); | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | rq->idle_at_tick = idle_cpu(cpu); | 
|  | trigger_load_balance(rq, cpu); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \ | 
|  | defined(CONFIG_PREEMPT_TRACER)) | 
|  |  | 
|  | static inline unsigned long get_parent_ip(unsigned long addr) | 
|  | { | 
|  | if (in_lock_functions(addr)) { | 
|  | addr = CALLER_ADDR2; | 
|  | if (in_lock_functions(addr)) | 
|  | addr = CALLER_ADDR3; | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | void __kprobes add_preempt_count(int val) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) | 
|  | return; | 
|  | #endif | 
|  | preempt_count() += val; | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | /* | 
|  | * Spinlock count overflowing soon? | 
|  | */ | 
|  | DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= | 
|  | PREEMPT_MASK - 10); | 
|  | #endif | 
|  | if (preempt_count() == val) | 
|  | trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 
|  | } | 
|  | EXPORT_SYMBOL(add_preempt_count); | 
|  |  | 
|  | void __kprobes sub_preempt_count(int val) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_PREEMPT | 
|  | /* | 
|  | * Underflow? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) | 
|  | return; | 
|  | /* | 
|  | * Is the spinlock portion underflowing? | 
|  | */ | 
|  | if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && | 
|  | !(preempt_count() & PREEMPT_MASK))) | 
|  | return; | 
|  | #endif | 
|  |  | 
|  | if (preempt_count() == val) | 
|  | trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1)); | 
|  | preempt_count() -= val; | 
|  | } | 
|  | EXPORT_SYMBOL(sub_preempt_count); | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Print scheduling while atomic bug: | 
|  | */ | 
|  | static noinline void __schedule_bug(struct task_struct *prev) | 
|  | { | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  |  | 
|  | printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", | 
|  | prev->comm, prev->pid, preempt_count()); | 
|  |  | 
|  | debug_show_held_locks(prev); | 
|  | print_modules(); | 
|  | if (irqs_disabled()) | 
|  | print_irqtrace_events(prev); | 
|  |  | 
|  | if (regs) | 
|  | show_regs(regs); | 
|  | else | 
|  | dump_stack(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Various schedule()-time debugging checks and statistics: | 
|  | */ | 
|  | static inline void schedule_debug(struct task_struct *prev) | 
|  | { | 
|  | /* | 
|  | * Test if we are atomic. Since do_exit() needs to call into | 
|  | * schedule() atomically, we ignore that path for now. | 
|  | * Otherwise, whine if we are scheduling when we should not be. | 
|  | */ | 
|  | if (unlikely(in_atomic_preempt_off() && !prev->exit_state)) | 
|  | __schedule_bug(prev); | 
|  |  | 
|  | profile_hit(SCHED_PROFILING, __builtin_return_address(0)); | 
|  |  | 
|  | schedstat_inc(this_rq(), sched_count); | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | if (unlikely(prev->lock_depth >= 0)) { | 
|  | schedstat_inc(this_rq(), bkl_count); | 
|  | schedstat_inc(prev, sched_info.bkl_count); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pick up the highest-prio task: | 
|  | */ | 
|  | static inline struct task_struct * | 
|  | pick_next_task(struct rq *rq, struct task_struct *prev) | 
|  | { | 
|  | const struct sched_class *class; | 
|  | struct task_struct *p; | 
|  |  | 
|  | /* | 
|  | * Optimization: we know that if all tasks are in | 
|  | * the fair class we can call that function directly: | 
|  | */ | 
|  | if (likely(rq->nr_running == rq->cfs.nr_running)) { | 
|  | p = fair_sched_class.pick_next_task(rq); | 
|  | if (likely(p)) | 
|  | return p; | 
|  | } | 
|  |  | 
|  | class = sched_class_highest; | 
|  | for ( ; ; ) { | 
|  | p = class->pick_next_task(rq); | 
|  | if (p) | 
|  | return p; | 
|  | /* | 
|  | * Will never be NULL as the idle class always | 
|  | * returns a non-NULL p: | 
|  | */ | 
|  | class = class->next; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * schedule() is the main scheduler function. | 
|  | */ | 
|  | asmlinkage void __sched schedule(void) | 
|  | { | 
|  | struct task_struct *prev, *next; | 
|  | unsigned long *switch_count; | 
|  | struct rq *rq; | 
|  | int cpu; | 
|  |  | 
|  | need_resched: | 
|  | preempt_disable(); | 
|  | cpu = smp_processor_id(); | 
|  | rq = cpu_rq(cpu); | 
|  | rcu_qsctr_inc(cpu); | 
|  | prev = rq->curr; | 
|  | switch_count = &prev->nivcsw; | 
|  |  | 
|  | release_kernel_lock(prev); | 
|  | need_resched_nonpreemptible: | 
|  |  | 
|  | schedule_debug(prev); | 
|  |  | 
|  | if (sched_feat(HRTICK)) | 
|  | hrtick_clear(rq); | 
|  |  | 
|  | spin_lock_irq(&rq->lock); | 
|  | update_rq_clock(rq); | 
|  | clear_tsk_need_resched(prev); | 
|  |  | 
|  | if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) { | 
|  | if (unlikely(signal_pending_state(prev->state, prev))) | 
|  | prev->state = TASK_RUNNING; | 
|  | else | 
|  | deactivate_task(rq, prev, 1); | 
|  | switch_count = &prev->nvcsw; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | if (prev->sched_class->pre_schedule) | 
|  | prev->sched_class->pre_schedule(rq, prev); | 
|  | #endif | 
|  |  | 
|  | if (unlikely(!rq->nr_running)) | 
|  | idle_balance(cpu, rq); | 
|  |  | 
|  | prev->sched_class->put_prev_task(rq, prev); | 
|  | next = pick_next_task(rq, prev); | 
|  |  | 
|  | if (likely(prev != next)) { | 
|  | sched_info_switch(prev, next); | 
|  |  | 
|  | rq->nr_switches++; | 
|  | rq->curr = next; | 
|  | ++*switch_count; | 
|  |  | 
|  | context_switch(rq, prev, next); /* unlocks the rq */ | 
|  | /* | 
|  | * the context switch might have flipped the stack from under | 
|  | * us, hence refresh the local variables. | 
|  | */ | 
|  | cpu = smp_processor_id(); | 
|  | rq = cpu_rq(cpu); | 
|  | } else | 
|  | spin_unlock_irq(&rq->lock); | 
|  |  | 
|  | if (unlikely(reacquire_kernel_lock(current) < 0)) | 
|  | goto need_resched_nonpreemptible; | 
|  |  | 
|  | preempt_enable_no_resched(); | 
|  | if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) | 
|  | goto need_resched; | 
|  | } | 
|  | EXPORT_SYMBOL(schedule); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT | 
|  | /* | 
|  | * this is the entry point to schedule() from in-kernel preemption | 
|  | * off of preempt_enable. Kernel preemptions off return from interrupt | 
|  | * occur there and call schedule directly. | 
|  | */ | 
|  | asmlinkage void __sched preempt_schedule(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  |  | 
|  | /* | 
|  | * If there is a non-zero preempt_count or interrupts are disabled, | 
|  | * we do not want to preempt the current task. Just return.. | 
|  | */ | 
|  | if (likely(ti->preempt_count || irqs_disabled())) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | schedule(); | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  |  | 
|  | /* | 
|  | * Check again in case we missed a preemption opportunity | 
|  | * between schedule and now. | 
|  | */ | 
|  | barrier(); | 
|  | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 
|  | } | 
|  | EXPORT_SYMBOL(preempt_schedule); | 
|  |  | 
|  | /* | 
|  | * this is the entry point to schedule() from kernel preemption | 
|  | * off of irq context. | 
|  | * Note, that this is called and return with irqs disabled. This will | 
|  | * protect us against recursive calling from irq. | 
|  | */ | 
|  | asmlinkage void __sched preempt_schedule_irq(void) | 
|  | { | 
|  | struct thread_info *ti = current_thread_info(); | 
|  |  | 
|  | /* Catch callers which need to be fixed */ | 
|  | BUG_ON(ti->preempt_count || !irqs_disabled()); | 
|  |  | 
|  | do { | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | local_irq_enable(); | 
|  | schedule(); | 
|  | local_irq_disable(); | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  |  | 
|  | /* | 
|  | * Check again in case we missed a preemption opportunity | 
|  | * between schedule and now. | 
|  | */ | 
|  | barrier(); | 
|  | } while (unlikely(test_thread_flag(TIF_NEED_RESCHED))); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_PREEMPT */ | 
|  |  | 
|  | int default_wake_function(wait_queue_t *curr, unsigned mode, int sync, | 
|  | void *key) | 
|  | { | 
|  | return try_to_wake_up(curr->private, mode, sync); | 
|  | } | 
|  | EXPORT_SYMBOL(default_wake_function); | 
|  |  | 
|  | /* | 
|  | * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just | 
|  | * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve | 
|  | * number) then we wake all the non-exclusive tasks and one exclusive task. | 
|  | * | 
|  | * There are circumstances in which we can try to wake a task which has already | 
|  | * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns | 
|  | * zero in this (rare) case, and we handle it by continuing to scan the queue. | 
|  | */ | 
|  | static void __wake_up_common(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, int sync, void *key) | 
|  | { | 
|  | wait_queue_t *curr, *next; | 
|  |  | 
|  | list_for_each_entry_safe(curr, next, &q->task_list, task_list) { | 
|  | unsigned flags = curr->flags; | 
|  |  | 
|  | if (curr->func(curr, mode, sync, key) && | 
|  | (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * @key: is directly passed to the wakeup function | 
|  | */ | 
|  | void __wake_up(wait_queue_head_t *q, unsigned int mode, | 
|  | int nr_exclusive, void *key) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, 0, key); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(__wake_up); | 
|  |  | 
|  | /* | 
|  | * Same as __wake_up but called with the spinlock in wait_queue_head_t held. | 
|  | */ | 
|  | void __wake_up_locked(wait_queue_head_t *q, unsigned int mode) | 
|  | { | 
|  | __wake_up_common(q, mode, 1, 0, NULL); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * __wake_up_sync - wake up threads blocked on a waitqueue. | 
|  | * @q: the waitqueue | 
|  | * @mode: which threads | 
|  | * @nr_exclusive: how many wake-one or wake-many threads to wake up | 
|  | * | 
|  | * The sync wakeup differs that the waker knows that it will schedule | 
|  | * away soon, so while the target thread will be woken up, it will not | 
|  | * be migrated to another CPU - ie. the two threads are 'synchronized' | 
|  | * with each other. This can prevent needless bouncing between CPUs. | 
|  | * | 
|  | * On UP it can prevent extra preemption. | 
|  | */ | 
|  | void | 
|  | __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive) | 
|  | { | 
|  | unsigned long flags; | 
|  | int sync = 1; | 
|  |  | 
|  | if (unlikely(!q)) | 
|  | return; | 
|  |  | 
|  | if (unlikely(!nr_exclusive)) | 
|  | sync = 0; | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __wake_up_common(q, mode, nr_exclusive, sync, NULL); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */ | 
|  |  | 
|  | /** | 
|  | * complete: - signals a single thread waiting on this completion | 
|  | * @x:  holds the state of this particular completion | 
|  | * | 
|  | * This will wake up a single thread waiting on this completion. Threads will be | 
|  | * awakened in the same order in which they were queued. | 
|  | * | 
|  | * See also complete_all(), wait_for_completion() and related routines. | 
|  | */ | 
|  | void complete(struct completion *x) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | x->done++; | 
|  | __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL); | 
|  | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(complete); | 
|  |  | 
|  | /** | 
|  | * complete_all: - signals all threads waiting on this completion | 
|  | * @x:  holds the state of this particular completion | 
|  | * | 
|  | * This will wake up all threads waiting on this particular completion event. | 
|  | */ | 
|  | void complete_all(struct completion *x) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&x->wait.lock, flags); | 
|  | x->done += UINT_MAX/2; | 
|  | __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL); | 
|  | spin_unlock_irqrestore(&x->wait.lock, flags); | 
|  | } | 
|  | EXPORT_SYMBOL(complete_all); | 
|  |  | 
|  | static inline long __sched | 
|  | do_wait_for_common(struct completion *x, long timeout, int state) | 
|  | { | 
|  | if (!x->done) { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  |  | 
|  | wait.flags |= WQ_FLAG_EXCLUSIVE; | 
|  | __add_wait_queue_tail(&x->wait, &wait); | 
|  | do { | 
|  | if (signal_pending_state(state, current)) { | 
|  | timeout = -ERESTARTSYS; | 
|  | break; | 
|  | } | 
|  | __set_current_state(state); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | timeout = schedule_timeout(timeout); | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | } while (!x->done && timeout); | 
|  | __remove_wait_queue(&x->wait, &wait); | 
|  | if (!x->done) | 
|  | return timeout; | 
|  | } | 
|  | x->done--; | 
|  | return timeout ?: 1; | 
|  | } | 
|  |  | 
|  | static long __sched | 
|  | wait_for_common(struct completion *x, long timeout, int state) | 
|  | { | 
|  | might_sleep(); | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | timeout = do_wait_for_common(x, timeout, state); | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return timeout; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * wait_for_completion: - waits for completion of a task | 
|  | * @x:  holds the state of this particular completion | 
|  | * | 
|  | * This waits to be signaled for completion of a specific task. It is NOT | 
|  | * interruptible and there is no timeout. | 
|  | * | 
|  | * See also similar routines (i.e. wait_for_completion_timeout()) with timeout | 
|  | * and interrupt capability. Also see complete(). | 
|  | */ | 
|  | void __sched wait_for_completion(struct completion *x) | 
|  | { | 
|  | wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion); | 
|  |  | 
|  | /** | 
|  | * wait_for_completion_timeout: - waits for completion of a task (w/timeout) | 
|  | * @x:  holds the state of this particular completion | 
|  | * @timeout:  timeout value in jiffies | 
|  | * | 
|  | * This waits for either a completion of a specific task to be signaled or for a | 
|  | * specified timeout to expire. The timeout is in jiffies. It is not | 
|  | * interruptible. | 
|  | */ | 
|  | unsigned long __sched | 
|  | wait_for_completion_timeout(struct completion *x, unsigned long timeout) | 
|  | { | 
|  | return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_timeout); | 
|  |  | 
|  | /** | 
|  | * wait_for_completion_interruptible: - waits for completion of a task (w/intr) | 
|  | * @x:  holds the state of this particular completion | 
|  | * | 
|  | * This waits for completion of a specific task to be signaled. It is | 
|  | * interruptible. | 
|  | */ | 
|  | int __sched wait_for_completion_interruptible(struct completion *x) | 
|  | { | 
|  | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE); | 
|  | if (t == -ERESTARTSYS) | 
|  | return t; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_interruptible); | 
|  |  | 
|  | /** | 
|  | * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr)) | 
|  | * @x:  holds the state of this particular completion | 
|  | * @timeout:  timeout value in jiffies | 
|  | * | 
|  | * This waits for either a completion of a specific task to be signaled or for a | 
|  | * specified timeout to expire. It is interruptible. The timeout is in jiffies. | 
|  | */ | 
|  | unsigned long __sched | 
|  | wait_for_completion_interruptible_timeout(struct completion *x, | 
|  | unsigned long timeout) | 
|  | { | 
|  | return wait_for_common(x, timeout, TASK_INTERRUPTIBLE); | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_interruptible_timeout); | 
|  |  | 
|  | /** | 
|  | * wait_for_completion_killable: - waits for completion of a task (killable) | 
|  | * @x:  holds the state of this particular completion | 
|  | * | 
|  | * This waits to be signaled for completion of a specific task. It can be | 
|  | * interrupted by a kill signal. | 
|  | */ | 
|  | int __sched wait_for_completion_killable(struct completion *x) | 
|  | { | 
|  | long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE); | 
|  | if (t == -ERESTARTSYS) | 
|  | return t; | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(wait_for_completion_killable); | 
|  |  | 
|  | /** | 
|  | *	try_wait_for_completion - try to decrement a completion without blocking | 
|  | *	@x:	completion structure | 
|  | * | 
|  | *	Returns: 0 if a decrement cannot be done without blocking | 
|  | *		 1 if a decrement succeeded. | 
|  | * | 
|  | *	If a completion is being used as a counting completion, | 
|  | *	attempt to decrement the counter without blocking. This | 
|  | *	enables us to avoid waiting if the resource the completion | 
|  | *	is protecting is not available. | 
|  | */ | 
|  | bool try_wait_for_completion(struct completion *x) | 
|  | { | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) | 
|  | ret = 0; | 
|  | else | 
|  | x->done--; | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(try_wait_for_completion); | 
|  |  | 
|  | /** | 
|  | *	completion_done - Test to see if a completion has any waiters | 
|  | *	@x:	completion structure | 
|  | * | 
|  | *	Returns: 0 if there are waiters (wait_for_completion() in progress) | 
|  | *		 1 if there are no waiters. | 
|  | * | 
|  | */ | 
|  | bool completion_done(struct completion *x) | 
|  | { | 
|  | int ret = 1; | 
|  |  | 
|  | spin_lock_irq(&x->wait.lock); | 
|  | if (!x->done) | 
|  | ret = 0; | 
|  | spin_unlock_irq(&x->wait.lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(completion_done); | 
|  |  | 
|  | static long __sched | 
|  | sleep_on_common(wait_queue_head_t *q, int state, long timeout) | 
|  | { | 
|  | unsigned long flags; | 
|  | wait_queue_t wait; | 
|  |  | 
|  | init_waitqueue_entry(&wait, current); | 
|  |  | 
|  | __set_current_state(state); | 
|  |  | 
|  | spin_lock_irqsave(&q->lock, flags); | 
|  | __add_wait_queue(q, &wait); | 
|  | spin_unlock(&q->lock); | 
|  | timeout = schedule_timeout(timeout); | 
|  | spin_lock_irq(&q->lock); | 
|  | __remove_wait_queue(q, &wait); | 
|  | spin_unlock_irqrestore(&q->lock, flags); | 
|  |  | 
|  | return timeout; | 
|  | } | 
|  |  | 
|  | void __sched interruptible_sleep_on(wait_queue_head_t *q) | 
|  | { | 
|  | sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 
|  | } | 
|  | EXPORT_SYMBOL(interruptible_sleep_on); | 
|  |  | 
|  | long __sched | 
|  | interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | { | 
|  | return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout); | 
|  | } | 
|  | EXPORT_SYMBOL(interruptible_sleep_on_timeout); | 
|  |  | 
|  | void __sched sleep_on(wait_queue_head_t *q) | 
|  | { | 
|  | sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT); | 
|  | } | 
|  | EXPORT_SYMBOL(sleep_on); | 
|  |  | 
|  | long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout) | 
|  | { | 
|  | return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout); | 
|  | } | 
|  | EXPORT_SYMBOL(sleep_on_timeout); | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  |  | 
|  | /* | 
|  | * rt_mutex_setprio - set the current priority of a task | 
|  | * @p: task | 
|  | * @prio: prio value (kernel-internal form) | 
|  | * | 
|  | * This function changes the 'effective' priority of a task. It does | 
|  | * not touch ->normal_prio like __setscheduler(). | 
|  | * | 
|  | * Used by the rt_mutex code to implement priority inheritance logic. | 
|  | */ | 
|  | void rt_mutex_setprio(struct task_struct *p, int prio) | 
|  | { | 
|  | unsigned long flags; | 
|  | int oldprio, on_rq, running; | 
|  | struct rq *rq; | 
|  | const struct sched_class *prev_class = p->sched_class; | 
|  |  | 
|  | BUG_ON(prio < 0 || prio > MAX_PRIO); | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | oldprio = p->prio; | 
|  | on_rq = p->se.on_rq; | 
|  | running = task_current(rq, p); | 
|  | if (on_rq) | 
|  | dequeue_task(rq, p, 0); | 
|  | if (running) | 
|  | p->sched_class->put_prev_task(rq, p); | 
|  |  | 
|  | if (rt_prio(prio)) | 
|  | p->sched_class = &rt_sched_class; | 
|  | else | 
|  | p->sched_class = &fair_sched_class; | 
|  |  | 
|  | p->prio = prio; | 
|  |  | 
|  | if (running) | 
|  | p->sched_class->set_curr_task(rq); | 
|  | if (on_rq) { | 
|  | enqueue_task(rq, p, 0); | 
|  |  | 
|  | check_class_changed(rq, p, prev_class, oldprio, running); | 
|  | } | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | void set_user_nice(struct task_struct *p, long nice) | 
|  | { | 
|  | int old_prio, delta, on_rq; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | if (TASK_NICE(p) == nice || nice < -20 || nice > 19) | 
|  | return; | 
|  | /* | 
|  | * We have to be careful, if called from sys_setpriority(), | 
|  | * the task might be in the middle of scheduling on another CPU. | 
|  | */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | update_rq_clock(rq); | 
|  | /* | 
|  | * The RT priorities are set via sched_setscheduler(), but we still | 
|  | * allow the 'normal' nice value to be set - but as expected | 
|  | * it wont have any effect on scheduling until the task is | 
|  | * SCHED_FIFO/SCHED_RR: | 
|  | */ | 
|  | if (task_has_rt_policy(p)) { | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | goto out_unlock; | 
|  | } | 
|  | on_rq = p->se.on_rq; | 
|  | if (on_rq) | 
|  | dequeue_task(rq, p, 0); | 
|  |  | 
|  | p->static_prio = NICE_TO_PRIO(nice); | 
|  | set_load_weight(p); | 
|  | old_prio = p->prio; | 
|  | p->prio = effective_prio(p); | 
|  | delta = p->prio - old_prio; | 
|  |  | 
|  | if (on_rq) { | 
|  | enqueue_task(rq, p, 0); | 
|  | /* | 
|  | * If the task increased its priority or is running and | 
|  | * lowered its priority, then reschedule its CPU: | 
|  | */ | 
|  | if (delta < 0 || (delta > 0 && task_running(rq, p))) | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | out_unlock: | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  | EXPORT_SYMBOL(set_user_nice); | 
|  |  | 
|  | /* | 
|  | * can_nice - check if a task can reduce its nice value | 
|  | * @p: task | 
|  | * @nice: nice value | 
|  | */ | 
|  | int can_nice(const struct task_struct *p, const int nice) | 
|  | { | 
|  | /* convert nice value [19,-20] to rlimit style value [1,40] */ | 
|  | int nice_rlim = 20 - nice; | 
|  |  | 
|  | return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur || | 
|  | capable(CAP_SYS_NICE)); | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_NICE | 
|  |  | 
|  | /* | 
|  | * sys_nice - change the priority of the current process. | 
|  | * @increment: priority increment | 
|  | * | 
|  | * sys_setpriority is a more generic, but much slower function that | 
|  | * does similar things. | 
|  | */ | 
|  | asmlinkage long sys_nice(int increment) | 
|  | { | 
|  | long nice, retval; | 
|  |  | 
|  | /* | 
|  | * Setpriority might change our priority at the same moment. | 
|  | * We don't have to worry. Conceptually one call occurs first | 
|  | * and we have a single winner. | 
|  | */ | 
|  | if (increment < -40) | 
|  | increment = -40; | 
|  | if (increment > 40) | 
|  | increment = 40; | 
|  |  | 
|  | nice = PRIO_TO_NICE(current->static_prio) + increment; | 
|  | if (nice < -20) | 
|  | nice = -20; | 
|  | if (nice > 19) | 
|  | nice = 19; | 
|  |  | 
|  | if (increment < 0 && !can_nice(current, nice)) | 
|  | return -EPERM; | 
|  |  | 
|  | retval = security_task_setnice(current, nice); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | set_user_nice(current, nice); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /** | 
|  | * task_prio - return the priority value of a given task. | 
|  | * @p: the task in question. | 
|  | * | 
|  | * This is the priority value as seen by users in /proc. | 
|  | * RT tasks are offset by -200. Normal tasks are centered | 
|  | * around 0, value goes from -16 to +15. | 
|  | */ | 
|  | int task_prio(const struct task_struct *p) | 
|  | { | 
|  | return p->prio - MAX_RT_PRIO; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * task_nice - return the nice value of a given task. | 
|  | * @p: the task in question. | 
|  | */ | 
|  | int task_nice(const struct task_struct *p) | 
|  | { | 
|  | return TASK_NICE(p); | 
|  | } | 
|  | EXPORT_SYMBOL(task_nice); | 
|  |  | 
|  | /** | 
|  | * idle_cpu - is a given cpu idle currently? | 
|  | * @cpu: the processor in question. | 
|  | */ | 
|  | int idle_cpu(int cpu) | 
|  | { | 
|  | return cpu_curr(cpu) == cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * idle_task - return the idle task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | */ | 
|  | struct task_struct *idle_task(int cpu) | 
|  | { | 
|  | return cpu_rq(cpu)->idle; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * find_process_by_pid - find a process with a matching PID value. | 
|  | * @pid: the pid in question. | 
|  | */ | 
|  | static struct task_struct *find_process_by_pid(pid_t pid) | 
|  | { | 
|  | return pid ? find_task_by_vpid(pid) : current; | 
|  | } | 
|  |  | 
|  | /* Actually do priority change: must hold rq lock. */ | 
|  | static void | 
|  | __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio) | 
|  | { | 
|  | BUG_ON(p->se.on_rq); | 
|  |  | 
|  | p->policy = policy; | 
|  | switch (p->policy) { | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | p->sched_class = &fair_sched_class; | 
|  | break; | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | p->sched_class = &rt_sched_class; | 
|  | break; | 
|  | } | 
|  |  | 
|  | p->rt_priority = prio; | 
|  | p->normal_prio = normal_prio(p); | 
|  | /* we are holding p->pi_lock already */ | 
|  | p->prio = rt_mutex_getprio(p); | 
|  | set_load_weight(p); | 
|  | } | 
|  |  | 
|  | static int __sched_setscheduler(struct task_struct *p, int policy, | 
|  | struct sched_param *param, bool user) | 
|  | { | 
|  | int retval, oldprio, oldpolicy = -1, on_rq, running; | 
|  | unsigned long flags; | 
|  | const struct sched_class *prev_class = p->sched_class; | 
|  | struct rq *rq; | 
|  |  | 
|  | /* may grab non-irq protected spin_locks */ | 
|  | BUG_ON(in_interrupt()); | 
|  | recheck: | 
|  | /* double check policy once rq lock held */ | 
|  | if (policy < 0) | 
|  | policy = oldpolicy = p->policy; | 
|  | else if (policy != SCHED_FIFO && policy != SCHED_RR && | 
|  | policy != SCHED_NORMAL && policy != SCHED_BATCH && | 
|  | policy != SCHED_IDLE) | 
|  | return -EINVAL; | 
|  | /* | 
|  | * Valid priorities for SCHED_FIFO and SCHED_RR are | 
|  | * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL, | 
|  | * SCHED_BATCH and SCHED_IDLE is 0. | 
|  | */ | 
|  | if (param->sched_priority < 0 || | 
|  | (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) || | 
|  | (!p->mm && param->sched_priority > MAX_RT_PRIO-1)) | 
|  | return -EINVAL; | 
|  | if (rt_policy(policy) != (param->sched_priority != 0)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Allow unprivileged RT tasks to decrease priority: | 
|  | */ | 
|  | if (user && !capable(CAP_SYS_NICE)) { | 
|  | if (rt_policy(policy)) { | 
|  | unsigned long rlim_rtprio; | 
|  |  | 
|  | if (!lock_task_sighand(p, &flags)) | 
|  | return -ESRCH; | 
|  | rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur; | 
|  | unlock_task_sighand(p, &flags); | 
|  |  | 
|  | /* can't set/change the rt policy */ | 
|  | if (policy != p->policy && !rlim_rtprio) | 
|  | return -EPERM; | 
|  |  | 
|  | /* can't increase priority */ | 
|  | if (param->sched_priority > p->rt_priority && | 
|  | param->sched_priority > rlim_rtprio) | 
|  | return -EPERM; | 
|  | } | 
|  | /* | 
|  | * Like positive nice levels, dont allow tasks to | 
|  | * move out of SCHED_IDLE either: | 
|  | */ | 
|  | if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) | 
|  | return -EPERM; | 
|  |  | 
|  | /* can't change other user's priorities */ | 
|  | if ((current->euid != p->euid) && | 
|  | (current->euid != p->uid)) | 
|  | return -EPERM; | 
|  | } | 
|  |  | 
|  | if (user) { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * Do not allow realtime tasks into groups that have no runtime | 
|  | * assigned. | 
|  | */ | 
|  | if (rt_bandwidth_enabled() && rt_policy(policy) && | 
|  | task_group(p)->rt_bandwidth.rt_runtime == 0) | 
|  | return -EPERM; | 
|  | #endif | 
|  |  | 
|  | retval = security_task_setscheduler(p, policy, param); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make sure no PI-waiters arrive (or leave) while we are | 
|  | * changing the priority of the task: | 
|  | */ | 
|  | spin_lock_irqsave(&p->pi_lock, flags); | 
|  | /* | 
|  | * To be able to change p->policy safely, the apropriate | 
|  | * runqueue lock must be held. | 
|  | */ | 
|  | rq = __task_rq_lock(p); | 
|  | /* recheck policy now with rq lock held */ | 
|  | if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) { | 
|  | policy = oldpolicy = -1; | 
|  | __task_rq_unlock(rq); | 
|  | spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  | goto recheck; | 
|  | } | 
|  | update_rq_clock(rq); | 
|  | on_rq = p->se.on_rq; | 
|  | running = task_current(rq, p); | 
|  | if (on_rq) | 
|  | deactivate_task(rq, p, 0); | 
|  | if (running) | 
|  | p->sched_class->put_prev_task(rq, p); | 
|  |  | 
|  | oldprio = p->prio; | 
|  | __setscheduler(rq, p, policy, param->sched_priority); | 
|  |  | 
|  | if (running) | 
|  | p->sched_class->set_curr_task(rq); | 
|  | if (on_rq) { | 
|  | activate_task(rq, p, 0); | 
|  |  | 
|  | check_class_changed(rq, p, prev_class, oldprio, running); | 
|  | } | 
|  | __task_rq_unlock(rq); | 
|  | spin_unlock_irqrestore(&p->pi_lock, flags); | 
|  |  | 
|  | rt_mutex_adjust_pi(p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_setscheduler - change the scheduling policy and/or RT priority of a thread. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * NOTE that the task may be already dead. | 
|  | */ | 
|  | int sched_setscheduler(struct task_struct *p, int policy, | 
|  | struct sched_param *param) | 
|  | { | 
|  | return __sched_setscheduler(p, policy, param, true); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(sched_setscheduler); | 
|  |  | 
|  | /** | 
|  | * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace. | 
|  | * @p: the task in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | * | 
|  | * Just like sched_setscheduler, only don't bother checking if the | 
|  | * current context has permission.  For example, this is needed in | 
|  | * stop_machine(): we create temporary high priority worker threads, | 
|  | * but our caller might not have that capability. | 
|  | */ | 
|  | int sched_setscheduler_nocheck(struct task_struct *p, int policy, | 
|  | struct sched_param *param) | 
|  | { | 
|  | return __sched_setscheduler(p, policy, param, false); | 
|  | } | 
|  |  | 
|  | static int | 
|  | do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lparam; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  | if (copy_from_user(&lparam, param, sizeof(struct sched_param))) | 
|  | return -EFAULT; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (p != NULL) | 
|  | retval = sched_setscheduler(p, policy, &lparam); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setscheduler - set/change the scheduler policy and RT priority | 
|  | * @pid: the pid in question. | 
|  | * @policy: new policy. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | asmlinkage long | 
|  | sys_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param) | 
|  | { | 
|  | /* negative values for policy are not valid */ | 
|  | if (policy < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return do_sched_setscheduler(pid, policy, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setparam - set/change the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the new RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param) | 
|  | { | 
|  | return do_sched_setscheduler(pid, -1, param); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the policy (scheduling class) of a thread | 
|  | * @pid: the pid in question. | 
|  | */ | 
|  | asmlinkage long sys_sched_getscheduler(pid_t pid) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (p) { | 
|  | retval = security_task_getscheduler(p); | 
|  | if (!retval) | 
|  | retval = p->policy; | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getscheduler - get the RT priority of a thread | 
|  | * @pid: the pid in question. | 
|  | * @param: structure containing the RT priority. | 
|  | */ | 
|  | asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param) | 
|  | { | 
|  | struct sched_param lp; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | if (!param || pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | retval = -ESRCH; | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | lp.sched_priority = p->rt_priority; | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * This one might sleep, we cannot do it with a spinlock held ... | 
|  | */ | 
|  | retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0; | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | long sched_setaffinity(pid_t pid, const cpumask_t *in_mask) | 
|  | { | 
|  | cpumask_t cpus_allowed; | 
|  | cpumask_t new_mask = *in_mask; | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | get_online_cpus(); | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) { | 
|  | read_unlock(&tasklist_lock); | 
|  | put_online_cpus(); | 
|  | return -ESRCH; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It is not safe to call set_cpus_allowed with the | 
|  | * tasklist_lock held. We will bump the task_struct's | 
|  | * usage count and then drop tasklist_lock. | 
|  | */ | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | retval = -EPERM; | 
|  | if ((current->euid != p->euid) && (current->euid != p->uid) && | 
|  | !capable(CAP_SYS_NICE)) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_setscheduler(p, 0, NULL); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | cpuset_cpus_allowed(p, &cpus_allowed); | 
|  | cpus_and(new_mask, new_mask, cpus_allowed); | 
|  | again: | 
|  | retval = set_cpus_allowed_ptr(p, &new_mask); | 
|  |  | 
|  | if (!retval) { | 
|  | cpuset_cpus_allowed(p, &cpus_allowed); | 
|  | if (!cpus_subset(new_mask, cpus_allowed)) { | 
|  | /* | 
|  | * We must have raced with a concurrent cpuset | 
|  | * update. Just reset the cpus_allowed to the | 
|  | * cpuset's cpus_allowed | 
|  | */ | 
|  | new_mask = cpus_allowed; | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | out_unlock: | 
|  | put_task_struct(p); | 
|  | put_online_cpus(); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len, | 
|  | cpumask_t *new_mask) | 
|  | { | 
|  | if (len < sizeof(cpumask_t)) { | 
|  | memset(new_mask, 0, sizeof(cpumask_t)); | 
|  | } else if (len > sizeof(cpumask_t)) { | 
|  | len = sizeof(cpumask_t); | 
|  | } | 
|  | return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_setaffinity - set the cpu affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to the new cpu mask | 
|  | */ | 
|  | asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len, | 
|  | unsigned long __user *user_mask_ptr) | 
|  | { | 
|  | cpumask_t new_mask; | 
|  | int retval; | 
|  |  | 
|  | retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | return sched_setaffinity(pid, &new_mask); | 
|  | } | 
|  |  | 
|  | long sched_getaffinity(pid_t pid, cpumask_t *mask) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int retval; | 
|  |  | 
|  | get_online_cpus(); | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | retval = -ESRCH; | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | cpus_and(*mask, p->cpus_allowed, cpu_online_map); | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | put_online_cpus(); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_getaffinity - get the cpu affinity of a process | 
|  | * @pid: pid of the process | 
|  | * @len: length in bytes of the bitmask pointed to by user_mask_ptr | 
|  | * @user_mask_ptr: user-space pointer to hold the current cpu mask | 
|  | */ | 
|  | asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len, | 
|  | unsigned long __user *user_mask_ptr) | 
|  | { | 
|  | int ret; | 
|  | cpumask_t mask; | 
|  |  | 
|  | if (len < sizeof(cpumask_t)) | 
|  | return -EINVAL; | 
|  |  | 
|  | ret = sched_getaffinity(pid, &mask); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t))) | 
|  | return -EFAULT; | 
|  |  | 
|  | return sizeof(cpumask_t); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_yield - yield the current processor to other threads. | 
|  | * | 
|  | * This function yields the current CPU to other tasks. If there are no | 
|  | * other threads running on this CPU then this function will return. | 
|  | */ | 
|  | asmlinkage long sys_sched_yield(void) | 
|  | { | 
|  | struct rq *rq = this_rq_lock(); | 
|  |  | 
|  | schedstat_inc(rq, yld_count); | 
|  | current->sched_class->yield_task(rq); | 
|  |  | 
|  | /* | 
|  | * Since we are going to call schedule() anyway, there's | 
|  | * no need to preempt or enable interrupts: | 
|  | */ | 
|  | __release(rq->lock); | 
|  | spin_release(&rq->lock.dep_map, 1, _THIS_IP_); | 
|  | _raw_spin_unlock(&rq->lock); | 
|  | preempt_enable_no_resched(); | 
|  |  | 
|  | schedule(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __cond_resched(void) | 
|  | { | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | __might_sleep(__FILE__, __LINE__); | 
|  | #endif | 
|  | /* | 
|  | * The BKS might be reacquired before we have dropped | 
|  | * PREEMPT_ACTIVE, which could trigger a second | 
|  | * cond_resched() call. | 
|  | */ | 
|  | do { | 
|  | add_preempt_count(PREEMPT_ACTIVE); | 
|  | schedule(); | 
|  | sub_preempt_count(PREEMPT_ACTIVE); | 
|  | } while (need_resched()); | 
|  | } | 
|  |  | 
|  | int __sched _cond_resched(void) | 
|  | { | 
|  | if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) && | 
|  | system_state == SYSTEM_RUNNING) { | 
|  | __cond_resched(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(_cond_resched); | 
|  |  | 
|  | /* | 
|  | * cond_resched_lock() - if a reschedule is pending, drop the given lock, | 
|  | * call schedule, and on return reacquire the lock. | 
|  | * | 
|  | * This works OK both with and without CONFIG_PREEMPT. We do strange low-level | 
|  | * operations here to prevent schedule() from being called twice (once via | 
|  | * spin_unlock(), once by hand). | 
|  | */ | 
|  | int cond_resched_lock(spinlock_t *lock) | 
|  | { | 
|  | int resched = need_resched() && system_state == SYSTEM_RUNNING; | 
|  | int ret = 0; | 
|  |  | 
|  | if (spin_needbreak(lock) || resched) { | 
|  | spin_unlock(lock); | 
|  | if (resched && need_resched()) | 
|  | __cond_resched(); | 
|  | else | 
|  | cpu_relax(); | 
|  | ret = 1; | 
|  | spin_lock(lock); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(cond_resched_lock); | 
|  |  | 
|  | int __sched cond_resched_softirq(void) | 
|  | { | 
|  | BUG_ON(!in_softirq()); | 
|  |  | 
|  | if (need_resched() && system_state == SYSTEM_RUNNING) { | 
|  | local_bh_enable(); | 
|  | __cond_resched(); | 
|  | local_bh_disable(); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(cond_resched_softirq); | 
|  |  | 
|  | /** | 
|  | * yield - yield the current processor to other threads. | 
|  | * | 
|  | * This is a shortcut for kernel-space yielding - it marks the | 
|  | * thread runnable and calls sys_sched_yield(). | 
|  | */ | 
|  | void __sched yield(void) | 
|  | { | 
|  | set_current_state(TASK_RUNNING); | 
|  | sys_sched_yield(); | 
|  | } | 
|  | EXPORT_SYMBOL(yield); | 
|  |  | 
|  | /* | 
|  | * This task is about to go to sleep on IO. Increment rq->nr_iowait so | 
|  | * that process accounting knows that this is a task in IO wait state. | 
|  | * | 
|  | * But don't do that if it is a deliberate, throttling IO wait (this task | 
|  | * has set its backing_dev_info: the queue against which it should throttle) | 
|  | */ | 
|  | void __sched io_schedule(void) | 
|  | { | 
|  | struct rq *rq = &__raw_get_cpu_var(runqueues); | 
|  |  | 
|  | delayacct_blkio_start(); | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | schedule(); | 
|  | atomic_dec(&rq->nr_iowait); | 
|  | delayacct_blkio_end(); | 
|  | } | 
|  | EXPORT_SYMBOL(io_schedule); | 
|  |  | 
|  | long __sched io_schedule_timeout(long timeout) | 
|  | { | 
|  | struct rq *rq = &__raw_get_cpu_var(runqueues); | 
|  | long ret; | 
|  |  | 
|  | delayacct_blkio_start(); | 
|  | atomic_inc(&rq->nr_iowait); | 
|  | ret = schedule_timeout(timeout); | 
|  | atomic_dec(&rq->nr_iowait); | 
|  | delayacct_blkio_end(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_max - return maximum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * this syscall returns the maximum rt_priority that can be used | 
|  | * by a given scheduling class. | 
|  | */ | 
|  | asmlinkage long sys_sched_get_priority_max(int policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = MAX_USER_RT_PRIO-1; | 
|  | break; | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_get_priority_min - return minimum RT priority. | 
|  | * @policy: scheduling class. | 
|  | * | 
|  | * this syscall returns the minimum rt_priority that can be used | 
|  | * by a given scheduling class. | 
|  | */ | 
|  | asmlinkage long sys_sched_get_priority_min(int policy) | 
|  | { | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | switch (policy) { | 
|  | case SCHED_FIFO: | 
|  | case SCHED_RR: | 
|  | ret = 1; | 
|  | break; | 
|  | case SCHED_NORMAL: | 
|  | case SCHED_BATCH: | 
|  | case SCHED_IDLE: | 
|  | ret = 0; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sys_sched_rr_get_interval - return the default timeslice of a process. | 
|  | * @pid: pid of the process. | 
|  | * @interval: userspace pointer to the timeslice value. | 
|  | * | 
|  | * this syscall writes the default timeslice value of a given process | 
|  | * into the user-space timespec buffer. A value of '0' means infinity. | 
|  | */ | 
|  | asmlinkage | 
|  | long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval) | 
|  | { | 
|  | struct task_struct *p; | 
|  | unsigned int time_slice; | 
|  | int retval; | 
|  | struct timespec t; | 
|  |  | 
|  | if (pid < 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | retval = -ESRCH; | 
|  | read_lock(&tasklist_lock); | 
|  | p = find_process_by_pid(pid); | 
|  | if (!p) | 
|  | goto out_unlock; | 
|  |  | 
|  | retval = security_task_getscheduler(p); | 
|  | if (retval) | 
|  | goto out_unlock; | 
|  |  | 
|  | /* | 
|  | * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER | 
|  | * tasks that are on an otherwise idle runqueue: | 
|  | */ | 
|  | time_slice = 0; | 
|  | if (p->policy == SCHED_RR) { | 
|  | time_slice = DEF_TIMESLICE; | 
|  | } else if (p->policy != SCHED_FIFO) { | 
|  | struct sched_entity *se = &p->se; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (rq->cfs.load.weight) | 
|  | time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se)); | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  | read_unlock(&tasklist_lock); | 
|  | jiffies_to_timespec(time_slice, &t); | 
|  | retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0; | 
|  | return retval; | 
|  |  | 
|  | out_unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static const char stat_nam[] = TASK_STATE_TO_CHAR_STR; | 
|  |  | 
|  | void sched_show_task(struct task_struct *p) | 
|  | { | 
|  | unsigned long free = 0; | 
|  | unsigned state; | 
|  |  | 
|  | state = p->state ? __ffs(p->state) + 1 : 0; | 
|  | printk(KERN_INFO "%-13.13s %c", p->comm, | 
|  | state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?'); | 
|  | #if BITS_PER_LONG == 32 | 
|  | if (state == TASK_RUNNING) | 
|  | printk(KERN_CONT " running  "); | 
|  | else | 
|  | printk(KERN_CONT " %08lx ", thread_saved_pc(p)); | 
|  | #else | 
|  | if (state == TASK_RUNNING) | 
|  | printk(KERN_CONT "  running task    "); | 
|  | else | 
|  | printk(KERN_CONT " %016lx ", thread_saved_pc(p)); | 
|  | #endif | 
|  | #ifdef CONFIG_DEBUG_STACK_USAGE | 
|  | { | 
|  | unsigned long *n = end_of_stack(p); | 
|  | while (!*n) | 
|  | n++; | 
|  | free = (unsigned long)n - (unsigned long)end_of_stack(p); | 
|  | } | 
|  | #endif | 
|  | printk(KERN_CONT "%5lu %5d %6d\n", free, | 
|  | task_pid_nr(p), task_pid_nr(p->real_parent)); | 
|  |  | 
|  | show_stack(p, NULL); | 
|  | } | 
|  |  | 
|  | void show_state_filter(unsigned long state_filter) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | #if BITS_PER_LONG == 32 | 
|  | printk(KERN_INFO | 
|  | "  task                PC stack   pid father\n"); | 
|  | #else | 
|  | printk(KERN_INFO | 
|  | "  task                        PC stack   pid father\n"); | 
|  | #endif | 
|  | read_lock(&tasklist_lock); | 
|  | do_each_thread(g, p) { | 
|  | /* | 
|  | * reset the NMI-timeout, listing all files on a slow | 
|  | * console might take alot of time: | 
|  | */ | 
|  | touch_nmi_watchdog(); | 
|  | if (!state_filter || (p->state & state_filter)) | 
|  | sched_show_task(p); | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | touch_all_softlockup_watchdogs(); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | sysrq_sched_debug_show(); | 
|  | #endif | 
|  | read_unlock(&tasklist_lock); | 
|  | /* | 
|  | * Only show locks if all tasks are dumped: | 
|  | */ | 
|  | if (state_filter == -1) | 
|  | debug_show_all_locks(); | 
|  | } | 
|  |  | 
|  | void __cpuinit init_idle_bootup_task(struct task_struct *idle) | 
|  | { | 
|  | idle->sched_class = &idle_sched_class; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * init_idle - set up an idle thread for a given CPU | 
|  | * @idle: task in question | 
|  | * @cpu: cpu the idle task belongs to | 
|  | * | 
|  | * NOTE: this function does not set the idle thread's NEED_RESCHED | 
|  | * flag, to make booting more robust. | 
|  | */ | 
|  | void __cpuinit init_idle(struct task_struct *idle, int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | __sched_fork(idle); | 
|  | idle->se.exec_start = sched_clock(); | 
|  |  | 
|  | idle->prio = idle->normal_prio = MAX_PRIO; | 
|  | idle->cpus_allowed = cpumask_of_cpu(cpu); | 
|  | __set_task_cpu(idle, cpu); | 
|  |  | 
|  | rq->curr = rq->idle = idle; | 
|  | #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW) | 
|  | idle->oncpu = 1; | 
|  | #endif | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  |  | 
|  | /* Set the preempt count _outside_ the spinlocks! */ | 
|  | #if defined(CONFIG_PREEMPT) | 
|  | task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0); | 
|  | #else | 
|  | task_thread_info(idle)->preempt_count = 0; | 
|  | #endif | 
|  | /* | 
|  | * The idle tasks have their own, simple scheduling class: | 
|  | */ | 
|  | idle->sched_class = &idle_sched_class; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In a system that switches off the HZ timer nohz_cpu_mask | 
|  | * indicates which cpus entered this state. This is used | 
|  | * in the rcu update to wait only for active cpus. For system | 
|  | * which do not switch off the HZ timer nohz_cpu_mask should | 
|  | * always be CPU_MASK_NONE. | 
|  | */ | 
|  | cpumask_t nohz_cpu_mask = CPU_MASK_NONE; | 
|  |  | 
|  | /* | 
|  | * Increase the granularity value when there are more CPUs, | 
|  | * because with more CPUs the 'effective latency' as visible | 
|  | * to users decreases. But the relationship is not linear, | 
|  | * so pick a second-best guess by going with the log2 of the | 
|  | * number of CPUs. | 
|  | * | 
|  | * This idea comes from the SD scheduler of Con Kolivas: | 
|  | */ | 
|  | static inline void sched_init_granularity(void) | 
|  | { | 
|  | unsigned int factor = 1 + ilog2(num_online_cpus()); | 
|  | const unsigned long limit = 200000000; | 
|  |  | 
|  | sysctl_sched_min_granularity *= factor; | 
|  | if (sysctl_sched_min_granularity > limit) | 
|  | sysctl_sched_min_granularity = limit; | 
|  |  | 
|  | sysctl_sched_latency *= factor; | 
|  | if (sysctl_sched_latency > limit) | 
|  | sysctl_sched_latency = limit; | 
|  |  | 
|  | sysctl_sched_wakeup_granularity *= factor; | 
|  |  | 
|  | sysctl_sched_shares_ratelimit *= factor; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * This is how migration works: | 
|  | * | 
|  | * 1) we queue a struct migration_req structure in the source CPU's | 
|  | *    runqueue and wake up that CPU's migration thread. | 
|  | * 2) we down() the locked semaphore => thread blocks. | 
|  | * 3) migration thread wakes up (implicitly it forces the migrated | 
|  | *    thread off the CPU) | 
|  | * 4) it gets the migration request and checks whether the migrated | 
|  | *    task is still in the wrong runqueue. | 
|  | * 5) if it's in the wrong runqueue then the migration thread removes | 
|  | *    it and puts it into the right queue. | 
|  | * 6) migration thread up()s the semaphore. | 
|  | * 7) we wake up and the migration is done. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Change a given task's CPU affinity. Migrate the thread to a | 
|  | * proper CPU and schedule it away if the CPU it's executing on | 
|  | * is removed from the allowed bitmask. | 
|  | * | 
|  | * NOTE: the caller must have a valid reference to the task, the | 
|  | * task must not exit() & deallocate itself prematurely. The | 
|  | * call is not atomic; no spinlocks may be held. | 
|  | */ | 
|  | int set_cpus_allowed_ptr(struct task_struct *p, const cpumask_t *new_mask) | 
|  | { | 
|  | struct migration_req req; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  | int ret = 0; | 
|  |  | 
|  | rq = task_rq_lock(p, &flags); | 
|  | if (!cpus_intersects(*new_mask, cpu_online_map)) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (unlikely((p->flags & PF_THREAD_BOUND) && p != current && | 
|  | !cpus_equal(p->cpus_allowed, *new_mask))) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (p->sched_class->set_cpus_allowed) | 
|  | p->sched_class->set_cpus_allowed(p, new_mask); | 
|  | else { | 
|  | p->cpus_allowed = *new_mask; | 
|  | p->rt.nr_cpus_allowed = cpus_weight(*new_mask); | 
|  | } | 
|  |  | 
|  | /* Can the task run on the task's current CPU? If so, we're done */ | 
|  | if (cpu_isset(task_cpu(p), *new_mask)) | 
|  | goto out; | 
|  |  | 
|  | if (migrate_task(p, any_online_cpu(*new_mask), &req)) { | 
|  | /* Need help from migration thread: drop lock and wait. */ | 
|  | task_rq_unlock(rq, &flags); | 
|  | wake_up_process(rq->migration_thread); | 
|  | wait_for_completion(&req.done); | 
|  | tlb_migrate_finish(p->mm); | 
|  | return 0; | 
|  | } | 
|  | out: | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); | 
|  |  | 
|  | /* | 
|  | * Move (not current) task off this cpu, onto dest cpu. We're doing | 
|  | * this because either it can't run here any more (set_cpus_allowed() | 
|  | * away from this CPU, or CPU going down), or because we're | 
|  | * attempting to rebalance this task on exec (sched_exec). | 
|  | * | 
|  | * So we race with normal scheduler movements, but that's OK, as long | 
|  | * as the task is no longer on this CPU. | 
|  | * | 
|  | * Returns non-zero if task was successfully migrated. | 
|  | */ | 
|  | static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) | 
|  | { | 
|  | struct rq *rq_dest, *rq_src; | 
|  | int ret = 0, on_rq; | 
|  |  | 
|  | if (unlikely(!cpu_active(dest_cpu))) | 
|  | return ret; | 
|  |  | 
|  | rq_src = cpu_rq(src_cpu); | 
|  | rq_dest = cpu_rq(dest_cpu); | 
|  |  | 
|  | double_rq_lock(rq_src, rq_dest); | 
|  | /* Already moved. */ | 
|  | if (task_cpu(p) != src_cpu) | 
|  | goto done; | 
|  | /* Affinity changed (again). */ | 
|  | if (!cpu_isset(dest_cpu, p->cpus_allowed)) | 
|  | goto fail; | 
|  |  | 
|  | on_rq = p->se.on_rq; | 
|  | if (on_rq) | 
|  | deactivate_task(rq_src, p, 0); | 
|  |  | 
|  | set_task_cpu(p, dest_cpu); | 
|  | if (on_rq) { | 
|  | activate_task(rq_dest, p, 0); | 
|  | check_preempt_curr(rq_dest, p, 0); | 
|  | } | 
|  | done: | 
|  | ret = 1; | 
|  | fail: | 
|  | double_rq_unlock(rq_src, rq_dest); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migration_thread - this is a highprio system thread that performs | 
|  | * thread migration by bumping thread off CPU then 'pushing' onto | 
|  | * another runqueue. | 
|  | */ | 
|  | static int migration_thread(void *data) | 
|  | { | 
|  | int cpu = (long)data; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = cpu_rq(cpu); | 
|  | BUG_ON(rq->migration_thread != current); | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | while (!kthread_should_stop()) { | 
|  | struct migration_req *req; | 
|  | struct list_head *head; | 
|  |  | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | if (cpu_is_offline(cpu)) { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | goto wait_to_die; | 
|  | } | 
|  |  | 
|  | if (rq->active_balance) { | 
|  | active_load_balance(rq, cpu); | 
|  | rq->active_balance = 0; | 
|  | } | 
|  |  | 
|  | head = &rq->migration_queue; | 
|  |  | 
|  | if (list_empty(head)) { | 
|  | spin_unlock_irq(&rq->lock); | 
|  | schedule(); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | continue; | 
|  | } | 
|  | req = list_entry(head->next, struct migration_req, list); | 
|  | list_del_init(head->next); | 
|  |  | 
|  | spin_unlock(&rq->lock); | 
|  | __migrate_task(req->task, cpu, req->dest_cpu); | 
|  | local_irq_enable(); | 
|  |  | 
|  | complete(&req->done); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  |  | 
|  | wait_to_die: | 
|  | /* Wait for kthread_stop */ | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | while (!kthread_should_stop()) { | 
|  | schedule(); | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | } | 
|  | __set_current_state(TASK_RUNNING); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  |  | 
|  | static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | local_irq_disable(); | 
|  | ret = __migrate_task(p, src_cpu, dest_cpu); | 
|  | local_irq_enable(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out where task on dead CPU should go, use force if necessary. | 
|  | * NOTE: interrupts should be disabled by the caller | 
|  | */ | 
|  | static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p) | 
|  | { | 
|  | unsigned long flags; | 
|  | cpumask_t mask; | 
|  | struct rq *rq; | 
|  | int dest_cpu; | 
|  |  | 
|  | do { | 
|  | /* On same node? */ | 
|  | mask = node_to_cpumask(cpu_to_node(dead_cpu)); | 
|  | cpus_and(mask, mask, p->cpus_allowed); | 
|  | dest_cpu = any_online_cpu(mask); | 
|  |  | 
|  | /* On any allowed CPU? */ | 
|  | if (dest_cpu >= nr_cpu_ids) | 
|  | dest_cpu = any_online_cpu(p->cpus_allowed); | 
|  |  | 
|  | /* No more Mr. Nice Guy. */ | 
|  | if (dest_cpu >= nr_cpu_ids) { | 
|  | cpumask_t cpus_allowed; | 
|  |  | 
|  | cpuset_cpus_allowed_locked(p, &cpus_allowed); | 
|  | /* | 
|  | * Try to stay on the same cpuset, where the | 
|  | * current cpuset may be a subset of all cpus. | 
|  | * The cpuset_cpus_allowed_locked() variant of | 
|  | * cpuset_cpus_allowed() will not block. It must be | 
|  | * called within calls to cpuset_lock/cpuset_unlock. | 
|  | */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | p->cpus_allowed = cpus_allowed; | 
|  | dest_cpu = any_online_cpu(p->cpus_allowed); | 
|  | task_rq_unlock(rq, &flags); | 
|  |  | 
|  | /* | 
|  | * Don't tell them about moving exiting tasks or | 
|  | * kernel threads (both mm NULL), since they never | 
|  | * leave kernel. | 
|  | */ | 
|  | if (p->mm && printk_ratelimit()) { | 
|  | printk(KERN_INFO "process %d (%s) no " | 
|  | "longer affine to cpu%d\n", | 
|  | task_pid_nr(p), p->comm, dead_cpu); | 
|  | } | 
|  | } | 
|  | } while (!__migrate_task_irq(p, dead_cpu, dest_cpu)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * While a dead CPU has no uninterruptible tasks queued at this point, | 
|  | * it might still have a nonzero ->nr_uninterruptible counter, because | 
|  | * for performance reasons the counter is not stricly tracking tasks to | 
|  | * their home CPUs. So we just add the counter to another CPU's counter, | 
|  | * to keep the global sum constant after CPU-down: | 
|  | */ | 
|  | static void migrate_nr_uninterruptible(struct rq *rq_src) | 
|  | { | 
|  | struct rq *rq_dest = cpu_rq(any_online_cpu(*CPU_MASK_ALL_PTR)); | 
|  | unsigned long flags; | 
|  |  | 
|  | local_irq_save(flags); | 
|  | double_rq_lock(rq_src, rq_dest); | 
|  | rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible; | 
|  | rq_src->nr_uninterruptible = 0; | 
|  | double_rq_unlock(rq_src, rq_dest); | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* Run through task list and migrate tasks from the dead cpu. */ | 
|  | static void migrate_live_tasks(int src_cpu) | 
|  | { | 
|  | struct task_struct *p, *t; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | do_each_thread(t, p) { | 
|  | if (p == current) | 
|  | continue; | 
|  |  | 
|  | if (task_cpu(p) == src_cpu) | 
|  | move_task_off_dead_cpu(src_cpu, p); | 
|  | } while_each_thread(t, p); | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Schedules idle task to be the next runnable task on current CPU. | 
|  | * It does so by boosting its priority to highest possible. | 
|  | * Used by CPU offline code. | 
|  | */ | 
|  | void sched_idle_next(void) | 
|  | { | 
|  | int this_cpu = smp_processor_id(); | 
|  | struct rq *rq = cpu_rq(this_cpu); | 
|  | struct task_struct *p = rq->idle; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* cpu has to be offline */ | 
|  | BUG_ON(cpu_online(this_cpu)); | 
|  |  | 
|  | /* | 
|  | * Strictly not necessary since rest of the CPUs are stopped by now | 
|  | * and interrupts disabled on the current cpu. | 
|  | */ | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | activate_task(rq, p, 0); | 
|  |  | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensures that the idle task is using init_mm right before its cpu goes | 
|  | * offline. | 
|  | */ | 
|  | void idle_task_exit(void) | 
|  | { | 
|  | struct mm_struct *mm = current->active_mm; | 
|  |  | 
|  | BUG_ON(cpu_online(smp_processor_id())); | 
|  |  | 
|  | if (mm != &init_mm) | 
|  | switch_mm(mm, &init_mm, current); | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | /* called under rq->lock with disabled interrupts */ | 
|  | static void migrate_dead(unsigned int dead_cpu, struct task_struct *p) | 
|  | { | 
|  | struct rq *rq = cpu_rq(dead_cpu); | 
|  |  | 
|  | /* Must be exiting, otherwise would be on tasklist. */ | 
|  | BUG_ON(!p->exit_state); | 
|  |  | 
|  | /* Cannot have done final schedule yet: would have vanished. */ | 
|  | BUG_ON(p->state == TASK_DEAD); | 
|  |  | 
|  | get_task_struct(p); | 
|  |  | 
|  | /* | 
|  | * Drop lock around migration; if someone else moves it, | 
|  | * that's OK. No task can be added to this CPU, so iteration is | 
|  | * fine. | 
|  | */ | 
|  | spin_unlock_irq(&rq->lock); | 
|  | move_task_off_dead_cpu(dead_cpu, p); | 
|  | spin_lock_irq(&rq->lock); | 
|  |  | 
|  | put_task_struct(p); | 
|  | } | 
|  |  | 
|  | /* release_task() removes task from tasklist, so we won't find dead tasks. */ | 
|  | static void migrate_dead_tasks(unsigned int dead_cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(dead_cpu); | 
|  | struct task_struct *next; | 
|  |  | 
|  | for ( ; ; ) { | 
|  | if (!rq->nr_running) | 
|  | break; | 
|  | update_rq_clock(rq); | 
|  | next = pick_next_task(rq, rq->curr); | 
|  | if (!next) | 
|  | break; | 
|  | next->sched_class->put_prev_task(rq, next); | 
|  | migrate_dead(dead_cpu, next); | 
|  |  | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL) | 
|  |  | 
|  | static struct ctl_table sd_ctl_dir[] = { | 
|  | { | 
|  | .procname	= "sched_domain", | 
|  | .mode		= 0555, | 
|  | }, | 
|  | {0, }, | 
|  | }; | 
|  |  | 
|  | static struct ctl_table sd_ctl_root[] = { | 
|  | { | 
|  | .ctl_name	= CTL_KERN, | 
|  | .procname	= "kernel", | 
|  | .mode		= 0555, | 
|  | .child		= sd_ctl_dir, | 
|  | }, | 
|  | {0, }, | 
|  | }; | 
|  |  | 
|  | static struct ctl_table *sd_alloc_ctl_entry(int n) | 
|  | { | 
|  | struct ctl_table *entry = | 
|  | kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL); | 
|  |  | 
|  | return entry; | 
|  | } | 
|  |  | 
|  | static void sd_free_ctl_entry(struct ctl_table **tablep) | 
|  | { | 
|  | struct ctl_table *entry; | 
|  |  | 
|  | /* | 
|  | * In the intermediate directories, both the child directory and | 
|  | * procname are dynamically allocated and could fail but the mode | 
|  | * will always be set. In the lowest directory the names are | 
|  | * static strings and all have proc handlers. | 
|  | */ | 
|  | for (entry = *tablep; entry->mode; entry++) { | 
|  | if (entry->child) | 
|  | sd_free_ctl_entry(&entry->child); | 
|  | if (entry->proc_handler == NULL) | 
|  | kfree(entry->procname); | 
|  | } | 
|  |  | 
|  | kfree(*tablep); | 
|  | *tablep = NULL; | 
|  | } | 
|  |  | 
|  | static void | 
|  | set_table_entry(struct ctl_table *entry, | 
|  | const char *procname, void *data, int maxlen, | 
|  | mode_t mode, proc_handler *proc_handler) | 
|  | { | 
|  | entry->procname = procname; | 
|  | entry->data = data; | 
|  | entry->maxlen = maxlen; | 
|  | entry->mode = mode; | 
|  | entry->proc_handler = proc_handler; | 
|  | } | 
|  |  | 
|  | static struct ctl_table * | 
|  | sd_alloc_ctl_domain_table(struct sched_domain *sd) | 
|  | { | 
|  | struct ctl_table *table = sd_alloc_ctl_entry(13); | 
|  |  | 
|  | if (table == NULL) | 
|  | return NULL; | 
|  |  | 
|  | set_table_entry(&table[0], "min_interval", &sd->min_interval, | 
|  | sizeof(long), 0644, proc_doulongvec_minmax); | 
|  | set_table_entry(&table[1], "max_interval", &sd->max_interval, | 
|  | sizeof(long), 0644, proc_doulongvec_minmax); | 
|  | set_table_entry(&table[2], "busy_idx", &sd->busy_idx, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[3], "idle_idx", &sd->idle_idx, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[5], "wake_idx", &sd->wake_idx, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[7], "busy_factor", &sd->busy_factor, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[9], "cache_nice_tries", | 
|  | &sd->cache_nice_tries, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[10], "flags", &sd->flags, | 
|  | sizeof(int), 0644, proc_dointvec_minmax); | 
|  | set_table_entry(&table[11], "name", sd->name, | 
|  | CORENAME_MAX_SIZE, 0444, proc_dostring); | 
|  | /* &table[12] is terminator */ | 
|  |  | 
|  | return table; | 
|  | } | 
|  |  | 
|  | static ctl_table *sd_alloc_ctl_cpu_table(int cpu) | 
|  | { | 
|  | struct ctl_table *entry, *table; | 
|  | struct sched_domain *sd; | 
|  | int domain_num = 0, i; | 
|  | char buf[32]; | 
|  |  | 
|  | for_each_domain(cpu, sd) | 
|  | domain_num++; | 
|  | entry = table = sd_alloc_ctl_entry(domain_num + 1); | 
|  | if (table == NULL) | 
|  | return NULL; | 
|  |  | 
|  | i = 0; | 
|  | for_each_domain(cpu, sd) { | 
|  | snprintf(buf, 32, "domain%d", i); | 
|  | entry->procname = kstrdup(buf, GFP_KERNEL); | 
|  | entry->mode = 0555; | 
|  | entry->child = sd_alloc_ctl_domain_table(sd); | 
|  | entry++; | 
|  | i++; | 
|  | } | 
|  | return table; | 
|  | } | 
|  |  | 
|  | static struct ctl_table_header *sd_sysctl_header; | 
|  | static void register_sched_domain_sysctl(void) | 
|  | { | 
|  | int i, cpu_num = num_online_cpus(); | 
|  | struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1); | 
|  | char buf[32]; | 
|  |  | 
|  | WARN_ON(sd_ctl_dir[0].child); | 
|  | sd_ctl_dir[0].child = entry; | 
|  |  | 
|  | if (entry == NULL) | 
|  | return; | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | snprintf(buf, 32, "cpu%d", i); | 
|  | entry->procname = kstrdup(buf, GFP_KERNEL); | 
|  | entry->mode = 0555; | 
|  | entry->child = sd_alloc_ctl_cpu_table(i); | 
|  | entry++; | 
|  | } | 
|  |  | 
|  | WARN_ON(sd_sysctl_header); | 
|  | sd_sysctl_header = register_sysctl_table(sd_ctl_root); | 
|  | } | 
|  |  | 
|  | /* may be called multiple times per register */ | 
|  | static void unregister_sched_domain_sysctl(void) | 
|  | { | 
|  | if (sd_sysctl_header) | 
|  | unregister_sysctl_table(sd_sysctl_header); | 
|  | sd_sysctl_header = NULL; | 
|  | if (sd_ctl_dir[0].child) | 
|  | sd_free_ctl_entry(&sd_ctl_dir[0].child); | 
|  | } | 
|  | #else | 
|  | static void register_sched_domain_sysctl(void) | 
|  | { | 
|  | } | 
|  | static void unregister_sched_domain_sysctl(void) | 
|  | { | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void set_rq_online(struct rq *rq) | 
|  | { | 
|  | if (!rq->online) { | 
|  | const struct sched_class *class; | 
|  |  | 
|  | cpu_set(rq->cpu, rq->rd->online); | 
|  | rq->online = 1; | 
|  |  | 
|  | for_each_class(class) { | 
|  | if (class->rq_online) | 
|  | class->rq_online(rq); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void set_rq_offline(struct rq *rq) | 
|  | { | 
|  | if (rq->online) { | 
|  | const struct sched_class *class; | 
|  |  | 
|  | for_each_class(class) { | 
|  | if (class->rq_offline) | 
|  | class->rq_offline(rq); | 
|  | } | 
|  |  | 
|  | cpu_clear(rq->cpu, rq->rd->online); | 
|  | rq->online = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * migration_call - callback that gets triggered when a CPU is added. | 
|  | * Here we can start up the necessary migration thread for the new CPU. | 
|  | */ | 
|  | static int __cpuinit | 
|  | migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int cpu = (long)hcpu; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | switch (action) { | 
|  |  | 
|  | case CPU_UP_PREPARE: | 
|  | case CPU_UP_PREPARE_FROZEN: | 
|  | p = kthread_create(migration_thread, hcpu, "migration/%d", cpu); | 
|  | if (IS_ERR(p)) | 
|  | return NOTIFY_BAD; | 
|  | kthread_bind(p, cpu); | 
|  | /* Must be high prio: stop_machine expects to yield to it. */ | 
|  | rq = task_rq_lock(p, &flags); | 
|  | __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1); | 
|  | task_rq_unlock(rq, &flags); | 
|  | cpu_rq(cpu)->migration_thread = p; | 
|  | break; | 
|  |  | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | /* Strictly unnecessary, as first user will wake it. */ | 
|  | wake_up_process(cpu_rq(cpu)->migration_thread); | 
|  |  | 
|  | /* Update our root-domain */ | 
|  | rq = cpu_rq(cpu); | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  | if (rq->rd) { | 
|  | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | 
|  |  | 
|  | set_rq_online(rq); | 
|  | } | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | break; | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_UP_CANCELED: | 
|  | case CPU_UP_CANCELED_FROZEN: | 
|  | if (!cpu_rq(cpu)->migration_thread) | 
|  | break; | 
|  | /* Unbind it from offline cpu so it can run. Fall thru. */ | 
|  | kthread_bind(cpu_rq(cpu)->migration_thread, | 
|  | any_online_cpu(cpu_online_map)); | 
|  | kthread_stop(cpu_rq(cpu)->migration_thread); | 
|  | cpu_rq(cpu)->migration_thread = NULL; | 
|  | break; | 
|  |  | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */ | 
|  | migrate_live_tasks(cpu); | 
|  | rq = cpu_rq(cpu); | 
|  | kthread_stop(rq->migration_thread); | 
|  | rq->migration_thread = NULL; | 
|  | /* Idle task back to normal (off runqueue, low prio) */ | 
|  | spin_lock_irq(&rq->lock); | 
|  | update_rq_clock(rq); | 
|  | deactivate_task(rq, rq->idle, 0); | 
|  | rq->idle->static_prio = MAX_PRIO; | 
|  | __setscheduler(rq, rq->idle, SCHED_NORMAL, 0); | 
|  | rq->idle->sched_class = &idle_sched_class; | 
|  | migrate_dead_tasks(cpu); | 
|  | spin_unlock_irq(&rq->lock); | 
|  | cpuset_unlock(); | 
|  | migrate_nr_uninterruptible(rq); | 
|  | BUG_ON(rq->nr_running != 0); | 
|  |  | 
|  | /* | 
|  | * No need to migrate the tasks: it was best-effort if | 
|  | * they didn't take sched_hotcpu_mutex. Just wake up | 
|  | * the requestors. | 
|  | */ | 
|  | spin_lock_irq(&rq->lock); | 
|  | while (!list_empty(&rq->migration_queue)) { | 
|  | struct migration_req *req; | 
|  |  | 
|  | req = list_entry(rq->migration_queue.next, | 
|  | struct migration_req, list); | 
|  | list_del_init(&req->list); | 
|  | complete(&req->done); | 
|  | } | 
|  | spin_unlock_irq(&rq->lock); | 
|  | break; | 
|  |  | 
|  | case CPU_DYING: | 
|  | case CPU_DYING_FROZEN: | 
|  | /* Update our root-domain */ | 
|  | rq = cpu_rq(cpu); | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  | if (rq->rd) { | 
|  | BUG_ON(!cpu_isset(cpu, rq->rd->span)); | 
|  | set_rq_offline(rq); | 
|  | } | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | return NOTIFY_OK; | 
|  | } | 
|  |  | 
|  | /* Register at highest priority so that task migration (migrate_all_tasks) | 
|  | * happens before everything else. | 
|  | */ | 
|  | static struct notifier_block __cpuinitdata migration_notifier = { | 
|  | .notifier_call = migration_call, | 
|  | .priority = 10 | 
|  | }; | 
|  |  | 
|  | static int __init migration_init(void) | 
|  | { | 
|  | void *cpu = (void *)(long)smp_processor_id(); | 
|  | int err; | 
|  |  | 
|  | /* Start one for the boot CPU: */ | 
|  | err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu); | 
|  | BUG_ON(err == NOTIFY_BAD); | 
|  | migration_call(&migration_notifier, CPU_ONLINE, cpu); | 
|  | register_cpu_notifier(&migration_notifier); | 
|  |  | 
|  | return err; | 
|  | } | 
|  | early_initcall(migration_init); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  |  | 
|  | static inline const char *sd_level_to_string(enum sched_domain_level lvl) | 
|  | { | 
|  | switch (lvl) { | 
|  | case SD_LV_NONE: | 
|  | return "NONE"; | 
|  | case SD_LV_SIBLING: | 
|  | return "SIBLING"; | 
|  | case SD_LV_MC: | 
|  | return "MC"; | 
|  | case SD_LV_CPU: | 
|  | return "CPU"; | 
|  | case SD_LV_NODE: | 
|  | return "NODE"; | 
|  | case SD_LV_ALLNODES: | 
|  | return "ALLNODES"; | 
|  | case SD_LV_MAX: | 
|  | return "MAX"; | 
|  |  | 
|  | } | 
|  | return "MAX"; | 
|  | } | 
|  |  | 
|  | static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, | 
|  | cpumask_t *groupmask) | 
|  | { | 
|  | struct sched_group *group = sd->groups; | 
|  | char str[256]; | 
|  |  | 
|  | cpulist_scnprintf(str, sizeof(str), sd->span); | 
|  | cpus_clear(*groupmask); | 
|  |  | 
|  | printk(KERN_DEBUG "%*s domain %d: ", level, "", level); | 
|  |  | 
|  | if (!(sd->flags & SD_LOAD_BALANCE)) { | 
|  | printk("does not load-balance\n"); | 
|  | if (sd->parent) | 
|  | printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" | 
|  | " has parent"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | printk(KERN_CONT "span %s level %s\n", | 
|  | str, sd_level_to_string(sd->level)); | 
|  |  | 
|  | if (!cpu_isset(cpu, sd->span)) { | 
|  | printk(KERN_ERR "ERROR: domain->span does not contain " | 
|  | "CPU%d\n", cpu); | 
|  | } | 
|  | if (!cpu_isset(cpu, group->cpumask)) { | 
|  | printk(KERN_ERR "ERROR: domain->groups does not contain" | 
|  | " CPU%d\n", cpu); | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "%*s groups:", level + 1, ""); | 
|  | do { | 
|  | if (!group) { | 
|  | printk("\n"); | 
|  | printk(KERN_ERR "ERROR: group is NULL\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!group->__cpu_power) { | 
|  | printk(KERN_CONT "\n"); | 
|  | printk(KERN_ERR "ERROR: domain->cpu_power not " | 
|  | "set\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!cpus_weight(group->cpumask)) { | 
|  | printk(KERN_CONT "\n"); | 
|  | printk(KERN_ERR "ERROR: empty group\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (cpus_intersects(*groupmask, group->cpumask)) { | 
|  | printk(KERN_CONT "\n"); | 
|  | printk(KERN_ERR "ERROR: repeated CPUs\n"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | cpus_or(*groupmask, *groupmask, group->cpumask); | 
|  |  | 
|  | cpulist_scnprintf(str, sizeof(str), group->cpumask); | 
|  | printk(KERN_CONT " %s", str); | 
|  |  | 
|  | group = group->next; | 
|  | } while (group != sd->groups); | 
|  | printk(KERN_CONT "\n"); | 
|  |  | 
|  | if (!cpus_equal(sd->span, *groupmask)) | 
|  | printk(KERN_ERR "ERROR: groups don't span domain->span\n"); | 
|  |  | 
|  | if (sd->parent && !cpus_subset(*groupmask, sd->parent->span)) | 
|  | printk(KERN_ERR "ERROR: parent span is not a superset " | 
|  | "of domain->span\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void sched_domain_debug(struct sched_domain *sd, int cpu) | 
|  | { | 
|  | cpumask_t *groupmask; | 
|  | int level = 0; | 
|  |  | 
|  | if (!sd) { | 
|  | printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); | 
|  |  | 
|  | groupmask = kmalloc(sizeof(cpumask_t), GFP_KERNEL); | 
|  | if (!groupmask) { | 
|  | printk(KERN_DEBUG "Cannot load-balance (out of memory)\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (;;) { | 
|  | if (sched_domain_debug_one(sd, cpu, level, groupmask)) | 
|  | break; | 
|  | level++; | 
|  | sd = sd->parent; | 
|  | if (!sd) | 
|  | break; | 
|  | } | 
|  | kfree(groupmask); | 
|  | } | 
|  | #else /* !CONFIG_SCHED_DEBUG */ | 
|  | # define sched_domain_debug(sd, cpu) do { } while (0) | 
|  | #endif /* CONFIG_SCHED_DEBUG */ | 
|  |  | 
|  | static int sd_degenerate(struct sched_domain *sd) | 
|  | { | 
|  | if (cpus_weight(sd->span) == 1) | 
|  | return 1; | 
|  |  | 
|  | /* Following flags need at least 2 groups */ | 
|  | if (sd->flags & (SD_LOAD_BALANCE | | 
|  | SD_BALANCE_NEWIDLE | | 
|  | SD_BALANCE_FORK | | 
|  | SD_BALANCE_EXEC | | 
|  | SD_SHARE_CPUPOWER | | 
|  | SD_SHARE_PKG_RESOURCES)) { | 
|  | if (sd->groups != sd->groups->next) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Following flags don't use groups */ | 
|  | if (sd->flags & (SD_WAKE_IDLE | | 
|  | SD_WAKE_AFFINE | | 
|  | SD_WAKE_BALANCE)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int | 
|  | sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) | 
|  | { | 
|  | unsigned long cflags = sd->flags, pflags = parent->flags; | 
|  |  | 
|  | if (sd_degenerate(parent)) | 
|  | return 1; | 
|  |  | 
|  | if (!cpus_equal(sd->span, parent->span)) | 
|  | return 0; | 
|  |  | 
|  | /* Does parent contain flags not in child? */ | 
|  | /* WAKE_BALANCE is a subset of WAKE_AFFINE */ | 
|  | if (cflags & SD_WAKE_AFFINE) | 
|  | pflags &= ~SD_WAKE_BALANCE; | 
|  | /* Flags needing groups don't count if only 1 group in parent */ | 
|  | if (parent->groups == parent->groups->next) { | 
|  | pflags &= ~(SD_LOAD_BALANCE | | 
|  | SD_BALANCE_NEWIDLE | | 
|  | SD_BALANCE_FORK | | 
|  | SD_BALANCE_EXEC | | 
|  | SD_SHARE_CPUPOWER | | 
|  | SD_SHARE_PKG_RESOURCES); | 
|  | } | 
|  | if (~cflags & pflags) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void rq_attach_root(struct rq *rq, struct root_domain *rd) | 
|  | { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  |  | 
|  | if (rq->rd) { | 
|  | struct root_domain *old_rd = rq->rd; | 
|  |  | 
|  | if (cpu_isset(rq->cpu, old_rd->online)) | 
|  | set_rq_offline(rq); | 
|  |  | 
|  | cpu_clear(rq->cpu, old_rd->span); | 
|  |  | 
|  | if (atomic_dec_and_test(&old_rd->refcount)) | 
|  | kfree(old_rd); | 
|  | } | 
|  |  | 
|  | atomic_inc(&rd->refcount); | 
|  | rq->rd = rd; | 
|  |  | 
|  | cpu_set(rq->cpu, rd->span); | 
|  | if (cpu_isset(rq->cpu, cpu_online_map)) | 
|  | set_rq_online(rq); | 
|  |  | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | static void init_rootdomain(struct root_domain *rd) | 
|  | { | 
|  | memset(rd, 0, sizeof(*rd)); | 
|  |  | 
|  | cpus_clear(rd->span); | 
|  | cpus_clear(rd->online); | 
|  |  | 
|  | cpupri_init(&rd->cpupri); | 
|  | } | 
|  |  | 
|  | static void init_defrootdomain(void) | 
|  | { | 
|  | init_rootdomain(&def_root_domain); | 
|  | atomic_set(&def_root_domain.refcount, 1); | 
|  | } | 
|  |  | 
|  | static struct root_domain *alloc_rootdomain(void) | 
|  | { | 
|  | struct root_domain *rd; | 
|  |  | 
|  | rd = kmalloc(sizeof(*rd), GFP_KERNEL); | 
|  | if (!rd) | 
|  | return NULL; | 
|  |  | 
|  | init_rootdomain(rd); | 
|  |  | 
|  | return rd; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach the domain 'sd' to 'cpu' as its base domain. Callers must | 
|  | * hold the hotplug lock. | 
|  | */ | 
|  | static void | 
|  | cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | struct sched_domain *tmp; | 
|  |  | 
|  | /* Remove the sched domains which do not contribute to scheduling. */ | 
|  | for (tmp = sd; tmp; ) { | 
|  | struct sched_domain *parent = tmp->parent; | 
|  | if (!parent) | 
|  | break; | 
|  |  | 
|  | if (sd_parent_degenerate(tmp, parent)) { | 
|  | tmp->parent = parent->parent; | 
|  | if (parent->parent) | 
|  | parent->parent->child = tmp; | 
|  | } else | 
|  | tmp = tmp->parent; | 
|  | } | 
|  |  | 
|  | if (sd && sd_degenerate(sd)) { | 
|  | sd = sd->parent; | 
|  | if (sd) | 
|  | sd->child = NULL; | 
|  | } | 
|  |  | 
|  | sched_domain_debug(sd, cpu); | 
|  |  | 
|  | rq_attach_root(rq, rd); | 
|  | rcu_assign_pointer(rq->sd, sd); | 
|  | } | 
|  |  | 
|  | /* cpus with isolated domains */ | 
|  | static cpumask_t cpu_isolated_map = CPU_MASK_NONE; | 
|  |  | 
|  | /* Setup the mask of cpus configured for isolated domains */ | 
|  | static int __init isolated_cpu_setup(char *str) | 
|  | { | 
|  | static int __initdata ints[NR_CPUS]; | 
|  | int i; | 
|  |  | 
|  | str = get_options(str, ARRAY_SIZE(ints), ints); | 
|  | cpus_clear(cpu_isolated_map); | 
|  | for (i = 1; i <= ints[0]; i++) | 
|  | if (ints[i] < NR_CPUS) | 
|  | cpu_set(ints[i], cpu_isolated_map); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("isolcpus=", isolated_cpu_setup); | 
|  |  | 
|  | /* | 
|  | * init_sched_build_groups takes the cpumask we wish to span, and a pointer | 
|  | * to a function which identifies what group(along with sched group) a CPU | 
|  | * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS | 
|  | * (due to the fact that we keep track of groups covered with a cpumask_t). | 
|  | * | 
|  | * init_sched_build_groups will build a circular linked list of the groups | 
|  | * covered by the given span, and will set each group's ->cpumask correctly, | 
|  | * and ->cpu_power to 0. | 
|  | */ | 
|  | static void | 
|  | init_sched_build_groups(const cpumask_t *span, const cpumask_t *cpu_map, | 
|  | int (*group_fn)(int cpu, const cpumask_t *cpu_map, | 
|  | struct sched_group **sg, | 
|  | cpumask_t *tmpmask), | 
|  | cpumask_t *covered, cpumask_t *tmpmask) | 
|  | { | 
|  | struct sched_group *first = NULL, *last = NULL; | 
|  | int i; | 
|  |  | 
|  | cpus_clear(*covered); | 
|  |  | 
|  | for_each_cpu_mask_nr(i, *span) { | 
|  | struct sched_group *sg; | 
|  | int group = group_fn(i, cpu_map, &sg, tmpmask); | 
|  | int j; | 
|  |  | 
|  | if (cpu_isset(i, *covered)) | 
|  | continue; | 
|  |  | 
|  | cpus_clear(sg->cpumask); | 
|  | sg->__cpu_power = 0; | 
|  |  | 
|  | for_each_cpu_mask_nr(j, *span) { | 
|  | if (group_fn(j, cpu_map, NULL, tmpmask) != group) | 
|  | continue; | 
|  |  | 
|  | cpu_set(j, *covered); | 
|  | cpu_set(j, sg->cpumask); | 
|  | } | 
|  | if (!first) | 
|  | first = sg; | 
|  | if (last) | 
|  | last->next = sg; | 
|  | last = sg; | 
|  | } | 
|  | last->next = first; | 
|  | } | 
|  |  | 
|  | #define SD_NODES_PER_DOMAIN 16 | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  |  | 
|  | /** | 
|  | * find_next_best_node - find the next node to include in a sched_domain | 
|  | * @node: node whose sched_domain we're building | 
|  | * @used_nodes: nodes already in the sched_domain | 
|  | * | 
|  | * Find the next node to include in a given scheduling domain. Simply | 
|  | * finds the closest node not already in the @used_nodes map. | 
|  | * | 
|  | * Should use nodemask_t. | 
|  | */ | 
|  | static int find_next_best_node(int node, nodemask_t *used_nodes) | 
|  | { | 
|  | int i, n, val, min_val, best_node = 0; | 
|  |  | 
|  | min_val = INT_MAX; | 
|  |  | 
|  | for (i = 0; i < nr_node_ids; i++) { | 
|  | /* Start at @node */ | 
|  | n = (node + i) % nr_node_ids; | 
|  |  | 
|  | if (!nr_cpus_node(n)) | 
|  | continue; | 
|  |  | 
|  | /* Skip already used nodes */ | 
|  | if (node_isset(n, *used_nodes)) | 
|  | continue; | 
|  |  | 
|  | /* Simple min distance search */ | 
|  | val = node_distance(node, n); | 
|  |  | 
|  | if (val < min_val) { | 
|  | min_val = val; | 
|  | best_node = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | node_set(best_node, *used_nodes); | 
|  | return best_node; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * sched_domain_node_span - get a cpumask for a node's sched_domain | 
|  | * @node: node whose cpumask we're constructing | 
|  | * @span: resulting cpumask | 
|  | * | 
|  | * Given a node, construct a good cpumask for its sched_domain to span. It | 
|  | * should be one that prevents unnecessary balancing, but also spreads tasks | 
|  | * out optimally. | 
|  | */ | 
|  | static void sched_domain_node_span(int node, cpumask_t *span) | 
|  | { | 
|  | nodemask_t used_nodes; | 
|  | node_to_cpumask_ptr(nodemask, node); | 
|  | int i; | 
|  |  | 
|  | cpus_clear(*span); | 
|  | nodes_clear(used_nodes); | 
|  |  | 
|  | cpus_or(*span, *span, *nodemask); | 
|  | node_set(node, used_nodes); | 
|  |  | 
|  | for (i = 1; i < SD_NODES_PER_DOMAIN; i++) { | 
|  | int next_node = find_next_best_node(node, &used_nodes); | 
|  |  | 
|  | node_to_cpumask_ptr_next(nodemask, next_node); | 
|  | cpus_or(*span, *span, *nodemask); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | int sched_smt_power_savings = 0, sched_mc_power_savings = 0; | 
|  |  | 
|  | /* | 
|  | * SMT sched-domains: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static DEFINE_PER_CPU(struct sched_domain, cpu_domains); | 
|  | static DEFINE_PER_CPU(struct sched_group, sched_group_cpus); | 
|  |  | 
|  | static int | 
|  | cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 
|  | cpumask_t *unused) | 
|  | { | 
|  | if (sg) | 
|  | *sg = &per_cpu(sched_group_cpus, cpu); | 
|  | return cpu; | 
|  | } | 
|  | #endif /* CONFIG_SCHED_SMT */ | 
|  |  | 
|  | /* | 
|  | * multi-core sched-domains: | 
|  | */ | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | static DEFINE_PER_CPU(struct sched_domain, core_domains); | 
|  | static DEFINE_PER_CPU(struct sched_group, sched_group_core); | 
|  | #endif /* CONFIG_SCHED_MC */ | 
|  |  | 
|  | #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) | 
|  | static int | 
|  | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 
|  | cpumask_t *mask) | 
|  | { | 
|  | int group; | 
|  |  | 
|  | *mask = per_cpu(cpu_sibling_map, cpu); | 
|  | cpus_and(*mask, *mask, *cpu_map); | 
|  | group = first_cpu(*mask); | 
|  | if (sg) | 
|  | *sg = &per_cpu(sched_group_core, group); | 
|  | return group; | 
|  | } | 
|  | #elif defined(CONFIG_SCHED_MC) | 
|  | static int | 
|  | cpu_to_core_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 
|  | cpumask_t *unused) | 
|  | { | 
|  | if (sg) | 
|  | *sg = &per_cpu(sched_group_core, cpu); | 
|  | return cpu; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static DEFINE_PER_CPU(struct sched_domain, phys_domains); | 
|  | static DEFINE_PER_CPU(struct sched_group, sched_group_phys); | 
|  |  | 
|  | static int | 
|  | cpu_to_phys_group(int cpu, const cpumask_t *cpu_map, struct sched_group **sg, | 
|  | cpumask_t *mask) | 
|  | { | 
|  | int group; | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | *mask = cpu_coregroup_map(cpu); | 
|  | cpus_and(*mask, *mask, *cpu_map); | 
|  | group = first_cpu(*mask); | 
|  | #elif defined(CONFIG_SCHED_SMT) | 
|  | *mask = per_cpu(cpu_sibling_map, cpu); | 
|  | cpus_and(*mask, *mask, *cpu_map); | 
|  | group = first_cpu(*mask); | 
|  | #else | 
|  | group = cpu; | 
|  | #endif | 
|  | if (sg) | 
|  | *sg = &per_cpu(sched_group_phys, group); | 
|  | return group; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* | 
|  | * The init_sched_build_groups can't handle what we want to do with node | 
|  | * groups, so roll our own. Now each node has its own list of groups which | 
|  | * gets dynamically allocated. | 
|  | */ | 
|  | static DEFINE_PER_CPU(struct sched_domain, node_domains); | 
|  | static struct sched_group ***sched_group_nodes_bycpu; | 
|  |  | 
|  | static DEFINE_PER_CPU(struct sched_domain, allnodes_domains); | 
|  | static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes); | 
|  |  | 
|  | static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map, | 
|  | struct sched_group **sg, cpumask_t *nodemask) | 
|  | { | 
|  | int group; | 
|  |  | 
|  | *nodemask = node_to_cpumask(cpu_to_node(cpu)); | 
|  | cpus_and(*nodemask, *nodemask, *cpu_map); | 
|  | group = first_cpu(*nodemask); | 
|  |  | 
|  | if (sg) | 
|  | *sg = &per_cpu(sched_group_allnodes, group); | 
|  | return group; | 
|  | } | 
|  |  | 
|  | static void init_numa_sched_groups_power(struct sched_group *group_head) | 
|  | { | 
|  | struct sched_group *sg = group_head; | 
|  | int j; | 
|  |  | 
|  | if (!sg) | 
|  | return; | 
|  | do { | 
|  | for_each_cpu_mask_nr(j, sg->cpumask) { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | sd = &per_cpu(phys_domains, j); | 
|  | if (j != first_cpu(sd->groups->cpumask)) { | 
|  | /* | 
|  | * Only add "power" once for each | 
|  | * physical package. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sg_inc_cpu_power(sg, sd->groups->__cpu_power); | 
|  | } | 
|  | sg = sg->next; | 
|  | } while (sg != group_head); | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Free memory allocated for various sched_group structures */ | 
|  | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) | 
|  | { | 
|  | int cpu, i; | 
|  |  | 
|  | for_each_cpu_mask_nr(cpu, *cpu_map) { | 
|  | struct sched_group **sched_group_nodes | 
|  | = sched_group_nodes_bycpu[cpu]; | 
|  |  | 
|  | if (!sched_group_nodes) | 
|  | continue; | 
|  |  | 
|  | for (i = 0; i < nr_node_ids; i++) { | 
|  | struct sched_group *oldsg, *sg = sched_group_nodes[i]; | 
|  |  | 
|  | *nodemask = node_to_cpumask(i); | 
|  | cpus_and(*nodemask, *nodemask, *cpu_map); | 
|  | if (cpus_empty(*nodemask)) | 
|  | continue; | 
|  |  | 
|  | if (sg == NULL) | 
|  | continue; | 
|  | sg = sg->next; | 
|  | next_sg: | 
|  | oldsg = sg; | 
|  | sg = sg->next; | 
|  | kfree(oldsg); | 
|  | if (oldsg != sched_group_nodes[i]) | 
|  | goto next_sg; | 
|  | } | 
|  | kfree(sched_group_nodes); | 
|  | sched_group_nodes_bycpu[cpu] = NULL; | 
|  | } | 
|  | } | 
|  | #else /* !CONFIG_NUMA */ | 
|  | static void free_sched_groups(const cpumask_t *cpu_map, cpumask_t *nodemask) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_NUMA */ | 
|  |  | 
|  | /* | 
|  | * Initialize sched groups cpu_power. | 
|  | * | 
|  | * cpu_power indicates the capacity of sched group, which is used while | 
|  | * distributing the load between different sched groups in a sched domain. | 
|  | * Typically cpu_power for all the groups in a sched domain will be same unless | 
|  | * there are asymmetries in the topology. If there are asymmetries, group | 
|  | * having more cpu_power will pickup more load compared to the group having | 
|  | * less cpu_power. | 
|  | * | 
|  | * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents | 
|  | * the maximum number of tasks a group can handle in the presence of other idle | 
|  | * or lightly loaded groups in the same sched domain. | 
|  | */ | 
|  | static void init_sched_groups_power(int cpu, struct sched_domain *sd) | 
|  | { | 
|  | struct sched_domain *child; | 
|  | struct sched_group *group; | 
|  |  | 
|  | WARN_ON(!sd || !sd->groups); | 
|  |  | 
|  | if (cpu != first_cpu(sd->groups->cpumask)) | 
|  | return; | 
|  |  | 
|  | child = sd->child; | 
|  |  | 
|  | sd->groups->__cpu_power = 0; | 
|  |  | 
|  | /* | 
|  | * For perf policy, if the groups in child domain share resources | 
|  | * (for example cores sharing some portions of the cache hierarchy | 
|  | * or SMT), then set this domain groups cpu_power such that each group | 
|  | * can handle only one task, when there are other idle groups in the | 
|  | * same sched domain. | 
|  | */ | 
|  | if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) && | 
|  | (child->flags & | 
|  | (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) { | 
|  | sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * add cpu_power of each child group to this groups cpu_power | 
|  | */ | 
|  | group = child->groups; | 
|  | do { | 
|  | sg_inc_cpu_power(sd->groups, group->__cpu_power); | 
|  | group = group->next; | 
|  | } while (group != child->groups); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initializers for schedule domains | 
|  | * Non-inlined to reduce accumulated stack pressure in build_sched_domains() | 
|  | */ | 
|  |  | 
|  | #ifdef CONFIG_SCHED_DEBUG | 
|  | # define SD_INIT_NAME(sd, type)		sd->name = #type | 
|  | #else | 
|  | # define SD_INIT_NAME(sd, type)		do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define	SD_INIT(sd, type)	sd_init_##type(sd) | 
|  |  | 
|  | #define SD_INIT_FUNC(type)	\ | 
|  | static noinline void sd_init_##type(struct sched_domain *sd)	\ | 
|  | {								\ | 
|  | memset(sd, 0, sizeof(*sd));				\ | 
|  | *sd = SD_##type##_INIT;					\ | 
|  | sd->level = SD_LV_##type;				\ | 
|  | SD_INIT_NAME(sd, type);					\ | 
|  | } | 
|  |  | 
|  | SD_INIT_FUNC(CPU) | 
|  | #ifdef CONFIG_NUMA | 
|  | SD_INIT_FUNC(ALLNODES) | 
|  | SD_INIT_FUNC(NODE) | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | SD_INIT_FUNC(SIBLING) | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | SD_INIT_FUNC(MC) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * To minimize stack usage kmalloc room for cpumasks and share the | 
|  | * space as the usage in build_sched_domains() dictates.  Used only | 
|  | * if the amount of space is significant. | 
|  | */ | 
|  | struct allmasks { | 
|  | cpumask_t tmpmask;			/* make this one first */ | 
|  | union { | 
|  | cpumask_t nodemask; | 
|  | cpumask_t this_sibling_map; | 
|  | cpumask_t this_core_map; | 
|  | }; | 
|  | cpumask_t send_covered; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | cpumask_t domainspan; | 
|  | cpumask_t covered; | 
|  | cpumask_t notcovered; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #if	NR_CPUS > 128 | 
|  | #define	SCHED_CPUMASK_ALLOC		1 | 
|  | #define	SCHED_CPUMASK_FREE(v)		kfree(v) | 
|  | #define	SCHED_CPUMASK_DECLARE(v)	struct allmasks *v | 
|  | #else | 
|  | #define	SCHED_CPUMASK_ALLOC		0 | 
|  | #define	SCHED_CPUMASK_FREE(v) | 
|  | #define	SCHED_CPUMASK_DECLARE(v)	struct allmasks _v, *v = &_v | 
|  | #endif | 
|  |  | 
|  | #define	SCHED_CPUMASK_VAR(v, a) 	cpumask_t *v = (cpumask_t *) \ | 
|  | ((unsigned long)(a) + offsetof(struct allmasks, v)) | 
|  |  | 
|  | static int default_relax_domain_level = -1; | 
|  |  | 
|  | static int __init setup_relax_domain_level(char *str) | 
|  | { | 
|  | unsigned long val; | 
|  |  | 
|  | val = simple_strtoul(str, NULL, 0); | 
|  | if (val < SD_LV_MAX) | 
|  | default_relax_domain_level = val; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | __setup("relax_domain_level=", setup_relax_domain_level); | 
|  |  | 
|  | static void set_domain_attribute(struct sched_domain *sd, | 
|  | struct sched_domain_attr *attr) | 
|  | { | 
|  | int request; | 
|  |  | 
|  | if (!attr || attr->relax_domain_level < 0) { | 
|  | if (default_relax_domain_level < 0) | 
|  | return; | 
|  | else | 
|  | request = default_relax_domain_level; | 
|  | } else | 
|  | request = attr->relax_domain_level; | 
|  | if (request < sd->level) { | 
|  | /* turn off idle balance on this domain */ | 
|  | sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE); | 
|  | } else { | 
|  | /* turn on idle balance on this domain */ | 
|  | sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build sched domains for a given set of cpus and attach the sched domains | 
|  | * to the individual cpus | 
|  | */ | 
|  | static int __build_sched_domains(const cpumask_t *cpu_map, | 
|  | struct sched_domain_attr *attr) | 
|  | { | 
|  | int i; | 
|  | struct root_domain *rd; | 
|  | SCHED_CPUMASK_DECLARE(allmasks); | 
|  | cpumask_t *tmpmask; | 
|  | #ifdef CONFIG_NUMA | 
|  | struct sched_group **sched_group_nodes = NULL; | 
|  | int sd_allnodes = 0; | 
|  |  | 
|  | /* | 
|  | * Allocate the per-node list of sched groups | 
|  | */ | 
|  | sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *), | 
|  | GFP_KERNEL); | 
|  | if (!sched_group_nodes) { | 
|  | printk(KERN_WARNING "Can not alloc sched group node list\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | rd = alloc_rootdomain(); | 
|  | if (!rd) { | 
|  | printk(KERN_WARNING "Cannot alloc root domain\n"); | 
|  | #ifdef CONFIG_NUMA | 
|  | kfree(sched_group_nodes); | 
|  | #endif | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | #if SCHED_CPUMASK_ALLOC | 
|  | /* get space for all scratch cpumask variables */ | 
|  | allmasks = kmalloc(sizeof(*allmasks), GFP_KERNEL); | 
|  | if (!allmasks) { | 
|  | printk(KERN_WARNING "Cannot alloc cpumask array\n"); | 
|  | kfree(rd); | 
|  | #ifdef CONFIG_NUMA | 
|  | kfree(sched_group_nodes); | 
|  | #endif | 
|  | return -ENOMEM; | 
|  | } | 
|  | #endif | 
|  | tmpmask = (cpumask_t *)allmasks; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Set up domains for cpus specified by the cpu_map. | 
|  | */ | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | struct sched_domain *sd = NULL, *p; | 
|  | SCHED_CPUMASK_VAR(nodemask, allmasks); | 
|  |  | 
|  | *nodemask = node_to_cpumask(cpu_to_node(i)); | 
|  | cpus_and(*nodemask, *nodemask, *cpu_map); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | if (cpus_weight(*cpu_map) > | 
|  | SD_NODES_PER_DOMAIN*cpus_weight(*nodemask)) { | 
|  | sd = &per_cpu(allnodes_domains, i); | 
|  | SD_INIT(sd, ALLNODES); | 
|  | set_domain_attribute(sd, attr); | 
|  | sd->span = *cpu_map; | 
|  | cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask); | 
|  | p = sd; | 
|  | sd_allnodes = 1; | 
|  | } else | 
|  | p = NULL; | 
|  |  | 
|  | sd = &per_cpu(node_domains, i); | 
|  | SD_INIT(sd, NODE); | 
|  | set_domain_attribute(sd, attr); | 
|  | sched_domain_node_span(cpu_to_node(i), &sd->span); | 
|  | sd->parent = p; | 
|  | if (p) | 
|  | p->child = sd; | 
|  | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | #endif | 
|  |  | 
|  | p = sd; | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | SD_INIT(sd, CPU); | 
|  | set_domain_attribute(sd, attr); | 
|  | sd->span = *nodemask; | 
|  | sd->parent = p; | 
|  | if (p) | 
|  | p->child = sd; | 
|  | cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask); | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | p = sd; | 
|  | sd = &per_cpu(core_domains, i); | 
|  | SD_INIT(sd, MC); | 
|  | set_domain_attribute(sd, attr); | 
|  | sd->span = cpu_coregroup_map(i); | 
|  | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | sd->parent = p; | 
|  | p->child = sd; | 
|  | cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | p = sd; | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | SD_INIT(sd, SIBLING); | 
|  | set_domain_attribute(sd, attr); | 
|  | sd->span = per_cpu(cpu_sibling_map, i); | 
|  | cpus_and(sd->span, sd->span, *cpu_map); | 
|  | sd->parent = p; | 
|  | p->child = sd; | 
|  | cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | /* Set up CPU (sibling) groups */ | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | SCHED_CPUMASK_VAR(this_sibling_map, allmasks); | 
|  | SCHED_CPUMASK_VAR(send_covered, allmasks); | 
|  |  | 
|  | *this_sibling_map = per_cpu(cpu_sibling_map, i); | 
|  | cpus_and(*this_sibling_map, *this_sibling_map, *cpu_map); | 
|  | if (i != first_cpu(*this_sibling_map)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(this_sibling_map, cpu_map, | 
|  | &cpu_to_cpu_group, | 
|  | send_covered, tmpmask); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | /* Set up multi-core groups */ | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | SCHED_CPUMASK_VAR(this_core_map, allmasks); | 
|  | SCHED_CPUMASK_VAR(send_covered, allmasks); | 
|  |  | 
|  | *this_core_map = cpu_coregroup_map(i); | 
|  | cpus_and(*this_core_map, *this_core_map, *cpu_map); | 
|  | if (i != first_cpu(*this_core_map)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(this_core_map, cpu_map, | 
|  | &cpu_to_core_group, | 
|  | send_covered, tmpmask); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Set up physical groups */ | 
|  | for (i = 0; i < nr_node_ids; i++) { | 
|  | SCHED_CPUMASK_VAR(nodemask, allmasks); | 
|  | SCHED_CPUMASK_VAR(send_covered, allmasks); | 
|  |  | 
|  | *nodemask = node_to_cpumask(i); | 
|  | cpus_and(*nodemask, *nodemask, *cpu_map); | 
|  | if (cpus_empty(*nodemask)) | 
|  | continue; | 
|  |  | 
|  | init_sched_build_groups(nodemask, cpu_map, | 
|  | &cpu_to_phys_group, | 
|  | send_covered, tmpmask); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | /* Set up node groups */ | 
|  | if (sd_allnodes) { | 
|  | SCHED_CPUMASK_VAR(send_covered, allmasks); | 
|  |  | 
|  | init_sched_build_groups(cpu_map, cpu_map, | 
|  | &cpu_to_allnodes_group, | 
|  | send_covered, tmpmask); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nr_node_ids; i++) { | 
|  | /* Set up node groups */ | 
|  | struct sched_group *sg, *prev; | 
|  | SCHED_CPUMASK_VAR(nodemask, allmasks); | 
|  | SCHED_CPUMASK_VAR(domainspan, allmasks); | 
|  | SCHED_CPUMASK_VAR(covered, allmasks); | 
|  | int j; | 
|  |  | 
|  | *nodemask = node_to_cpumask(i); | 
|  | cpus_clear(*covered); | 
|  |  | 
|  | cpus_and(*nodemask, *nodemask, *cpu_map); | 
|  | if (cpus_empty(*nodemask)) { | 
|  | sched_group_nodes[i] = NULL; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | sched_domain_node_span(i, domainspan); | 
|  | cpus_and(*domainspan, *domainspan, *cpu_map); | 
|  |  | 
|  | sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); | 
|  | if (!sg) { | 
|  | printk(KERN_WARNING "Can not alloc domain group for " | 
|  | "node %d\n", i); | 
|  | goto error; | 
|  | } | 
|  | sched_group_nodes[i] = sg; | 
|  | for_each_cpu_mask_nr(j, *nodemask) { | 
|  | struct sched_domain *sd; | 
|  |  | 
|  | sd = &per_cpu(node_domains, j); | 
|  | sd->groups = sg; | 
|  | } | 
|  | sg->__cpu_power = 0; | 
|  | sg->cpumask = *nodemask; | 
|  | sg->next = sg; | 
|  | cpus_or(*covered, *covered, *nodemask); | 
|  | prev = sg; | 
|  |  | 
|  | for (j = 0; j < nr_node_ids; j++) { | 
|  | SCHED_CPUMASK_VAR(notcovered, allmasks); | 
|  | int n = (i + j) % nr_node_ids; | 
|  | node_to_cpumask_ptr(pnodemask, n); | 
|  |  | 
|  | cpus_complement(*notcovered, *covered); | 
|  | cpus_and(*tmpmask, *notcovered, *cpu_map); | 
|  | cpus_and(*tmpmask, *tmpmask, *domainspan); | 
|  | if (cpus_empty(*tmpmask)) | 
|  | break; | 
|  |  | 
|  | cpus_and(*tmpmask, *tmpmask, *pnodemask); | 
|  | if (cpus_empty(*tmpmask)) | 
|  | continue; | 
|  |  | 
|  | sg = kmalloc_node(sizeof(struct sched_group), | 
|  | GFP_KERNEL, i); | 
|  | if (!sg) { | 
|  | printk(KERN_WARNING | 
|  | "Can not alloc domain group for node %d\n", j); | 
|  | goto error; | 
|  | } | 
|  | sg->__cpu_power = 0; | 
|  | sg->cpumask = *tmpmask; | 
|  | sg->next = prev->next; | 
|  | cpus_or(*covered, *covered, *tmpmask); | 
|  | prev->next = sg; | 
|  | prev = sg; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Calculate CPU power for physical packages and nodes */ | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | struct sched_domain *sd = &per_cpu(cpu_domains, i); | 
|  |  | 
|  | init_sched_groups_power(i, sd); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | struct sched_domain *sd = &per_cpu(core_domains, i); | 
|  |  | 
|  | init_sched_groups_power(i, sd); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | struct sched_domain *sd = &per_cpu(phys_domains, i); | 
|  |  | 
|  | init_sched_groups_power(i, sd); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | for (i = 0; i < nr_node_ids; i++) | 
|  | init_numa_sched_groups_power(sched_group_nodes[i]); | 
|  |  | 
|  | if (sd_allnodes) { | 
|  | struct sched_group *sg; | 
|  |  | 
|  | cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg, | 
|  | tmpmask); | 
|  | init_numa_sched_groups_power(sg); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Attach the domains */ | 
|  | for_each_cpu_mask_nr(i, *cpu_map) { | 
|  | struct sched_domain *sd; | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | sd = &per_cpu(cpu_domains, i); | 
|  | #elif defined(CONFIG_SCHED_MC) | 
|  | sd = &per_cpu(core_domains, i); | 
|  | #else | 
|  | sd = &per_cpu(phys_domains, i); | 
|  | #endif | 
|  | cpu_attach_domain(sd, rd, i); | 
|  | } | 
|  |  | 
|  | SCHED_CPUMASK_FREE((void *)allmasks); | 
|  | return 0; | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | error: | 
|  | free_sched_groups(cpu_map, tmpmask); | 
|  | SCHED_CPUMASK_FREE((void *)allmasks); | 
|  | kfree(rd); | 
|  | return -ENOMEM; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int build_sched_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | return __build_sched_domains(cpu_map, NULL); | 
|  | } | 
|  |  | 
|  | static cpumask_t *doms_cur;	/* current sched domains */ | 
|  | static int ndoms_cur;		/* number of sched domains in 'doms_cur' */ | 
|  | static struct sched_domain_attr *dattr_cur; | 
|  | /* attribues of custom domains in 'doms_cur' */ | 
|  |  | 
|  | /* | 
|  | * Special case: If a kmalloc of a doms_cur partition (array of | 
|  | * cpumask_t) fails, then fallback to a single sched domain, | 
|  | * as determined by the single cpumask_t fallback_doms. | 
|  | */ | 
|  | static cpumask_t fallback_doms; | 
|  |  | 
|  | void __attribute__((weak)) arch_update_cpu_topology(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up scheduler domains and groups. Callers must hold the hotplug lock. | 
|  | * For now this just excludes isolated cpus, but could be used to | 
|  | * exclude other special cases in the future. | 
|  | */ | 
|  | static int arch_init_sched_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | arch_update_cpu_topology(); | 
|  | ndoms_cur = 1; | 
|  | doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL); | 
|  | if (!doms_cur) | 
|  | doms_cur = &fallback_doms; | 
|  | cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map); | 
|  | dattr_cur = NULL; | 
|  | err = build_sched_domains(doms_cur); | 
|  | register_sched_domain_sysctl(); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static void arch_destroy_sched_domains(const cpumask_t *cpu_map, | 
|  | cpumask_t *tmpmask) | 
|  | { | 
|  | free_sched_groups(cpu_map, tmpmask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detach sched domains from a group of cpus specified in cpu_map | 
|  | * These cpus will now be attached to the NULL domain | 
|  | */ | 
|  | static void detach_destroy_domains(const cpumask_t *cpu_map) | 
|  | { | 
|  | cpumask_t tmpmask; | 
|  | int i; | 
|  |  | 
|  | unregister_sched_domain_sysctl(); | 
|  |  | 
|  | for_each_cpu_mask_nr(i, *cpu_map) | 
|  | cpu_attach_domain(NULL, &def_root_domain, i); | 
|  | synchronize_sched(); | 
|  | arch_destroy_sched_domains(cpu_map, &tmpmask); | 
|  | } | 
|  |  | 
|  | /* handle null as "default" */ | 
|  | static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, | 
|  | struct sched_domain_attr *new, int idx_new) | 
|  | { | 
|  | struct sched_domain_attr tmp; | 
|  |  | 
|  | /* fast path */ | 
|  | if (!new && !cur) | 
|  | return 1; | 
|  |  | 
|  | tmp = SD_ATTR_INIT; | 
|  | return !memcmp(cur ? (cur + idx_cur) : &tmp, | 
|  | new ? (new + idx_new) : &tmp, | 
|  | sizeof(struct sched_domain_attr)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Partition sched domains as specified by the 'ndoms_new' | 
|  | * cpumasks in the array doms_new[] of cpumasks. This compares | 
|  | * doms_new[] to the current sched domain partitioning, doms_cur[]. | 
|  | * It destroys each deleted domain and builds each new domain. | 
|  | * | 
|  | * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'. | 
|  | * The masks don't intersect (don't overlap.) We should setup one | 
|  | * sched domain for each mask. CPUs not in any of the cpumasks will | 
|  | * not be load balanced. If the same cpumask appears both in the | 
|  | * current 'doms_cur' domains and in the new 'doms_new', we can leave | 
|  | * it as it is. | 
|  | * | 
|  | * The passed in 'doms_new' should be kmalloc'd. This routine takes | 
|  | * ownership of it and will kfree it when done with it. If the caller | 
|  | * failed the kmalloc call, then it can pass in doms_new == NULL && | 
|  | * ndoms_new == 1, and partition_sched_domains() will fallback to | 
|  | * the single partition 'fallback_doms', it also forces the domains | 
|  | * to be rebuilt. | 
|  | * | 
|  | * If doms_new == NULL it will be replaced with cpu_online_map. | 
|  | * ndoms_new == 0 is a special case for destroying existing domains, | 
|  | * and it will not create the default domain. | 
|  | * | 
|  | * Call with hotplug lock held | 
|  | */ | 
|  | void partition_sched_domains(int ndoms_new, cpumask_t *doms_new, | 
|  | struct sched_domain_attr *dattr_new) | 
|  | { | 
|  | int i, j, n; | 
|  |  | 
|  | mutex_lock(&sched_domains_mutex); | 
|  |  | 
|  | /* always unregister in case we don't destroy any domains */ | 
|  | unregister_sched_domain_sysctl(); | 
|  |  | 
|  | n = doms_new ? ndoms_new : 0; | 
|  |  | 
|  | /* Destroy deleted domains */ | 
|  | for (i = 0; i < ndoms_cur; i++) { | 
|  | for (j = 0; j < n; j++) { | 
|  | if (cpus_equal(doms_cur[i], doms_new[j]) | 
|  | && dattrs_equal(dattr_cur, i, dattr_new, j)) | 
|  | goto match1; | 
|  | } | 
|  | /* no match - a current sched domain not in new doms_new[] */ | 
|  | detach_destroy_domains(doms_cur + i); | 
|  | match1: | 
|  | ; | 
|  | } | 
|  |  | 
|  | if (doms_new == NULL) { | 
|  | ndoms_cur = 0; | 
|  | doms_new = &fallback_doms; | 
|  | cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map); | 
|  | dattr_new = NULL; | 
|  | } | 
|  |  | 
|  | /* Build new domains */ | 
|  | for (i = 0; i < ndoms_new; i++) { | 
|  | for (j = 0; j < ndoms_cur; j++) { | 
|  | if (cpus_equal(doms_new[i], doms_cur[j]) | 
|  | && dattrs_equal(dattr_new, i, dattr_cur, j)) | 
|  | goto match2; | 
|  | } | 
|  | /* no match - add a new doms_new */ | 
|  | __build_sched_domains(doms_new + i, | 
|  | dattr_new ? dattr_new + i : NULL); | 
|  | match2: | 
|  | ; | 
|  | } | 
|  |  | 
|  | /* Remember the new sched domains */ | 
|  | if (doms_cur != &fallback_doms) | 
|  | kfree(doms_cur); | 
|  | kfree(dattr_cur);	/* kfree(NULL) is safe */ | 
|  | doms_cur = doms_new; | 
|  | dattr_cur = dattr_new; | 
|  | ndoms_cur = ndoms_new; | 
|  |  | 
|  | register_sched_domain_sysctl(); | 
|  |  | 
|  | mutex_unlock(&sched_domains_mutex); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) | 
|  | int arch_reinit_sched_domains(void) | 
|  | { | 
|  | get_online_cpus(); | 
|  |  | 
|  | /* Destroy domains first to force the rebuild */ | 
|  | partition_sched_domains(0, NULL, NULL); | 
|  |  | 
|  | rebuild_sched_domains(); | 
|  | put_online_cpus(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | if (buf[0] != '0' && buf[0] != '1') | 
|  | return -EINVAL; | 
|  |  | 
|  | if (smt) | 
|  | sched_smt_power_savings = (buf[0] == '1'); | 
|  | else | 
|  | sched_mc_power_savings = (buf[0] == '1'); | 
|  |  | 
|  | ret = arch_reinit_sched_domains(); | 
|  |  | 
|  | return ret ? ret : count; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | static ssize_t sched_mc_power_savings_show(struct sysdev_class *class, | 
|  | char *page) | 
|  | { | 
|  | return sprintf(page, "%u\n", sched_mc_power_savings); | 
|  | } | 
|  | static ssize_t sched_mc_power_savings_store(struct sysdev_class *class, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return sched_power_savings_store(buf, count, 0); | 
|  | } | 
|  | static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644, | 
|  | sched_mc_power_savings_show, | 
|  | sched_mc_power_savings_store); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev, | 
|  | char *page) | 
|  | { | 
|  | return sprintf(page, "%u\n", sched_smt_power_savings); | 
|  | } | 
|  | static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev, | 
|  | const char *buf, size_t count) | 
|  | { | 
|  | return sched_power_savings_store(buf, count, 1); | 
|  | } | 
|  | static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644, | 
|  | sched_smt_power_savings_show, | 
|  | sched_smt_power_savings_store); | 
|  | #endif | 
|  |  | 
|  | int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | #ifdef CONFIG_SCHED_SMT | 
|  | if (smt_capable()) | 
|  | err = sysfs_create_file(&cls->kset.kobj, | 
|  | &attr_sched_smt_power_savings.attr); | 
|  | #endif | 
|  | #ifdef CONFIG_SCHED_MC | 
|  | if (!err && mc_capable()) | 
|  | err = sysfs_create_file(&cls->kset.kobj, | 
|  | &attr_sched_mc_power_savings.attr); | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  | #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */ | 
|  |  | 
|  | #ifndef CONFIG_CPUSETS | 
|  | /* | 
|  | * Add online and remove offline CPUs from the scheduler domains. | 
|  | * When cpusets are enabled they take over this function. | 
|  | */ | 
|  | static int update_sched_domains(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | switch (action) { | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | case CPU_DEAD: | 
|  | case CPU_DEAD_FROZEN: | 
|  | partition_sched_domains(1, NULL, NULL); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static int update_runtime(struct notifier_block *nfb, | 
|  | unsigned long action, void *hcpu) | 
|  | { | 
|  | int cpu = (int)(long)hcpu; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_DOWN_PREPARE: | 
|  | case CPU_DOWN_PREPARE_FROZEN: | 
|  | disable_runtime(cpu_rq(cpu)); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | case CPU_DOWN_FAILED: | 
|  | case CPU_DOWN_FAILED_FROZEN: | 
|  | case CPU_ONLINE: | 
|  | case CPU_ONLINE_FROZEN: | 
|  | enable_runtime(cpu_rq(cpu)); | 
|  | return NOTIFY_OK; | 
|  |  | 
|  | default: | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | cpumask_t non_isolated_cpus; | 
|  |  | 
|  | #if defined(CONFIG_NUMA) | 
|  | sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **), | 
|  | GFP_KERNEL); | 
|  | BUG_ON(sched_group_nodes_bycpu == NULL); | 
|  | #endif | 
|  | get_online_cpus(); | 
|  | mutex_lock(&sched_domains_mutex); | 
|  | arch_init_sched_domains(&cpu_online_map); | 
|  | cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map); | 
|  | if (cpus_empty(non_isolated_cpus)) | 
|  | cpu_set(smp_processor_id(), non_isolated_cpus); | 
|  | mutex_unlock(&sched_domains_mutex); | 
|  | put_online_cpus(); | 
|  |  | 
|  | #ifndef CONFIG_CPUSETS | 
|  | /* XXX: Theoretical race here - CPU may be hotplugged now */ | 
|  | hotcpu_notifier(update_sched_domains, 0); | 
|  | #endif | 
|  |  | 
|  | /* RT runtime code needs to handle some hotplug events */ | 
|  | hotcpu_notifier(update_runtime, 0); | 
|  |  | 
|  | init_hrtick(); | 
|  |  | 
|  | /* Move init over to a non-isolated CPU */ | 
|  | if (set_cpus_allowed_ptr(current, &non_isolated_cpus) < 0) | 
|  | BUG(); | 
|  | sched_init_granularity(); | 
|  | } | 
|  | #else | 
|  | void __init sched_init_smp(void) | 
|  | { | 
|  | sched_init_granularity(); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | int in_sched_functions(unsigned long addr) | 
|  | { | 
|  | return in_lock_functions(addr) || | 
|  | (addr >= (unsigned long)__sched_text_start | 
|  | && addr < (unsigned long)__sched_text_end); | 
|  | } | 
|  |  | 
|  | static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq) | 
|  | { | 
|  | cfs_rq->tasks_timeline = RB_ROOT; | 
|  | INIT_LIST_HEAD(&cfs_rq->tasks); | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | cfs_rq->rq = rq; | 
|  | #endif | 
|  | cfs_rq->min_vruntime = (u64)(-(1LL << 20)); | 
|  | } | 
|  |  | 
|  | static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq) | 
|  | { | 
|  | struct rt_prio_array *array; | 
|  | int i; | 
|  |  | 
|  | array = &rt_rq->active; | 
|  | for (i = 0; i < MAX_RT_PRIO; i++) { | 
|  | INIT_LIST_HEAD(array->queue + i); | 
|  | __clear_bit(i, array->bitmap); | 
|  | } | 
|  | /* delimiter for bitsearch: */ | 
|  | __set_bit(MAX_RT_PRIO, array->bitmap); | 
|  |  | 
|  | #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED | 
|  | rt_rq->highest_prio = MAX_RT_PRIO; | 
|  | #endif | 
|  | #ifdef CONFIG_SMP | 
|  | rt_rq->rt_nr_migratory = 0; | 
|  | rt_rq->overloaded = 0; | 
|  | #endif | 
|  |  | 
|  | rt_rq->rt_time = 0; | 
|  | rt_rq->rt_throttled = 0; | 
|  | rt_rq->rt_runtime = 0; | 
|  | spin_lock_init(&rt_rq->rt_runtime_lock); | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | rt_rq->rt_nr_boosted = 0; | 
|  | rt_rq->rq = rq; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq, | 
|  | struct sched_entity *se, int cpu, int add, | 
|  | struct sched_entity *parent) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  | tg->cfs_rq[cpu] = cfs_rq; | 
|  | init_cfs_rq(cfs_rq, rq); | 
|  | cfs_rq->tg = tg; | 
|  | if (add) | 
|  | list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list); | 
|  |  | 
|  | tg->se[cpu] = se; | 
|  | /* se could be NULL for init_task_group */ | 
|  | if (!se) | 
|  | return; | 
|  |  | 
|  | if (!parent) | 
|  | se->cfs_rq = &rq->cfs; | 
|  | else | 
|  | se->cfs_rq = parent->my_q; | 
|  |  | 
|  | se->my_q = cfs_rq; | 
|  | se->load.weight = tg->shares; | 
|  | se->load.inv_weight = 0; | 
|  | se->parent = parent; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq, | 
|  | struct sched_rt_entity *rt_se, int cpu, int add, | 
|  | struct sched_rt_entity *parent) | 
|  | { | 
|  | struct rq *rq = cpu_rq(cpu); | 
|  |  | 
|  | tg->rt_rq[cpu] = rt_rq; | 
|  | init_rt_rq(rt_rq, rq); | 
|  | rt_rq->tg = tg; | 
|  | rt_rq->rt_se = rt_se; | 
|  | rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime; | 
|  | if (add) | 
|  | list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list); | 
|  |  | 
|  | tg->rt_se[cpu] = rt_se; | 
|  | if (!rt_se) | 
|  | return; | 
|  |  | 
|  | if (!parent) | 
|  | rt_se->rt_rq = &rq->rt; | 
|  | else | 
|  | rt_se->rt_rq = parent->my_q; | 
|  |  | 
|  | rt_se->my_q = rt_rq; | 
|  | rt_se->parent = parent; | 
|  | INIT_LIST_HEAD(&rt_se->run_list); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void __init sched_init(void) | 
|  | { | 
|  | int i, j; | 
|  | unsigned long alloc_size = 0, ptr; | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 
|  | #endif | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | alloc_size += 2 * nr_cpu_ids * sizeof(void **); | 
|  | #endif | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | alloc_size *= 2; | 
|  | #endif | 
|  | /* | 
|  | * As sched_init() is called before page_alloc is setup, | 
|  | * we use alloc_bootmem(). | 
|  | */ | 
|  | if (alloc_size) { | 
|  | ptr = (unsigned long)alloc_bootmem(alloc_size); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | init_task_group.se = (struct sched_entity **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | init_task_group.cfs_rq = (struct cfs_rq **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | root_task_group.se = (struct sched_entity **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | root_task_group.cfs_rq = (struct cfs_rq **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  | #endif /* CONFIG_USER_SCHED */ | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | init_task_group.rt_se = (struct sched_rt_entity **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | init_task_group.rt_rq = (struct rt_rq **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | root_task_group.rt_se = (struct sched_rt_entity **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  |  | 
|  | root_task_group.rt_rq = (struct rt_rq **)ptr; | 
|  | ptr += nr_cpu_ids * sizeof(void **); | 
|  | #endif /* CONFIG_USER_SCHED */ | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | init_defrootdomain(); | 
|  | #endif | 
|  |  | 
|  | init_rt_bandwidth(&def_rt_bandwidth, | 
|  | global_rt_period(), global_rt_runtime()); | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | init_rt_bandwidth(&init_task_group.rt_bandwidth, | 
|  | global_rt_period(), global_rt_runtime()); | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | init_rt_bandwidth(&root_task_group.rt_bandwidth, | 
|  | global_rt_period(), RUNTIME_INF); | 
|  | #endif /* CONFIG_USER_SCHED */ | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_GROUP_SCHED | 
|  | list_add(&init_task_group.list, &task_groups); | 
|  | INIT_LIST_HEAD(&init_task_group.children); | 
|  |  | 
|  | #ifdef CONFIG_USER_SCHED | 
|  | INIT_LIST_HEAD(&root_task_group.children); | 
|  | init_task_group.parent = &root_task_group; | 
|  | list_add(&init_task_group.siblings, &root_task_group.children); | 
|  | #endif /* CONFIG_USER_SCHED */ | 
|  | #endif /* CONFIG_GROUP_SCHED */ | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = cpu_rq(i); | 
|  | spin_lock_init(&rq->lock); | 
|  | rq->nr_running = 0; | 
|  | init_cfs_rq(&rq->cfs, rq); | 
|  | init_rt_rq(&rq->rt, rq); | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | init_task_group.shares = init_task_group_load; | 
|  | INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | /* | 
|  | * How much cpu bandwidth does init_task_group get? | 
|  | * | 
|  | * In case of task-groups formed thr' the cgroup filesystem, it | 
|  | * gets 100% of the cpu resources in the system. This overall | 
|  | * system cpu resource is divided among the tasks of | 
|  | * init_task_group and its child task-groups in a fair manner, | 
|  | * based on each entity's (task or task-group's) weight | 
|  | * (se->load.weight). | 
|  | * | 
|  | * In other words, if init_task_group has 10 tasks of weight | 
|  | * 1024) and two child groups A0 and A1 (of weight 1024 each), | 
|  | * then A0's share of the cpu resource is: | 
|  | * | 
|  | * 	A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% | 
|  | * | 
|  | * We achieve this by letting init_task_group's tasks sit | 
|  | * directly in rq->cfs (i.e init_task_group->se[] = NULL). | 
|  | */ | 
|  | init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL); | 
|  | #elif defined CONFIG_USER_SCHED | 
|  | root_task_group.shares = NICE_0_LOAD; | 
|  | init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL); | 
|  | /* | 
|  | * In case of task-groups formed thr' the user id of tasks, | 
|  | * init_task_group represents tasks belonging to root user. | 
|  | * Hence it forms a sibling of all subsequent groups formed. | 
|  | * In this case, init_task_group gets only a fraction of overall | 
|  | * system cpu resource, based on the weight assigned to root | 
|  | * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished | 
|  | * by letting tasks of init_task_group sit in a separate cfs_rq | 
|  | * (init_cfs_rq) and having one entity represent this group of | 
|  | * tasks in rq->cfs (i.e init_task_group->se[] != NULL). | 
|  | */ | 
|  | init_tg_cfs_entry(&init_task_group, | 
|  | &per_cpu(init_cfs_rq, i), | 
|  | &per_cpu(init_sched_entity, i), i, 1, | 
|  | root_task_group.se[i]); | 
|  |  | 
|  | #endif | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime; | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | INIT_LIST_HEAD(&rq->leaf_rt_rq_list); | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  | init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL); | 
|  | #elif defined CONFIG_USER_SCHED | 
|  | init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL); | 
|  | init_tg_rt_entry(&init_task_group, | 
|  | &per_cpu(init_rt_rq, i), | 
|  | &per_cpu(init_sched_rt_entity, i), i, 1, | 
|  | root_task_group.rt_se[i]); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | for (j = 0; j < CPU_LOAD_IDX_MAX; j++) | 
|  | rq->cpu_load[j] = 0; | 
|  | #ifdef CONFIG_SMP | 
|  | rq->sd = NULL; | 
|  | rq->rd = NULL; | 
|  | rq->active_balance = 0; | 
|  | rq->next_balance = jiffies; | 
|  | rq->push_cpu = 0; | 
|  | rq->cpu = i; | 
|  | rq->online = 0; | 
|  | rq->migration_thread = NULL; | 
|  | INIT_LIST_HEAD(&rq->migration_queue); | 
|  | rq_attach_root(rq, &def_root_domain); | 
|  | #endif | 
|  | init_rq_hrtick(rq); | 
|  | atomic_set(&rq->nr_iowait, 0); | 
|  | } | 
|  |  | 
|  | set_load_weight(&init_task); | 
|  |  | 
|  | #ifdef CONFIG_PREEMPT_NOTIFIERS | 
|  | INIT_HLIST_HEAD(&init_task.preempt_notifiers); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | open_softirq(SCHED_SOFTIRQ, run_rebalance_domains); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_MUTEXES | 
|  | plist_head_init(&init_task.pi_waiters, &init_task.pi_lock); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * The boot idle thread does lazy MMU switching as well: | 
|  | */ | 
|  | atomic_inc(&init_mm.mm_count); | 
|  | enter_lazy_tlb(&init_mm, current); | 
|  |  | 
|  | /* | 
|  | * Make us the idle thread. Technically, schedule() should not be | 
|  | * called from this thread, however somewhere below it might be, | 
|  | * but because we are the idle thread, we just pick up running again | 
|  | * when this runqueue becomes "idle". | 
|  | */ | 
|  | init_idle(current, smp_processor_id()); | 
|  | /* | 
|  | * During early bootup we pretend to be a normal task: | 
|  | */ | 
|  | current->sched_class = &fair_sched_class; | 
|  |  | 
|  | scheduler_running = 1; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP | 
|  | void __might_sleep(char *file, int line) | 
|  | { | 
|  | #ifdef in_atomic | 
|  | static unsigned long prev_jiffy;	/* ratelimiting */ | 
|  |  | 
|  | if ((!in_atomic() && !irqs_disabled()) || | 
|  | system_state != SYSTEM_RUNNING || oops_in_progress) | 
|  | return; | 
|  | if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) | 
|  | return; | 
|  | prev_jiffy = jiffies; | 
|  |  | 
|  | printk(KERN_ERR | 
|  | "BUG: sleeping function called from invalid context at %s:%d\n", | 
|  | file, line); | 
|  | printk(KERN_ERR | 
|  | "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", | 
|  | in_atomic(), irqs_disabled(), | 
|  | current->pid, current->comm); | 
|  |  | 
|  | debug_show_held_locks(current); | 
|  | if (irqs_disabled()) | 
|  | print_irqtrace_events(current); | 
|  | dump_stack(); | 
|  | #endif | 
|  | } | 
|  | EXPORT_SYMBOL(__might_sleep); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_MAGIC_SYSRQ | 
|  | static void normalize_task(struct rq *rq, struct task_struct *p) | 
|  | { | 
|  | int on_rq; | 
|  |  | 
|  | update_rq_clock(rq); | 
|  | on_rq = p->se.on_rq; | 
|  | if (on_rq) | 
|  | deactivate_task(rq, p, 0); | 
|  | __setscheduler(rq, p, SCHED_NORMAL, 0); | 
|  | if (on_rq) { | 
|  | activate_task(rq, p, 0); | 
|  | resched_task(rq->curr); | 
|  | } | 
|  | } | 
|  |  | 
|  | void normalize_rt_tasks(void) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | read_lock_irqsave(&tasklist_lock, flags); | 
|  | do_each_thread(g, p) { | 
|  | /* | 
|  | * Only normalize user tasks: | 
|  | */ | 
|  | if (!p->mm) | 
|  | continue; | 
|  |  | 
|  | p->se.exec_start		= 0; | 
|  | #ifdef CONFIG_SCHEDSTATS | 
|  | p->se.wait_start		= 0; | 
|  | p->se.sleep_start		= 0; | 
|  | p->se.block_start		= 0; | 
|  | #endif | 
|  |  | 
|  | if (!rt_task(p)) { | 
|  | /* | 
|  | * Renice negative nice level userspace | 
|  | * tasks back to 0: | 
|  | */ | 
|  | if (TASK_NICE(p) < 0 && p->mm) | 
|  | set_user_nice(p, 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | spin_lock(&p->pi_lock); | 
|  | rq = __task_rq_lock(p); | 
|  |  | 
|  | normalize_task(rq, p); | 
|  |  | 
|  | __task_rq_unlock(rq); | 
|  | spin_unlock(&p->pi_lock); | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | read_unlock_irqrestore(&tasklist_lock, flags); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MAGIC_SYSRQ */ | 
|  |  | 
|  | #ifdef CONFIG_IA64 | 
|  | /* | 
|  | * These functions are only useful for the IA64 MCA handling. | 
|  | * | 
|  | * They can only be called when the whole system has been | 
|  | * stopped - every CPU needs to be quiescent, and no scheduling | 
|  | * activity can take place. Using them for anything else would | 
|  | * be a serious bug, and as a result, they aren't even visible | 
|  | * under any other configuration. | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * curr_task - return the current task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | * | 
|  | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | */ | 
|  | struct task_struct *curr_task(int cpu) | 
|  | { | 
|  | return cpu_curr(cpu); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * set_curr_task - set the current task for a given cpu. | 
|  | * @cpu: the processor in question. | 
|  | * @p: the task pointer to set. | 
|  | * | 
|  | * Description: This function must only be used when non-maskable interrupts | 
|  | * are serviced on a separate stack. It allows the architecture to switch the | 
|  | * notion of the current task on a cpu in a non-blocking manner. This function | 
|  | * must be called with all CPU's synchronized, and interrupts disabled, the | 
|  | * and caller must save the original value of the current task (see | 
|  | * curr_task() above) and restore that value before reenabling interrupts and | 
|  | * re-starting the system. | 
|  | * | 
|  | * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! | 
|  | */ | 
|  | void set_curr_task(int cpu, struct task_struct *p) | 
|  | { | 
|  | cpu_curr(cpu) = p; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void free_fair_sched_group(struct task_group *tg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (tg->cfs_rq) | 
|  | kfree(tg->cfs_rq[i]); | 
|  | if (tg->se) | 
|  | kfree(tg->se[i]); | 
|  | } | 
|  |  | 
|  | kfree(tg->cfs_rq); | 
|  | kfree(tg->se); | 
|  | } | 
|  |  | 
|  | static | 
|  | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | struct cfs_rq *cfs_rq; | 
|  | struct sched_entity *se, *parent_se; | 
|  | struct rq *rq; | 
|  | int i; | 
|  |  | 
|  | tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->cfs_rq) | 
|  | goto err; | 
|  | tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->se) | 
|  | goto err; | 
|  |  | 
|  | tg->shares = NICE_0_LOAD; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | rq = cpu_rq(i); | 
|  |  | 
|  | cfs_rq = kmalloc_node(sizeof(struct cfs_rq), | 
|  | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | 
|  | if (!cfs_rq) | 
|  | goto err; | 
|  |  | 
|  | se = kmalloc_node(sizeof(struct sched_entity), | 
|  | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | 
|  | if (!se) | 
|  | goto err; | 
|  |  | 
|  | parent_se = parent ? parent->se[i] : NULL; | 
|  | init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent_se); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list, | 
|  | &cpu_rq(cpu)->leaf_cfs_rq_list); | 
|  | } | 
|  |  | 
|  | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list); | 
|  | } | 
|  | #else /* !CONFG_FAIR_GROUP_SCHED */ | 
|  | static inline void free_fair_sched_group(struct task_group *tg) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void register_fair_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void unregister_fair_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static void free_rt_sched_group(struct task_group *tg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | destroy_rt_bandwidth(&tg->rt_bandwidth); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | if (tg->rt_rq) | 
|  | kfree(tg->rt_rq[i]); | 
|  | if (tg->rt_se) | 
|  | kfree(tg->rt_se[i]); | 
|  | } | 
|  |  | 
|  | kfree(tg->rt_rq); | 
|  | kfree(tg->rt_se); | 
|  | } | 
|  |  | 
|  | static | 
|  | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | struct rt_rq *rt_rq; | 
|  | struct sched_rt_entity *rt_se, *parent_se; | 
|  | struct rq *rq; | 
|  | int i; | 
|  |  | 
|  | tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->rt_rq) | 
|  | goto err; | 
|  | tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL); | 
|  | if (!tg->rt_se) | 
|  | goto err; | 
|  |  | 
|  | init_rt_bandwidth(&tg->rt_bandwidth, | 
|  | ktime_to_ns(def_rt_bandwidth.rt_period), 0); | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | rq = cpu_rq(i); | 
|  |  | 
|  | rt_rq = kmalloc_node(sizeof(struct rt_rq), | 
|  | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | 
|  | if (!rt_rq) | 
|  | goto err; | 
|  |  | 
|  | rt_se = kmalloc_node(sizeof(struct sched_rt_entity), | 
|  | GFP_KERNEL|__GFP_ZERO, cpu_to_node(i)); | 
|  | if (!rt_se) | 
|  | goto err; | 
|  |  | 
|  | parent_se = parent ? parent->rt_se[i] : NULL; | 
|  | init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent_se); | 
|  | } | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | err: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list, | 
|  | &cpu_rq(cpu)->leaf_rt_rq_list); | 
|  | } | 
|  |  | 
|  | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list); | 
|  | } | 
|  | #else /* !CONFIG_RT_GROUP_SCHED */ | 
|  | static inline void free_rt_sched_group(struct task_group *tg) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline | 
|  | int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static inline void register_rt_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline void unregister_rt_sched_group(struct task_group *tg, int cpu) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_GROUP_SCHED | 
|  | static void free_sched_group(struct task_group *tg) | 
|  | { | 
|  | free_fair_sched_group(tg); | 
|  | free_rt_sched_group(tg); | 
|  | kfree(tg); | 
|  | } | 
|  |  | 
|  | /* allocate runqueue etc for a new task group */ | 
|  | struct task_group *sched_create_group(struct task_group *parent) | 
|  | { | 
|  | struct task_group *tg; | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | tg = kzalloc(sizeof(*tg), GFP_KERNEL); | 
|  | if (!tg) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | if (!alloc_fair_sched_group(tg, parent)) | 
|  | goto err; | 
|  |  | 
|  | if (!alloc_rt_sched_group(tg, parent)) | 
|  | goto err; | 
|  |  | 
|  | spin_lock_irqsave(&task_group_lock, flags); | 
|  | for_each_possible_cpu(i) { | 
|  | register_fair_sched_group(tg, i); | 
|  | register_rt_sched_group(tg, i); | 
|  | } | 
|  | list_add_rcu(&tg->list, &task_groups); | 
|  |  | 
|  | WARN_ON(!parent); /* root should already exist */ | 
|  |  | 
|  | tg->parent = parent; | 
|  | INIT_LIST_HEAD(&tg->children); | 
|  | list_add_rcu(&tg->siblings, &parent->children); | 
|  | spin_unlock_irqrestore(&task_group_lock, flags); | 
|  |  | 
|  | return tg; | 
|  |  | 
|  | err: | 
|  | free_sched_group(tg); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | /* rcu callback to free various structures associated with a task group */ | 
|  | static void free_sched_group_rcu(struct rcu_head *rhp) | 
|  | { | 
|  | /* now it should be safe to free those cfs_rqs */ | 
|  | free_sched_group(container_of(rhp, struct task_group, rcu)); | 
|  | } | 
|  |  | 
|  | /* Destroy runqueue etc associated with a task group */ | 
|  | void sched_destroy_group(struct task_group *tg) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irqsave(&task_group_lock, flags); | 
|  | for_each_possible_cpu(i) { | 
|  | unregister_fair_sched_group(tg, i); | 
|  | unregister_rt_sched_group(tg, i); | 
|  | } | 
|  | list_del_rcu(&tg->list); | 
|  | list_del_rcu(&tg->siblings); | 
|  | spin_unlock_irqrestore(&task_group_lock, flags); | 
|  |  | 
|  | /* wait for possible concurrent references to cfs_rqs complete */ | 
|  | call_rcu(&tg->rcu, free_sched_group_rcu); | 
|  | } | 
|  |  | 
|  | /* change task's runqueue when it moves between groups. | 
|  | *	The caller of this function should have put the task in its new group | 
|  | *	by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to | 
|  | *	reflect its new group. | 
|  | */ | 
|  | void sched_move_task(struct task_struct *tsk) | 
|  | { | 
|  | int on_rq, running; | 
|  | unsigned long flags; | 
|  | struct rq *rq; | 
|  |  | 
|  | rq = task_rq_lock(tsk, &flags); | 
|  |  | 
|  | update_rq_clock(rq); | 
|  |  | 
|  | running = task_current(rq, tsk); | 
|  | on_rq = tsk->se.on_rq; | 
|  |  | 
|  | if (on_rq) | 
|  | dequeue_task(rq, tsk, 0); | 
|  | if (unlikely(running)) | 
|  | tsk->sched_class->put_prev_task(rq, tsk); | 
|  |  | 
|  | set_task_rq(tsk, task_cpu(tsk)); | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | if (tsk->sched_class->moved_group) | 
|  | tsk->sched_class->moved_group(tsk); | 
|  | #endif | 
|  |  | 
|  | if (unlikely(running)) | 
|  | tsk->sched_class->set_curr_task(rq); | 
|  | if (on_rq) | 
|  | enqueue_task(rq, tsk, 0); | 
|  |  | 
|  | task_rq_unlock(rq, &flags); | 
|  | } | 
|  | #endif /* CONFIG_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static void __set_se_shares(struct sched_entity *se, unsigned long shares) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = se->cfs_rq; | 
|  | int on_rq; | 
|  |  | 
|  | on_rq = se->on_rq; | 
|  | if (on_rq) | 
|  | dequeue_entity(cfs_rq, se, 0); | 
|  |  | 
|  | se->load.weight = shares; | 
|  | se->load.inv_weight = 0; | 
|  |  | 
|  | if (on_rq) | 
|  | enqueue_entity(cfs_rq, se, 0); | 
|  | } | 
|  |  | 
|  | static void set_se_shares(struct sched_entity *se, unsigned long shares) | 
|  | { | 
|  | struct cfs_rq *cfs_rq = se->cfs_rq; | 
|  | struct rq *rq = cfs_rq->rq; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&rq->lock, flags); | 
|  | __set_se_shares(se, shares); | 
|  | spin_unlock_irqrestore(&rq->lock, flags); | 
|  | } | 
|  |  | 
|  | static DEFINE_MUTEX(shares_mutex); | 
|  |  | 
|  | int sched_group_set_shares(struct task_group *tg, unsigned long shares) | 
|  | { | 
|  | int i; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * We can't change the weight of the root cgroup. | 
|  | */ | 
|  | if (!tg->se[0]) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (shares < MIN_SHARES) | 
|  | shares = MIN_SHARES; | 
|  | else if (shares > MAX_SHARES) | 
|  | shares = MAX_SHARES; | 
|  |  | 
|  | mutex_lock(&shares_mutex); | 
|  | if (tg->shares == shares) | 
|  | goto done; | 
|  |  | 
|  | spin_lock_irqsave(&task_group_lock, flags); | 
|  | for_each_possible_cpu(i) | 
|  | unregister_fair_sched_group(tg, i); | 
|  | list_del_rcu(&tg->siblings); | 
|  | spin_unlock_irqrestore(&task_group_lock, flags); | 
|  |  | 
|  | /* wait for any ongoing reference to this group to finish */ | 
|  | synchronize_sched(); | 
|  |  | 
|  | /* | 
|  | * Now we are free to modify the group's share on each cpu | 
|  | * w/o tripping rebalance_share or load_balance_fair. | 
|  | */ | 
|  | tg->shares = shares; | 
|  | for_each_possible_cpu(i) { | 
|  | /* | 
|  | * force a rebalance | 
|  | */ | 
|  | cfs_rq_set_shares(tg->cfs_rq[i], 0); | 
|  | set_se_shares(tg->se[i], shares); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Enable load balance activity on this group, by inserting it back on | 
|  | * each cpu's rq->leaf_cfs_rq_list. | 
|  | */ | 
|  | spin_lock_irqsave(&task_group_lock, flags); | 
|  | for_each_possible_cpu(i) | 
|  | register_fair_sched_group(tg, i); | 
|  | list_add_rcu(&tg->siblings, &tg->parent->children); | 
|  | spin_unlock_irqrestore(&task_group_lock, flags); | 
|  | done: | 
|  | mutex_unlock(&shares_mutex); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long sched_group_shares(struct task_group *tg) | 
|  | { | 
|  | return tg->shares; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* | 
|  | * Ensure that the real time constraints are schedulable. | 
|  | */ | 
|  | static DEFINE_MUTEX(rt_constraints_mutex); | 
|  |  | 
|  | static unsigned long to_ratio(u64 period, u64 runtime) | 
|  | { | 
|  | if (runtime == RUNTIME_INF) | 
|  | return 1ULL << 20; | 
|  |  | 
|  | return div64_u64(runtime << 20, period); | 
|  | } | 
|  |  | 
|  | /* Must be called with tasklist_lock held */ | 
|  | static inline int tg_has_rt_tasks(struct task_group *tg) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  |  | 
|  | do_each_thread(g, p) { | 
|  | if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg) | 
|  | return 1; | 
|  | } while_each_thread(g, p); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct rt_schedulable_data { | 
|  | struct task_group *tg; | 
|  | u64 rt_period; | 
|  | u64 rt_runtime; | 
|  | }; | 
|  |  | 
|  | static int tg_schedulable(struct task_group *tg, void *data) | 
|  | { | 
|  | struct rt_schedulable_data *d = data; | 
|  | struct task_group *child; | 
|  | unsigned long total, sum = 0; | 
|  | u64 period, runtime; | 
|  |  | 
|  | period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
|  | runtime = tg->rt_bandwidth.rt_runtime; | 
|  |  | 
|  | if (tg == d->tg) { | 
|  | period = d->rt_period; | 
|  | runtime = d->rt_runtime; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cannot have more runtime than the period. | 
|  | */ | 
|  | if (runtime > period && runtime != RUNTIME_INF) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Ensure we don't starve existing RT tasks. | 
|  | */ | 
|  | if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg)) | 
|  | return -EBUSY; | 
|  |  | 
|  | total = to_ratio(period, runtime); | 
|  |  | 
|  | /* | 
|  | * Nobody can have more than the global setting allows. | 
|  | */ | 
|  | if (total > to_ratio(global_rt_period(), global_rt_runtime())) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * The sum of our children's runtime should not exceed our own. | 
|  | */ | 
|  | list_for_each_entry_rcu(child, &tg->children, siblings) { | 
|  | period = ktime_to_ns(child->rt_bandwidth.rt_period); | 
|  | runtime = child->rt_bandwidth.rt_runtime; | 
|  |  | 
|  | if (child == d->tg) { | 
|  | period = d->rt_period; | 
|  | runtime = d->rt_runtime; | 
|  | } | 
|  |  | 
|  | sum += to_ratio(period, runtime); | 
|  | } | 
|  |  | 
|  | if (sum > total) | 
|  | return -EINVAL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime) | 
|  | { | 
|  | struct rt_schedulable_data data = { | 
|  | .tg = tg, | 
|  | .rt_period = period, | 
|  | .rt_runtime = runtime, | 
|  | }; | 
|  |  | 
|  | return walk_tg_tree(tg_schedulable, tg_nop, &data); | 
|  | } | 
|  |  | 
|  | static int tg_set_bandwidth(struct task_group *tg, | 
|  | u64 rt_period, u64 rt_runtime) | 
|  | { | 
|  | int i, err = 0; | 
|  |  | 
|  | mutex_lock(&rt_constraints_mutex); | 
|  | read_lock(&tasklist_lock); | 
|  | err = __rt_schedulable(tg, rt_period, rt_runtime); | 
|  | if (err) | 
|  | goto unlock; | 
|  |  | 
|  | spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
|  | tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period); | 
|  | tg->rt_bandwidth.rt_runtime = rt_runtime; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | struct rt_rq *rt_rq = tg->rt_rq[i]; | 
|  |  | 
|  | spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_runtime = rt_runtime; | 
|  | spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  | spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock); | 
|  | unlock: | 
|  | read_unlock(&tasklist_lock); | 
|  | mutex_unlock(&rt_constraints_mutex); | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us) | 
|  | { | 
|  | u64 rt_runtime, rt_period; | 
|  |  | 
|  | rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
|  | rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC; | 
|  | if (rt_runtime_us < 0) | 
|  | rt_runtime = RUNTIME_INF; | 
|  |  | 
|  | return tg_set_bandwidth(tg, rt_period, rt_runtime); | 
|  | } | 
|  |  | 
|  | long sched_group_rt_runtime(struct task_group *tg) | 
|  | { | 
|  | u64 rt_runtime_us; | 
|  |  | 
|  | if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF) | 
|  | return -1; | 
|  |  | 
|  | rt_runtime_us = tg->rt_bandwidth.rt_runtime; | 
|  | do_div(rt_runtime_us, NSEC_PER_USEC); | 
|  | return rt_runtime_us; | 
|  | } | 
|  |  | 
|  | int sched_group_set_rt_period(struct task_group *tg, long rt_period_us) | 
|  | { | 
|  | u64 rt_runtime, rt_period; | 
|  |  | 
|  | rt_period = (u64)rt_period_us * NSEC_PER_USEC; | 
|  | rt_runtime = tg->rt_bandwidth.rt_runtime; | 
|  |  | 
|  | if (rt_period == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | return tg_set_bandwidth(tg, rt_period, rt_runtime); | 
|  | } | 
|  |  | 
|  | long sched_group_rt_period(struct task_group *tg) | 
|  | { | 
|  | u64 rt_period_us; | 
|  |  | 
|  | rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period); | 
|  | do_div(rt_period_us, NSEC_PER_USEC); | 
|  | return rt_period_us; | 
|  | } | 
|  |  | 
|  | static int sched_rt_global_constraints(void) | 
|  | { | 
|  | u64 runtime, period; | 
|  | int ret = 0; | 
|  |  | 
|  | if (sysctl_sched_rt_period <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | runtime = global_rt_runtime(); | 
|  | period = global_rt_period(); | 
|  |  | 
|  | /* | 
|  | * Sanity check on the sysctl variables. | 
|  | */ | 
|  | if (runtime > period && runtime != RUNTIME_INF) | 
|  | return -EINVAL; | 
|  |  | 
|  | mutex_lock(&rt_constraints_mutex); | 
|  | read_lock(&tasklist_lock); | 
|  | ret = __rt_schedulable(NULL, 0, 0); | 
|  | read_unlock(&tasklist_lock); | 
|  | mutex_unlock(&rt_constraints_mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #else /* !CONFIG_RT_GROUP_SCHED */ | 
|  | static int sched_rt_global_constraints(void) | 
|  | { | 
|  | unsigned long flags; | 
|  | int i; | 
|  |  | 
|  | if (sysctl_sched_rt_period <= 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags); | 
|  | for_each_possible_cpu(i) { | 
|  | struct rt_rq *rt_rq = &cpu_rq(i)->rt; | 
|  |  | 
|  | spin_lock(&rt_rq->rt_runtime_lock); | 
|  | rt_rq->rt_runtime = global_rt_runtime(); | 
|  | spin_unlock(&rt_rq->rt_runtime_lock); | 
|  | } | 
|  | spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | int sched_rt_handler(struct ctl_table *table, int write, | 
|  | struct file *filp, void __user *buffer, size_t *lenp, | 
|  | loff_t *ppos) | 
|  | { | 
|  | int ret; | 
|  | int old_period, old_runtime; | 
|  | static DEFINE_MUTEX(mutex); | 
|  |  | 
|  | mutex_lock(&mutex); | 
|  | old_period = sysctl_sched_rt_period; | 
|  | old_runtime = sysctl_sched_rt_runtime; | 
|  |  | 
|  | ret = proc_dointvec(table, write, filp, buffer, lenp, ppos); | 
|  |  | 
|  | if (!ret && write) { | 
|  | ret = sched_rt_global_constraints(); | 
|  | if (ret) { | 
|  | sysctl_sched_rt_period = old_period; | 
|  | sysctl_sched_rt_runtime = old_runtime; | 
|  | } else { | 
|  | def_rt_bandwidth.rt_runtime = global_rt_runtime(); | 
|  | def_rt_bandwidth.rt_period = | 
|  | ns_to_ktime(global_rt_period()); | 
|  | } | 
|  | } | 
|  | mutex_unlock(&mutex); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_SCHED | 
|  |  | 
|  | /* return corresponding task_group object of a cgroup */ | 
|  | static inline struct task_group *cgroup_tg(struct cgroup *cgrp) | 
|  | { | 
|  | return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id), | 
|  | struct task_group, css); | 
|  | } | 
|  |  | 
|  | static struct cgroup_subsys_state * | 
|  | cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | { | 
|  | struct task_group *tg, *parent; | 
|  |  | 
|  | if (!cgrp->parent) { | 
|  | /* This is early initialization for the top cgroup */ | 
|  | return &init_task_group.css; | 
|  | } | 
|  |  | 
|  | parent = cgroup_tg(cgrp->parent); | 
|  | tg = sched_create_group(parent); | 
|  | if (IS_ERR(tg)) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | return &tg->css; | 
|  | } | 
|  |  | 
|  | static void | 
|  | cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | { | 
|  | struct task_group *tg = cgroup_tg(cgrp); | 
|  |  | 
|  | sched_destroy_group(tg); | 
|  | } | 
|  |  | 
|  | static int | 
|  | cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 
|  | struct task_struct *tsk) | 
|  | { | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | /* Don't accept realtime tasks when there is no way for them to run */ | 
|  | if (rt_task(tsk) && cgroup_tg(cgrp)->rt_bandwidth.rt_runtime == 0) | 
|  | return -EINVAL; | 
|  | #else | 
|  | /* We don't support RT-tasks being in separate groups */ | 
|  | if (tsk->sched_class != &fair_sched_class) | 
|  | return -EINVAL; | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp, | 
|  | struct cgroup *old_cont, struct task_struct *tsk) | 
|  | { | 
|  | sched_move_task(tsk); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype, | 
|  | u64 shareval) | 
|  | { | 
|  | return sched_group_set_shares(cgroup_tg(cgrp), shareval); | 
|  | } | 
|  |  | 
|  | static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | struct task_group *tg = cgroup_tg(cgrp); | 
|  |  | 
|  | return (u64) tg->shares; | 
|  | } | 
|  | #endif /* CONFIG_FAIR_GROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft, | 
|  | s64 val) | 
|  | { | 
|  | return sched_group_set_rt_runtime(cgroup_tg(cgrp), val); | 
|  | } | 
|  |  | 
|  | static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | return sched_group_rt_runtime(cgroup_tg(cgrp)); | 
|  | } | 
|  |  | 
|  | static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype, | 
|  | u64 rt_period_us) | 
|  | { | 
|  | return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us); | 
|  | } | 
|  |  | 
|  | static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | return sched_group_rt_period(cgroup_tg(cgrp)); | 
|  | } | 
|  | #endif /* CONFIG_RT_GROUP_SCHED */ | 
|  |  | 
|  | static struct cftype cpu_files[] = { | 
|  | #ifdef CONFIG_FAIR_GROUP_SCHED | 
|  | { | 
|  | .name = "shares", | 
|  | .read_u64 = cpu_shares_read_u64, | 
|  | .write_u64 = cpu_shares_write_u64, | 
|  | }, | 
|  | #endif | 
|  | #ifdef CONFIG_RT_GROUP_SCHED | 
|  | { | 
|  | .name = "rt_runtime_us", | 
|  | .read_s64 = cpu_rt_runtime_read, | 
|  | .write_s64 = cpu_rt_runtime_write, | 
|  | }, | 
|  | { | 
|  | .name = "rt_period_us", | 
|  | .read_u64 = cpu_rt_period_read_uint, | 
|  | .write_u64 = cpu_rt_period_write_uint, | 
|  | }, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont) | 
|  | { | 
|  | return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files)); | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys cpu_cgroup_subsys = { | 
|  | .name		= "cpu", | 
|  | .create		= cpu_cgroup_create, | 
|  | .destroy	= cpu_cgroup_destroy, | 
|  | .can_attach	= cpu_cgroup_can_attach, | 
|  | .attach		= cpu_cgroup_attach, | 
|  | .populate	= cpu_cgroup_populate, | 
|  | .subsys_id	= cpu_cgroup_subsys_id, | 
|  | .early_init	= 1, | 
|  | }; | 
|  |  | 
|  | #endif	/* CONFIG_CGROUP_SCHED */ | 
|  |  | 
|  | #ifdef CONFIG_CGROUP_CPUACCT | 
|  |  | 
|  | /* | 
|  | * CPU accounting code for task groups. | 
|  | * | 
|  | * Based on the work by Paul Menage (menage@google.com) and Balbir Singh | 
|  | * (balbir@in.ibm.com). | 
|  | */ | 
|  |  | 
|  | /* track cpu usage of a group of tasks */ | 
|  | struct cpuacct { | 
|  | struct cgroup_subsys_state css; | 
|  | /* cpuusage holds pointer to a u64-type object on every cpu */ | 
|  | u64 *cpuusage; | 
|  | }; | 
|  |  | 
|  | struct cgroup_subsys cpuacct_subsys; | 
|  |  | 
|  | /* return cpu accounting group corresponding to this container */ | 
|  | static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp) | 
|  | { | 
|  | return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id), | 
|  | struct cpuacct, css); | 
|  | } | 
|  |  | 
|  | /* return cpu accounting group to which this task belongs */ | 
|  | static inline struct cpuacct *task_ca(struct task_struct *tsk) | 
|  | { | 
|  | return container_of(task_subsys_state(tsk, cpuacct_subsys_id), | 
|  | struct cpuacct, css); | 
|  | } | 
|  |  | 
|  | /* create a new cpu accounting group */ | 
|  | static struct cgroup_subsys_state *cpuacct_create( | 
|  | struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | { | 
|  | struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL); | 
|  |  | 
|  | if (!ca) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ca->cpuusage = alloc_percpu(u64); | 
|  | if (!ca->cpuusage) { | 
|  | kfree(ca); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | return &ca->css; | 
|  | } | 
|  |  | 
|  | /* destroy an existing cpu accounting group */ | 
|  | static void | 
|  | cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | { | 
|  | struct cpuacct *ca = cgroup_ca(cgrp); | 
|  |  | 
|  | free_percpu(ca->cpuusage); | 
|  | kfree(ca); | 
|  | } | 
|  |  | 
|  | /* return total cpu usage (in nanoseconds) of a group */ | 
|  | static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft) | 
|  | { | 
|  | struct cpuacct *ca = cgroup_ca(cgrp); | 
|  | u64 totalcpuusage = 0; | 
|  | int i; | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); | 
|  |  | 
|  | /* | 
|  | * Take rq->lock to make 64-bit addition safe on 32-bit | 
|  | * platforms. | 
|  | */ | 
|  | spin_lock_irq(&cpu_rq(i)->lock); | 
|  | totalcpuusage += *cpuusage; | 
|  | spin_unlock_irq(&cpu_rq(i)->lock); | 
|  | } | 
|  |  | 
|  | return totalcpuusage; | 
|  | } | 
|  |  | 
|  | static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype, | 
|  | u64 reset) | 
|  | { | 
|  | struct cpuacct *ca = cgroup_ca(cgrp); | 
|  | int err = 0; | 
|  | int i; | 
|  |  | 
|  | if (reset) { | 
|  | err = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | for_each_possible_cpu(i) { | 
|  | u64 *cpuusage = percpu_ptr(ca->cpuusage, i); | 
|  |  | 
|  | spin_lock_irq(&cpu_rq(i)->lock); | 
|  | *cpuusage = 0; | 
|  | spin_unlock_irq(&cpu_rq(i)->lock); | 
|  | } | 
|  | out: | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static struct cftype files[] = { | 
|  | { | 
|  | .name = "usage", | 
|  | .read_u64 = cpuusage_read, | 
|  | .write_u64 = cpuusage_write, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp) | 
|  | { | 
|  | return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * charge this task's execution time to its accounting group. | 
|  | * | 
|  | * called with rq->lock held. | 
|  | */ | 
|  | static void cpuacct_charge(struct task_struct *tsk, u64 cputime) | 
|  | { | 
|  | struct cpuacct *ca; | 
|  |  | 
|  | if (!cpuacct_subsys.active) | 
|  | return; | 
|  |  | 
|  | ca = task_ca(tsk); | 
|  | if (ca) { | 
|  | u64 *cpuusage = percpu_ptr(ca->cpuusage, task_cpu(tsk)); | 
|  |  | 
|  | *cpuusage += cputime; | 
|  | } | 
|  | } | 
|  |  | 
|  | struct cgroup_subsys cpuacct_subsys = { | 
|  | .name = "cpuacct", | 
|  | .create = cpuacct_create, | 
|  | .destroy = cpuacct_destroy, | 
|  | .populate = cpuacct_populate, | 
|  | .subsys_id = cpuacct_subsys_id, | 
|  | }; | 
|  | #endif	/* CONFIG_CGROUP_CPUACCT */ |