|  | /* | 
|  | *	linux/arch/alpha/kernel/pci_iommu.c | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/bootmem.h> | 
|  |  | 
|  | #include <asm/io.h> | 
|  | #include <asm/hwrpb.h> | 
|  |  | 
|  | #include "proto.h" | 
|  | #include "pci_impl.h" | 
|  |  | 
|  |  | 
|  | #define DEBUG_ALLOC 0 | 
|  | #if DEBUG_ALLOC > 0 | 
|  | # define DBGA(args...)		printk(KERN_DEBUG args) | 
|  | #else | 
|  | # define DBGA(args...) | 
|  | #endif | 
|  | #if DEBUG_ALLOC > 1 | 
|  | # define DBGA2(args...)		printk(KERN_DEBUG args) | 
|  | #else | 
|  | # define DBGA2(args...) | 
|  | #endif | 
|  |  | 
|  | #define DEBUG_NODIRECT 0 | 
|  | #define DEBUG_FORCEDAC 0 | 
|  |  | 
|  | #define ISA_DMA_MASK		0x00ffffff | 
|  |  | 
|  | static inline unsigned long | 
|  | mk_iommu_pte(unsigned long paddr) | 
|  | { | 
|  | return (paddr >> (PAGE_SHIFT-1)) | 1; | 
|  | } | 
|  |  | 
|  | static inline long | 
|  | calc_npages(long bytes) | 
|  | { | 
|  | return (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return the minimum of MAX or the first power of two larger | 
|  | than main memory.  */ | 
|  |  | 
|  | unsigned long | 
|  | size_for_memory(unsigned long max) | 
|  | { | 
|  | unsigned long mem = max_low_pfn << PAGE_SHIFT; | 
|  | if (mem < max) | 
|  | max = 1UL << ceil_log2(mem); | 
|  | return max; | 
|  | } | 
|  |  | 
|  | struct pci_iommu_arena * | 
|  | iommu_arena_new_node(int nid, struct pci_controller *hose, dma_addr_t base, | 
|  | unsigned long window_size, unsigned long align) | 
|  | { | 
|  | unsigned long mem_size; | 
|  | struct pci_iommu_arena *arena; | 
|  |  | 
|  | mem_size = window_size / (PAGE_SIZE / sizeof(unsigned long)); | 
|  |  | 
|  | /* Note that the TLB lookup logic uses bitwise concatenation, | 
|  | not addition, so the required arena alignment is based on | 
|  | the size of the window.  Retain the align parameter so that | 
|  | particular systems can over-align the arena.  */ | 
|  | if (align < mem_size) | 
|  | align = mem_size; | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_DISCONTIGMEM | 
|  |  | 
|  | if (!NODE_DATA(nid) || | 
|  | (NULL == (arena = alloc_bootmem_node(NODE_DATA(nid), | 
|  | sizeof(*arena))))) { | 
|  | printk("%s: couldn't allocate arena from node %d\n" | 
|  | "    falling back to system-wide allocation\n", | 
|  | __FUNCTION__, nid); | 
|  | arena = alloc_bootmem(sizeof(*arena)); | 
|  | } | 
|  |  | 
|  | if (!NODE_DATA(nid) || | 
|  | (NULL == (arena->ptes = __alloc_bootmem_node(NODE_DATA(nid), | 
|  | mem_size, | 
|  | align, | 
|  | 0)))) { | 
|  | printk("%s: couldn't allocate arena ptes from node %d\n" | 
|  | "    falling back to system-wide allocation\n", | 
|  | __FUNCTION__, nid); | 
|  | arena->ptes = __alloc_bootmem(mem_size, align, 0); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_DISCONTIGMEM */ | 
|  |  | 
|  | arena = alloc_bootmem(sizeof(*arena)); | 
|  | arena->ptes = __alloc_bootmem(mem_size, align, 0); | 
|  |  | 
|  | #endif /* CONFIG_DISCONTIGMEM */ | 
|  |  | 
|  | spin_lock_init(&arena->lock); | 
|  | arena->hose = hose; | 
|  | arena->dma_base = base; | 
|  | arena->size = window_size; | 
|  | arena->next_entry = 0; | 
|  |  | 
|  | /* Align allocations to a multiple of a page size.  Not needed | 
|  | unless there are chip bugs.  */ | 
|  | arena->align_entry = 1; | 
|  |  | 
|  | return arena; | 
|  | } | 
|  |  | 
|  | struct pci_iommu_arena * | 
|  | iommu_arena_new(struct pci_controller *hose, dma_addr_t base, | 
|  | unsigned long window_size, unsigned long align) | 
|  | { | 
|  | return iommu_arena_new_node(0, hose, base, window_size, align); | 
|  | } | 
|  |  | 
|  | /* Must be called with the arena lock held */ | 
|  | static long | 
|  | iommu_arena_find_pages(struct pci_iommu_arena *arena, long n, long mask) | 
|  | { | 
|  | unsigned long *ptes; | 
|  | long i, p, nent; | 
|  |  | 
|  | /* Search forward for the first mask-aligned sequence of N free ptes */ | 
|  | ptes = arena->ptes; | 
|  | nent = arena->size >> PAGE_SHIFT; | 
|  | p = (arena->next_entry + mask) & ~mask; | 
|  | i = 0; | 
|  | while (i < n && p+i < nent) { | 
|  | if (ptes[p+i]) | 
|  | p = (p + i + 1 + mask) & ~mask, i = 0; | 
|  | else | 
|  | i = i + 1; | 
|  | } | 
|  |  | 
|  | if (i < n) { | 
|  | /* Reached the end.  Flush the TLB and restart the | 
|  | search from the beginning.  */ | 
|  | alpha_mv.mv_pci_tbi(arena->hose, 0, -1); | 
|  |  | 
|  | p = 0, i = 0; | 
|  | while (i < n && p+i < nent) { | 
|  | if (ptes[p+i]) | 
|  | p = (p + i + 1 + mask) & ~mask, i = 0; | 
|  | else | 
|  | i = i + 1; | 
|  | } | 
|  |  | 
|  | if (i < n) | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Success. It's the responsibility of the caller to mark them | 
|  | in use before releasing the lock */ | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static long | 
|  | iommu_arena_alloc(struct pci_iommu_arena *arena, long n, unsigned int align) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long *ptes; | 
|  | long i, p, mask; | 
|  |  | 
|  | spin_lock_irqsave(&arena->lock, flags); | 
|  |  | 
|  | /* Search for N empty ptes */ | 
|  | ptes = arena->ptes; | 
|  | mask = max(align, arena->align_entry) - 1; | 
|  | p = iommu_arena_find_pages(arena, n, mask); | 
|  | if (p < 0) { | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Success.  Mark them all in use, ie not zero and invalid | 
|  | for the iommu tlb that could load them from under us. | 
|  | The chip specific bits will fill this in with something | 
|  | kosher when we return.  */ | 
|  | for (i = 0; i < n; ++i) | 
|  | ptes[p+i] = IOMMU_INVALID_PTE; | 
|  |  | 
|  | arena->next_entry = p + n; | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static void | 
|  | iommu_arena_free(struct pci_iommu_arena *arena, long ofs, long n) | 
|  | { | 
|  | unsigned long *p; | 
|  | long i; | 
|  |  | 
|  | p = arena->ptes + ofs; | 
|  | for (i = 0; i < n; ++i) | 
|  | p[i] = 0; | 
|  | } | 
|  |  | 
|  | /* Map a single buffer of the indicated size for PCI DMA in streaming | 
|  | mode.  The 32-bit PCI bus mastering address to use is returned. | 
|  | Once the device is given the dma address, the device owns this memory | 
|  | until either pci_unmap_single or pci_dma_sync_single is performed.  */ | 
|  |  | 
|  | static dma_addr_t | 
|  | pci_map_single_1(struct pci_dev *pdev, void *cpu_addr, size_t size, | 
|  | int dac_allowed) | 
|  | { | 
|  | struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; | 
|  | dma_addr_t max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | 
|  | struct pci_iommu_arena *arena; | 
|  | long npages, dma_ofs, i; | 
|  | unsigned long paddr; | 
|  | dma_addr_t ret; | 
|  | unsigned int align = 0; | 
|  |  | 
|  | paddr = __pa(cpu_addr); | 
|  |  | 
|  | #if !DEBUG_NODIRECT | 
|  | /* First check to see if we can use the direct map window.  */ | 
|  | if (paddr + size + __direct_map_base - 1 <= max_dma | 
|  | && paddr + size <= __direct_map_size) { | 
|  | ret = paddr + __direct_map_base; | 
|  |  | 
|  | DBGA2("pci_map_single: [%p,%lx] -> direct %lx from %p\n", | 
|  | cpu_addr, size, ret, __builtin_return_address(0)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Next, use DAC if selected earlier.  */ | 
|  | if (dac_allowed) { | 
|  | ret = paddr + alpha_mv.pci_dac_offset; | 
|  |  | 
|  | DBGA2("pci_map_single: [%p,%lx] -> DAC %lx from %p\n", | 
|  | cpu_addr, size, ret, __builtin_return_address(0)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* If the machine doesn't define a pci_tbi routine, we have to | 
|  | assume it doesn't support sg mapping, and, since we tried to | 
|  | use direct_map above, it now must be considered an error. */ | 
|  | if (! alpha_mv.mv_pci_tbi) { | 
|  | static int been_here = 0; /* Only print the message once. */ | 
|  | if (!been_here) { | 
|  | printk(KERN_WARNING "pci_map_single: no HW sg\n"); | 
|  | been_here = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | arena = hose->sg_pci; | 
|  | if (!arena || arena->dma_base + arena->size - 1 > max_dma) | 
|  | arena = hose->sg_isa; | 
|  |  | 
|  | npages = calc_npages((paddr & ~PAGE_MASK) + size); | 
|  |  | 
|  | /* Force allocation to 64KB boundary for ISA bridges. */ | 
|  | if (pdev && pdev == isa_bridge) | 
|  | align = 8; | 
|  | dma_ofs = iommu_arena_alloc(arena, npages, align); | 
|  | if (dma_ofs < 0) { | 
|  | printk(KERN_WARNING "pci_map_single failed: " | 
|  | "could not allocate dma page tables\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | paddr &= PAGE_MASK; | 
|  | for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) | 
|  | arena->ptes[i + dma_ofs] = mk_iommu_pte(paddr); | 
|  |  | 
|  | ret = arena->dma_base + dma_ofs * PAGE_SIZE; | 
|  | ret += (unsigned long)cpu_addr & ~PAGE_MASK; | 
|  |  | 
|  | DBGA2("pci_map_single: [%p,%lx] np %ld -> sg %lx from %p\n", | 
|  | cpu_addr, size, npages, ret, __builtin_return_address(0)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | dma_addr_t | 
|  | pci_map_single(struct pci_dev *pdev, void *cpu_addr, size_t size, int dir) | 
|  | { | 
|  | int dac_allowed; | 
|  |  | 
|  | if (dir == PCI_DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | 
|  | return pci_map_single_1(pdev, cpu_addr, size, dac_allowed); | 
|  | } | 
|  |  | 
|  | dma_addr_t | 
|  | pci_map_page(struct pci_dev *pdev, struct page *page, unsigned long offset, | 
|  | size_t size, int dir) | 
|  | { | 
|  | int dac_allowed; | 
|  |  | 
|  | if (dir == PCI_DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | 
|  | return pci_map_single_1(pdev, (char *)page_address(page) + offset, | 
|  | size, dac_allowed); | 
|  | } | 
|  |  | 
|  | /* Unmap a single streaming mode DMA translation.  The DMA_ADDR and | 
|  | SIZE must match what was provided for in a previous pci_map_single | 
|  | call.  All other usages are undefined.  After this call, reads by | 
|  | the cpu to the buffer are guaranteed to see whatever the device | 
|  | wrote there.  */ | 
|  |  | 
|  | void | 
|  | pci_unmap_single(struct pci_dev *pdev, dma_addr_t dma_addr, size_t size, | 
|  | int direction) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct pci_controller *hose = pdev ? pdev->sysdata : pci_isa_hose; | 
|  | struct pci_iommu_arena *arena; | 
|  | long dma_ofs, npages; | 
|  |  | 
|  | if (direction == PCI_DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | if (dma_addr >= __direct_map_base | 
|  | && dma_addr < __direct_map_base + __direct_map_size) { | 
|  | /* Nothing to do.  */ | 
|  |  | 
|  | DBGA2("pci_unmap_single: direct [%lx,%lx] from %p\n", | 
|  | dma_addr, size, __builtin_return_address(0)); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (dma_addr > 0xffffffff) { | 
|  | DBGA2("pci64_unmap_single: DAC [%lx,%lx] from %p\n", | 
|  | dma_addr, size, __builtin_return_address(0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | arena = hose->sg_pci; | 
|  | if (!arena || dma_addr < arena->dma_base) | 
|  | arena = hose->sg_isa; | 
|  |  | 
|  | dma_ofs = (dma_addr - arena->dma_base) >> PAGE_SHIFT; | 
|  | if (dma_ofs * PAGE_SIZE >= arena->size) { | 
|  | printk(KERN_ERR "Bogus pci_unmap_single: dma_addr %lx " | 
|  | " base %lx size %x\n", dma_addr, arena->dma_base, | 
|  | arena->size); | 
|  | return; | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | npages = calc_npages((dma_addr & ~PAGE_MASK) + size); | 
|  |  | 
|  | spin_lock_irqsave(&arena->lock, flags); | 
|  |  | 
|  | iommu_arena_free(arena, dma_ofs, npages); | 
|  |  | 
|  | /* If we're freeing ptes above the `next_entry' pointer (they | 
|  | may have snuck back into the TLB since the last wrap flush), | 
|  | we need to flush the TLB before reallocating the latter.  */ | 
|  | if (dma_ofs >= arena->next_entry) | 
|  | alpha_mv.mv_pci_tbi(hose, dma_addr, dma_addr + size - 1); | 
|  |  | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  |  | 
|  | DBGA2("pci_unmap_single: sg [%lx,%lx] np %ld from %p\n", | 
|  | dma_addr, size, npages, __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  | void | 
|  | pci_unmap_page(struct pci_dev *pdev, dma_addr_t dma_addr, | 
|  | size_t size, int direction) | 
|  | { | 
|  | pci_unmap_single(pdev, dma_addr, size, direction); | 
|  | } | 
|  |  | 
|  | /* Allocate and map kernel buffer using consistent mode DMA for PCI | 
|  | device.  Returns non-NULL cpu-view pointer to the buffer if | 
|  | successful and sets *DMA_ADDRP to the pci side dma address as well, | 
|  | else DMA_ADDRP is undefined.  */ | 
|  |  | 
|  | void * | 
|  | pci_alloc_consistent(struct pci_dev *pdev, size_t size, dma_addr_t *dma_addrp) | 
|  | { | 
|  | void *cpu_addr; | 
|  | long order = get_order(size); | 
|  | int gfp = GFP_ATOMIC; | 
|  |  | 
|  | try_again: | 
|  | cpu_addr = (void *)__get_free_pages(gfp, order); | 
|  | if (! cpu_addr) { | 
|  | printk(KERN_INFO "pci_alloc_consistent: " | 
|  | "get_free_pages failed from %p\n", | 
|  | __builtin_return_address(0)); | 
|  | /* ??? Really atomic allocation?  Otherwise we could play | 
|  | with vmalloc and sg if we can't find contiguous memory.  */ | 
|  | return NULL; | 
|  | } | 
|  | memset(cpu_addr, 0, size); | 
|  |  | 
|  | *dma_addrp = pci_map_single_1(pdev, cpu_addr, size, 0); | 
|  | if (*dma_addrp == 0) { | 
|  | free_pages((unsigned long)cpu_addr, order); | 
|  | if (alpha_mv.mv_pci_tbi || (gfp & GFP_DMA)) | 
|  | return NULL; | 
|  | /* The address doesn't fit required mask and we | 
|  | do not have iommu. Try again with GFP_DMA. */ | 
|  | gfp |= GFP_DMA; | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | DBGA2("pci_alloc_consistent: %lx -> [%p,%x] from %p\n", | 
|  | size, cpu_addr, *dma_addrp, __builtin_return_address(0)); | 
|  |  | 
|  | return cpu_addr; | 
|  | } | 
|  |  | 
|  | /* Free and unmap a consistent DMA buffer.  CPU_ADDR and DMA_ADDR must | 
|  | be values that were returned from pci_alloc_consistent.  SIZE must | 
|  | be the same as what as passed into pci_alloc_consistent. | 
|  | References to the memory and mappings associated with CPU_ADDR or | 
|  | DMA_ADDR past this call are illegal.  */ | 
|  |  | 
|  | void | 
|  | pci_free_consistent(struct pci_dev *pdev, size_t size, void *cpu_addr, | 
|  | dma_addr_t dma_addr) | 
|  | { | 
|  | pci_unmap_single(pdev, dma_addr, size, PCI_DMA_BIDIRECTIONAL); | 
|  | free_pages((unsigned long)cpu_addr, get_order(size)); | 
|  |  | 
|  | DBGA2("pci_free_consistent: [%x,%lx] from %p\n", | 
|  | dma_addr, size, __builtin_return_address(0)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Classify the elements of the scatterlist.  Write dma_address | 
|  | of each element with: | 
|  | 0   : Followers all physically adjacent. | 
|  | 1   : Followers all virtually adjacent. | 
|  | -1  : Not leader, physically adjacent to previous. | 
|  | -2  : Not leader, virtually adjacent to previous. | 
|  | Write dma_length of each leader with the combined lengths of | 
|  | the mergable followers.  */ | 
|  |  | 
|  | #define SG_ENT_VIRT_ADDRESS(SG) (page_address((SG)->page) + (SG)->offset) | 
|  | #define SG_ENT_PHYS_ADDRESS(SG) __pa(SG_ENT_VIRT_ADDRESS(SG)) | 
|  |  | 
|  | static void | 
|  | sg_classify(struct scatterlist *sg, struct scatterlist *end, int virt_ok) | 
|  | { | 
|  | unsigned long next_paddr; | 
|  | struct scatterlist *leader; | 
|  | long leader_flag, leader_length; | 
|  |  | 
|  | leader = sg; | 
|  | leader_flag = 0; | 
|  | leader_length = leader->length; | 
|  | next_paddr = SG_ENT_PHYS_ADDRESS(leader) + leader_length; | 
|  |  | 
|  | for (++sg; sg < end; ++sg) { | 
|  | unsigned long addr, len; | 
|  | addr = SG_ENT_PHYS_ADDRESS(sg); | 
|  | len = sg->length; | 
|  |  | 
|  | if (next_paddr == addr) { | 
|  | sg->dma_address = -1; | 
|  | leader_length += len; | 
|  | } else if (((next_paddr | addr) & ~PAGE_MASK) == 0 && virt_ok) { | 
|  | sg->dma_address = -2; | 
|  | leader_flag = 1; | 
|  | leader_length += len; | 
|  | } else { | 
|  | leader->dma_address = leader_flag; | 
|  | leader->dma_length = leader_length; | 
|  | leader = sg; | 
|  | leader_flag = 0; | 
|  | leader_length = len; | 
|  | } | 
|  |  | 
|  | next_paddr = addr + len; | 
|  | } | 
|  |  | 
|  | leader->dma_address = leader_flag; | 
|  | leader->dma_length = leader_length; | 
|  | } | 
|  |  | 
|  | /* Given a scatterlist leader, choose an allocation method and fill | 
|  | in the blanks.  */ | 
|  |  | 
|  | static int | 
|  | sg_fill(struct scatterlist *leader, struct scatterlist *end, | 
|  | struct scatterlist *out, struct pci_iommu_arena *arena, | 
|  | dma_addr_t max_dma, int dac_allowed) | 
|  | { | 
|  | unsigned long paddr = SG_ENT_PHYS_ADDRESS(leader); | 
|  | long size = leader->dma_length; | 
|  | struct scatterlist *sg; | 
|  | unsigned long *ptes; | 
|  | long npages, dma_ofs, i; | 
|  |  | 
|  | #if !DEBUG_NODIRECT | 
|  | /* If everything is physically contiguous, and the addresses | 
|  | fall into the direct-map window, use it.  */ | 
|  | if (leader->dma_address == 0 | 
|  | && paddr + size + __direct_map_base - 1 <= max_dma | 
|  | && paddr + size <= __direct_map_size) { | 
|  | out->dma_address = paddr + __direct_map_base; | 
|  | out->dma_length = size; | 
|  |  | 
|  | DBGA("    sg_fill: [%p,%lx] -> direct %lx\n", | 
|  | __va(paddr), size, out->dma_address); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* If physically contiguous and DAC is available, use it.  */ | 
|  | if (leader->dma_address == 0 && dac_allowed) { | 
|  | out->dma_address = paddr + alpha_mv.pci_dac_offset; | 
|  | out->dma_length = size; | 
|  |  | 
|  | DBGA("    sg_fill: [%p,%lx] -> DAC %lx\n", | 
|  | __va(paddr), size, out->dma_address); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Otherwise, we'll use the iommu to make the pages virtually | 
|  | contiguous.  */ | 
|  |  | 
|  | paddr &= ~PAGE_MASK; | 
|  | npages = calc_npages(paddr + size); | 
|  | dma_ofs = iommu_arena_alloc(arena, npages, 0); | 
|  | if (dma_ofs < 0) { | 
|  | /* If we attempted a direct map above but failed, die.  */ | 
|  | if (leader->dma_address == 0) | 
|  | return -1; | 
|  |  | 
|  | /* Otherwise, break up the remaining virtually contiguous | 
|  | hunks into individual direct maps and retry.  */ | 
|  | sg_classify(leader, end, 0); | 
|  | return sg_fill(leader, end, out, arena, max_dma, dac_allowed); | 
|  | } | 
|  |  | 
|  | out->dma_address = arena->dma_base + dma_ofs*PAGE_SIZE + paddr; | 
|  | out->dma_length = size; | 
|  |  | 
|  | DBGA("    sg_fill: [%p,%lx] -> sg %lx np %ld\n", | 
|  | __va(paddr), size, out->dma_address, npages); | 
|  |  | 
|  | /* All virtually contiguous.  We need to find the length of each | 
|  | physically contiguous subsegment to fill in the ptes.  */ | 
|  | ptes = &arena->ptes[dma_ofs]; | 
|  | sg = leader; | 
|  | do { | 
|  | #if DEBUG_ALLOC > 0 | 
|  | struct scatterlist *last_sg = sg; | 
|  | #endif | 
|  |  | 
|  | size = sg->length; | 
|  | paddr = SG_ENT_PHYS_ADDRESS(sg); | 
|  |  | 
|  | while (sg+1 < end && (int) sg[1].dma_address == -1) { | 
|  | size += sg[1].length; | 
|  | sg++; | 
|  | } | 
|  |  | 
|  | npages = calc_npages((paddr & ~PAGE_MASK) + size); | 
|  |  | 
|  | paddr &= PAGE_MASK; | 
|  | for (i = 0; i < npages; ++i, paddr += PAGE_SIZE) | 
|  | *ptes++ = mk_iommu_pte(paddr); | 
|  |  | 
|  | #if DEBUG_ALLOC > 0 | 
|  | DBGA("    (%ld) [%p,%x] np %ld\n", | 
|  | last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), | 
|  | last_sg->length, npages); | 
|  | while (++last_sg <= sg) { | 
|  | DBGA("        (%ld) [%p,%x] cont\n", | 
|  | last_sg - leader, SG_ENT_VIRT_ADDRESS(last_sg), | 
|  | last_sg->length); | 
|  | } | 
|  | #endif | 
|  | } while (++sg < end && (int) sg->dma_address < 0); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int | 
|  | pci_map_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, | 
|  | int direction) | 
|  | { | 
|  | struct scatterlist *start, *end, *out; | 
|  | struct pci_controller *hose; | 
|  | struct pci_iommu_arena *arena; | 
|  | dma_addr_t max_dma; | 
|  | int dac_allowed; | 
|  |  | 
|  | if (direction == PCI_DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | dac_allowed = pdev ? pci_dac_dma_supported(pdev, pdev->dma_mask) : 0; | 
|  |  | 
|  | /* Fast path single entry scatterlists.  */ | 
|  | if (nents == 1) { | 
|  | sg->dma_length = sg->length; | 
|  | sg->dma_address | 
|  | = pci_map_single_1(pdev, SG_ENT_VIRT_ADDRESS(sg), | 
|  | sg->length, dac_allowed); | 
|  | return sg->dma_address != 0; | 
|  | } | 
|  |  | 
|  | start = sg; | 
|  | end = sg + nents; | 
|  |  | 
|  | /* First, prepare information about the entries.  */ | 
|  | sg_classify(sg, end, alpha_mv.mv_pci_tbi != 0); | 
|  |  | 
|  | /* Second, figure out where we're going to map things.  */ | 
|  | if (alpha_mv.mv_pci_tbi) { | 
|  | hose = pdev ? pdev->sysdata : pci_isa_hose; | 
|  | max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | 
|  | arena = hose->sg_pci; | 
|  | if (!arena || arena->dma_base + arena->size - 1 > max_dma) | 
|  | arena = hose->sg_isa; | 
|  | } else { | 
|  | max_dma = -1; | 
|  | arena = NULL; | 
|  | hose = NULL; | 
|  | } | 
|  |  | 
|  | /* Third, iterate over the scatterlist leaders and allocate | 
|  | dma space as needed.  */ | 
|  | for (out = sg; sg < end; ++sg) { | 
|  | if ((int) sg->dma_address < 0) | 
|  | continue; | 
|  | if (sg_fill(sg, end, out, arena, max_dma, dac_allowed) < 0) | 
|  | goto error; | 
|  | out++; | 
|  | } | 
|  |  | 
|  | /* Mark the end of the list for pci_unmap_sg.  */ | 
|  | if (out < end) | 
|  | out->dma_length = 0; | 
|  |  | 
|  | if (out - start == 0) | 
|  | printk(KERN_WARNING "pci_map_sg failed: no entries?\n"); | 
|  | DBGA("pci_map_sg: %ld entries\n", out - start); | 
|  |  | 
|  | return out - start; | 
|  |  | 
|  | error: | 
|  | printk(KERN_WARNING "pci_map_sg failed: " | 
|  | "could not allocate dma page tables\n"); | 
|  |  | 
|  | /* Some allocation failed while mapping the scatterlist | 
|  | entries.  Unmap them now.  */ | 
|  | if (out > start) | 
|  | pci_unmap_sg(pdev, start, out - start, direction); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Unmap a set of streaming mode DMA translations.  Again, cpu read | 
|  | rules concerning calls here are the same as for pci_unmap_single() | 
|  | above.  */ | 
|  |  | 
|  | void | 
|  | pci_unmap_sg(struct pci_dev *pdev, struct scatterlist *sg, int nents, | 
|  | int direction) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct pci_controller *hose; | 
|  | struct pci_iommu_arena *arena; | 
|  | struct scatterlist *end; | 
|  | dma_addr_t max_dma; | 
|  | dma_addr_t fbeg, fend; | 
|  |  | 
|  | if (direction == PCI_DMA_NONE) | 
|  | BUG(); | 
|  |  | 
|  | if (! alpha_mv.mv_pci_tbi) | 
|  | return; | 
|  |  | 
|  | hose = pdev ? pdev->sysdata : pci_isa_hose; | 
|  | max_dma = pdev ? pdev->dma_mask : ISA_DMA_MASK; | 
|  | arena = hose->sg_pci; | 
|  | if (!arena || arena->dma_base + arena->size - 1 > max_dma) | 
|  | arena = hose->sg_isa; | 
|  |  | 
|  | fbeg = -1, fend = 0; | 
|  |  | 
|  | spin_lock_irqsave(&arena->lock, flags); | 
|  |  | 
|  | for (end = sg + nents; sg < end; ++sg) { | 
|  | dma64_addr_t addr; | 
|  | size_t size; | 
|  | long npages, ofs; | 
|  | dma_addr_t tend; | 
|  |  | 
|  | addr = sg->dma_address; | 
|  | size = sg->dma_length; | 
|  | if (!size) | 
|  | break; | 
|  |  | 
|  | if (addr > 0xffffffff) { | 
|  | /* It's a DAC address -- nothing to do.  */ | 
|  | DBGA("    (%ld) DAC [%lx,%lx]\n", | 
|  | sg - end + nents, addr, size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (addr >= __direct_map_base | 
|  | && addr < __direct_map_base + __direct_map_size) { | 
|  | /* Nothing to do.  */ | 
|  | DBGA("    (%ld) direct [%lx,%lx]\n", | 
|  | sg - end + nents, addr, size); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | DBGA("    (%ld) sg [%lx,%lx]\n", | 
|  | sg - end + nents, addr, size); | 
|  |  | 
|  | npages = calc_npages((addr & ~PAGE_MASK) + size); | 
|  | ofs = (addr - arena->dma_base) >> PAGE_SHIFT; | 
|  | iommu_arena_free(arena, ofs, npages); | 
|  |  | 
|  | tend = addr + size - 1; | 
|  | if (fbeg > addr) fbeg = addr; | 
|  | if (fend < tend) fend = tend; | 
|  | } | 
|  |  | 
|  | /* If we're freeing ptes above the `next_entry' pointer (they | 
|  | may have snuck back into the TLB since the last wrap flush), | 
|  | we need to flush the TLB before reallocating the latter.  */ | 
|  | if ((fend - arena->dma_base) >> PAGE_SHIFT >= arena->next_entry) | 
|  | alpha_mv.mv_pci_tbi(hose, fbeg, fend); | 
|  |  | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  |  | 
|  | DBGA("pci_unmap_sg: %ld entries\n", nents - (end - sg)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Return whether the given PCI device DMA address mask can be | 
|  | supported properly.  */ | 
|  |  | 
|  | int | 
|  | pci_dma_supported(struct pci_dev *pdev, u64 mask) | 
|  | { | 
|  | struct pci_controller *hose; | 
|  | struct pci_iommu_arena *arena; | 
|  |  | 
|  | /* If there exists a direct map, and the mask fits either | 
|  | the entire direct mapped space or the total system memory as | 
|  | shifted by the map base */ | 
|  | if (__direct_map_size != 0 | 
|  | && (__direct_map_base + __direct_map_size - 1 <= mask || | 
|  | __direct_map_base + (max_low_pfn << PAGE_SHIFT) - 1 <= mask)) | 
|  | return 1; | 
|  |  | 
|  | /* Check that we have a scatter-gather arena that fits.  */ | 
|  | hose = pdev ? pdev->sysdata : pci_isa_hose; | 
|  | arena = hose->sg_isa; | 
|  | if (arena && arena->dma_base + arena->size - 1 <= mask) | 
|  | return 1; | 
|  | arena = hose->sg_pci; | 
|  | if (arena && arena->dma_base + arena->size - 1 <= mask) | 
|  | return 1; | 
|  |  | 
|  | /* As last resort try ZONE_DMA.  */ | 
|  | if (!__direct_map_base && MAX_DMA_ADDRESS - IDENT_ADDR - 1 <= mask) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * AGP GART extensions to the IOMMU | 
|  | */ | 
|  | int | 
|  | iommu_reserve(struct pci_iommu_arena *arena, long pg_count, long align_mask) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long *ptes; | 
|  | long i, p; | 
|  |  | 
|  | if (!arena) return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&arena->lock, flags); | 
|  |  | 
|  | /* Search for N empty ptes.  */ | 
|  | ptes = arena->ptes; | 
|  | p = iommu_arena_find_pages(arena, pg_count, align_mask); | 
|  | if (p < 0) { | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Success.  Mark them all reserved (ie not zero and invalid) | 
|  | for the iommu tlb that could load them from under us. | 
|  | They will be filled in with valid bits by _bind() */ | 
|  | for (i = 0; i < pg_count; ++i) | 
|  | ptes[p+i] = IOMMU_RESERVED_PTE; | 
|  |  | 
|  | arena->next_entry = p + pg_count; | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  |  | 
|  | return p; | 
|  | } | 
|  |  | 
|  | int | 
|  | iommu_release(struct pci_iommu_arena *arena, long pg_start, long pg_count) | 
|  | { | 
|  | unsigned long *ptes; | 
|  | long i; | 
|  |  | 
|  | if (!arena) return -EINVAL; | 
|  |  | 
|  | ptes = arena->ptes; | 
|  |  | 
|  | /* Make sure they're all reserved first... */ | 
|  | for(i = pg_start; i < pg_start + pg_count; i++) | 
|  | if (ptes[i] != IOMMU_RESERVED_PTE) | 
|  | return -EBUSY; | 
|  |  | 
|  | iommu_arena_free(arena, pg_start, pg_count); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | iommu_bind(struct pci_iommu_arena *arena, long pg_start, long pg_count, | 
|  | unsigned long *physaddrs) | 
|  | { | 
|  | unsigned long flags; | 
|  | unsigned long *ptes; | 
|  | long i, j; | 
|  |  | 
|  | if (!arena) return -EINVAL; | 
|  |  | 
|  | spin_lock_irqsave(&arena->lock, flags); | 
|  |  | 
|  | ptes = arena->ptes; | 
|  |  | 
|  | for(j = pg_start; j < pg_start + pg_count; j++) { | 
|  | if (ptes[j] != IOMMU_RESERVED_PTE) { | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  | return -EBUSY; | 
|  | } | 
|  | } | 
|  |  | 
|  | for(i = 0, j = pg_start; i < pg_count; i++, j++) | 
|  | ptes[j] = mk_iommu_pte(physaddrs[i]); | 
|  |  | 
|  | spin_unlock_irqrestore(&arena->lock, flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | iommu_unbind(struct pci_iommu_arena *arena, long pg_start, long pg_count) | 
|  | { | 
|  | unsigned long *p; | 
|  | long i; | 
|  |  | 
|  | if (!arena) return -EINVAL; | 
|  |  | 
|  | p = arena->ptes + pg_start; | 
|  | for(i = 0; i < pg_count; i++) | 
|  | p[i] = IOMMU_RESERVED_PTE; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* True if the machine supports DAC addressing, and DEV can | 
|  | make use of it given MASK.  */ | 
|  |  | 
|  | int | 
|  | pci_dac_dma_supported(struct pci_dev *dev, u64 mask) | 
|  | { | 
|  | dma64_addr_t dac_offset = alpha_mv.pci_dac_offset; | 
|  | int ok = 1; | 
|  |  | 
|  | /* If this is not set, the machine doesn't support DAC at all.  */ | 
|  | if (dac_offset == 0) | 
|  | ok = 0; | 
|  |  | 
|  | /* The device has to be able to address our DAC bit.  */ | 
|  | if ((dac_offset & dev->dma_mask) != dac_offset) | 
|  | ok = 0; | 
|  |  | 
|  | /* If both conditions above are met, we are fine. */ | 
|  | DBGA("pci_dac_dma_supported %s from %p\n", | 
|  | ok ? "yes" : "no", __builtin_return_address(0)); | 
|  |  | 
|  | return ok; | 
|  | } | 
|  |  | 
|  | dma64_addr_t | 
|  | pci_dac_page_to_dma(struct pci_dev *pdev, struct page *page, | 
|  | unsigned long offset, int direction) | 
|  | { | 
|  | return (alpha_mv.pci_dac_offset | 
|  | + __pa(page_address(page)) | 
|  | + (dma64_addr_t) offset); | 
|  | } | 
|  |  | 
|  | struct page * | 
|  | pci_dac_dma_to_page(struct pci_dev *pdev, dma64_addr_t dma_addr) | 
|  | { | 
|  | unsigned long paddr = (dma_addr & PAGE_MASK) - alpha_mv.pci_dac_offset; | 
|  | return virt_to_page(__va(paddr)); | 
|  | } | 
|  |  | 
|  | unsigned long | 
|  | pci_dac_dma_to_offset(struct pci_dev *pdev, dma64_addr_t dma_addr) | 
|  | { | 
|  | return (dma_addr & ~PAGE_MASK); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Helper for generic DMA-mapping functions. */ | 
|  |  | 
|  | struct pci_dev * | 
|  | alpha_gendev_to_pci(struct device *dev) | 
|  | { | 
|  | if (dev && dev->bus == &pci_bus_type) | 
|  | return to_pci_dev(dev); | 
|  |  | 
|  | /* Assume that non-PCI devices asking for DMA are either ISA or EISA, | 
|  | BUG() otherwise. */ | 
|  | BUG_ON(!isa_bridge); | 
|  |  | 
|  | /* Assume non-busmaster ISA DMA when dma_mask is not set (the ISA | 
|  | bridge is bus master then). */ | 
|  | if (!dev || !dev->dma_mask || !*dev->dma_mask) | 
|  | return isa_bridge; | 
|  |  | 
|  | /* For EISA bus masters, return isa_bridge (it might have smaller | 
|  | dma_mask due to wiring limitations). */ | 
|  | if (*dev->dma_mask >= isa_bridge->dma_mask) | 
|  | return isa_bridge; | 
|  |  | 
|  | /* This assumes ISA bus master with dma_mask 0xffffff. */ | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int | 
|  | dma_set_mask(struct device *dev, u64 mask) | 
|  | { | 
|  | if (!dev->dma_mask || | 
|  | !pci_dma_supported(alpha_gendev_to_pci(dev), mask)) | 
|  | return -EIO; | 
|  |  | 
|  | *dev->dma_mask = mask; | 
|  |  | 
|  | return 0; | 
|  | } |